1
|
Li X, Chen Y, Lan R, Liu P, Xiong K, Teng H, Tao L, Yu S, Han G. Transmembrane mucins in lung adenocarcinoma: understanding of current molecular mechanisms and clinical applications. Cell Death Discov 2025; 11:163. [PMID: 40210618 PMCID: PMC11985918 DOI: 10.1038/s41420-025-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
The mucin family is a group of highly glycosylated macromolecules widely present in human epithelial cells and with subtypes of secreted and membrane-associated forms. The membrane-associated mucins, known as transmembrane mucins, are not only involved in the formation of mucus barrier but also regulate cell signal transduction in physiological and pathological status. Transmembrane mucins could contribute to lung adenocarcinoma (LUAD) proliferation, apoptosis, angiogenesis, invasion, and metastasis, and remodel the immune microenvironment involved in immune escape. Furthermore, transmembrane mucins have been explored as potential LUAD indicators for diagnosis and prognosis. The development of targeted therapy and immunotherapeutic drugs targeting transmembrane mucins has also provided broad application prospects for clinic. In the following review, we summarize the characteristic structures of diverse transmembrane mucins, regulatory roles in promoting the progression of LUAD, and the current situation of diagnosis, prognosis, and therapeutic strategies based on transmembrane mucins.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Chen
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Lan
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Kai Xiong
- Department of Statistic, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Hetai Teng
- Department of General Surgery, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Lili Tao
- Department of Pathology, Peking University, Shenzhen Hospital, Shenzhen, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Mental Hospital, Harbin, China.
| | - Guiping Han
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Guo G, Zhang Z, Zhang J, Wang D, Xu S, Wu S, Deng K, Bu Y, Sheng Z, Yu J, Gao Y, Yan Z, Zhao R, Wang M, Li T, Bu X. Dynamic Monitoring of Circulating Tumor DNA to Predict the Risk of Non In Situ Recurrence of Postoperative Glioma: A Prospective Cohort Study. Cancer Med 2025; 14:e70733. [PMID: 40022576 PMCID: PMC11871513 DOI: 10.1002/cam4.70733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Glioma recurrence can be divided into in situ recurrence and non-in situ recurrence, and the mutation evolution of gliomas with different recurrence patterns is still unknown. We used sequential sequencing of circulating tumor DNA (ctDNA) to compare the somatic mutation profile and clonal evolution of gliomas with different recurrence patterns. To investigate the value of ctDNA in predicting early postoperative tumor recurrence and guiding prognosis stratification in patients with glioma. METHODS We prospectively recruited 92 patients with near-total resection of gliomas from our center. Two hundred and thirty-four postoperative tissue and Tumor In Situ Fluid (TISF) samples from 69 eligible patients were included in ctDNA analysis. RESULTS Among the 69 patients, 37 glioblastoma (GBM) patients experienced recurrence, and the median progression-free survival (mPFS) was not significantly different between the situ recurrence group and the non-in situ recurrence group (8.6 vs. 6.1 months). The ctDNA of recurrent tissue and TISF were significantly consistent. Before and after initial treatment, TISF-ctDNA mutant allele fraction (MAF), subclonal mutation, and alterations in related pathways (lysine degradation and PI3K pathway) were negatively correlated with treatment response and PFS. Among recurrent GBM patients, EGFR mutations were the most common. Mutations related to the RTK-RAS pathway (NF1) were most common in patients with situ recurrent GBM, while mutations in the MUC family and TP53 pathway (MUC16, CHEK2) were prevalent and continuously increased in patients with non-in situ recurrent GBM. CONCLUSIONS In glioma patients undergoing primary surgery, dynamic monitoring of ctDNA and genotyping can be used for early risk stratification, efficacy monitoring, and early recurrence detection, and provide a basis for clinical research to evaluate early therapeutic intervention.
Collapse
Affiliation(s)
- Guangzhong Guo
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Ziyue Zhang
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Jiubing Zhang
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Dayang Wang
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Sensen Xu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Shuang Wu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Kaiyuan Deng
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Yage Bu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Zhiyuan Sheng
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Jinliang Yu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Yushuai Gao
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Zhaoyue Yan
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Ruijiao Zhao
- Department of PathologyZhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's HospitalZhengzhouHenanChina
| | - Meiyun Wang
- Department of RadiologyZhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's HospitalZhengzhouHenanChina
| | - Tianxiao Li
- Henan Provincial Neurointerventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, Henan Engineering Research Center of Cerebrovascular Intervention InnovationZhengzhouHenanChina
- Department of Cerebrovascular DiseaseZhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's HospitalZhengzhouHenanChina
| | - Xingyao Bu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| |
Collapse
|
3
|
Huang X, Lin H, Zhao Y, Wang P, Ying H, Zhang S, Liu L. MUC16 can Predict the Pregnancy Outcomes in Human and Intraperitoneal Administration of MUC16 can Rescue Pregnancy Losses in Mouse Models. Reprod Sci 2024; 31:2354-2370. [PMID: 38622477 DOI: 10.1007/s43032-024-01550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Mucin 16 (MUC16) participates in the process of embryo implantation, but few studies have examined the association between MUC16 and pregnancy loss. To investigate this association, the expression of MUC16 in serum and decidua was compared between women with pregnancy loss and ongoing pregnancies. In vitro experiments and animal models were used to explore the role and underlying mechanisms of MUC16 in pregnancy loss. In human study, the expression of MUC16 in serum and decidua was both consistently lower in the women with pregnancy loss compared with those in women with ongoing pregnancies. In vitro experiments revealed the interaction of MUC16 with peripheral blood natural killer (pNK) cells. MUC16 changed the phenotype and reduced the pro-inflammation ability of pNK cells. MUC16 also inhibited the cytotoxicity of pNK cells through the Src homology region 2 domain-containing phosphatase-1/extracellular signal-regulated kinase (SHP-ERK) pathway. Furthermore, MUC16 promoted the migration, invasion and tube formation of trophoblast cells by co-culturing together with pNK cells. In vivo experiments, the mouse model of abortion was used to further confirm that intraperitoneal administration of MUC16 could rescue the pregnancy loss. This study reveals the still-unknown connection between MUC16 and pNK cells and indicates that MUC16 provides a novel method for future prediction and treatment of unfavorable pregnancy outcomes.
Collapse
Affiliation(s)
- Xiaona Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Huizhen Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yue Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Hanqi Ying
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China.
| |
Collapse
|
4
|
Zhang S, Zhang H, Jia N, Suo S, Guo J. Effect of different treatment modalities on the prognosis of stage IV epithelial ovarian cancer: analysis of the SEER database. BMC Womens Health 2024; 24:345. [PMID: 38877551 PMCID: PMC11179217 DOI: 10.1186/s12905-024-03199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND The prognosis of advanced ovarian cancer is often poor. Although there are several treatment options for stage IV epithelial ovarian cancer, it is not clear which treatment will benefit the patient's prognosis.We conducted an analysis using the SEER database to compare the impact of different treatment modalities on the prognosis of advanced ovarian cancer. METHODS The present study conducts a retrospective analysis of relevant data from the SEER database pertaining to patients diagnosed with stage IV epithelial ovarian cancer between 2011 and 2020 (n = 5345). Statistical methods including Kaplan-Meier curves, log-rank tests, and Cox regression analysis are employed to ascertain the impact of different treatment regimens on the prognosis of patients with stage IV epithelial ovarian cancer. RESULTS Among patients with stage IV epithelial ovarian cancer, age ≥ 60 and the presence of lung metastases or multiple metastases were identified as poor prognostic factors. Conversely, being Asian or Pacific Islander, married, and testing negative for CA125 were associated with favorable prognoses. In terms of the choice of treatment for patients, surgery plus chemotherapy was the best treatment modality, and timely surgery could significantly improve the prognosis of patients, but there was no difference between chemoradiotherapy alone and the surgery group among patients with lung metastases. CONCLUSION The prognosis of patients with stage IV epithelial ovarian cancer is influenced by many factors. In terms of the choice of treatment, patients with surgery plus chemotherapy have the best prognosis. In cases where lung metastases are inoperable, a combination of radiotherapy and chemotherapy can be used. In other cases, radiotherapy does not improve outcomes in patients with stage IV epithelial ovarian cancer. This study provides a basis for the choice of treatment for patients with stage IV epithelial ovarian cancer.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1277 JieFang Avenue, Jiang'an District, Wuhan, 420022, China
| | - Hongyong Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naer Jia
- Department of Obstetrics and Gynecology, People's Hospital Of Bortala Mongolian Autonomous Prefecture, Bortala Mongolian Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China
| | - Suo Suo
- Department of Obstetrics and Gynecology, People's Hospital Of Bortala Mongolian Autonomous Prefecture, Bortala Mongolian Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China
| | - Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1277 JieFang Avenue, Jiang'an District, Wuhan, 420022, China.
- People's Hospital of Longhua, Shenzhen, China.
- Longhua District Key Laboratory of Perinatal Population Medicine, Shenzhen, China.
| |
Collapse
|
5
|
Liu Q, Zhang X, Song Y, Si J, Li Z, Dong Q. Construction and analysis of a reliable five-gene prognostic signature for colon adenocarcinoma associated with the wild-type allelic state of the COL6A6 gene. Transl Cancer Res 2024; 13:2475-2496. [PMID: 38881933 PMCID: PMC11170513 DOI: 10.21037/tcr-23-463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/29/2023] [Indexed: 06/18/2024]
Abstract
BACKGROUND Tumors emerge by acquiring a number of mutations over time. The first mutation provides a selective growth advantage compared to adjacent epithelial cells, allowing the cell to create a clone that can outgrow the cells that surround it. Subsequent mutations determine the risk of the tumor progressing to metastatic cancer. Some secondary mutations may inhibit the aggressiveness of the tumor while still increasing the survival of the clone. Meaningful mutations in genes may provide a strong molecular foundation for developing novel therapeutic strategies for cancer. METHODS The somatic mutation and prognosis in colon adenocarcinoma (COAD) were analyzed. The copy number variation (CNV) and differentially expressed genes (DEGs) between the collagen type VI alpha 6 chain (COL6A6) mutation (COL6A6-MUT) and the COL6A6 wild-type (COL6A6-WT) subgroups were evaluated. The independent prognostic signatures based on COL6A6-allelic state were determined to construct a Cox model. The biological characteristics and the immune microenvironment between the two risk groups were compared. RESULTS COL6A6 was found to be highly mutated in COAD at a frequency of 9%. Patients with COL6A6-MUT had a good overall survival (OS) compared to those with COL6A6-WT, who had a different CNV pattern. Significant differences in gene expression were established for 593 genes between the COL6A6-MUT and COL6A6-WT samples. Among them, MUC16, ASNSP1, PRR18, PEG10, and RPL26P8 were determined to be independent prognostic factors. The internally validated prognostic risk model, constructed using these five genes, demonstrated its value by revealing a significant difference in patient prognosis between the high-risk and low-risk groups. Specifically, patients in the high-risk group exhibited a considerably worse prognosis than did those in the low-risk group. The high-risk group had a significantly higher proportion of patients over 60 years of age and patients in stage III. Moreover, the tumor immune dysfunction and exclusion (TIDE) score and the expression of human leukocyte antigen (HLA) family genes were all higher in the high-risk group than that in the low-risk group. CONCLUSIONS The allelic state of COL6A6 and the five associated DEGs were identified as novel biomarkers for the diagnosis and prognosis of COAD and may be therapeutic targets in COAD.
Collapse
Affiliation(s)
- Qun Liu
- Second Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Xiaohua Zhang
- Gastroenterology Center, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Yan Song
- Outpatient Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Junli Si
- Second Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Zhaoshui Li
- Qingdao University, Qingdao Medical College, Qingdao, China
| | - Quanjiang Dong
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| |
Collapse
|
6
|
Iserentant G, Seguin-Devaux C, Zimmer J. Flow cytometry conjugate formation assay between natural killer cells and their target cells. Methods Cell Biol 2024; 193:213-228. [PMID: 39919844 DOI: 10.1016/bs.mcb.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Before being able to kill other cells, natural killer (NK) cells first have to establish contact with those targets. In case of a predominance of activating signals from the target cell over inhibitory ones, the killing process is initiated. It is possible, with a simple two-color flow cytometry method, to evaluate, for any given effector cell-target cell pair, the number of conjugates between both types of cells. The percentage obtained gives an idea of the amplitude of binding of the NK cells to the targets and might be expected to be indicative of the level of cytotoxicity. Nevertheless, there is no absolute correlation, as the percentages of conjugates are sometimes higher with relatively resistant targets than with the highly sensitive cell line K562. Practically, NK cells and target cells are stained with two differently fluorescent dyes and incubated together at the desired effector:target ratio (in our example, 1:1) for various periods of time (0, 10, 30min, etc.) at 37°C. After the incubation time, the cells are carefully introduced into the flow cytometer, where in principle three populations are distinguished: the single positive, unconjugated effector and target cells, respectively, and the double positive subset, which corresponds to the conjugates between both cell types. We describe here in detail the staining and cell culture protocols and procedures, and give several examples. Thus, the very cytotoxic NK leukemia cell line KHYG-1 versus the myeloid leukemia K562 (the "conventional" NK cell target) and the Burkitt lymphoma cell line Raji forms a high number of conjugates. In contrast, purified, non-activated, healthy donor-derived peripheral blood NK cells bind less to the targets, in accordance with their low (K562) or absent (Raji) cytotoxic activity.
Collapse
Affiliation(s)
- Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
7
|
Chen X, Sandrine IK, Yang M, Tu J, Yuan X. MUC1 and MUC16: critical for immune modulation in cancer therapeutics. Front Immunol 2024; 15:1356913. [PMID: 38361923 PMCID: PMC10867145 DOI: 10.3389/fimmu.2024.1356913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Wu Y, Liu Q, Xie Y, Zhu J, Zhang S, Ge Y, Guo J, Luo N, Huang W, Xu R, Liu S, Cheng Z. MUC16 stimulates neutrophils to an inflammatory and immunosuppressive phenotype in ovarian cancer. J Ovarian Res 2023; 16:181. [PMID: 37644468 PMCID: PMC10466733 DOI: 10.1186/s13048-023-01207-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 06/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND MUC16 (CA125) is a commonly used tumor marker for ovarian cancer screening and reported to be an immunosuppressive factor by acting on the sialic acid-binding immunoglobulin-like lectin-9 (Siglec-9) on the surface of natural killer cells (NK cells), B cells, and monocytes. However, the role of MUC16 on neutrophils in the tumor microenvironment remains to be further explored. METHODS The correlation between the proportion and count of peripheral blood cells, serum inflammatory-related factors and serum MUC16 (CA125) level in patients was constructed based on clinical samples. RNAseq data was obtained from TCGA and sequencing of ovarian cancer tissues, followed by TIMER immune cell infiltration and correlation analysis. Ovarian cancer organoid was constructed to stimulate neutrophils with immunophenotype identification by qPCR and flow cytometry. MUC16 protein stimulation to neutrophils validated the role of MUC16 under the analysis of RNA sequencing and inhibition of NK cytotoxicity in vitro. RESULTS The serum MUC16 level was positively correlated with the proportion and count of peripheral blood neutrophils, neutrophil-to-lymphocyte ratio (NLR) and inflammatory factors IL-6, IL-8, IL-10 and IL-2R. Siglec-9, the receptor of MUC16, was expressed on neutrophils and was positively correlated to neutrophil infiltration in ovarian cancer. After the stimulation of ovarian cancer organoids and MUC16 respectively, the proportions of CD11b+, CD66b+, and ICAM-1+ neutrophils were significantly increased, while the proportion of CXCR4+ neutrophils was slightly decreased, with increasing of of inflammatory factors MMP9, IL-8, OSM, IL-1β, TNF-α, CXCL3, and ROS. RNA-sequencing analysis revealed that inflammatory response, TNFA signaling pathway, and IL6-related pathway were upregulated in MUC16-stimulated neutrophils, accompanied by high expression of immunosuppression-related factors HHLA2, IL-6, TNFRSF9, ADORA2A, CD274 (PD-L1), and IDO1. NK cytotoxicity was decreased when treated by supernanant of MUC16-stimulated neutrophils in vitro. CONCLUSION MUC16 acted on neutrophils by Siglec-9 leading to an inflammatory and immunosuppressive phenotype in ovarian cancer.
Collapse
Affiliation(s)
- Yuliang Wu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Qi Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Yan Xie
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Jihui Zhu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China
| | - Sai Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China
| | - Yao Ge
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Ning Luo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Runping Xu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China.
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China.
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China.
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
9
|
Liu H, Xin T, Duan H, Wang Y, Shao C, Zhu Y, Wang J, He J. Development and validation of a MUC16 mutation-associated immune prognostic model for lung adenocarcinoma. Aging (Albany NY) 2023; 15:5650-5661. [PMID: 37341998 PMCID: PMC10333060 DOI: 10.18632/aging.204814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Mucin 16 (MUC16) mutation ranks third among all common mutations in lung adenocarcinoma (LUAD), and it has a certain effect on LUAD development and prognostic outcome. This research aimed to analyze the effects of MUC16 mutation on LUAD immunophenotype regulation and determine the prognostic outcome using an immune prognostic model (IPM) built with immune-related genes. The MUC16 mutation status and mRNA expression profiles were analyzed using diverse platforms and among several LUAD patients (n = 691). An IPM was then constructed using differentially expressed immune-related genes (DEIRGs) in MUC16MUT LUAD cases, and the data were compared with those of MUC16WT LUAD cases. The IPM's performance in distinguishing high-risk cases from low-risk ones among 691 LUAD cases was verified. Additionally, a nomogram was built and applied in the clinical setting. Furthermore, a comprehensive IPM-based analysis of how MUC16 mutation affected the tumor immune microenvironment (TIME) of LUAD was performed. MUC16 mutation decreased the immune response in LUAD. As revealed by functional annotation, the DEIRGs in the IPM were most significantly enriched in the humoral immune response function and the immune system disease pathway. Moreover, high-risk cases were associated with increased proportions of immature dendritic cells, neutrophils, and B-cells; enhanced type I interferon T-cell response; and increased expression of PD-1, CTLA-4, TIM-3, and LAG3 when compared with low-risk cases. MUC16 mutation shows potent association with TIME of LUAD. The as-constructed IPM displays high sensitivity to MUC16 mutation status and can be applied to discriminate high-risk LUAD cases from low-risk ones.
Collapse
Affiliation(s)
- Honggang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Xin
- Department of Respiratory Medicine, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Yifang Zhu
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Jiansheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Lai CW, Bagadia P, Barisas DAG, Jarjour NN, Wong R, Ohara T, Muegge BD, Lu Q, Xiong S, Edelson BT, Murphy KM, Stappenbeck TS. Mesothelium-Derived Factors Shape GATA6-Positive Large Cavity Macrophages. THE JOURNAL OF IMMUNOLOGY 2022; 209:742-750. [DOI: 10.4049/jimmunol.2200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/15/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The local microenvironment shapes macrophage differentiation in each tissue. We hypothesized that in the peritoneum, local factors in addition to retinoic acid can support GATA6-driven differentiation and function of peritoneal large cavity macrophages (LCMs). We found that soluble proteins produced by mesothelial cells lining the peritoneal cavity maintained GATA6 expression in cultured LCMs. Analysis of global gene expression of isolated mesothelial cells highlighted mesothelin (Msln) and its binding partner mucin 16 (Muc16) as candidate secreted ligands that potentially regulate GATA6 expression in peritoneal LCMs. Mice deficient for either of these molecules showed diminished GATA6 expression in peritoneal and pleural LCMs that was most prominent in aged mice. The more robust phenotype in older mice suggested that monocyte-derived macrophages were the target of Msln and Muc16. Cell transfer and bone marrow chimera experiments supported this hypothesis. We found that lethally irradiated Msln−/− and Muc16−/− mice reconstituted with wild-type bone marrow had lower levels of GATA6 expression in peritoneal and pleural LCMs. Similarly, during the resolution of zymosan-induced inflammation, repopulated peritoneal LCMs lacking expression of Msln or Muc16 expressed diminished GATA6. These data support a role for mesothelial cell–produced Msln and Muc16 in local macrophage differentiation within large cavity spaces such as the peritoneum. The effect appears to be most prominent on monocyte-derived macrophages that enter into this location as the host ages and also in response to infection.
Collapse
Affiliation(s)
- Chin-Wen Lai
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Derek A. G. Barisas
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Nicholas N. Jarjour
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Rachel Wong
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Takahiro Ohara
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Brian D. Muegge
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Qiuhe Lu
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | | |
Collapse
|
11
|
[MUC16: The Novel Target for Tumor Therapy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:452-459. [PMID: 35899441 PMCID: PMC9346149 DOI: 10.3779/j.issn.1009-3419.2022.101.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucin16 (MUC16), also known as carbohydrate antigen 125 (CA125), is a glycoprotein antigen that can be recognized by the monoclonal antibody OC125 detected from epithelial ovarian carcinoma antigen by Bast et al in 1981. CA125 is not present in normal ovarian tissue but is usually elevated in the serum of epithelial ovarian carcinoma patients. CA125 is the most commonly used serologic biomarker for the diagnosis and recurrence monitoring of epithelial ovarian carcinoma. MUC16 is highly expressed in varieties of tumors. MUC16 can interact with galectin-1/3, mesothelin, sialic acid-binding immunoglobulin-type lectins-9 (Siglec-9), and other ligands. MUC16 plays an important role in tumor genesis, proliferation, migration, invasion, and tumor immunity through various signaling pathways. Besides, therapies targeting MUC16 have some significant achievements. Related preclinical studies and clinical trials are in progress. MUC16 may be a potential novel target for tumor therapy. This article will review the mechanism of MUC16 in tumor genesis and progression, and focus on the research actuality of MUC16 in tumor therapy. This article also provides references for subsequent tumor therapy studies targeting MUC16.
.
Collapse
|
12
|
Fraser CC, Jia B, Hu G, Al Johani LI, Fritz-Klaus R, Ham JD, Fichorova RN, Elias KM, Cramer DW, Patankar MS, Chen J. Ovarian Cancer Ascites Inhibits Transcriptional Activation of NK Cells Partly through CA125. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2227-2238. [PMID: 35396222 PMCID: PMC10852100 DOI: 10.4049/jimmunol.2001095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Malignant ascites is a common clinical problem in ovarian cancer. NK cells are present in the ascites, but their antitumor activity is inhibited. The underlying mechanisms of the inhibition have yet to be fully elucidated. Using an Fcγ receptor-mediated NK cell activation assay, we show that ascites from ovarian cancer patients potently inhibits NK cell activation. Part of the inhibitory activity is mediated by CA125, a mucin 16 fragment shed from ovarian cancer tumors. Moreover, transcriptional analyses by RNA sequencing reveal upregulation of genes involved in multiple metabolic pathways but downregulation of genes involved in cytotoxicity and signaling pathways in NK cells purified from ovarian cancer patient ascites. Transcription of genes involved in cytotoxicity pathways are also downregulated in NK cells from healthy donors after in vitro treatment with ascites or with a CA125-enriched protein fraction. These results show that ascites and CA125 inhibit antitumor activity of NK cells at transcriptional levels by suppressing expression of genes involved in NK cell activation and cytotoxicity. Our findings shed light on the molecular mechanisms by which ascites inhibits the activity of NK cells and suggest possible approaches to reactivate NK cells for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- Christopher C Fraser
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Jia
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Roberta Fritz-Klaus
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - James Dongjoo Ham
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Raina N Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Kevin M Elias
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Daniel William Cramer
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts;
| |
Collapse
|
13
|
Hitchcock CL, Povoski SP, Mojzisik CM, Martin EW. Survival Advantage Following TAG-72 Antigen-Directed Cancer Surgery in Patients With Colorectal Carcinoma: Proposed Mechanisms of Action. Front Oncol 2021; 11:731350. [PMID: 34950576 PMCID: PMC8688248 DOI: 10.3389/fonc.2021.731350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/25/2021] [Indexed: 12/09/2022] Open
Abstract
Patients with colorectal carcinoma (CRC) continue to have variable clinical outcomes despite undergoing the same surgical procedure with curative intent and having the same pathologic and clinical stage. This problem suggests the need for better techniques to assess the extent of disease during surgery. We began to address this problem 35 years ago by injecting patients with either primary or recurrent CRC with 125I-labeled murine monoclonal antibodies against the tumor-associated glycoprotein-72 (TAG-72) and using a handheld gamma-detecting probe (HGDP) for intraoperative detection and removal of radioactive, i.e., TAG-72-positive, tissue. Data from these studies demonstrated a significant difference in overall survival data (p < 0.005 or better) when no TAG-72-positive tissue remained compared to when TAG-72-positive tissue remained at the completion of surgery. Recent publications indicate that aberrant glycosylation of mucins and their critical role in suppressing tumor-associated immune response help to explain the cellular mechanisms underlying our results. We propose that monoclonal antibodies to TAG-72 recognize and bind to antigenic epitopes on mucins that suppress the tumor-associated immune response in both the tumor and tumor-draining lymph nodes. Complete surgical removal of all TAG-72-positive tissue serves to reverse the escape phase of immunoediting, allowing a resetting of this response that leads to improved overall survival of the patients with either primary or recurrent CRC. Thus, the status of TAG-72 positivity after resection has a significant impact on patient survival.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephen P. Povoski
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cathy M. Mojzisik
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Edward W. Martin
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
González G, Lakatos K, Hoballah J, Fritz-Klaus R, Al-Johani L, Brooker J, Jeong S, Evans CL, Krauledat P, Cramer DW, Hoffman RA, Hansen WP, Patankar MS. Characterization of Cell-Bound CA125 on Immune Cell Subtypes of Ovarian Cancer Patients Using a Novel Imaging Platform. Cancers (Basel) 2021; 13:2072. [PMID: 33922973 PMCID: PMC8123299 DOI: 10.3390/cancers13092072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
MUC16, a sialomucin that contains the ovarian cancer biomarker CA125, binds at low abundance to leucocytes via the immune receptor, Siglec-9. Conventional fluorescence-based imaging techniques lack the sensitivity to assess this low-abundance event, prompting us to develop a novel "digital" optical cytometry technique for qualitative and quantitative assessment of CA125 binding to peripheral blood mononuclear cells (PBMC). Plasmonic nanoparticle labeled detection antibody allows assessment of CA125 at the near-single molecule level when bound to specific immune cell lineages that are simultaneously identified using multiparameter fluorescence imaging. Image analysis and deep learning were used to quantify CA125 per each cell lineage. PBMC from treatment naïve ovarian cancer patients (N = 14) showed higher cell surface abundance of CA125 on the aggregate PBMC population as well as on NK (p = 0.013), T (p < 0.001) and B cells (p = 0.024) compared to circulating lymphocytes of healthy donors (N = 7). Differences in CA125 binding to monocytes or NK-T cells between the two cohorts were not significant. There was no correlation between the PBMC-bound and serum levels of CA125, suggesting that these two compartments are not in stoichiometric equilibrium. Understanding where and how subset-specific cell-bound surface CA125 takes place may provide guidance towards a new diagnostic biomarker in ovarian cancer.
Collapse
Affiliation(s)
- Germán González
- PNP Research Corporation, Drury, MA 01343, USA; (P.K.); (W.P.H.)
| | - Kornél Lakatos
- Brigham and Women’s Hospital, Department of Obstetrics, Gynecology and Reproductive Biology, Boston, MA 02115, USA; (K.L.); (D.W.C.)
| | - Jawad Hoballah
- Thorlabs Imaging Systems, Sterling, VA 20166, USA; (J.H.); (J.B.)
| | - Roberta Fritz-Klaus
- Department of Obstetrics and Gynecology, University of Wisconsin Madison, Madison, WI 53706, USA; (R.F.-K.); (L.A.-J.)
| | - Lojain Al-Johani
- Department of Obstetrics and Gynecology, University of Wisconsin Madison, Madison, WI 53706, USA; (R.F.-K.); (L.A.-J.)
| | - Jeff Brooker
- Thorlabs Imaging Systems, Sterling, VA 20166, USA; (J.H.); (J.B.)
| | - Sinyoung Jeong
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA 02114, USA; (S.J.); (C.L.E.)
| | - Conor L. Evans
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA 02114, USA; (S.J.); (C.L.E.)
| | - Petra Krauledat
- PNP Research Corporation, Drury, MA 01343, USA; (P.K.); (W.P.H.)
| | - Daniel W. Cramer
- Brigham and Women’s Hospital, Department of Obstetrics, Gynecology and Reproductive Biology, Boston, MA 02115, USA; (K.L.); (D.W.C.)
| | | | - W. Peter Hansen
- PNP Research Corporation, Drury, MA 01343, USA; (P.K.); (W.P.H.)
| | - Manish S. Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin Madison, Madison, WI 53706, USA; (R.F.-K.); (L.A.-J.)
| |
Collapse
|
15
|
Li N, Li B, Zhan X. Comprehensive Analysis of Tumor Microenvironment Identified Prognostic Immune-Related Gene Signature in Ovarian Cancer. Front Genet 2021; 12:616073. [PMID: 33679883 PMCID: PMC7928403 DOI: 10.3389/fgene.2021.616073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background Accumulating evidence demonstrated that tumor microenvironmental cells played important roles in predicting clinical outcomes and therapeutic efficacy. We aimed to develop a reliable immune-related gene signature for predicting the prognosis of ovarian cancer (OC). Methods Single sample gene-set enrichment analysis (ssGSEA) of immune gene-sets was used to quantify the relative abundance of immune cell infiltration and develop high- and low-abundance immune subtypes of 308 OC samples. The presence of infiltrating stromal/immune cells in OC tissues was calculated as an estimate score. We estimated the correlation coefficients among the immune subtype, clinicopathological feature, immune score, distribution of immune cells, and tumor mutation burden (TMB). The differentially expressed immune-related genes between high- and low-abundance immune subtypes were further used to construct a gene signature of a prognostic model in OC with lasso regression analysis. Results The ssGSEA analysis divided OC samples into high- and low-abundance immune subtypes based on the abundance of immune cell infiltration, which was significantly related to the estimate score and clinical characteristics. The distribution of immune cells was also significantly different between high- and low-abundance immune subtypes. The correlation analysis showed the close relationship between TMB and the estimate score. The differentially expressed immune-related genes between high- and low-abundance immune subtypes were enriched in multiple immune-related pathways. Some immune checkpoints (PDL1, PD1, and CTLA-4) were overexpressed in the high-abundance immune subtype. Furthermore, the five-immune-related-gene-signature prognostic model (CCL18, CXCL13, HLA-DOB, HLA-DPB2, and TNFRSF17)-based high-risk and low-risk groups were significantly related to OC overall survival. Conclusion Immune-related genes were the promising predictors of prognosis and survival, and the comprehensive landscape of tumor microenvironmental cells of OC has potential for therapeutic schedule monitoring.
Collapse
Affiliation(s)
- Na Li
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China.,State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Biao Li
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China.,State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xianquan Zhan
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China.,State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Wang F, Zhang Q, Zhang H, Qiao X, Zhang X, Zhang K, Gu X, Wang L, Cui J. MUC16 promotes EOC proliferation by regulating GLUT1 expression. J Cell Mol Med 2021; 25:3031-3040. [PMID: 33543559 PMCID: PMC7957195 DOI: 10.1111/jcmm.16345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/09/2021] [Indexed: 01/24/2023] Open
Abstract
As a common malignancy in females with a higher incidence rate, epithelial ovarian cancer (EOC) is a heterogeneous disease with complexity and diversity in histology and therapeutic response. Although great progress has been made in diagnosis and therapeutic strategies, novel therapeutic strategies are required to improve survival. Although the promoting effect of mucin 16 (MUC16) on tumour progression has been reported, the potential mechanisms remain unclear. In our study, we reported that overexpression of MUC16 was significantly related to cell proliferation and disease progression in EOC. Results from clinical specimen analysis and cell experiment support this conclusion. Patients with a high MUC16 expression usually had a worse prognosis that those with a low expression. Cell proliferation ability was significantly decreased in EOC cell lines when the knockdown of MUC16. Further study shows that the function of MUC16 in cell proliferation is based on the regulation of glucose transporter 1 (GLUT1) expression. MUC16 can control glucose uptake by regulating GLUT1 in EOC cells, thereby promoting glycogen synthesis, so that tumour cells produce more energy for proliferation. This conclusion is based on two findings. First, the significant correlation between MUC16 and GLUT1 was verified by clinical specimen and TCGA data analysis. Then, alteration of MUC16 expression levels can affect the expression of GLUT1 and glucose uptake was also verified. Finally, this conclusion is further verified in vivo by tumour‐bearing mice model. To summarize, our results suggest that MUC16 promotes EOC proliferation and disease progression by regulating GLUT1 expression.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hailing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaogai Qiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xia Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Gu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihong Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Zhang M, Cheng S, Jin Y, Zhao Y, Wang Y. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188503. [PMID: 33421585 DOI: 10.1016/j.bbcan.2021.188503] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
After it was discovered approximately 40 years ago, carbohydrate antigen 125 (CA125) became the most widely used and concerning biomarker in ovarian cancer screening. However, there is still controversy about its role in clinical practice. CA125 is not sufficiently reliable in diagnosis to screen for early-stage ovarian cancer. On the other hand, CA125 has been a valuable indicator for evaluating chemotherapeutic efficacy and prognosis. We still do not know much about its biological role, and several studies have indicated that this marker participates in the occurrence and development of ovarian cancer. Currently, an increasing number of scholars have begun to pay attention to CA125-targeted treatment strategies. In the interest of better design and development of anticancer therapies, a renewed and systematic understanding of the roles of CA125 in diagnosis, prediction, and tumorigenesis is warranted.
Collapse
Affiliation(s)
- Minghai Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yaqian Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China.
| |
Collapse
|
18
|
Jeong S, González G, Ho A, Nowell N, Austin LA, Hoballah J, Mubarak F, Kapur A, Patankar MS, Cramer DW, Krauledat P, Hansen WP, Evans CL. Plasmonic Nanoparticle-Based Digital Cytometry to Quantify MUC16 Binding on the Surface of Leukocytes in Ovarian Cancer. ACS Sens 2020; 5:2772-2782. [PMID: 32847358 PMCID: PMC7871419 DOI: 10.1021/acssensors.0c00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although levels of the circulating ovarian cancer marker (CA125) can distinguish ovarian masses that are likely to be malignant and correlate with severity of disease, serum CA125 has not proved useful in general population screening. Recently, cell culture studies have indicated that MUC16 may bind to the Siglec-9 receptor on natural killer (NK) cells where it downregulates the cytotoxicity of NK cells, allowing ovarian cancer cells to evade immune surveillance. We present evidence that the presence of MUC16 can be locally visualized and imaged on the surface of peripheral blood mononuclear cells (PBMCs) in ovarian cancer via a novel "digital" cytometry technique that incorporates: (i) OC125 monoclonal antibody-conjugated gold nanoparticles as optical nanoprobes, (ii) a high contrast dark-field microscopy system to detect PBMC-bound gold nanoparticles, and (iii) a computational algorithm for automatic counting of these nanoparticles to estimate the quantity of surface-bound MUC16. The quantitative detection of our technique was successfully demonstrated by discriminating clones of the ovarian cancer cell line, OVCAR3, based on low, intermediate, and high expression levels of MUC16. Additionally, PBMC surface-bound MUC16 was tracked in an ovarian cancer patient over a 17 month period; the results suggest that the binding of MUC16 on the surface of immune cells may play an early indicator for recurrent metastasis 6 months before computational tomography-based clinical diagnosis. We also demonstrate that the levels of surface-bound MUC16 on PBMCs from five ovarian cancer patients were greater than those from five healthy controls.
Collapse
Affiliation(s)
- Sinyoung Jeong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Germán González
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Nicholas Nowell
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - Lauren A Austin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jawad Hoballah
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - Fatima Mubarak
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison 53705, United States
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison 53705, United States
| | - Daniel W Cramer
- Ob/Gyn Epidemiology Center, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Petra Krauledat
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - W Peter Hansen
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
19
|
Kang K, Xie F, Mao J, Bai Y, Wang X. Significance of Tumor Mutation Burden in Immune Infiltration and Prognosis in Cutaneous Melanoma. Front Oncol 2020; 10:573141. [PMID: 33072607 PMCID: PMC7531222 DOI: 10.3389/fonc.2020.573141] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Melanoma is highly immunogenic and therefore suitable for immunotherapy, but the efficacy is limited by response rate. In several types of tumor, tumor mutation burden (TMB) and immune infiltration have been reported to predict the response to immunotherapy, although each has its limitations. In the current study, we aimed to explore the association of TMB with immune infiltration and prognosis in cutaneous melanoma. Methods: The data of cutaneous melanoma used for analyses was downloaded from The Cancer Genome Atlas (TCGA) database. The mutation data was sorted using "maftools" R package. TMB was estimated and then patients were divided into two groups based on TMB. The association of TMB with prognosis and clinical characteristics was explored. Differential analysis between two TMB groups was performed using "DESeq2" R package to identify differentially expressed genes (DEGs). The function enrichment analyses of DEGs were conducted to screen critical pathways. Besides, DEGs were further filtered to identify two hub genes, based on which a risk score model and nomogram for predicting prognosis were conducted, and the validation was performed using three datasets from Gene Expression Omnibus (GEO) database. Finally, CIBERSORT algorithm and TIMER database were used to assess the effect of TMB and hub genes on immune infiltration. Results: The most common mutation was C > T, and the top three frequently mutated genes were TTN, MUC16, and BRAF. Higher TMB indicated better survival outcomes and lower pathological stages. 735 DEGs were identified and mainly involved in immune-related and adhesion-related pathways. The risk score model and nomogram were validated using receiver operating characteristic (ROC) curves and calibration curves, and exhibited relatively high predictive capability. Decision curve analysis (DCA) was used to assess clinical benefit. As for immune infiltration, the proportion was higher for macrophages M1 and M2 in the high-TMB group, while lower for memory B cells and regulatory T cells. Conclusions: In cutaneous melanoma, TMB was positively correlated with prognosis. The risk score model and nomogram can be conveniently used to predict prognosis. The association of TMB with immune infiltration can help improve the predicting methods for the response to immunotherapy.
Collapse
Affiliation(s)
- Kai Kang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fucun Xie
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinzhu Mao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Department of Hepatobiliary Surgery, First Central Hospital, Tianjin, China
| | - Xiang Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Abstract
The current standard therapy of epithelial ovarian cancer (EOC) is the combination of surgery and multiagent chemotherapy with/without adding targeted therapy. After treatment, response rate is high and nearly all patients can achieve complete remission, even though they are advanced diseases; however, the majority of patients will relapse and subsequently die of diseases within several years after initial treatment. When treatment options are limited, there is the urgent need for new novel therapeutic approaches for precise cancer control. The development of chemoresistance and evading of the anticancer immune response may be one of the important causes contributing to the therapeutic failure, and therefore, it represents a paradigm shift in cancer research. An individual's immune response and interaction with EOC cells might be one of the key factors for cancer treatment. There are many interventions, including targeting certain type immunogenic EOC-associated antigens, immune checkpoint blockade, and adoptive cellular therapy, which present a profound opportunity to revolutionize EOC treatment. This review will encompass the interaction between EOC and immune system and highlight recent data regarding the research of immunotherapy in EOC.
Collapse
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
21
|
Baci D, Bosi A, Gallazzi M, Rizzi M, Noonan DM, Poggi A, Bruno A, Mortara L. The Ovarian Cancer Tumor Immune Microenvironment (TIME) as Target for Therapy: A Focus on Innate Immunity Cells as Therapeutic Effectors. Int J Mol Sci 2020; 21:3125. [PMID: 32354198 PMCID: PMC7247443 DOI: 10.3390/ijms21093125] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer (OvCA) accounts for one of the leading causes of death from gynecologic malignancy. Despite progress in therapy improvements in OvCA, most patients develop a recurrence after first-line treatments, dependent on the tumor and non-tumor complexity/heterogeneity of the neoplasm and its surrounding tumor microenvironment (TME). The TME has gained greater attention in the design of specific therapies within the new era of immunotherapy. It is now clear that the immune contexture in OvCA, here referred as tumor immune microenvironment (TIME), acts as a crucial orchestrator of OvCA progression, thus representing a necessary target for combined therapies. Currently, several advancements of antitumor immune responses in OvCA are based on the characterization of tumor-infiltrating lymphocytes, which have been shown to correlate with a significantly improved clinical outcome. Here, we reviewed the literature on selected TIME components of OvCA, such as macrophages, neutrophils, γδ T lymphocytes, and natural killer (NK) cells; these cells can have a role in either supporting or limiting OvCA, depending on the TIME stimuli. We also reviewed and discussed the major (immune)-therapeutic approaches currently employed to target and/or potentiate macrophages, neutrophils, γδ T lymphocytes, and NK cells in the OvCA context.
Collapse
Affiliation(s)
- Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Matteo Gallazzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Manuela Rizzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Douglas M. Noonan
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
- IRCCS MultiMedica, 20138 Milan, Italy;
| | - Alessandro Poggi
- UOSD Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | | | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| |
Collapse
|
22
|
Bergsten TM, Burdette JE, Dean M. Fallopian tube initiation of high grade serous ovarian cancer and ovarian metastasis: Mechanisms and therapeutic implications. Cancer Lett 2020; 476:152-160. [PMID: 32067992 DOI: 10.1016/j.canlet.2020.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy and the fifth leading cause of cancer-related death in women. Although outcomes have improved in recent years, there remains an unmet clinical need to understand the early pathogenesis of ovarian cancer in order to identify new diagnostic approaches and agents of chemoprevention and chemotherapy. While high grade serous ovarian cancer (HGSOC), the most abundant histotype, was initially thought to arise from the ovarian surface epithelium, there is an increasing body of evidence suggesting that HGSOC originates in the fallopian tube. With this new understanding of cell of origin, understanding of disease development requires analysis with a novel perspective. Currently, factors that drive the initiation and migration of dysplastic tubal epithelial cells from the fallopian tube to the ovary are not yet fully defined. These factors include common mutations to fallopian tube epithelial cells, as well as factors originating from both the fallopian tube and ovary which are capable of inducing transformation and dissemination in said cells. Here, we review these changes, their causative agents, and various potential means of intervention.
Collapse
Affiliation(s)
- Tova M Bergsten
- Medical Scientist Training Program, University of Illinois at Chicago College of Medicine, Chicago, IL, USA; Department of Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew Dean
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
23
|
Rossi GR, Trindade ES, Souza-Fonseca-Guimaraes F. Tumor Microenvironment-Associated Extracellular Matrix Components Regulate NK Cell Function. Front Immunol 2020; 11:73. [PMID: 32063906 PMCID: PMC7000552 DOI: 10.3389/fimmu.2020.00073] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment (TME) is composed of multiple infiltrating host cells (e.g., endothelial cells, fibroblasts, lymphocytes, and myeloid cells), extracellular matrix, and various secreted or cell membrane-presented molecules. Group 1 innate lymphoid cells (ILCs), which includes natural killer (NK) cells and ILC1, contribute to protecting the host against cancer and infection. Both subsets are able to quickly produce cytokines such as interferon gamma (IFN-γ), chemokines, and other growth factors in response to activating signals. However, the TME provides many molecules that can prevent the potential effector function of these cells, thereby protecting the tumor. For example, TME-derived tumor growth factor (TGF)-β and associated members of the superfamily downregulate NK cell cytotoxicity, cytokine secretion, metabolism, proliferation, and induce effector NK cells to upregulate ILC1-like characteristics. In concert, a family of carbohydrate-binding proteins called galectins, which can be produced by different cells composing the TME, can downregulate NK cell function. Matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) are also enzymes that can remodel the extracellular matrix and shred receptors from the tumor cell surface, impairing the activation of NK cells and leading to less effective effector functions. Gaining a better understanding of the characteristics of the TME and its associated factors, such as infiltrating cells and extracellular matrix, could lead to tailoring of new personalized immunotherapy approaches. This review provides an overview of our current knowledge on the impact of the TME and extracellular matrix-associated components on differentiation, impairment, and function of NK cells.
Collapse
Affiliation(s)
| | - Edvaldo S Trindade
- Cellular Biology Department, Federal University of Paraná, Curitiba, Brazil
| | | |
Collapse
|
24
|
Chen Y, Huang Y, Kanwal M, Li G, Yang J, Niu H, Li Z, Ding X. MUC16 in non-small cell lung cancer patients affected by familial lung cancer and indoor air pollution: clinical characteristics and cell behaviors. Transl Lung Cancer Res 2019; 8:476-488. [PMID: 31555520 DOI: 10.21037/tlcr.2019.07.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Inherited susceptibility and environmental carcinogens are crucial players in lung cancer etiology, and both exhibit population heterogeneity. MUC16 is overexpressed in various cancers and often associated with poor prognosis. Present work was to investigate the clinical significance of MUC16 in non-small cell lung cancer patients affected by familial lung cancer (FLC) and indoor air pollution caused by coal use. Methods Clinicopathologic characteristics and MUC16 expression were analyzed and evaluated in our subject population. Vectors were constructed for MUC16 gene knockout and overexpression, then we examined how MUC16 affected lung cancer cell behaviors, including proliferation, migration, invasion and chemoresistance. Results FLC showed significant association with early-onset (P<0.01) and later stage (P<0.01). Indoor air pollution was associated with younger age (P<0.01), later stage (P<0.05) and AD histology type (P<0.05). Interestingly, two age peaks were observed in our FLC and sporadic group respectively, possibly suggesting multiple major contributors to lung cancer in our subject population. MUC16 overexpression was significantly associated with FLC (P<0.05), indoor air pollution (P<0.01) and later stage (P<0.01), additionally more metastasis cases were observed in patients with up-regulated MUC16 (18.1% vs. 10.3%). Taken together, elevated MUC16 may potentially be one molecular character of FLC in local residents. Intriguingly, patients with more MUC16 up-regulation seemed to have a lower number of white blood cells, especially neutrophils, this reflected MUC16's role in immune regulation. In cell behavior experiments, high MUC16 level could contribute to lung cancer cell proliferation, migration, invasion and chemoresistance, but there were variations among cell lines. Conclusions MUC16 plays crucial roles in lung cancer pathogenesis, progression and chemoresistance. Interestingly, its association with FLC and indoor air pollution highlights the complexity of lung cancer etiology. Our findings provide useful information to study the intricate interaction between environmental carcinogens and population genetic background.
Collapse
Affiliation(s)
- Ying Chen
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650106, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650106, China
| | - Madiha Kanwal
- The Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, ASCR, Videnska, Prague, Czech Republic
| | - Guangjian Li
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650106, China
| | - Jiapeng Yang
- Department of Thoracic Surgery I, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650106, China
| | - Huatao Niu
- Department of Neurosurgery, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650106, China
| | - Zhenhui Li
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650106, China
| | - Xiaojie Ding
- The Key Laboratory of Lung Cancer Research, the Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650106, China
| |
Collapse
|
25
|
Chen JP, Huang QD, Wan T, Tu H, Gu HF, Cao JY, Liu JH. Combined score of pretreatment platelet count and CA125 level (PLT-CA125) stratified prognosis in patients with FIGO stage IV epithelial ovarian cancer. J Ovarian Res 2019; 12:72. [PMID: 31362750 PMCID: PMC6668095 DOI: 10.1186/s13048-019-0544-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background The majority of death-related ovarian cancer is epithelial ovarian cancer (EOC). Regarding the Federation of Gynecology and Obstetrics (FIGO) stage IV EOC, the 5-year overall survival (OS) has not changed in last decades. Platelet (PLT) count and CA125 level are both prognostic markers that related to inflammation and immune evasion in EOC. This study intended to assess the prognostic value of pretreatment PLT count and CA125 level in FIGO stage IV EOC. Methods The study included 108 patients diagnosed with FIGO stage IV EOC and treated with surgery and/or chemotherapy between January 1995 and December 2016. The PLT counts and CA125 levels of the patients before any treatment were analysed with clinical and pathological parameters, OS and progression-free survival (PFS). The survival of different groups was analyzed using the Kaplan-Meier method. The PLT-CA125 scores (0, 1, and 2) were defined basing on the presence of thrombocytosis (PLT count > 400,000/μL), an elevated CA125 level (CA125 > 1200 U/mL), or both. The prognostic value of PLT-CA125 was assessed with a Cox regression model. Results Median OS, but not median PFS, was significantly decreased in patients with thrombocytosis or elevated CA125 levels when compared with the others (p = 0.011 & p = 0.004). The median OS was significantly decreased in patients with a PLT-CA125 score of 2 [37.8 months; 95% confidence interval (CI) 20.6–54.9] compared with patients with a PLT-CA125 score of 0 (70.0 moths, 95% CI 38.0–101.9, p < 0.001). The median PFS was also significantly decreased in patients with a PLT-CA125 score of 2 (19.6 months; 95% CI 13.0–26.3) compared with patients with a PLT-CA125 score of 0 (32.0 months; 95% CI 23.3–40.7, p = 0.011). Furthermore, multivariate analysis identified both PLT-CA125 scores of 2 and 1 as independent poor prognostic factors for OS (p = 0.004 & p < 0.001) and PFS (p = 0.033 & p = 0.017) compared with a PLT-CA125 score of 0. Conclusions The pretreatment PLT-CA125 score can be a reliable marker with high accessibility for stratifying prognosis in patients with FIGO stage IV EOC.
Collapse
Affiliation(s)
- Jie-Ping Chen
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Qi-Dan Huang
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Ting Wan
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hua Tu
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hai-Feng Gu
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jun-Ya Cao
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Ji-Hong Liu
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|