1
|
Wu X, Payne LB, Gourdie RG. Gap junctional and ephaptic coupling in cardiac electrical propagation: homocellular and heterocellular perspectives. J Physiol 2025. [PMID: 40448893 DOI: 10.1113/jp287358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Electrical communication in the heart is crucial for maintaining normal cardiac function. Traditionally, gap junctional coupling between cardiomyocytes has been accepted as the primary mechanism governing electrical propagation in the heart. However, numerous studies have demonstrated that gap junctions are also present between different cell types in heterocellular structures and disruption of such gap junctional coupling can be associated with cardiac dysfunction. In addition to gap junctional coupling, ephaptic coupling has been proposed as another mechanism for electrical communication between cardiomyocytes. Reducing ephaptic coupling has been shown to have negative impacts on cardiac conduction. While the existence of ephaptic coupling between different types of cardiac cell is under investigation, a recent study suggests that ephaptic coupling at heterocellular contacts between cardiomyocytes and fibroblasts may provide a proarrhythmic substrate in cardiac disease. In this review, we examine the current literature on electrical communication in the heart, including gap junctional and ephaptic coupling in homocellular and heterocellular contexts. Further, we offer a perspective on gaps in knowledge and opportunities for further advancing our understanding of electrical coupling mechanisms in action potential propagation in the heart.
Collapse
Affiliation(s)
- Xiaobo Wu
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Laura Beth Payne
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Robert G Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Mousanejad E, Ezzatabadipour M, Baghalishahi M, Shojaei M, Vafaei S, Afgar A, Nematollahi-Mahani SN. The effects of green light-emitting diode irradiation and inducer factors on the differentiation of human adipose tissue-derived mesenchymal cells into myocardial-like cells. Lasers Med Sci 2025; 40:220. [PMID: 40347405 DOI: 10.1007/s10103-025-04471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/30/2025] [Indexed: 05/12/2025]
Abstract
Physical factors like LED light can influence cell behavior, impacting stem cell proliferation and differentiation. Stem cell-based therapies offer a promising alternative to heart transplantation for cardiac conditions like myocardial infarction. This study evaluated the effects of green LED light (530 nm) and a biochemical inducer cocktail (oxytocin and ascorbic acid) on human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) differentiation into cardiomyocyte-like cells. hAD-MSCs were treated with LED, the cocktail, and their combination. Cardiomyogenic markers NKX2.5, GATA4, cTnI, and CX43 were assessed via real-time PCR and western blotting. LED and the cocktail enhanced cardiac gene expression and protein synthesis, but their combination showed significantly higher effects, especially on day 7. This study demonstrates for the first time that green LED light combined with oxytocin and ascorbic acid can enhance hAD-MSC cardiac differentiation, supporting its potential in regenerative therapies following human studies.
Collapse
Affiliation(s)
- Elahe Mousanejad
- Kerman physiology Research Center, Institute of Neuropharmacology and Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Kerman physiology Research Center, Institute of Neuropharmacology and Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Baghalishahi
- Kerman physiology Research Center, Institute of Neuropharmacology and Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Shayan Vafaei
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Afgar
- Kerman physiology Research Center, Institute of Neuropharmacology and Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Kerman physiology Research Center, Institute of Neuropharmacology and Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Lu D, Fan X. Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia. J Nanobiotechnology 2024; 22:523. [PMID: 39215361 PMCID: PMC11363662 DOI: 10.1186/s12951-024-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.
Collapse
Affiliation(s)
- Dingkun Lu
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Ramos-Mondragón R, Lozhkin A, Vendrov AE, Runge MS, Isom LL, Madamanchi NR. NADPH Oxidases and Oxidative Stress in the Pathogenesis of Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1833. [PMID: 37891912 PMCID: PMC10604902 DOI: 10.3390/antiox12101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its prevalence increases with age. The irregular and rapid contraction of the atria can lead to ineffective blood pumping, local blood stasis, blood clots, ischemic stroke, and heart failure. NADPH oxidases (NOX) and mitochondria are the main sources of reactive oxygen species in the heart, and dysregulated activation of NOX and mitochondrial dysfunction are associated with AF pathogenesis. NOX- and mitochondria-derived oxidative stress contribute to the onset of paroxysmal AF by inducing electrophysiological changes in atrial myocytes and structural remodeling in the atria. Because high atrial activity causes cardiac myocytes to expend extremely high energy to maintain excitation-contraction coupling during persistent AF, mitochondria, the primary energy source, undergo metabolic stress, affecting their morphology, Ca2+ handling, and ATP generation. In this review, we discuss the role of oxidative stress in activating AF-triggered activities, regulating intracellular Ca2+ handling, and functional and anatomical reentry mechanisms, all of which are associated with AF initiation, perpetuation, and progression. Changes in the extracellular matrix, inflammation, ion channel expression and function, myofibril structure, and mitochondrial function occur during the early transitional stages of AF, opening a window of opportunity to target NOX and mitochondria-derived oxidative stress using isoform-specific NOX inhibitors and mitochondrial ROS scavengers, as well as drugs that improve mitochondrial dynamics and metabolism to treat persistent AF and its transition to permanent AF.
Collapse
Affiliation(s)
- Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
| | - Andrey Lozhkin
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Marschall S. Runge
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| |
Collapse
|
5
|
Marzoog BA. Transcription Factors - the Essence of Heart Regeneration: A Potential Novel Therapeutic Strategy. Curr Mol Med 2023; 23:232-238. [PMID: 35170408 DOI: 10.2174/1566524022666220216123650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
Myocardial cell injury and following sequelae are the primary reasons for death globally. Unfortunately, myocardiocytes in adults have limited regeneration capacity. Therefore, the generation of neo myocardiocytes from non-myocardial cells is a surrogate strategy. Transcription factors (TFs) can be recruited to achieve this tremendous goal. Transcriptomic analyses have suggested that GATA, Mef2c, and Tbx5 (GMT cocktail) are master TFs to transdifferentiate/reprogram cell linage of fibroblasts, somatic cells, mesodermal cells into myocardiocytes. However, adding MESP1, MYOCD, ESRRG, and ZFPM2 TFs induces the generation of more efficient and physiomorphological features for induced myocardiocytes. Moreover, the same cocktail of transcription factors can induce the proliferation and differentiation of induced/pluripotent stem cells into myocardial cells. Amelioration of impaired myocardial cells involves the activation of healing transcription factors, which are induced by inflammation mediators; IL6, tumor growth factor β, and IL22. Transcription factors regulate the cellular and subcellular physiology of myocardiocytes to include mitotic cell cycling regulation, karyokinesis and cytokinesis, hypertrophic growth, adult sarcomeric contractile protein gene expression, fatty acid metabolism, and mitochondrial biogenesis and maturation. Cell therapy by transcription factors can be applied to cardiogenesis and ameliorating impaired cardiocytes. Transcription factors are the cornerstone in cell differentiation.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- Department of Normal and Pathological Physiology, National Research Mordovia State University, Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, 430005, Russia
| |
Collapse
|
6
|
Matthaeus C, Jüttner R, Gotthardt M, Rathjen FG. The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency. Life (Basel) 2022; 13:14. [PMID: 36675963 PMCID: PMC9866089 DOI: 10.3390/life13010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The IgCAM coxsackie-adenovirus receptor (CAR) is essential for embryonic heart development and electrical conduction in the mature heart. However, it is not well-understood how CAR exerts these effects at the cellular level. To address this question, we analyzed the spontaneous beating of cultured embryonic hearts and cardiomyocytes from wild type and CAR knockout (KO) embryos. Surprisingly, in the absence of the CAR, cultured cardiomyocytes showed increased frequencies of beating and calcium cycling. Increased beatings of heart organ cultures were also induced by the application of reagents that bind to the extracellular region of the CAR, such as the adenovirus fiber knob. However, the calcium cycling machinery, including calcium extrusion via SERCA2 and NCX, was not disrupted in CAR KO cells. In contrast, CAR KO cardiomyocytes displayed size increases but decreased in the total numbers of membrane-localized Cx43 clusters. This was accompanied by improved cell-cell coupling between CAR KO cells, as demonstrated by increased intercellular dye diffusion. Our data indicate that the CAR may modulate the localization and oligomerization of Cx43 at the plasma membrane, which could in turn influence electrical propagation between cardiomyocytes via gap junctions.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
- Laboratory of Cellular Biophysics, NHLBI, NIH, 50 South Drive, Building 50 RM 3312, Bethesda, MD 20892, USA
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| | - Michael Gotthardt
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| | - Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| |
Collapse
|
7
|
Yin YQ, Zhong Y, Zhu Y, Tian L. Changes in gap junction proteins Connexin30.2 and Connexin40 expression in the sinoatrial node of rats with dexmedetomidine-induced sinus bradycardia. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2022; 72:768-773. [PMID: 35618083 PMCID: PMC9659980 DOI: 10.1016/j.bjane.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Dexmedetomidine (Dex) is widely used, and its most common side effect is bradycardia. The complete mechanism through which Dex induces bradycardia has not been elucidated. This research investigates the expression of gap junction proteins Connexin30.2 (Cx30.2) and Connexin40 (Cx40) within the sinoatrial node of rats with Dex-induced sinus bradycardia. METHODS Eighty rats were randomly assigned to five groups. Saline was administered to rats in Group C. In the other four groups, the rats were administered Dex to induce bradycardia. In groups D1 and D2, the rats were administered Dex at a loading dose of 30 μg.kg-1 and 100 μg.kg-1 for 10 min, then at 15 μg.kg-1.h-1 and 50 μg.kg-1.h-1 for 120 min separately. The rats in group D1A and D2A were administered Dex in the same way as in group D1 and D2; however, immediately after the administration of the loading dose, 0.5 mg atropine was administered intravenously, and then at 0.5 mg.kg-1.h-1 for 120 min. The sinoatrial node was acquired after intravenous infusion was completed. Quantitative real-time polymerase chain reaction and western blot analyses were performed to measure mRNA and protein expression of Cx30.2 and Cx40, respectively. RESULTS The expression of Cx30.2 increased, whereas the expression of Cx40 decreased within the sinoatrial node of rats with Dex-induced sinus bradycardia. Atropine reversed the effects of Dex on the expression of gap junction proteins. CONCLUSION Dex possibly altered the expression of gap junction proteins to slow down cardiac conduction velocity in the sinoatrial node.
Collapse
Affiliation(s)
| | - Yi Zhong
- Affiliated Hospital of Guizhou Medical University, Department of Anesthesiology, Guiyang, China.
| | - Yu Zhu
- Guizhou Medical University, Guiyang, China
| | - Lei Tian
- Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
van Ham WB, Cornelissen CM, van Veen TAB. Uremic toxins in chronic kidney disease highlight a fundamental gap in understanding their detrimental effects on cardiac electrophysiology and arrhythmogenesis. Acta Physiol (Oxf) 2022; 236:e13888. [PMID: 36148604 PMCID: PMC9787632 DOI: 10.1111/apha.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) have an estimated 700-800 and 523 million cases worldwide, respectively, with CVD being the leading cause of death in CKD patients. The pathophysiological interplay between the heart and kidneys is defined as the cardiorenal syndrome (CRS), in which worsening of kidney function is represented by increased plasma concentrations of uremic toxins (UTs), culminating in dialysis patients. As there is a high incidence of CVD in CKD patients, accompanied by arrhythmias and sudden cardiac death, knowledge on electrophysiological remodeling would be instrumental for understanding the CRS. While the interplay between both organs is clearly of importance in CRS, the involvement of UTs in pro-arrhythmic remodeling is only poorly investigated, especially regarding the mechanistic background. Currently, the clinical approach against potential arrhythmic events is mainly restricted to symptom treatment, stressing the need for fundamental research on UT in relation to electrophysiology. This review addresses the existing knowledge of UTs and cardiac electrophysiology, and the experimental research gap between fundamental research and clinical research of the CRS. Clinically, mainly absorbents like ibuprofen and AST-120 are studied, which show limited safe and efficient usability. Experimental research shows disturbances in cardiac electrical activation and conduction after inducing CKD or exposure to UTs, but are scarcely present or focus solely on already well-investigated UTs. Based on UTs data derived from CKD patient cohort studies, a clinically relevant overview of physiological and pathological UTs concentrations is created. Using this, future experimental research is stimulated to involve electrophysiologically translatable animals, such as rabbits, or in vitro engineered heart tissues.
Collapse
Affiliation(s)
- Willem B. van Ham
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carlijn M. Cornelissen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Toon A. B. van Veen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
9
|
Zhou Z, Chai W, Liu Y, Liu Y, Pan H, Wu Q, Zhang X. Connexin 43 overexpression induces lung cancer angiogenesis in vitro following phosphorylation at Ser279 in its C‑terminus. Oncol Lett 2022; 24:293. [PMID: 35949588 PMCID: PMC9353244 DOI: 10.3892/ol.2022.13413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
Blocking angiogenesis can inhibit tumor growth and metastasis. However, the mechanism underlying regulation of lung cancer angiogenesis remains unclear. The gap junction protein connexin 43 (Cx43) is implicated in angiogenesis. The aim of the present study was to determine the role of Cx43 in angiogenesis in vitro and its signaling pathways. Human pulmonary microvascular endothelial cells were transfected with Cx43-targeting siRNA or Cx43-overexpressing recombinant plasmid vector. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to determine Cx43, zonula occludens-1 (ZO-1), E-cadherin, β-catenin, von Willebrand factor (vWF), and plasminogen activator inhibitor-1 (PAI-1) mRNA and protein expression levels, respectively. Tyr265, Ser279, Ser368, and Ser373 phosphorylation levels in the C-terminus of Cx43 and intracellular and membranal Cx43 contents were determined using western blotting. Additionally, immunofluorescence, tube formation, Cell Counting Kit-8, and Transwell migration assays were performed. The results revealed that compared with that in the control samples, Cx43, ZO-1, E-cadherin, β-catenin, vWF, and PAI-1 mRNA and protein expression were significantly increased in the Cx43 overexpression group and significantly decreased in the Cx43-knockdown group. Moreover, the phosphorylation level of Ser279 as well as cell proliferation and migration rates were markedly increased in the Cx43 overexpression group, and tube formation revealed that the potential of angiogenesis was also increased. Conversely, in the Cx43-knockdown group, the phosphorylation level of Ser279 and cell proliferation and migration rates were reduced, and the potential of angiogenesis was greatly impaired. Under Cx43 overexpression, membranal Cx43 content was significantly increased, whereas under Cx43 knockdown, it was significantly reduced. Therefore, Cx43 overexpression could induce pulmonary angiogenesis in vitro by promoting cell proliferation and migration and activating ZO-1, E-cadherin, β-catenin, vWF, and PAI-1. This may be achieved by promoting phosphorylation and activation of the intracellular signal site Ser279 at the C-terminus of Cx43.
Collapse
Affiliation(s)
- Zizi Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Wenxiang Chai
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Yi Liu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Yao Liu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Huiyu Pan
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Qiang Wu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoming Zhang
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
10
|
Darche FF, Ullrich ND, Huang Z, Koenen M, Rivinius R, Frey N, Schweizer PA. Improved Generation of Human Induced Pluripotent Stem Cell-Derived Cardiac Pacemaker Cells Using Novel Differentiation Protocols. Int J Mol Sci 2022; 23:ijms23137318. [PMID: 35806319 PMCID: PMC9266442 DOI: 10.3390/ijms23137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Current protocols for the differentiation of human-induced pluripotent stem cells (hiPSC) into cardiomyocytes only generate a small amount of cardiac pacemaker cells. In previous work, we reported the generation of high amounts of cardiac pacemaker cells by co-culturing hiPSC with mouse visceral endoderm-like (END2) cells. However, potential medical applications of cardiac pacemaker cells generated according to this protocol, comprise an incalculable xenogeneic risk. We thus aimed to establish novel protocols maintaining the differentiation efficiency of the END2 cell-based protocol, yet eliminating the use of END2 cells. Three protocols were based on the activation and inhibition of the Wingless/Integrated (Wnt) signaling pathway, supplemented either with retinoic acid and the Wnt activator CHIR99021 (protocol B) or with the NODAL inhibitor SB431542 (protocol C) or with a combination of all three components (protocol D). An additional fourth protocol (protocol E) was used, which was originally developed by the manufacturer STEMCELL Technologies for the differentiation of hiPSC or hESC into atrial cardiomyocytes. All protocols (B, C, D, E) were compared to the END2 cell-based protocol A, serving as reference, in terms of their ability to differentiate hiPSC into cardiac pacemaker cells. Our analysis revealed that protocol E induced upregulation of 12 out of 15 cardiac pacemaker-specific genes. For comparison, reference protocol A upregulated 11, while protocols B, C and D upregulated 9, 10 and 8 cardiac pacemaker-specific genes, respectively. Cells differentiated according to protocol E displayed intense fluorescence signals of cardiac pacemaker-specific markers and showed excellent rate responsiveness to adrenergic and cholinergic stimulation. In conclusion, we characterized four novel and END2 cell-independent protocols for the differentiation of hiPSC into cardiac pacemaker cells, of which protocol E was the most efficient.
Collapse
Affiliation(s)
- Fabrice F. Darche
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-56-8676; Fax: +49-6221-56-5515
| | - Nina D. Ullrich
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ziqiang Huang
- EMBL Imaging Centre, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Michael Koenen
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Patrick A. Schweizer
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| |
Collapse
|
11
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|
12
|
Array comparative genomic hybridisation results of non-syndromic children with the conotruncal heart anomaly. Cardiol Young 2022; 32:301-306. [PMID: 35045913 DOI: 10.1017/s104795112100473x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED The study aimed to show the chromosomal copy number variations responsible for the aetiology in patients with isolated conotruncal heart anomaly by array comparative genomic hybridisation and identify candidate genes causing conotruncal heart disease. A total of 37 patients, 17 male, and 20 female, with isolated conotruncal heart anomalies, were included in the study. No findings indicated any syndrome in terms of dysmorphology in the patients. RESULTS Copy number variations were detected in the array comparative genomic hybridisation analysis of five (13.5%) of 37 patients included in the study. Three candidate genes (PRDM16, HIST1H1E, GJA5) found in these deletion and duplication regions may be associated with the conotruncal cardiac anomaly. CONCLUSION CHDs can be encountered as the first and sometimes the single finding of many genetic disorders in children. It is thought that genetic tests, especially array comparative genomic hybridisation, may be beneficial for children with CHD since the diagnosis of genetic diseases in these patients as early as possible will help to prevent or reduce complications that may develop in the future. Also, it would be possible to detect candidate genes responsible for conotruncal cardiac anomalies with array comparative genomic hybridisation.
Collapse
|
13
|
Guan L, Yang Y, Liang JJ, Miao Y, Shang AY, Wang B, Wang YC, Ding M. ERGIC2 and ERGIC3 regulate the ER-to-Golgi transport of gap junction proteins in metazoans. Traffic 2022; 23:140-157. [PMID: 34994051 DOI: 10.1111/tra.12830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
The extremely dynamic life cycle of gap junction connections requires highly efficient intracellular trafficking system especially designed for gap junction proteins, but the underlying mechanisms are largely unknown. Here, we identified that the COPII-associated proteins ERGIC2 (ER-Golgi intermediate compartment) and ERGIC3 are specifically required for the efficient intracellular transport of gap junction proteins in both C. elegans and mice. In the absence of Ergic2 or Ergic3, gap junction proteins accumulate in the ER and Golgi apparatus and the size of endogenous gap junction plaques is reduced. Knocking out the Ergic2 or Ergic3 in mice results in heart enlargement and cardiac malfunction accompanied by reduced number and size of connexin 43 (Cx43) gap junctions. Invertebrates' gap junction protein innexins share no sequence similarity with vertebrates' connexins. However, ERGIC2 and ERGIC3 could bind to gap junction proteins in both worms and mice. Characterization of the highly specialized roles of ERGIC2 and ERGIC3 in metazoans reveals how the early secretory pathway could be adapted to facilitate the efficient transport for gap junction proteins in vivo. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liying Guan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Jing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yue Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ang Yang Shang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baolei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021; 10:cells10123483. [PMID: 34943991 PMCID: PMC8699880 DOI: 10.3390/cells10123483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.
Collapse
|
15
|
Zhang W, Zhao H, Quan D, Tang Y, Wang X, Huang C. Tbx18 promoted the conversion of human-induced pluripotent stem cell-derived cardiomyocytes into sinoatrial node-like pacemaker cells. Cell Biol Int 2021; 46:403-414. [PMID: 34882885 DOI: 10.1002/cbin.11738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 12/04/2021] [Indexed: 01/22/2023]
Abstract
Sinoatrial node (SAN) pacemaker cells originate from T-box transcription factor 18 (Tbx18)-expressing progenitor cells. The present study aimed to investigate whether overexpression of human transcription factor Tbx18 could reprogram human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) into SAN-like pacemaker cells (SANLPCs) in vitro. In the study, hiPSCs were first differentiated into hiPSC-CMs through regulating the Wnt/β-catenin pathway, then purified hiPSC-CMs were transfected by Tbx18 adenovirus (Tbx18-CMs group) or green fluorescent protein (GFP) adenovirus (GFP-CMs group). The beating frequency of the Tbx18-CMs group was significantly higher than that of the hiPSC-CMs group and GFP-CMs group. Compared with the other two groups, the expression levels of hyperpolarization-activated cyclic nucleotide-gated potassium channel isoform 4, connexin-45 in the Tbx18-CMs group were markedly upregulated, while the expressions of transcription factor NKX2.5, CX43 were significantly downregulated. Whole-cell patch-clamp results illustrated that action potential and "funny" current (If ) similar to SAN pacemaker cells could be recorded in the Tbx18-CMs group. In conclusion, this present study demonstrated that overexpression of Tbx18 promoted the conversion of hiPSC-CMs into SANLPCs.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Dajun Quan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| |
Collapse
|
16
|
Abu Nahia K, Migdał M, Quinn TA, Poon KL, Łapiński M, Sulej A, Liu J, Mondal SS, Pawlak M, Bugajski Ł, Piwocka K, Brand T, Kohl P, Korzh V, Winata C. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cell Mol Life Sci 2021; 78:6669-6687. [PMID: 34557935 PMCID: PMC8558220 DOI: 10.1007/s00018-021-03939-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kar-Lai Poon
- Institute of Molecular and Cell Biology, 61 Biopolis Dr, Singapore , Singapore.,Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, USA
| | - Shamba S Mondal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Michał Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | | | - Thomas Brand
- Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre, Faculty of Medicine, and Faculty of Engineering, University of Freiburg, Freiburg im Breisgau, Germany
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
17
|
Szilágyi J, Sághy L. Atrial Remodeling in Atrial Fibrillation. Comorbidities and Markers of Disease Progression Predict Catheter Ablation Outcome. Curr Cardiol Rev 2021; 17:217-229. [PMID: 32693769 PMCID: PMC8226201 DOI: 10.2174/1573403x16666200721153620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation is the most common supraventricular arrhythmia affecting an increasing proportion of the population in which mainstream therapy, i.e. catheter ablation, provides freedom from arrhythmia in only a limited number of patients. Understanding the mechanism is key in order to find more effective therapies and to improve patient selection. In this review, the structural and electrophysiological changes of the atrial musculature that constitute atrial remodeling in atrial fibrillaton and how risk factors and markers of disease progression can predict catheter ablation outcome will be discussed in detail.
Collapse
Affiliation(s)
- Judit Szilágyi
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| | - László Sághy
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep 2021; 41:226678. [PMID: 33057659 PMCID: PMC8209171 DOI: 10.1042/bsr20200833] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have the ability to differentiate into cardiomyocytes (CMs). They are not only widely used in cardiac pharmacology screening, human heart disease modeling, and cell transplantation-based treatments, but also the most promising source of CMs for experimental and clinical applications. However, their use is largely restricted by the immature phenotype of structure and function, which is similar to embryonic or fetal CMs and has certain differences from adult CMs. In order to overcome this critical issue, many studies have explored and revealed new strategies to induce the maturity of iPSC-CMs. Therefore, this article aims to review recent induction methods of mature iPSC-CMs, related mechanisms, and limitations.
Collapse
|
19
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
20
|
Salazar-Ramírez F, Ramos-Mondragón R, García-Rivas G. Mitochondrial and Sarcoplasmic Reticulum Interconnection in Cardiac Arrhythmia. Front Cell Dev Biol 2021; 8:623381. [PMID: 33585462 PMCID: PMC7876262 DOI: 10.3389/fcell.2020.623381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Ca2+ plays a pivotal role in mitochondrial energy production, contraction, and apoptosis. Mitochondrial Ca2+-targeted fluorescent probes have demonstrated that mitochondria Ca2+ transients are synchronized with Ca2+ fluxes occurring in the sarcoplasmic reticulum (SR). The presence of specialized proteins tethering SR to mitochondria ensures the local Ca2+ flux between these organelles. Furthermore, communication between SR and mitochondria impacts their functionality in a bidirectional manner. Mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniplex is essential for ATP production and controlled reactive oxygen species levels for proper cellular signaling. Conversely, mitochondrial ATP ensures the proper functioning of SR Ca2+-handling proteins, which ensures that mitochondria receive an adequate supply of Ca2+. Recent evidence suggests that altered SR Ca2+ proteins, such as ryanodine receptors and the sarco/endoplasmic reticulum Ca2+ ATPase pump, play an important role in maintaining proper cardiac membrane excitability, which may be initiated and potentiated when mitochondria are dysfunctional. This recognized mitochondrial role offers the opportunity to develop new therapeutic approaches aimed at preventing cardiac arrhythmias in cardiac disease.
Collapse
Affiliation(s)
- Felipe Salazar-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Cardiovascular, Monterrey, Mexico
| | - Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Cardiovascular, Monterrey, Mexico.,TecSalud, Centro de Investigación Biomédica, Hospital Zambrano-Hellion, San Pedro Garza García, Mexico.,TecSalud, Centro de Medicina Funcional, Hospital Zambrano-Hellion, San Pedro Garza García, Mexico
| |
Collapse
|
21
|
Cirillo F, Piccoli M, Ghiroldi A, Monasky MM, Rota P, La Rocca P, Tarantino A, D'Imperio S, Signorelli P, Pappone C, Anastasia L. The antithetic role of ceramide and sphingosine-1-phosphate in cardiac dysfunction. J Cell Physiol 2021; 236:4857-4873. [PMID: 33432663 DOI: 10.1002/jcp.30235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally and the number of cardiovascular patients, which is estimated to be over 30 million in 2018, represent a challenging issue for the healthcare systems worldwide. Therefore, the identification of novel molecular targets to develop new treatments is an ongoing challenge for the scientific community. In this context, sphingolipids (SLs) have been progressively recognized as potent bioactive compounds that play crucial roles in the modulation of several key biological processes, such as proliferation, differentiation, and apoptosis. Furthermore, SLs involvement in cardiac physiology and pathophysiology attracted much attention, since these molecules could be crucial in the development of CVDs. Among SLs, ceramide and sphingosine-1-phosphate (S1P) represent the most studied bioactive lipid mediators, which are characterized by opposing activities in the regulation of the fate of cardiac cells. In particular, maintaining the balance of the so-called ceramide/S1P rheostat emerged as an important novel therapeutical target to counteract CVDs. Thus, this review aims at critically summarizing the current knowledge about the antithetic roles of ceramide and S1P in cardiomyocytes dysfunctions, highlighting how the modulation of their metabolism through specific molecules, such as myriocin and FTY720, could represent a novel and interesting therapeutic approach to improve the management of CVDs.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Paolo La Rocca
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Sara D'Imperio
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Paola Signorelli
- Department of Health Sciences, Biochemistry and Molecular Biology Laboratory, University of Milan, Milan, Italy
| | - Carlo Pappone
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
22
|
Okada M, Fukuyama K, Shiroyama T, Murata M. A Working Hypothesis Regarding Identical Pathomechanisms between Clinical Efficacy and Adverse Reaction of Clozapine via the Activation of Connexin43. Int J Mol Sci 2020; 21:ijms21197019. [PMID: 32987640 PMCID: PMC7583770 DOI: 10.3390/ijms21197019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Clozapine (CLZ) is an approved antipsychotic agent for the medication of treatment-resistant schizophrenia but is also well known as one of the most toxic antipsychotics. Recently, the World Health Organization’s (WHO) global database (VigiBase) reported the relative lethality of severe adverse reactions of CLZ. Agranulocytosis is the most famous adverse CLZ reaction but is of lesser lethality compared with the other adverse drug reactions of CLZ. Unexpectedly, VigiBase indicated that the prevalence and relative lethality of pneumonia, cardiotoxicity, and seizures associated with CLZ were more serious than that of agranulocytosis. Therefore, haematological monitoring in CLZ patients monitoring system provided success in the prevention of lethal adverse events from CLZ-induced agranulocytosis. Hereafter, psychiatrists must amend the CLZ patients monitoring system to protect patients with treatment-resistant schizophrenia from severe adverse CLZ reactions, such as pneumonia, cardiotoxicity, and seizures, according to the clinical evidence and pathophysiology. In this review, we discuss the mechanisms of clinical efficacy and the adverse reactions of CLZ based on the accumulating pharmacodynamic findings of CLZ, including tripartite synaptic transmission, and we propose suggestions for amending the monitoring and medication of adverse CLZ reactions associated with pneumonia, cardiotoxicity, and seizures.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
- Correspondence: ; Tel.: +81-59-231-5018
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (T.S.)
| | - Masahiko Murata
- National Hospital Organization Sakakibara Hospital, 777 Sakakibara, Tsu, Mie 514-1292, Japan;
| |
Collapse
|
23
|
Lee J, Sutani A, Kaneko R, Takeuchi J, Sasano T, Kohda T, Ihara K, Takahashi K, Yamazoe M, Morio T, Furukawa T, Ishino F. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat Commun 2020; 11:4283. [PMID: 32883967 PMCID: PMC7471119 DOI: 10.1038/s41467-020-18031-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
Our understanding of the spatiotemporal regulation of cardiogenesis is hindered by the difficulties in modeling this complex organ currently by in vitro models. Here we develop a method to generate heart organoids from mouse embryonic stem cell-derived embryoid bodies. Consecutive morphological changes proceed in a self-organizing manner in the presence of the laminin-entactin (LN/ET) complex and fibroblast growth factor 4 (FGF4), and the resulting in vitro heart organoid possesses atrium- and ventricle-like parts containing cardiac muscle, conducting tissues, smooth muscle and endothelial cells that exhibited myocardial contraction and action potentials. The heart organoids exhibit ultrastructural, histochemical and gene expression characteristics of considerable similarity to those of developmental hearts in vivo. Our results demonstrate that this method not only provides a biomimetic model of the developing heart-like structure with simplified differentiation protocol, but also represents a promising research tool with a broad range of applications, including drug testing. Our understanding of the development of the heart has been limited by a lack of in vitro cellular models. Here, the authors treat mouse embryonic stem cell-derived embryoid bodies with laminin-entactin (to mimic the developing microenvironment) and FGF4 to form heart organoids, with atrial and ventricular-like parts.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Akito Sutani
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Rin Kaneko
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Jun Takeuchi
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kensuke Ihara
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kentaro Takahashi
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Masahiro Yamazoe
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| |
Collapse
|
24
|
Arai S, Lloyd K, Takahashi T, Mammoto K, Miyazawa T, Tamura K, Kaneko T, Ishida K, Moriyama Y, Mitsui T. Dynamic Properties of Heart Fragments from Different Regions and Their Synchronization. Bioengineering (Basel) 2020; 7:E81. [PMID: 32751255 PMCID: PMC7552607 DOI: 10.3390/bioengineering7030081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022] Open
Abstract
The dynamic properties of the heart differ based on the regions that effectively circulate blood throughout the body with each heartbeat. These properties, including the inter-beat interval (IBI) of autonomous beat activity, are retained even in in vitro tissue fragments. However, details of beat dynamics have not been well analyzed, particularly at the sub-mm scale, although such dynamics of size are important for regenerative medicine and computational studies of the heart. We analyzed the beat dynamics in sub-mm tissue fragments from atria and ventricles of hearts obtained from chick embryos over a period of 40 h. The IBI and contraction speed differed by region and atrial fragments retained their values for a longer time. The major finding of this study is synchronization of these fragment pairs physically attached to each other. The probability of achieving this and the time required differ for regional pairs: atrium-atrium, ventricle-ventricle, or atrium-ventricle. Furthermore, the time required to achieve 1:1 synchronization does not depend on the proximity of initial IBI of paired fragments. Various interesting phenomena, such as 1:n synchronization and a reentrant-like beat sequence, are revealed during synchronization. Finally, our observation of fragment dynamics indicates that mechanical motion itself contributes to the synchronization of atria.
Collapse
Affiliation(s)
- Shin Arai
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Kento Lloyd
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Tomonori Takahashi
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Kazuki Mammoto
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Takashi Miyazawa
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Kei Tamura
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Tomoyuki Kaneko
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan;
| | - Kentaro Ishida
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Yuuta Moriyama
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Toshiyuki Mitsui
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| |
Collapse
|
25
|
Zhang Y, Hou MC, Li JJ, Qi Y, Zhang Y, She G, Ren YJ, Wu W, Pang ZD, Xie W, Deng XL, Du XJ. Cardiac β-adrenergic receptor activation mediates distinct and cell type-dependent changes in the expression and distribution of connexin 43. J Cell Mol Med 2020; 24:8505-8517. [PMID: 32578931 PMCID: PMC7412418 DOI: 10.1111/jcmm.15469] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Activation of the sympatho-β-adrenergic receptors (β-ARs) system is a hallmark of heart failure, leading to fibrosis and arrhythmias. Connexin 43 (Cx43) is the most abundant gap junctional protein in the myocardium. Current knowledge is limited regarding Cx43 remodelling in diverse cell types in the diseased myocardium and the underlying mechanism. We studied cell type-dependent changes in Cx43 remodelling due to β-AR overactivation and molecular mechanisms involved. Mouse models of isoproterenol stimulation or transgenic cardiomyocyte overexpression of β2 -AR were used, which exhibited cardiac fibrosis and up-regulated total Cx43 abundance. In both models, whereas Cx43 expression in cardiomyocytes was reduced and more laterally distributed, fibroblasts exhibited elevated Cx43 expression and enhanced gap junction communication. Mechanistically, activation of β2 -AR in fibroblasts in vitro elevated Cx43 expression, which was abolished by the β2 -antagonist ICI-118551 or protein kinase A inhibitor H-89, but simulated by the adenylyl cyclase activator forskolin. Our in vitro and in vivo data showed that β-AR activation-induced production of IL-18 sequentially stimulated Cx43 expression in fibroblasts in a paracrine fashion. In summary, our findings demonstrate a pivotal role of β-AR in mediating distinct and cell type-dependent changes in the expression and distribution of Cx43, leading to pathological gap junction remodelling in the myocardium.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Meng-Chen Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Pathology, Xi'an Guangren Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing-Jing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ying Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yu-Jie Ren
- Department of Pathology, Xi'an Guangren Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zheng-Da Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenjun Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
26
|
Yadava RS, Yu Q, Mandal M, Rigo F, Bennett CF, Mahadevan MS. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3'UTR RNA. Hum Mol Genet 2020; 29:1440-1453. [PMID: 32242217 PMCID: PMC7268549 DOI: 10.1093/hmg/ddaa060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common adult muscular dystrophy, is an autosomal dominant disorder caused by an expansion of a (CTG)n tract within the 3' untranslated region (3'UTR) of the dystrophia myotonica protein kinase (DMPK) gene. Mutant DMPK mRNAs are toxic, present in nuclear RNA foci and correlated with a plethora of RNA splicing defects. Cardinal features of DM1 are myotonia and cardiac conduction abnormalities. Using transgenic mice, we have demonstrated that expression of the mutant DMPK 3'UTR is sufficient to elicit these features of DM1. Here, using these mice, we present a study of systemic treatment with an antisense oligonucleotide (ASO) (ISIS 486178) targeted to a non-CUG sequence within the 3'UTR of DMPK. RNA foci and DMPK 3'UTR mRNA levels were reduced in both the heart and skeletal muscles. This correlated with improvements in several splicing defects in skeletal and cardiac muscles. The treatment reduced myotonia and this correlated with increased Clcn1 expression. Furthermore, functional testing showed improvements in treadmill running. Of note, we demonstrate that the ASO treatment reversed the cardiac conduction abnormalities, and this correlated with restoration of Gja5 (connexin 40) expression in the heart. This is the first time that an ASO targeting a non-CUG sequence within the DMPK 3'UTR has demonstrated benefit on the key DM1 phenotypes of myotonia and cardiac conduction defects. Our data also shows for the first time that ASOs may be a viable option for treating cardiac pathology in DM1.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA 90210, USA
| | | | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Zhang J, Vincent KP, Peter AK, Klos M, Cheng H, Huang SM, Towne JK, Ferng D, Gu Y, Dalton ND, Chan Y, Li R, Peterson KL, Chen J, McCulloch AD, Knowlton KU, Ross RS. Cardiomyocyte Expression of ZO-1 Is Essential for Normal Atrioventricular Conduction but Does Not Alter Ventricular Function. Circ Res 2020; 127:284-297. [PMID: 32345129 DOI: 10.1161/circresaha.119.315539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE ZO-1 (Zonula occludens-1), a plasma membrane-associated scaffolding protein regulates signal transduction, transcription, and cellular communication. Global deletion of ZO-1 in the mouse is lethal by embryonic day 11.5. The function of ZO-1 in cardiac myocytes (CM) is largely unknown. OBJECTIVE To determine the function of CM ZO-1 in the intact heart, given its binding to other CM proteins that have been shown instrumental in normal cardiac conduction and function. METHODS AND RESULTS We generated ZO-1 CM-specific knockout (KO) mice using α-Myosin Heavy Chain-nuclear Cre (ZO-1cKO) and investigated physiological and electrophysiological function by echocardiography, surface ECG and conscious telemetry, intracardiac electrograms and pacing, and optical mapping studies. ZO-1cKO mice were viable, had normal Mendelian ratios, and had a normal lifespan. Ventricular morphometry and function were not significantly different between the ZO-1cKO versus control (CTL) mice, basally in young or aged mice, or even when hearts were subjected to hemodynamic loading. Atrial mass was increased in ZO-1cKO. Electrophysiological and optical mapping studies indicated high-grade atrioventricular (A-V) block in ZO-1cKO comparing to CTL hearts. While ZO-1-associated proteins such as vinculin, connexin 43, N-cadherin, and α-catenin showed no significant change with the loss of ZO-1, Connexin-45 and Coxsackie-adenovirus (CAR) proteins were reduced in atria of ZO-1cKO. Further, with loss of ZO-1, ZO-2 protein was increased significantly in ventricular CM in a presumed compensatory manner but was still not detected in the AV nodal myocytes. Importantly, the expression of the sodium channel protein NaV1.5 was altered in AV nodal cells of the ZO-1cKO versus CTL. CONCLUSIONS ZO-1 protein has a unique physiological role in cardiac nodal tissue. This is in alignment with its known interaction with CAR and Cx45, and a new function in regulating the expression of NaV1.5 in AV node. Uniquely, ZO-1 is dispensable for function of the working myocardium.
Collapse
Affiliation(s)
- Jianlin Zhang
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Kevin P Vincent
- Department of Bioengineering (K.P.V., A.D.M.), University of California San Diego, La Jolla, CA
| | - Angela K Peter
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Matthew Klos
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Hongqiang Cheng
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Selina M Huang
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Jordan K Towne
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Debbie Ferng
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Yusu Gu
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Nancy D Dalton
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Yunghang Chan
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Ruixia Li
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Kirk L Peterson
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Ju Chen
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Andrew D McCulloch
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
- Department of Bioengineering (K.P.V., A.D.M.), University of California San Diego, La Jolla, CA
| | | | - Robert S Ross
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
- Veterans Administration Healthcare, Cardiology Section, San Diego, CA (R.S.R.)
| |
Collapse
|
28
|
Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020; 165-166:60-76. [PMID: 31917972 PMCID: PMC7338250 DOI: 10.1016/j.addr.2019.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Modeling of human organs has long been a task for scientists in order to lower the costs of therapeutic development and understand the pathological onset of human disease. For decades, despite marked differences in genetics and etiology, animal models remained the norm for drug discovery and disease modeling. Innovative biofabrication techniques have facilitated the development of organ-on-a-chip technology that has great potential to complement conventional animal models. However, human organ as a whole, more specifically the human heart, is difficult to regenerate in vitro, in terms of its chamber specific orientation and its electrical functional complexity. Recent progress with the development of induced pluripotent stem cell differentiation protocols, made recapitulating the complexity of the human heart possible through the generation of cells representative of atrial & ventricular tissue, the sinoatrial node, atrioventricular node and Purkinje fibers. Current heart-on-a-chip approaches incorporate biological, electrical, mechanical, and topographical cues to facilitate tissue maturation, therefore improving the predictive power for the chamber-specific therapeutic effects targeting adult human. In this review, we will give a summary of current advances in heart-on-a-chip technology and provide a comprehensive outlook on the challenges involved in the development of human physiologically relevant heart-on-a-chip.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin F L Lai
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick Xingze Lu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
29
|
Wang F, Zhao H, Yin L, Tang Y, Wang X, Zhao Q, Wang T, Huang C. Transcription Factor TBX18 Reprograms Vascular Smooth Muscle Cells of Ascending Aorta to Pacemaker-Like Cells. DNA Cell Biol 2019; 38:1470-1479. [PMID: 31633376 DOI: 10.1089/dna.2019.4940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) of ascending aorta and TBX18+ sinus node both originated from the second heart field. The study explored whether ascending aortic smooth muscle cells in vitro could be reprogrammed into pacemaker-like cells with human TBX18. In the study, VSMCs were infected with TBX18, and then cocultured with neonatal rat ventricular cardiomyocytes (NRVMs) in vitro. By overexpressing TBX18, the transfected VSMCs expressed high levels of hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4), insulin gene enhancer binding protein 1, and human dwarf homeobox gene SHOX2, cardiac troponin I, and low level of connexin 43. In addition, funny current (If) was recorded by patch clamp appeared the time and voltage dependence in TBX18 group, which the amplitude of If density was from -5.164 ± 0.662 pA/pF to -0.765 ± 0.358 pA/pF (n = 14). Furthermore, TBX18-transfected VSMCs coupled with NRVMs showed typical action potential of pacemaker-like cells and the beating rate was faster (178.00 ± 7.55 bpm, p < 0.05) compared with other groups. In conclusion, our study indicated that transcription factor TBX18 could reprogram VSMCs into pacemaker-like cells in vitro.
Collapse
Affiliation(s)
- Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| |
Collapse
|
30
|
Jiang J, Hoagland D, Palatinus JA, He H, Iyyathurai J, Jourdan LJ, Bultynck G, Wang Z, Zhang Z, Schey K, Poelzing S, McGowan FX, Gourdie RG. Interaction of α Carboxyl Terminus 1 Peptide With the Connexin 43 Carboxyl Terminus Preserves Left Ventricular Function After Ischemia-Reperfusion Injury. J Am Heart Assoc 2019; 8:e012385. [PMID: 31422747 PMCID: PMC6759879 DOI: 10.1161/jaha.119.012385] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background α Carboxyl terminus 1 (αCT1) is a 25–amino acid therapeutic peptide incorporating the zonula occludens‐1 (ZO‐1)–binding domain of connexin 43 (Cx43) that is currently in phase 3 clinical testing on chronic wounds. In mice, we reported that αCT1 reduced arrhythmias after cardiac injury, accompanied by increases in protein kinase Cε phosphorylation of Cx43 at serine 368. Herein, we characterize detailed molecular mode of action of αCT1 in mitigating cardiac ischemia‐reperfusion injury. Methods and Results To study αCT1‐mediated increases in phosphorylation of Cx43 at serine 368, we undertook mass spectrometry of protein kinase Cε phosphorylation assay reactants. This indicated potential interaction between negatively charged residues in the αCT1 Asp‐Asp‐Leu‐Glu‐Iso sequence and lysines (Lys345, Lys346) in an α‐helical sequence (helix 2) within the Cx43‐CT. In silico modeling provided further support for this interaction, indicating that αCT1 may interact with both Cx43 and ZO‐1. Using surface plasmon resonance, thermal shift, and phosphorylation assays, we characterized a series of αCT1 variants, identifying peptides that interacted with either ZO‐1–postsynaptic density‐95/disks large/zonula occludens‐1 2 or Cx43‐CT, but with limited or no ability to bind both molecules. Only peptides competent to interact with Cx43‐CT, but not ZO‐1–postsynaptic density‐95/disks large/zonula occludens‐1 2 alone, prompted increased pS368 phosphorylation. Moreover, in an ex vivo mouse model of ischemia‐reperfusion injury, preischemic infusion only with those peptides competent to bind Cx43 preserved ventricular function after ischemia‐reperfusion. Interestingly, a short 9–amino acid variant of αCT1 (αCT11) demonstrated potent cardioprotective effects when infused either before or after ischemic injury. Conclusions Interaction of αCT1 with the Cx43, but not ZO‐1, is correlated with cardioprotection. Pharmacophores targeting Cx43‐CT could provide a translational approach to preserving heart function after ischemic injury.
Collapse
Affiliation(s)
- Jingbo Jiang
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research Virginia Tech Blacksburg VA.,Shenzhen Children's Hospital Shenzhen China.,Department of Pediatric Cardiology Guangdong Cardiovascular Institute Guangdong General Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Daniel Hoagland
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research Virginia Tech Blacksburg VA
| | - Joseph A Palatinus
- Cedars-Sinai Heart Smidt Institute Cedars-Sinai Medical Center Los Angeles CA
| | - Huamei He
- Department of Anesthesiology and Critical Care Medicine Children's Hospital of Philadelphia and University of Pennsylvania Philadelphia PA
| | - Jegan Iyyathurai
- Department Cellular and Molecular Medicine KU Leuven Laboratory of Molecular and Cellular Signaling Leuven Belgium
| | - L Jane Jourdan
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research Virginia Tech Blacksburg VA
| | - Geert Bultynck
- Department Cellular and Molecular Medicine KU Leuven Laboratory of Molecular and Cellular Signaling Leuven Belgium
| | - Zhen Wang
- Department of Biochemistry Vanderbilt University School of Medicine Nashville TN
| | - Zhiwei Zhang
- Department of Pediatric Cardiology Guangdong Cardiovascular Institute Guangdong General Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Kevin Schey
- Department of Biochemistry Vanderbilt University School of Medicine Nashville TN
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research Virginia Tech Blacksburg VA.,Department of Biomedical Engineering and Mechanics Virginia Tech Blacksburg VA
| | - Francis X McGowan
- Department of Anesthesiology and Critical Care Medicine Children's Hospital of Philadelphia and University of Pennsylvania Philadelphia PA
| | - Robert G Gourdie
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Heart and Reparative Medicine Research Virginia Tech Blacksburg VA.,Department of Biomedical Engineering and Mechanics Virginia Tech Blacksburg VA
| |
Collapse
|
31
|
Whole genome and transcriptome sequencing of post-mortem cardiac tissues from sudden cardiac death victims identifies a gene regulatory variant in NEXN. Int J Legal Med 2019; 133:1699-1709. [PMID: 31392414 DOI: 10.1007/s00414-019-02127-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Sudden cardiac death (SCD) is a major public health problem and constitutes a diagnostic and preventive challenge in forensic pathology, especially for cases with structural normal hearts at autopsy, so-called sudden arrhythmic death syndrome (SADS). The identification of new genetic risk factors that predispose to SADS is important, because they may contribute to establish the diagnosis and increase the understanding of disease pathways underlying SADS. Pathogenic mutations in the protein coding regions of cardiac genes were found in relation to SADS. However, much remains unknown about variants in non-coding regions of the genome. METHODS AND RESULTS In this study, we explored the potential of whole genome sequencing (WGS) and whole transcriptome sequencing (WTS) to find DNA variants in SCD victims with structural normal hearts. With focus on the non-coding regulatory regions, we re-examined a cohort of 13 SADS and sudden unexplained death in infancy (SUDI) victims without disease causing DNA variants in recognized cardiac genes. The genetic re-examination of DNA was carried out using frozen tissue samples and WTS was carried out using five distinct formalin fixed and paraffin embedded (FFPE) cardiac tissue samples from each individual, including anterior and posterior walls of the left ventricle, ventricular papillary muscle, septum, and the right ventricle. We identified 23 candidate variants in regulatory sequences of cardiac genes, including a variant in the promotor region of NEXN, c.-194A>G, that was found to be statistically significantly (p < 0.05) associated with decreased expression of NEXN and cardiac hypertrophy. CONCLUSION With the use of post-mortem FFPE tissues, we highlight the potential of using WTS investigations and compare gene expression levels with DNA variation in regulatory non-coding regions of the genome for a better understanding of the genetics of cardiac diseases leading to SCD.
Collapse
|
32
|
Darche FF, Rivinius R, Köllensperger E, Leimer U, Germann G, Seckinger A, Hose D, Schröter J, Bruehl C, Draguhn A, Gabriel R, Schmidt M, Koenen M, Thomas D, Katus HA, Schweizer PA. Pacemaker cell characteristics of differentiated and HCN4-transduced human mesenchymal stem cells. Life Sci 2019; 232:116620. [PMID: 31291594 DOI: 10.1016/j.lfs.2019.116620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 12/13/2022]
Abstract
AIMS Cell-based biological pacemakers aim to overcome limitations and side effects of electronic pacemaker devices. We here developed and tested different approaches to achieve nodal-type differentiation using human adipose- and bone marrow-derived mesenchymal stem cells (haMSC, hbMSC). MAIN METHODS haMSC and hbMSC were differentiated using customized protocols. Quantitative RT-PCR was applied for transcriptional pacemaker-gene profiling. Protein membrane expression was analyzed by immunocytochemistry. Pacemaker current (If) was studied in haMSC with and without lentiviral HCN4-transduction using patch clamp recordings. Functional characteristics were evaluated by co-culturing with neonatal rat ventricular myocytes (NRVM). KEY FINDINGS Culture media-based differentiation for two weeks generated cells with abundant transcription of ion channel genes (Cav1.2, NCX1), transcription factors (TBX3, TBX18, SHOX2) and connexins (Cx31.9 and Cx45) characteristic for cardiac pacemaker tissue, but lack adequate HCN transcription. haMSC-derived cells revealed transcript levels, which were closer related to sinoatrial nodal cells than hbMSC-derived cells. To substitute for the lack of If, we performed lentiviral HCN4-transduction of haMSC resulting in stable If. Co-culturing with NRVM demonstrated that differentiated haMSC expressing HCN4 showed earlier onset of spontaneous contractions and higher beating regularity, synchrony and rate compared to co-cultures with non-HCN4-transduced haMSC or HCN4-transduced, non-differentiated haMSC. Confocal imaging indicated increased membrane expression of cardiac gap junctional proteins in differentiated haMSC. SIGNIFICANCE By differentiation haMSC, rather than hbMSC attain properties favorable for cardiac pacemaking. In combination with lentiviral HCN4-transduction, a cellular phenotype was generated that sustainably controls and stabilizes rate in co-culture with NRVM.
Collapse
Affiliation(s)
- Fabrice F Darche
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120 Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120 Heidelberg, Germany
| | - Eva Köllensperger
- ETHIANUM Klinik Heidelberg, Voßstraße 6, D-69115 Heidelberg, Germany
| | - Uwe Leimer
- ETHIANUM Klinik Heidelberg, Voßstraße 6, D-69115 Heidelberg, Germany
| | - Günter Germann
- ETHIANUM Klinik Heidelberg, Voßstraße 6, D-69115 Heidelberg, Germany
| | - Anja Seckinger
- Department of Hematology, Oncology and Rheumatology, Medical University Hospital Heidelberg, INF 410, D-69120 Heidelberg, Germany
| | - Dirk Hose
- Department of Hematology, Oncology and Rheumatology, Medical University Hospital Heidelberg, INF 410, D-69120 Heidelberg, Germany
| | - Julian Schröter
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120 Heidelberg, Germany
| | - Claus Bruehl
- Institute for Physiology and Pathophysiology, University of Heidelberg, INF 326, D-69120 Heidelberg, Germany
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, University of Heidelberg, INF 326, D-69120 Heidelberg, Germany
| | - Richard Gabriel
- Molecular and Gene Therapy, National Center for Tumor Diseases (NCT) Heidelberg, INF 460, D-69120 Heidelberg, Germany
| | - Manfred Schmidt
- Molecular and Gene Therapy, National Center for Tumor Diseases (NCT) Heidelberg, INF 460, D-69120 Heidelberg, Germany
| | - Michael Koenen
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120 Heidelberg, Germany; Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120 Heidelberg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Canine and human sinoatrial node: differences and similarities in the structure, function, molecular profiles, and arrhythmia. J Vet Cardiol 2018; 22:2-19. [PMID: 30559056 DOI: 10.1016/j.jvc.2018.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
The sinoatrial node (SAN) is the primary pacemaker in canine and human hearts. The SAN in both species has a unique three-dimensional heterogeneous structure characterized by small pacemaker myocytes enmeshed within fibrotic strands, which partially insulate the cells from aberrant atrial activation. The SAN pacemaker tissue expresses a unique signature of proteins and receptors that mediate SAN automaticity, ion channel currents, and cell-to-cell communication, which are predominantly similar in both species. Recent intramural optical mapping, integrated with structural and molecular studies, has revealed the existence of up to five specialized SAN conduction pathways that preferentially conduct electrical activation to atrial tissues. The intrinsic heart rate, intranodal leading pacemaker shifts, and changes in conduction in response to physiological and pathophysiological stimuli are similar. Structural and/or functional impairments due to cardiac diseases including heart failure cause SAN dysfunctions (SNDs) in both species. These dysfunctions are usually manifested as severe bradycardia, tachy-brady arrhythmias, and conduction abnormalities including exit block and SAN reentry, which could lead to atrial tachycardia and fibrillation, cardiac arrest, and heart failure. Pharmaceutical drugs and implantable pacemakers are only partially successful in managing SNDs, emphasizing a critical need to develop targeted mechanism-based therapies to treat SNDs. Because several structural and functional characteristics are similar between the canine and human SAN, research in these species may be mutually beneficial for developing novel treatment approaches. This review describes structural, functional, and molecular similarities and differences between the canine and human SAN, with special emphasis on arrhythmias and unique causal mechanisms of SND in diseased hearts.
Collapse
|
34
|
Taha MF, Javeri A, Karimipour M, Yamaghani MS. Priming with oxytocin and relaxin improves cardiac differentiation of adipose tissue-derived stem cells. J Cell Biochem 2018; 120:5825-5834. [PMID: 30362159 DOI: 10.1002/jcb.27868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/20/2018] [Indexed: 11/07/2022]
Abstract
Previous studies have identified the heart as a source and a target tissue for oxytocin and relaxin hormones. These hormones play important roles in the regulation of cardiovascular function and repair of ischemic heart injury. In the current study, we examined the impact of oxytocin and relaxin on the development of cardiomyocytes from mesenchymal stem cells. For this purpose, mouse adipose tissue-derived stem cells (ADSCs) were treated with different concentrations of oxytocin or relaxin for 4 days. Three weeks after initiation of cardiac induction, differentiated ADSCs expressed cardiac-specific genes, Gata4, Mef2c, Nkx2.5, Tbx5, α- and β-Mhc, Mlc2v, Mlc2a and Anp, and cardiac proteins including connexin 43, desmin and α-actinin. 10 -7 M oxytocin and 50 ng/mL relaxin induced the maximum upregulation in the expression of cardiac markers. A combination of oxytocin and relaxin induced cardiomyocyte differentiation more potently than the individual factors. In our experiment, oxytocin-relaxin combination increased the population of cardiac troponin I-expressing cells to 6.84% as compared with 2.36% for the untreated ADSCs, 3.7% for oxytocin treatment and 3.41% for relaxin treatment groups. In summary, the results of this study indicated that oxytocin and relaxin hormones individually and in combination can improve cardiac differentiation of ADSCs, and treatment of the ADSCs and possibly other mesenchymal stem cells with these hormones may enhance their cardiogenic differentiation and survival after transplantation into the ischemic heart tissue.
Collapse
Affiliation(s)
- Masoumeh Fakhr Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mojtaba Karimipour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
35
|
Value of multilocus genetic risk score for atrial fibrillation in end-stage kidney disease patients in a Polish population. Sci Rep 2018; 8:9284. [PMID: 29915175 PMCID: PMC6006310 DOI: 10.1038/s41598-018-27382-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic factors play a key role in the pathogenesis of atrial fibrillation (AF). We would like to establish an association between previously described single-nucleotide polymorphisms (SNPs) and AF in haemodialysed patients with end-stage kidney disease (ESKD-HD) as well as to assess the cumulative effect of all genotyped SNPs on AF risk. Sixteen SNPs were genotyped in 113 patients with AF-ESKD-HD and in 157 controls: without AF (NAF) and with ESKD-HD. The distribution of the risk alleles was compared in both groups and between different sub-phenotypes. The multilocus genetic risk score (GRS) was calculated to estimate the cumulative risk conferred by all SNPs. Several loci showed a trend toward an association with permanent AF (perm-AF): CAV1, Cx40 and PITX2. However, GRS was significantly higher in the AF and perm-AF groups, as compared to NAF. Three of the tested variables were independently associated with AF: male sex, history of myocardial infarction (MI) and GRS. The GRS, which combined 13 previously described SNPs, showed a significant and independent association with AF in a Polish population of patients with ESKD-HD and concomitant AF. Further studies on larger groups of patients are needed to confirm the associations.
Collapse
|
36
|
Noureldin M, Chen H, Bai D. Functional Characterization of Novel Atrial Fibrillation-Linked GJA5 (Cx40) Mutants. Int J Mol Sci 2018; 19:E977. [PMID: 29587382 PMCID: PMC5979441 DOI: 10.3390/ijms19040977] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia. Recently, four novel heterozygous Cx40 mutations-K107R, L223M, Q236H, and I257L-were identified in 4 of 310 unrelated AF patients and a followup genetic analysis of the mutant carriers' families showed that the mutants were present in all the affected members. To study possible alterations associated with these Cx40 mutants, including their cellular localization and gap junction (GJ) function, we expressed GFP-tagged and untagged mutants in connexin-deficient model cells. All four Cx40 mutants showed clustered localization at cell-cell junctions similar to that observed of wildtype Cx40. However, cell pairs expressing Cx40 Q236H, but not the other individual mutants, displayed a significantly lower GJ coupling conductance (Gj) than wildtype Cx40. Similarly, co-expression of Cx40 Q236H with Cx43 resulted in a significantly lower Gj. Transjunctional voltage-dependent gating (Vj gating) properties were also altered in the GJs formed by Q236H. Reduced GJ function and altered Vj gating may play a role in promoting the Q236H carriers to AF.
Collapse
Affiliation(s)
- Mahmoud Noureldin
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1 Canada.
| | - Honghong Chen
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1 Canada.
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1 Canada.
| |
Collapse
|
37
|
Johnson RD, Camelliti P. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets? Int J Mol Sci 2018; 19:ijms19030866. [PMID: 29543751 PMCID: PMC5877727 DOI: 10.3390/ijms19030866] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022] Open
Abstract
The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.
Collapse
Affiliation(s)
- Robert D Johnson
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
38
|
Ciocci M, Iorio E, Carotenuto F, Khashoggi HA, Nanni F, Melino S. H2S-releasing nanoemulsions: a new formulation to inhibit tumor cells proliferation and improve tissue repair. Oncotarget 2018; 7:84338-84358. [PMID: 27741519 PMCID: PMC5356665 DOI: 10.18632/oncotarget.12609] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The improvement of solubility and/or dissolution rate of poorly soluble natural compounds is an ideal strategy to make them optimal candidates as new potential drugs. Accordingly, the allyl sulfur compounds and omega-3 fatty acids are natural hydrophobic compounds that exhibit two important combined properties: cardiovascular protection and antitumor activity. Here, we have synthesized and characterized a novel formulation of diallyl disulfide (DADS) and α-linolenic acid (ALA) as protein-nanoemulsions (BAD-NEs), using ultrasounds. BAD-NEs are stable over time at room temperature and show antioxidant and radical scavenging property. These NEs are also optimal H2S slow-release donors and show a significant anti-proliferative effect on different human cancer cell lines: MCF-7 breast cancer and HuT 78 T-cell lymphoma cells. BAD-NEs are able to regulate the ERK1/2 pathway, inducing apoptosis and cell cycle arrest at the G0/G1 phase. We have also investigated their effect on cell proliferation of human adult stem/progenitor cells. Interestingly, BAD-NEs are able to improve the Lin- Sca1+ human cardiac progenitor cells (hCPC) proliferation. This stem cell growth stimulation is combined with the expression and activation of proteins involved in tissue-repair, such as P-AKT, α-sma and connexin 43. Altogether, our results suggest that these antioxidant nanoemulsions might have potential application in selective cancer therapy and for promoting the muscle tissue repair.
Collapse
Affiliation(s)
- Matteo Ciocci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Felicia Carotenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Haneen A Khashoggi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Nanni
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
39
|
Ock S, Lee WS, Kim HM, Park KS, Kim YK, Kook H, Park WJ, Lee TJ, Abel ED, Kim J. Connexin43 and zonula occludens-1 are targets of Akt in cardiomyocytes that correlate with cardiac contractile dysfunction in Akt deficient hearts. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1183-1191. [PMID: 29378301 DOI: 10.1016/j.bbadis.2018.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 01/05/2023]
Abstract
While deletion of Akt1 results in a smaller heart size and Akt2-/- mice are mildly insulin resistant, Akt1-/-/Akt2-/- mice exhibit perinatal lethality, indicating a large degree of functional overlap between the isoforms of the serine/threonine kinase Akt. The present study aimed to determine the cooperative contribution of Akt1 and Akt2 on the structure and contractile function of adult hearts. To generate an inducible, cardiomyocyte-restricted Akt2 knockout (KO) model, Akt2flox/flox mice were crossed with tamoxifen-inducible MerCreMer transgenic (MCM) mice and germline Akt1-/- mice to generate the following genotypes:Akt1+/+; Akt2flox/flox (WT), Akt2flox/flox; α-MHC-MCM (iAkt2 KO), Akt1-/-, and Akt1-/-; Akt2flox/flox; α-MHC-MCM mice (Akt1-/-/iAkt2 KO). At 28 days after the first tamoxifen injection, Akt1-/-/iAkt2 KO mice developed contractile dysfunction paralleling increased atrial and brain natriuretic peptide (ANP and BNP) levels, and repressed mitochondrial gene expression. Neither cardiac fibrosis nor apoptosis were detected in Akt1-/-/iAkt2 KO hearts. To explore potential molecular mechanisms for contractile dysfunction, we investigated myocardial microstructure before the onset of heart failure. At 3 days after the first tamoxifen injection, Akt1-/-/iAkt2 KO hearts showed decreased expression of connexin43 (Cx43) and connexin-interacting protein zonula occludens-1 (ZO-1). Furthermore, Akt1/2 silencing significantly decreased both Cx43 and ZO-1 expression in cultured neonatal rat cardiomyocytes in concert with reduced beating frequency. Akt1 and Akt2 are required to maintain cardiac contraction. Loss of Akt signaling disrupts gap junction protein, which might precipitate early contractile dysfunction prior to heart failure in the absence of myocardial remodeling, such as hypertrophy, fibrosis, or cell death.
Collapse
Affiliation(s)
- Sangmi Ock
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Wang Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonjoo, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Woo Jin Park
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Tae Jin Lee
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - E D Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Carballo S, Pfenniger A, Carballo D, Garin N, James RW, Mach F, Shah D, Kwak BR. Differential Association of Cx37 and Cx40 Genetic Variants in Atrial Fibrillation with and without Underlying Structural Heart Disease. Int J Mol Sci 2018; 19:E295. [PMID: 29351227 PMCID: PMC5796240 DOI: 10.3390/ijms19010295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Atrial fibrillation (AF) appears in the presence or absence of structural heart disease. The majority of foci causing AF are located near the ostia of pulmonary veins (PVs), where cardiomyocytes and vascular smooth muscle cells interdigitate. Connexins (Cx) form gap junction channels and participate in action potential propagation. Genetic variants in genes encoding Cx40 and Cx37 affect their expression or function and may contribute to PV arrhythmogenicity. DNA was obtained from 196 patients with drug-resistant, symptomatic AF with and without structural heart disease, who were referred for percutaneous catheter ablation. Eighty-nine controls were matched for age, gender, hypertension, and BMI. Genotyping of the Cx40 -44G > A, Cx40 +71A > G, Cx40 -26A > G, and Cx37 1019C > T polymorphisms was performed. The promoter A Cx40 polymorphisms (-44G > A and +71A > G) showed no association with non-structural or structural AF. Distribution of the Cx40 promoter B polymorphism (-26A > G) was different in structural AF when compared to controls (p = 0.03). There was no significant difference with non-structural AF (p = 0.50). The distribution of the Cx37 1019C > T polymorphism was different in non-structural AF (p = 0.03) but not in structural AF (p = 0.08) when compared to controls. Our study describes for the first time an association of drug-resistant non-structural heart disease AF with the Cx37 1019C > T gene polymorphism. We also confirmed the association of the Cx40 - 26G > A polymorphism in patients with AF and structural disease.
Collapse
Affiliation(s)
- Sebastian Carballo
- Service of General Internal medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland.
| | - Anna Pfenniger
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
| | - David Carballo
- Service of Cardiology, University Hospitals of Geneva, 1211 Geneva, Switzerland.
| | - Nicolas Garin
- Service of General Internal medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland.
| | - Richard W James
- Service of Endocrinology and Diabetes, University Hospitals of Geneva, 1211 Geneva, Switzerland.
| | - François Mach
- Service of Cardiology, University Hospitals of Geneva, 1211 Geneva, Switzerland.
| | - Dipen Shah
- Service of Cardiology, University Hospitals of Geneva, 1211 Geneva, Switzerland.
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
41
|
Schweizer PA, Darche FF, Ullrich ND, Geschwill P, Greber B, Rivinius R, Seyler C, Müller-Decker K, Draguhn A, Utikal J, Koenen M, Katus HA, Thomas D. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells. Stem Cell Res Ther 2017; 8:229. [PMID: 29037217 PMCID: PMC5644063 DOI: 10.1186/s13287-017-0681-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. Methods hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. Results hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10–12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70–90 beats/min) and were triggered by spontaneous Ca2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. Conclusion We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0681-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.
| | - Fabrice F Darche
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Nina D Ullrich
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Pascal Geschwill
- Institute of Physiology and Pathophysiology, Division of Neuro- and Sensory Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Boris Greber
- Department of Cell and Developmental Biology, Max-Planck-Institute for Molecular Biomedicine, Röntgenstrasse, 20, D-48149, Münster, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Claudia Seyler
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Karin Müller-Decker
- Unit Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, INF 280, D-69120, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Division of Neuro- and Sensory Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Jochen Utikal
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Dermato-Oncology (G300), German Cancer Research Center (DKFZ), Heidelberg, INF 280, D-69120, Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167, Mannheim, Germany
| | - Michael Koenen
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| |
Collapse
|
42
|
Giacomelli E, Mummery CL, Bellin M. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2017; 74:3711-3739. [PMID: 28573431 PMCID: PMC5597692 DOI: 10.1007/s00018-017-2546-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.
Collapse
Affiliation(s)
- E Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - C L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Building Zuidhorst, 7500 AE, Enschede, The Netherlands
| | - M Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
43
|
Pervolaraki E, Dachtler J, Anderson RA, Holden AV. Ventricular myocardium development and the role of connexins in the human fetal heart. Sci Rep 2017; 7:12272. [PMID: 28947768 PMCID: PMC5612926 DOI: 10.1038/s41598-017-11129-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
The developmental timeline of the human heart remains elusive. The heart takes on its characteristic four chambered appearance by ~56 days gestational age (DGA). However, owing to the complexities (both technical and logistical) of exploring development in utero, we understand little of how the ventricular walls develop. To address this, we employed diffusion tensor magnetic resonance imaging to explore the architecture and tissue organization of the developing heart aged 95-143 DGA. We show that fractional anisotropy increases (from ~0.1 to ~0.5), diffusion coefficients decrease (from ~1 × 10-3mm2/sec to ~0.4 × 10-3mm2/sec), and fiber paths, extracted by tractography, increase linearly with gestation, indicative of the increasing organization of the ventricular myocytes. By 143 DGA, the developing heart has the classical helical organization observed in mature mammalian tissue. This was accompanied by an increase in connexin 43 and connexin 40 expression levels, suggesting their role in the development of the ventricular conduction system and that electrical propagation across the heart is facilitated in later gestation. Our findings highlight a key developmental window for the structural organization of the fetal heart.
Collapse
Affiliation(s)
| | - James Dachtler
- Department of Psychology, Durham University, Durham, DH1 3LE, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Arun V Holden
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
44
|
Kofron CM, Kim TY, King ME, Xie A, Feng F, Park E, Qu Z, Choi BR, Mende U. G q-activated fibroblasts induce cardiomyocyte action potential prolongation and automaticity in a three-dimensional microtissue environment. Am J Physiol Heart Circ Physiol 2017; 313:H810-H827. [PMID: 28710068 DOI: 10.1152/ajpheart.00181.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
Cardiac fibroblasts (CFs) are known to regulate cardiomyocyte (CM) function in vivo and in two-dimensional in vitro cultures. This study examined the effect of CF activation on the regulation of CM electrical activity in a three-dimensional (3-D) microtissue environment. Using a scaffold-free 3-D platform with interspersed neonatal rat ventricular CMs and CFs, Gq-mediated signaling was selectively enhanced in CFs by Gαq adenoviral infection before coseeding with CMs in nonadhesive hydrogels. After 3 days, the microtissues were analyzed by signaling assay, histological staining, quantitative PCR, Western blots, optical mapping with voltage- or Ca2+-sensitive dyes, and microelectrode recordings of CF resting membrane potential (RMPCF). Enhanced Gq signaling in CFs increased microtissue size and profibrotic and prohypertrophic markers. Expression of constitutively active Gαq in CFs prolonged CM action potential duration (by 33%) and rise time (by 31%), prolonged Ca2+ transient duration (by 98%) and rise time (by 65%), and caused abnormal electrical activity based on depolarization-induced automaticity. Constitutive Gq activation in CFs also depolarized RMPCF from -33 to -20 mV and increased connexin 43 and connexin 45 expression. Computational modeling confers that elevated RMPCF and increased cell-cell coupling between CMs and CFs in a 3-D environment could lead to automaticity. In conclusion, our data demonstrate that CF activation alone is capable of altering action potential and Ca2+ transient characteristics of CMs, leading to proarrhythmic electrical activity. Our results also emphasize the importance of a 3-D environment where cell-cell interactions are prevalent, underscoring that CF activation in 3-D tissue plays a significant role in modulating CM electrophysiology and arrhythmias.NEW & NOTEWORTHY In a three-dimensional microtissue model, which lowers baseline activation of cardiac fibroblasts but enables cell-cell, paracrine, and cell-extracellular matrix interactions, we demonstrate that selective cardiac fibroblast activation by enhanced Gq signaling, a pathophysiological trigger in the diseased heart, modulates cardiomyocyte electrical activity, leading to proarrhythmogenic automaticity.
Collapse
Affiliation(s)
- C M Kofron
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - T Y Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - M E King
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - A Xie
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - F Feng
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - E Park
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Z Qu
- Department of Medicine, University of California, Los Angeles, California
| | - B-R Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - U Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island; and
| |
Collapse
|
45
|
Scuderi GJ, Butcher J. Naturally Engineered Maturation of Cardiomyocytes. Front Cell Dev Biol 2017; 5:50. [PMID: 28529939 PMCID: PMC5418234 DOI: 10.3389/fcell.2017.00050] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte maturation. This information can then be utilized to develop natural engineering approaches that can emulate this fetal microenvironment and thus make prominent progress in pluripotent stem cell-derived maturity toward a more clinically relevant model for cardiac regeneration.
Collapse
Affiliation(s)
- Gaetano J Scuderi
- Meinig School of Biomedical Engineering, Cornell UniversityIthaca, NY, USA
| | - Jonathan Butcher
- Meinig School of Biomedical Engineering, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
46
|
Monteiro LM, Vasques-Nóvoa F, Ferreira L, Pinto-do-Ó P, Nascimento DS. Restoring heart function and electrical integrity: closing the circuit. NPJ Regen Med 2017; 2:9. [PMID: 29302345 PMCID: PMC5665620 DOI: 10.1038/s41536-017-0015-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases are the main cause of death in the world and are often associated with the occurrence of arrhythmias due to disruption of myocardial electrical integrity. Pathologies involving dysfunction of the specialized cardiac excitatory/conductive tissue are also common and constitute an added source of morbidity and mortality since current standard therapies withstand a great number of limitations. As electrical integrity is essential for a well-functioning heart, innovative strategies have been bioengineered to improve heart conduction and/or promote myocardial repair, based on: (1) gene and/or cell delivery; or (2) conductive biomaterials as tools for cardiac tissue engineering. Herein we aim to review the state-of-art in the area, while briefly describing the biological principles underlying the heart electrical/conduction system and how this system can be disrupted in heart disease. Suggestions regarding targets for future studies are also presented.
Collapse
Affiliation(s)
- Luís Miguel Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Francisco Vasques-Nóvoa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lino Ferreira
- CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Perpétua Pinto-do-Ó
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana Santos Nascimento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
47
|
Atrial structure, function and arrhythmogenesis in aged and frail mice. Sci Rep 2017; 7:44336. [PMID: 28290548 PMCID: PMC5349540 DOI: 10.1038/srep44336] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/07/2017] [Indexed: 01/01/2023] Open
Abstract
Atrial fibrillation (AF) is prevalent in aging populations; however not all individuals age at the same rate. Instead, individuals of the same chronological age can vary in health status from fit to frail. Our objective was to determine the impacts of age and frailty on atrial function and arrhythmogenesis in mice using a frailty index (FI). Aged mice were more frail and demonstrated longer lasting AF compared to young mice. Consistent with this, aged mice showed longer P wave duration and PR intervals; however, both parameters showed substantial variability suggesting differences in health status among mice of similar chronological age. In agreement with this, P wave duration and PR interval were highly correlated with FI score. High resolution optical mapping of the atria demonstrated reduced conduction velocity and action potential duration in aged hearts that were also graded by FI score. Furthermore, aged mice had increased interstitial fibrosis along with changes in regulators of extracellular matrix remodelling, which also correlated with frailty. These experiments demonstrate that aging results in changes in atrial structure and function that create a substrate for atrial arrhythmias. Importantly, these changes were heterogeneous due to differences in health status, which could be identified using an FI.
Collapse
|
48
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Kloosterman M, Rienstra M, Van Gelder IC, Maass AH. Spontaneous resolution of left bundle branch block and biventricular stimulation lead to reverse remodeling in dyssynchronopathy. J Electrocardiol 2016; 49:696-8. [PMID: 27473783 DOI: 10.1016/j.jelectrocard.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Mariëlle Kloosterman
- Department of Cardiology, Thoraxcenter, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel Rienstra
- Department of Cardiology, Thoraxcenter, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Isabelle C Van Gelder
- Department of Cardiology, Thoraxcenter, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander H Maass
- Department of Cardiology, Thoraxcenter, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
50
|
Willebrords J, Crespo Yanguas S, Maes M, Decrock E, Wang N, Leybaert L, Kwak BR, Green CR, Cogliati B, Vinken M. Connexins and their channels in inflammation. Crit Rev Biochem Mol Biol 2016; 51:413-439. [PMID: 27387655 PMCID: PMC5584657 DOI: 10.1080/10409238.2016.1204980] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation may be caused by a variety of factors and is a hallmark of a plethora of acute and chronic diseases. The purpose of inflammation is to eliminate the initial cell injury trigger, to clear out dead cells from damaged tissue and to initiate tissue regeneration. Despite the wealth of knowledge regarding the involvement of cellular communication in inflammation, studies on the role of connexin-based channels in this process have only begun to emerge in the last few years. In this paper, a state-of-the-art overview of the effects of inflammation on connexin signaling is provided. Vice versa, the involvement of connexins and their channels in inflammation will be discussed by relying on studies that use a variety of experimental tools, such as genetically modified animals, small interfering RNA and connexin-based channel blockers. A better understanding of the importance of connexin signaling in inflammation may open up towards clinical perspectives.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Michaël Maes
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Brenda R. Kwak
- Department of Pathology and Immunology and Division of Cardiology,
University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; Brenda R.
Kwak: Tel: +41 22 379 57 37
| | - Colin R. Green
- Department of Ophthalmology and New Zealand National Eye Centre,
University of Auckland, New Zealand; Colin R. Green: Tel: +64 9 923 61 35
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal
Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87,
05508-270 São Paulo, Brazil; Bruno Cogliati: Tel: +55 11 30 91 12 00
| | - Mathieu Vinken
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| |
Collapse
|