1
|
Kattih B, Fischer A, Muhly-Reinholz M, Tombor L, Nicin L, Cremer S, Zeiher AM, John D, Abplanalp WT, Dimmeler S. Inhibition of miR-92a normalizes vascular gene expression and prevents diastolic dysfunction in heart failure with preserved ejection fraction. J Mol Cell Cardiol 2025; 198:89-98. [PMID: 39592091 DOI: 10.1016/j.yjmcc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a major public health burden with increasing prevalence but only few effective therapies. Endothelial dysfunction and inflammation are identified as pathophysiological drivers of HFpEF disease progression. MicroRNAs are increasingly recognized as key regulators of these pathological processes, while antimiR-based therapies have been emerged as promising therapeutics in mice and humans. Therefore, we tested whether miR-92a-3p inhibition is a promising therapeutic intervention to target HFpEF in vivo. By injection of locked nucleic acid (LNA)-based antimiR (LNA-92a) weekly, we demonstrate that inhibition of miR-92a-3p attenuates the development of diastolic dysfunction and left atrial dilation following experimental induction of HFpEF in mice. Indeed, LNA-92a depleted miR-92a-3p expression in the myocardium and peripheral blood, and derepressed predicted target genes in a cell type-specific manner. Furthermore, cell-type specific efficacy of LNA-92a treatment was assessed by single-nuclear RNA sequencing of HFpEF hearts either treated with LNA-92a or LNA-Control. Endothelial cells of LNA-92a treated mice showed normalized vascular gene expression and reduced gene signatures associated with endothelial-mesenchymal transition. CONCLUSION: This study demonstrates that LNA-based antimiR-92a is an effective therapeutic strategy to target diastolic dysfunction and left atrial dilation in HFpEF.
Collapse
Affiliation(s)
- Badder Kattih
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Ariane Fischer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marion Muhly-Reinholz
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas Tombor
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Luka Nicin
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sebastian Cremer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| | - David John
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Wesley Tyler Abplanalp
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Lin PS, Qi WH, Ding CY, An YJ, Yao YT. The Effects of Daytime Variation on Short-term Outcomes of Patients Undergoing Off-Pump Coronary Artery Bypass Grafting. J Cardiothorac Vasc Anesth 2024; 38:931-938. [PMID: 38246822 DOI: 10.1053/j.jvca.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVE To evaluate the effects of time of surgery on the short-term outcomes of patients undergoing off-pump coronary artery bypass grafting (OPCABG). DESIGN A retrospective cohort study. SETTING A single large-volume cardiovascular center. PATIENTS Patients undergoing elective OPCABG between September 2019 and July 2022. INTERVENTIONS Patients were divided into the following 2 groups according to the start time of surgery: morning (AM group, before 11 AM) and afternoon (PM group, after 11 AM). Propensity-score matching (PSM) with a 1:1 matching ratio was used to create comparable cohorts. MEASUREMENTS AND MAIN RESULTS The primary endpoint was the composite incidence of mortality and morbidities during hospitalization. Secondary endpoints included postoperative bleeding and transfusion, mechanical ventilation duration (MVD), and lengths of stay (LOS) in the intensive care unit (ICU) and hospital. From a consecutive series of 1,039 patients, PSM yielded 317 well-matched pairs. There was no difference in the composite incidence of in-hospital mortality and morbidities between the AM and PM groups (16.4% v 17.4%, p = 0.832). However, patients in the PM group were associated with less postoperative blood loss over the first 24 hours (470 v 540 mL, p = 0.002), decreased MVD (14 v 16 hours, p < 0.001), and shorter LOS in ICU (46 v 68 hours, p = 0.002) compared to patients in AM group. CONCLUSIONS The current study suggested a lack of relevance regarding the time of surgery with in-hospital mortality and morbidities in patients undergoing OPCABG.
Collapse
Affiliation(s)
- Pei-Shuang Lin
- Department of Cardiovascular Surgery, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, China; Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wen-Hui Qi
- Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Anesthesiology, Hengshui People's Hospital, Hengshui, China
| | - Chen-Ying Ding
- Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Anesthesiology, the First Hospital of Hohhot, Hohhot, China
| | - Yu-Jie An
- Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Anesthesiology, the Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining, China
| | - Yun-Tai Yao
- Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Zeng Q, Oliva VM, Moro MÁ, Scheiermann C. Circadian Effects on Vascular Immunopathologies. Circ Res 2024; 134:791-809. [PMID: 38484032 PMCID: PMC11867806 DOI: 10.1161/circresaha.123.323619] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Circadian rhythms exert a profound impact on most aspects of mammalian physiology, including the immune and cardiovascular systems. Leukocytes engage in time-of-day-dependent interactions with the vasculature, facilitating the emigration to and the immune surveillance of tissues. This review provides an overview of circadian control of immune-vascular interactions in both the steady state and cardiovascular diseases such as atherosclerosis and infarction. Circadian rhythms impact both the immune and vascular facets of these interactions, primarily through the regulation of chemoattractant and adhesion molecules on immune and endothelial cells. Misaligned light conditions disrupt this rhythm, generally exacerbating atherosclerosis and infarction. In cardiovascular diseases, distinct circadian clock genes, while functioning as part of an integrated circadian system, can have proinflammatory or anti-inflammatory effects on these immune-vascular interactions. Here, we discuss the mechanisms and relevance of circadian rhythms in vascular immunopathologies.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - Valeria Maria Oliva
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.Á.M.)
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
- Geneva Center for Inflammation Research, Switzerland (C.S.)
- Translational Research Centre in Oncohaematology, Geneva, Switzerland (C.S.)
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Germany (C.S.)
| |
Collapse
|
4
|
Young ME. The Cardiac Circadian Clock: Implications for Cardiovascular Disease and its Treatment. JACC Basic Transl Sci 2023; 8:1613-1628. [PMID: 38205356 PMCID: PMC10774593 DOI: 10.1016/j.jacbts.2023.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 01/12/2024]
Abstract
Virtually all aspects of physiology fluctuate with respect to the time of day. This is beautifully exemplified by cardiovascular physiology, for which blood pressure and electrophysiology exhibit robust diurnal oscillations. At molecular/biochemical levels (eg, transcription, translation, signaling, metabolism), cardiovascular-relevant tissues (such as the heart) are profoundly different during the day vs the night. Unfortunately, this in turn contributes toward 24-hour rhythms in both risk of adverse event onset (eg, arrhythmias, myocardial infarction) and pathogenesis severity (eg, extent of ischemic damage). Accumulating evidence indicates that cell-autonomous timekeeping mechanisms, termed circadian clocks, temporally govern biological processes known to play critical roles in cardiovascular function/dysfunction. In this paper, a comprehensive review of our current understanding of the cardiomyocyte circadian clock during both health and disease is detailed. Unprecedented basic, translational, and epidemiologic studies support a need to implement chronobiological considerations in strategies designed for both prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Paula ABR, Resende LT, Jardim IABA, Portes AMO, Isoldi MC. The role of environmental signals in the expression of rhythmic cardiac proteins and their influence on cardiac pathologies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:205-223. [PMID: 37709377 DOI: 10.1016/bs.apcsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
We know that numerous proteins expressed in the heart are influenced by environmental signals (such as light and diet), which cause either an increase or decrease in their expression. Cardiovascular health is sensitive to diet composition (macronutrient content), as well as the percentage of energy, frequency and regularity of meal intake during the 24-hour cycle, and the fasting period. Furthermore, light is an important synchronizer of the circadian clock and, in turn, of several physiological processes, among them cardiovascular physiology. In this chapter, we address the effects of these environmental cues and the known mechanisms that lead to this variation in protein expression in the heart, as well as cardiac function.
Collapse
Affiliation(s)
- Ana Beatriz Rezende Paula
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil.
| | - Letícia Teresinha Resende
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| | - Isabela Alcântara Barretto Araújo Jardim
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| | - Alexandre Martins Oliveira Portes
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| |
Collapse
|
6
|
Yoo SH. Circadian regulation of cardiac muscle function and protein degradation. Chronobiol Int 2023; 40:4-12. [PMID: 34521283 PMCID: PMC8918439 DOI: 10.1080/07420528.2021.1957911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
The circadian clock plays a fundamental role in physiology. In particular, the heart is a target organ where the clock orchestrates various aspects of cardiac function. At the molecular level, the clock machinery governs daily rhythms of gene expression. Such circadian regulation is in tune with the dynamic nature of heart structure and function, and provides the foundation for chronotherapeutic applications in cardiovascular diseases. In comparison, a regulatory role of the clock in cardiac protein degradation is poorly documented. Sarcomere is the structural and functional unit responsible for cardiac muscle contraction, and sarcomere components are closely regulated by protein folding and proteolysis. Emerging evidence supports a role of the circadian clock in governing sarcomere integrity and function. Particularly, recent studies uncovered a circadian regulation of a core sarcomere component TCAP. It is possible that circadian regulation of the cardiac muscle protein turnover is a key regulatory mechanism underlying cardiac remodeling in response to physiological and environmental stimuli. While the detailed regulatory mechanisms and the molecular links to cardiac (patho)physiology remain to be further studied, therapeutic strategies targeting circadian control in the heart may markedly enhance intervention outcomes against cardiovascular disease.
Collapse
Affiliation(s)
- Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
7
|
RCAN1 deficiency aggravates sepsis-induced cardiac remodeling and dysfunction by accelerating mitochondrial pathological fission. Inflamm Res 2022; 71:1589-1602. [DOI: 10.1007/s00011-022-01628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022] Open
|
8
|
Regulator of calcineurin 1 deletion attenuates mitochondrial dysfunction and apoptosis in acute kidney injury through JNK/Mff signaling pathway. Cell Death Dis 2022; 13:774. [PMID: 36071051 PMCID: PMC9452577 DOI: 10.1038/s41419-022-05220-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023]
Abstract
Ischemia-reperfusion (I/R) induced acute kidney injury (AKI), characterized by excessive mitochondrial damage and cell apoptosis, remains a clinical challenge. Recent studies suggest that regulator of calcineurin 1 (RCAN1) regulates mitochondrial function in different cell types, but the underlying mechanisms require further investigation. Herein, we aim to explore whether RCAN1 involves in mitochondrial dysfunction in AKI and the exact mechanism. In present study, AKI was induced by I/R and cisplatin in RCAN1flox/flox mice and mice with renal tubular epithelial cells (TECs)-specific deletion of RCAN1. The role of RCAN1 in hypoxia-reoxygenation (HR) and cisplatin-induced injury in human renal proximal tubule epithelial cell line HK-2 was also examined by overexpression and knockdown of RCAN1. Mitochondrial function was assessed by transmission electron microscopy, JC-1 staining, MitoSOX staining, ATP production, mitochondrial fission and mitophagy. Apoptosis was detected by TUNEL assay, Annexin V-FITC staining and Western blotting analysis of apoptosis-related proteins. It was found that protein expression of RCAN1 was markedly upregulated in I/R- or cisplatin-induced AKI mouse models, as well as in HR models in HK-2 cells. RCAN1 deficiency significantly reduced kidney damage, mitochondrial dysfunction, and cell apoptosis, whereas RCAN1 overexpression led to the opposite phenotypes. Our in-depth mechanistic exploration demonstrated that RCAN1 increases the phosphorylation of mitochondrial fission factor (Mff) by binding to downstream c-Jun N-terminal kinase (JNK), then promotes dynamin related protein 1 (Drp1) migration to mitochondria, ultimately leads to excessive mitochondrial fission of renal TECs. In conclusion, our study suggests that RCAN1 could induce mitochondrial dysfunction and apoptosis by activating the downstream JNK/Mff signaling pathway. RCAN1 may be a potential therapeutic target for conferring protection against I/R- or cisplatin-AKI.
Collapse
|
9
|
Lerchenmüller C, Vujic A, Mittag S, Wang A, Rabolli CP, Heß C, Betge F, Rangrez AY, Chaklader M, Guillermier C, Gyngard F, Roh JD, Li H, Steinhauser ML, Frey N, Rothermel B, Dieterich C, Rosenzweig A, Lee RT. Restoration of Cardiomyogenesis in Aged Mouse Hearts by Voluntary Exercise. Circulation 2022; 146:412-426. [PMID: 35862076 PMCID: PMC9357140 DOI: 10.1161/circulationaha.121.057276] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The human heart has limited capacity to generate new cardiomyocytes and this capacity declines with age. Because loss of cardiomyocytes may contribute to heart failure, it is crucial to explore stimuli of endogenous cardiac regeneration to favorably shift the balance between loss of cardiomyocytes and the birth of new cardiomyocytes in the aged heart. We have previously shown that cardiomyogenesis can be activated by exercise in the young adult mouse heart. Whether exercise also induces cardiomyogenesis in aged hearts, however, is still unknown. Here, we aim to investigate the effect of exercise on the generation of new cardiomyocytes in the aged heart. METHODS Aged (20-month-old) mice were subjected to an 8-week voluntary running protocol, and age-matched sedentary animals served as controls. Cardiomyogenesis in aged hearts was assessed on the basis of 15N-thymidine incorporation and multi-isotope imaging mass spectrometry. We analyzed 1793 cardiomyocytes from 5 aged sedentary mice and compared these with 2002 cardiomyocytes from 5 aged exercised mice, followed by advanced histology and imaging to account for ploidy and nucleation status of the cell. RNA sequencing and subsequent bioinformatic analyses were performed to investigate transcriptional changes induced by exercise specifically in aged hearts in comparison with young hearts. RESULTS Cardiomyogenesis was observed at a significantly higher frequency in exercised compared with sedentary aged hearts on the basis of the detection of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes. No mononucleated/diploid 15N-thymidine-labeled cardiomyocyte was detected in sedentary aged mice. The annual rate of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes in aged exercised mice was 2.3% per year. This compares with our previously reported annual rate of 7.5% in young exercised mice and 1.63% in young sedentary mice. Transcriptional profiling of young and aged exercised murine hearts and their sedentary controls revealed that exercise induces pathways related to circadian rhythm, irrespective of age. One known oscillating transcript, however, that was exclusively upregulated in aged exercised hearts, was isoform 1.4 of regulator of calcineurin, whose regulation and functional role were explored further. CONCLUSIONS Our data demonstrate that voluntary running in part restores cardiomyogenesis in aged mice and suggest that pathways associated with circadian rhythm may play a role in physiologically stimulated cardiomyogenesis.
Collapse
Affiliation(s)
- Carolin Lerchenmüller
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Sonja Mittag
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Annie Wang
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Charles P. Rabolli
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Chiara Heß
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Fynn Betge
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ashraf Y. Rangrez
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Malay Chaklader
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christelle Guillermier
- Harvard Medical School, Boston, MA 02115, USA
- Center for NanoImaging and Division of Genetics, Brigham and Women’s Hospital, Cambridge, MA 02115, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Frank Gyngard
- Harvard Medical School, Boston, MA 02115, USA
- Center for NanoImaging and Division of Genetics, Brigham and Women’s Hospital, Cambridge, MA 02115, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jason D. Roh
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Haobo Li
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Matthew L. Steinhauser
- Harvard Medical School, Boston, MA 02115, USA
- Center for NanoImaging and Division of Genetics, Brigham and Women’s Hospital, Cambridge, MA 02115, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Beverly Rothermel
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christoph Dieterich
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Anthony Rosenzweig
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
10
|
Bioinformatics and Experimental Analyses Reveal NFIC as an Upstream Transcriptional Regulator for Ischemic Cardiomyopathy. Genes (Basel) 2022; 13:genes13061051. [PMID: 35741813 PMCID: PMC9222441 DOI: 10.3390/genes13061051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) caused by coronary artery disease always leads to myocardial infarction and heart failure. Identification of novel transcriptional regulators in ICM is an effective method to establish new diagnostic and therapeutic strategies. In this study, we used two RNA-seq datasets and one microarray dataset from different studies, including 25 ICM and 21 non-failing control (NF) samples of human left ventricle tissues for further analysis. In total, 208 differentially expressed genes (DEGs) were found by combining two RNA-seq datasets with batch effects removed. GO and KEGG analyses of DEGs indicated that the response to wounding, positive regulation of smooth muscle contraction, chromatin, PI3K-Akt signaling pathway, and transporters pathways are involved in ICM. Simple Enrichment Analysis found that NFIC-binding motifs are enriched in promoter regions of downregulated genes. The Gene Importance Calculator further proved that NFIC is vital. NFIC and its downstream genes were verified in the validating microarray dataset. Meanwhile, in rat cardiomyocyte cell line H9C2 cells, two genes (Tspan1 and Hopx) were confirmed, which decreased significantly along with knocking down Nfic expression. In conclusion, NFIC participates in the ICM process by regulating TSPAN1 and HOPX. NFIC and its downstream genes may be marker genes and potential diagnostic and therapeutic targets for ICM.
Collapse
|
11
|
Wong H, Buck JM, Borski C, Pafford JT, Keller BN, Milstead RA, Hanson JL, Stitzel JA, Hoeffer CA. RCAN1 knockout and overexpression recapitulate an ensemble of rest-activity and circadian disruptions characteristic of Down syndrome, Alzheimer's disease, and normative aging. J Neurodev Disord 2022; 14:33. [PMID: 35610565 PMCID: PMC9128232 DOI: 10.1186/s11689-022-09444-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regulator of calcineurin 1 (RCAN1) is overexpressed in Down syndrome (DS), but RCAN1 levels are also increased in Alzheimer's disease (AD) and normal aging. AD is highly comorbid among individuals with DS and is characterized in part by progressive neurodegeneration that resembles accelerated aging. Importantly, abnormal RCAN1 levels have been demonstrated to promote memory deficits and pathophysiology that appear symptomatic of DS, AD, and aging. Anomalous diurnal rest-activity patterns and circadian rhythm disruptions are also common in DS, AD, and aging and have been implicated in facilitating age-related cognitive decline and AD progression. However, no prior studies have assessed whether RCAN1 dysregulation may also promote the age-associated alteration of rest-activity profiles and circadian rhythms, which could in turn contribute to neurodegeneration in DS, AD, and aging. METHODS The present study examined the impacts of RCAN1 deficiency and overexpression on the photic entrainment, circadian periodicity, intensity and distribution, diurnal patterning, and circadian rhythmicity of wheel running in young (3-6 months old) and aged (9-14 months old) mice of both sexes. RESULTS We found that daily RCAN1 levels in the hippocampus and suprachiasmatic nucleus (SCN) of light-entrained young mice are generally constant and that balanced RCAN1 expression is necessary for normal circadian locomotor activity rhythms. While the light-entrained diurnal period was unaltered, RCAN1-null and RCAN1-overexpressing mice displayed lengthened endogenous (free-running) circadian periods like mouse models of AD and aging. In light-entrained young mice, RCAN1 deficiency and overexpression also recapitulated the general hypoactivity, diurnal rest-wake pattern fragmentation, and attenuated amplitudes of circadian activity rhythms reported in DS, preclinical and clinical AD, healthily aging individuals, and rodent models thereof. Under constant darkness, RCAN1-null and RCAN1-overexpressing mice displayed altered locomotor behavior indicating circadian clock dysfunction. Using the Dp(16)1Yey/+ (Dp16) mouse model for DS, which expresses three copies of Rcan1, we found reduced wheel running activity and rhythmicity in both light-entrained and free-running young Dp16 mice like young RCAN1-overexpressing mice. Critically, these diurnal and circadian deficits were rescued in part or entirely by restoring Rcan1 to two copies in Dp16 mice. We also found that RCAN1 deficiency but not RCAN1 overexpression altered protein levels of the clock gene Bmal1 in the SCN. CONCLUSIONS Collectively, this study's findings suggest that both loss and aberrant gain of RCAN1 precipitate anomalous light-entrained diurnal and circadian activity patterns emblematic of DS, AD, and possibly aging.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Curtis Borski
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jessica T Pafford
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Bailey N Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
| | - Ryan A Milstead
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jessica L Hanson
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA.
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA.
- Linda Crnic Institute, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
13
|
PER2 Regulates Reactive Oxygen Species Production in the Circadian Susceptibility to Ischemia/Reperfusion Injury in the Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6256399. [PMID: 34659637 PMCID: PMC8519710 DOI: 10.1155/2021/6256399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
The main objective of this study was to investigate the diurnal differences in Period 2 (PER2) expression in myocardial ischemia-reperfusion (I/R) injury. We investigated diurnal variations in oxidative stress and energy metabolism after myocardial I/R in vitro and in vivo. In addition, we also analyzed the effects of H2O2 treatment and serum shock in H9c2 cells transfected with silencing RNA against Per2 (siRNA-Per2) in vitro. We used C57BL/6 male mice to construct a model of I/R injury at zeitgeber time (ZT) 2 and ZT14 by synchronizing the circadian rhythms. Our in vivo analysis demonstrated that there were diurnal differences in the severity of injury caused by myocardial infarctions, with more injury occurring in the daytime. PER2 was significantly reduced in heart tissue in the daytime and was higher at night. Our results also showed that more severe injury of mitochondrial function in daytime produced more reactive oxygen species (ROS) and less ATP, which increased myocardial injury. In vitro, our findings presented a similar trend showing that apoptosis of H9c2 cells was increased when PER2 expression was lower. Meanwhile, downregulation of PER2 disrupted the oxidative balance by increasing ROS and mitochondrial injury. The result was a reduction in ATP and failure to provide sufficient energy protection for cardiomyocytes.
Collapse
|
14
|
Cavieres-Lepe J, Ewer J. Reciprocal Relationship Between Calcium Signaling and Circadian Clocks: Implications for Calcium Homeostasis, Clock Function, and Therapeutics. Front Mol Neurosci 2021; 14:666673. [PMID: 34045944 PMCID: PMC8144308 DOI: 10.3389/fnmol.2021.666673] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/09/2021] [Indexed: 12/03/2022] Open
Abstract
In animals, circadian clocks impose a daily rhythmicity to many behaviors and physiological processes. At the molecular level, circadian rhythms are driven by intracellular transcriptional/translational feedback loops (TTFL). Interestingly, emerging evidence indicates that they can also be modulated by multiple signaling pathways. Among these, Ca2+ signaling plays a key role in regulating the molecular rhythms of clock genes and of the resulting circadian behavior. In addition, the application of in vivo imaging approaches has revealed that Ca2+ is fundamental to the synchronization of the neuronal networks that make up circadian pacemakers. Conversely, the activity of circadian clocks may influence Ca2+ signaling. For instance, several genes that encode Ca2+ channels and Ca2+-binding proteins display a rhythmic expression, and a disruption of this cycling affects circadian function, underscoring their reciprocal relationship. Here, we review recent advances in our understanding of how Ca2+ signaling both modulates and is modulated by circadian clocks, focusing on the regulatory mechanisms described in Drosophila and mice. In particular, we examine findings related to the oscillations in intracellular Ca2+ levels in circadian pacemakers and how they are regulated by canonical clock genes, neuropeptides, and light stimuli. In addition, we discuss how Ca2+ rhythms and their associated signaling pathways modulate clock gene expression at the transcriptional and post-translational levels. We also review evidence based on transcriptomic analyzes that suggests that mammalian Ca2+ channels and transporters (e.g., ryanodine receptor, ip3r, serca, L- and T-type Ca2+ channels) as well as Ca2+-binding proteins (e.g., camk, cask, and calcineurin) show rhythmic expression in the central brain clock and in peripheral tissues such as the heart and skeletal muscles. Finally, we discuss how the discovery that Ca2+ signaling is regulated by the circadian clock could influence the efficacy of pharmacotherapy and the outcomes of clinical interventions.
Collapse
Affiliation(s)
- Javier Cavieres-Lepe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
15
|
Chavva H, Brazeau DA, Denvir J, Primerano DA, Fan J, Seeley SL, Rorabaugh BR. Methamphetamine-induced changes in myocardial gene transcription are sex-dependent. BMC Genomics 2021; 22:259. [PMID: 33845768 PMCID: PMC8042975 DOI: 10.1186/s12864-021-07561-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Prior work demonstrated that female rats (but not their male littermates) exposed to methamphetamine become hypersensitive to myocardial ischemic injury. Importantly, this sex-dependent effect persists following 30 days of subsequent abstinence from the drug, suggesting that it may be mediated by long term changes in gene expression that are not rapidly reversed following discontinuation of methamphetamine use. The goal of the present study was to determine whether methamphetamine induces sex-dependent changes in myocardial gene expression and whether these changes persist following subsequent abstinence from methamphetamine. RESULTS Methamphetamine induced changes in the myocardial transcriptome were significantly greater in female hearts than male hearts both in terms of the number of genes affected and the magnitude of the changes. The largest changes in female hearts involved genes that regulate the circadian clock (Dbp, Per3, Per2, BMal1, and Npas2) which are known to impact myocardial ischemic injury. These genes were unaffected by methamphetamine in male hearts. All changes in gene expression identified at day 11 returned to baseline by day 30. CONCLUSIONS These data demonstrate that female rats are more sensitive than males to methamphetamine-induced changes in the myocardial transcriptome and that methamphetamine does not induce changes in myocardial transcription that persist long term after exposure to the drug has been discontinued.
Collapse
Affiliation(s)
- Hasitha Chavva
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Daniel A Brazeau
- Department of Pharmacy Practice, Administration, and Research, Marshall University School of Pharmacy, 1 John Marshall Drive, Huntington, WV, 25755, USA
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - James Denvir
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Donald A Primerano
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Jun Fan
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Sarah L Seeley
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University College of Pharmacy, 525 South Main Street, Ada, OH, 45810, USA
| | - Boyd R Rorabaugh
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, 1 John Marshall Drive, Huntington, WV, 25755, USA.
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
16
|
Michaud M, Béland V, Noiseux N, Forcillo J, Stevens LM. Daytime Variation of Clinical Outcome in Cardiac Surgery: A Propensity-Matched Cohort Study. J Cardiothorac Vasc Anesth 2021; 35:3167-3175. [PMID: 33985883 DOI: 10.1053/j.jvca.2021.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The purpose of the present study was to investigate the hypothesis of a nychthemeral variation in the tolerance to ischemia and reperfusion injury in adult cardiac surgeries. DESIGN Retrospective cohort study. SETTING A single academic center. PARTICIPANTS All patients undergoing nonemergent aortic valve replacement (AVR) ± coronary artery bypass graft between January 2012 and May 2018 were included. They were divided into two groups (morning and afternoon) according to the time of the day at the beginning of surgery. Propensity score matching estimated by multivariate logistic regression with a 1:1 matching ratio was performed to ensure that the two groups were comparable. This allowed obtaining 269 pairs, for a total of 538 patients. INTERVENTION The objective of the study was to assess whether there were differences in perioperative and postoperative outcomes between the morning and the afternoon groups. RESULTS There was no between-group difference in the primary composite endpoints, namely the occurrence of death, myocardial infarction, low cardiac output, and stroke during the 30 days following the surgery. Regarding cardiac biomarkers, there were no between-group differences for both postoperative evolution of troponin T plasma levels and the maximum postoperative troponin T plasma level. CONCLUSION These results did not support the hypothesis that the timing of the surgery could influence the tolerance to ischemia and reperfusion injury, at least in patients undergoing nonemergent AVR or a combined AVR with coronary artery bypass graft.
Collapse
Affiliation(s)
- Martin Michaud
- Department of Anesthesiology, CHUM, Université de Montréal, Montreal, Canada; Faculty of medicine, University of Montreal, Canada.
| | | | - Nicolas Noiseux
- Faculty of medicine, University of Montreal, Canada; Department of Cardiac Surgery, CHUM, Université de Montréal, Montréal, Canada
| | - Jessica Forcillo
- Faculty of medicine, University of Montreal, Canada; Department of Cardiac Surgery, CHUM, Université de Montréal, Montréal, Canada
| | - Louis-Mathieu Stevens
- Faculty of medicine, University of Montreal, Canada; Department of Cardiac Surgery, CHUM, Université de Montréal, Montréal, Canada
| |
Collapse
|
17
|
Novel Identified Circular Transcript of RCAN2, circ-RCAN2, Shows Deviated Expression Pattern in Pig Reperfused Infarcted Myocardium and Hypoxic Porcine Cardiac Progenitor Cells In Vitro. Int J Mol Sci 2021; 22:ijms22031390. [PMID: 33573240 PMCID: PMC7866528 DOI: 10.3390/ijms22031390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are crucial in gene regulatory networks and disease development, yet circRNA expression in myocardial infarction (MI) is poorly understood. Here, we harvested myocardium samples from domestic pigs 3 days after closed-chest reperfused MI or sham surgery. Cardiac circRNAs were identified by RNA-sequencing of rRNA-depleted RNA from infarcted and healthy myocardium tissue samples. Bioinformatics analysis was performed using the CIRIfull and KNIFE algorithms, and circRNAs identified with both algorithms were subjected to differential expression (DE) analysis and validation by qPCR. Circ-RCAN2 and circ-C12orf29 expressions were significantly downregulated in infarcted tissue compared to healthy pig heart. Sanger sequencing was performed to identify the backsplice junctions of circular transcripts. Finally, we compared the expressions of circ-C12orf29 and circ-RCAN2 between porcine cardiac progenitor cells (pCPCs) that were incubated in a hypoxia chamber for different time periods versus normoxic pCPCs. Circ-C12orf29 did not show significant DE in vitro, whereas circ-RCAN2 exhibited significant ischemia-time-dependent upregulation in hypoxic pCPCs. Overall, our results revealed novel cardiac circRNAs with DE patterns in pCPCs, and in infarcted and healthy myocardium. Circ-RCAN2 exhibited differential regulation by myocardial infarction in vivo and by hypoxia in vitro. These results will improve our understanding of circRNA regulation during acute MI.
Collapse
|
18
|
Sun Q, Zeng C, Du L, Dong C. Mechanism of circadian regulation of the NRF2/ARE pathway in renal ischemia-reperfusion. Exp Ther Med 2021; 21:190. [PMID: 33488799 PMCID: PMC7812573 DOI: 10.3892/etm.2021.9622] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The nuclear erythroid 2-related factor 2 (NRF2)/antioxidant response element (ARE) pathway has been shown to provide strong protection against oxidative stress injury induced by renal ischemia-reperfusion (IR). However, the endogenous regulatory mechanism of the NRF2/ARE pathway in renal IR injury is incompletely understood. A rat model of renal IR was established by occlusion of the bilateral renal pedicle for 45 min, followed by reperfusion for 24 h. Renal injury was assessed by light microscopy and levels of serum creatinine, blood urea nitrogen and neutrophil gelatinase-associated lipocalin was measured using enzyme-linked immunosorbent assay. Renal oxidative stress was also evaluated by measuring superoxide dismutase and malondialdehyde in renal tissues. Protein expression levels of brain and muscle ARNT-like 1 (BMAL1), nuclear factor erythroid 2-related factor 2 (NRF2), NAD(P)H dehydrogenase [quinone] 1 (NQO1), glutamate-cysteine ligase modifier (GCLM) and heme oxygenase 1 (HO1) in the kidney were determined by western blotting and immunohistochemistry. Reverse transcription-quantitative PCR was used to evaluate rhythmic transcription of the core clock genes (CLOCK and BMAL1) and the NRF2 gene. The nature of the binding of BMAL1 to the promoter regions in the NRF2 gene was assessed by chromatin immunoprecipitation assays in rat kidneys. BMAL1 was found to bind to the promoter of the NRF2 gene through an E-BOX element associated with strongly rhythmic activation of NRF2 in both the normal kidney and those exposed to IR. The ARE-regulated anti-oxidative stress protein was affected by the circadian rhythm of the NRF2 gene. As the NRF2 level was at a circadian nadir, the expression of the proteins NQO1, GCLM and HO1 was weakened, resulting in more serious renal oxidative stress injury and pathological and functional impairment induced by IR. It can be concluded that the circadian rhythm of the NRF2/ARE pathway controlled by the circadian clock is essential for regulating antioxidant stress in renal IR injury, which might prompt new therapeutic strategies associated with the diurnal variability of human kidney disease, including renal transplantation.
Collapse
Affiliation(s)
- Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Du
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chong Dong
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin 300192, P.R. China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin 300192, P.R. China
| |
Collapse
|
19
|
Wang S, Wang Y, Qiu K, Zhu J, Wu Y. RCAN1 in cardiovascular diseases: molecular mechanisms and a potential therapeutic target. Mol Med 2020; 26:118. [PMID: 33267791 PMCID: PMC7709393 DOI: 10.1186/s10020-020-00249-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Considerable efforts are needed to elucidate the underlying mechanisms for the prevention and treatment of CVDs. Regulator of calcineurin 1 (RCAN1) is involved in both development/maintenance of the cardiovascular system and the pathogenesis of CVDs. RCAN1 reduction protects against atherosclerosis by reducing the uptake of oxidized low-density lipoproteins, whereas RCAN1 has a protective effect on myocardial ischemia/reperfusion injury, myocardial hypertrophy and intramural hematoma/aortic rupture mainly mediated by maintaining mitochondrial function and inhibiting calcineurin and Rho kinase activity, respectively. In this review, the regulation and the function of RCAN1 are summarized. Moreover, the dysregulation of RCAN1 in CVDs is reviewed. In addition, the beneficial role of RCAN1 reduction in atherosclerosis and the protective role of RCAN1 in myocardial ischemia/reperfusion injury, myocardial hypertrophy and intramural hematoma /aortic rupture are discussed, as well as underlying mechanisms. Furthermore, the therapeutic potential and challenges of targeting RCAN1 for CVDs treatment are also discussed.
Collapse
Affiliation(s)
- Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China
| | - Yuqing Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Cheeloo College of Medicine, Shandong University, Wenhua West Road No. 44, Lixia District, JinanShandong, 250012, China
| | - Kaixin Qiu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Cheeloo College of Medicine, Shandong University, Wenhua West Road No. 44, Lixia District, JinanShandong, 250012, China
| | - Jin Zhu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China. .,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.
| |
Collapse
|
20
|
Shuo W, Li H, Muneko N, Yoshikazu N, Kato N, Kasamaki Y, Ueda T, Kanda T. Combination effects of a fatty diet and exercise on the depressive state and cardioprotection in apolipoprotein E knockout mice with a change in RCAN1 expression. J Int Med Res 2020; 48:300060520964016. [PMID: 33251902 PMCID: PMC7708711 DOI: 10.1177/0300060520964016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Regulator of calcineurin 1 (RCAN1) controls plasticity of the nervous system and depressive conditions by regulating brain-derived neurotropic factor (BDNF) and plays a crucial role in neural and cardiac pathways. The apolipoprotein E gene (ApoE) is a robust risk factor for progression of Alzheimer's disease. A fatty diet is considered detrimental for metabolic disorders, such as obesity and cardiovascular diseases. METHODS We examined the neuronal and cardiac protective roles of RCAN1 in ApoE-/- mice that were fed a high- or low-fat diet with and without voluntary movement for 3 months. Organ weights, laboratory data, histology, RNA expression, and behavior were examined. RESULTS A high-fat diet with exercise improved depressive function, as examined by the forced swimming test, and RCAN1 mRNA expression was induced in the hippocampus. A low-fat diet with exercise resulted in a reduced body weight, higher heart weight/body weight ratio, and lower circulating triglyceride levels compared with a low-fat diet without exercise. RCAN1 mRNA expression was increased in cardiomyocytes in ApoE-/- mice. CONCLUSIONS The combination of a high-fat diet and exercise might reduce depressive function, whereas a low-fat diet with exercise leads to cardioprotection. Induction of RCAN1 expression might affect neuroplasticity and cardiac function.
Collapse
Affiliation(s)
- Wang Shuo
- Department of Community Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- Department of Geriatrics, China-Japan Friendship Hospital, He Ping Li, Chaoyang District, Beijing, China
| | - Haicong Li
- Department of Geriatrics, China-Japan Friendship Hospital, He Ping Li, Chaoyang District, Beijing, China
| | - Nishijo Muneko
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Nishino Yoshikazu
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Nobuo Kato
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
| | - Yuji Kasamaki
- Department of Community Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Tadashi Ueda
- Department of Community Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Tsugiyasu Kanda
- Department of Community Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
21
|
Lee SK, Ahnn J. Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region. Mol Cells 2020; 43:671-685. [PMID: 32576715 PMCID: PMC7468584 DOI: 10.14348/molcells.2020.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Joohong Ahnn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
22
|
Abstract
Essentially all biological processes fluctuate over the course of the day, observed at cellular (eg, transcription, translation, and signaling), organ (eg, contractility and metabolism), and whole-body (eg, physical activity and appetite) levels. It is, therefore, not surprising that both cardiovascular physiology (eg, heart rate and blood pressure) and pathophysiology (eg, onset of adverse cardiovascular events) oscillate during the 24-hour day. Chronobiological influence over biological processes involves a complex interaction of factors that are extrinsic (eg, neurohumoral factors) and intrinsic (eg, circadian clocks) to cells. Here, we focus on circadian governance of 6 fundamentally important processes: metabolism, signaling, electrophysiology, extracellular matrix, clotting, and inflammation. In each case, we discuss (1) the physiological significance for circadian regulation of these processes (ie, the good); (2) the pathological consequence of circadian governance impairment (ie, the bad); and (3) whether persistence/augmentation of circadian influences contribute to pathogenesis during distinct disease states (ie, the ugly). Finally, the translational impact of chronobiology on cardiovascular disease is highlighted.
Collapse
Affiliation(s)
- Samir Rana
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| | - Sumanth D Prabhu
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| | - Martin E Young
- From the Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham
| |
Collapse
|
23
|
Wu H, Zhu H, Zhuang Y, Zhang J, Ding X, Zhan L, Luo S, Zhang Q, Sun F, Zhang M, Pan Z, Lu Y. LncRNA ACART protects cardiomyocytes from apoptosis by activating PPAR-γ/Bcl-2 pathway. J Cell Mol Med 2019; 24:737-746. [PMID: 31749326 PMCID: PMC6933347 DOI: 10.1111/jcmm.14781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022] Open
Abstract
Cardiomyocyte apoptosis is an important process occurred during cardiac ischaemia‐reperfusion injury. Long non‐coding RNAs (lncRNA) participate in the regulation of various cardiac diseases including ischaemic reperfusion (I/R) injury. In this study, we explored the potential role of lncRNA ACART (anti‐cardiomyocyte apoptosis‐related transcript) in cardiomyocyte injury and the underlying mechanism for the first time. We found that ACART was significantly down‐regulated in cardiac tissue of mice subjected to I/R injury or cultured cardiomyocytes treated with hydrogen peroxide (H2O2). Knockdown of ACART led to significant cardiomyocyte injury as indicated by reduced cell viability and increased apoptosis. In contrast, overexpression of ACART enhanced cell viability and reduced apoptosis of cardiomyocytes treated with H2O2. Meanwhile, ACART increased the expression of the B cell lymphoma 2 (Bcl‐2) and suppressed the expression of Bcl‐2‐associated X (Bax) and cytochrome‐C (Cyt‐C). In addition, PPAR‐γ was up‐regulated by ACART and inhibition of PPAR‐γ abolished the regulatory effects of ACART on cell apoptosis and the expression of Bcl‐2, Bax and Cyt‐C under H2O2 treatment. However, the activation of PPAR‐γ reversed the effects of ACART inhibition. The results demonstrate that ACART protects cardiomyocyte injury through modulating the expression of Bcl‐2, Bax and Cyt‐C, which is mediated by PPAR‐γ activation. These findings provide a new understanding of the role of lncRNA ACART in regulation of cardiac I/R injury.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haixia Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuting Zhuang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jifan Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Ding
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linfeng Zhan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shenjian Luo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fei Sun
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingyu Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanjie Lu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Lock MC, Darby JRT, Soo JY, Brooks DA, Perumal SR, Selvanayagam JB, Seed M, Macgowan CK, Porrello ER, Tellam RL, Morrison JL. Differential Response to Injury in Fetal and Adolescent Sheep Hearts in the Immediate Post-myocardial Infarction Period. Front Physiol 2019; 10:208. [PMID: 30890961 PMCID: PMC6412108 DOI: 10.3389/fphys.2019.00208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aim: Characterizing the response to myocardial infarction (MI) in the regenerative sheep fetus heart compared to the post-natal non-regenerative adolescent heart may reveal key morphological and molecular differences that equate to the response to MI in humans. We hypothesized that the immediate response to injury in (a) infarct compared with sham, and (b) infarct, border, and remote tissue, in the fetal sheep heart would be fundamentally different to the adolescent, allowing for repair after damage. Methods: We used a sheep model of MI induced by ligating the left anterior descending coronary artery. Surgery was performed on fetuses (105 days) and adolescent sheep (6 months). Sheep were randomly separated into MI (n = 5) or Sham (n = 5) surgery groups at both ages. We used magnetic resonance imaging (MRI), histological/immunohistochemical staining, and qRT-PCR to assess the morphological and molecular differences between the different age groups in response to infarction. Results: Magnetic resonance imaging showed no difference in fetuses for key functional parameters; however there was a significant decrease in left ventricular ejection fraction and cardiac output in the adolescent sheep heart at 3 days post-infarction. There was no significant difference in functional parameters between MRI sessions at Day 0 and Day 3 after surgery. Expression of genes involved in glucose transport and fatty acid metabolism, inflammatory cytokines as well as growth factors and cell cycle regulators remained largely unchanged in the infarcted compared to sham ventricular tissue in the fetus, but were significantly dysregulated in the adolescent sheep. Different cardiac tissue region-specific gene expression profiles were observed between the fetal and adolescent sheep. Conclusion: Fetuses demonstrated a resistance to cardiac damage not observed in the adolescent animals. The manipulation of specific gene expression profiles to a fetal-like state may provide a therapeutic strategy to treat patients following an infarction.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Joseph B Selvanayagam
- Cardiac Imaging Research Group, Department of Heart Health, South Australian Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Mike Seed
- The Hospital for Sick Children, Division of Cardiology, Toronto, ON, Canada
| | | | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
25
|
Rotter D, Peiris H, Grinsfelder DB, Martin AM, Burchfield J, Parra V, Hull C, Morales CR, Jessup CF, Matusica D, Parks BW, Lusis AJ, Nguyen NUN, Oh M, Iyoke I, Jakkampudi T, McMillan DR, Sadek HA, Watt MJ, Gupta RK, Pritchard MA, Keating DJ, Rothermel BA. Regulator of Calcineurin 1 helps coordinate whole-body metabolism and thermogenesis. EMBO Rep 2018; 19:embr.201744706. [PMID: 30389725 DOI: 10.15252/embr.201744706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.
Collapse
Affiliation(s)
- David Rotter
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heshan Peiris
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D Bennett Grinsfelder
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyce M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jana Burchfield
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valentina Parra
- Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS) and Center for Exercise Metabolism and Cancer (CEMC), University of Chile, Santiago, Chile
| | - Christi Hull
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cyndi R Morales
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ngoc Uyen Nhi Nguyen
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misook Oh
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Chemistry, Pohang University of Science and Technology, Pohang, South Korea
| | - Israel Iyoke
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tanvi Jakkampudi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Randy McMillan
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Medical Centre, Dallas, TX, USA
| | - Hesham A Sadek
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew J Watt
- The Department of Physiology and Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Monash University, Clayton, Vic., Australia
| | - Rana K Gupta
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie A Pritchard
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Vic., Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia .,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Beverly A Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA .,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
26
|
Affiliation(s)
- J Jose Corbalan
- From the Division of Cardiology, Department of Medicine (J.J.C., R.N.K.), Department of Cell Biology (R.N.K.), Wilf Family Cardiovascular Research Institute (J.J.C., R.N.K.), Albert Einstein Cancer Center (R.N.K.), and Einstein-Mount Sinai Diabetes Research Center (R.N.K.), Albert Einstein College of Medicine, Bronx, NY
| | - Richard N Kitsis
- From the Division of Cardiology, Department of Medicine (J.J.C., R.N.K.), Department of Cell Biology (R.N.K.), Wilf Family Cardiovascular Research Institute (J.J.C., R.N.K.), Albert Einstein Cancer Center (R.N.K.), and Einstein-Mount Sinai Diabetes Research Center (R.N.K.), Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
27
|
Hsieh PN, Zhang L, Jain MK. Coordination of cardiac rhythmic output and circadian metabolic regulation in the heart. Cell Mol Life Sci 2018; 75:403-416. [PMID: 28825119 PMCID: PMC5765194 DOI: 10.1007/s00018-017-2606-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Over the course of a 24-h day, demand on the heart rises and falls with the sleep/wake cycles of the organism. Cardiac metabolism oscillates appropriately, with the relative contributions of major energy sources changing in a circadian fashion. The cardiac peripheral clock is hypothesized to drive many of these changes, yet the precise mechanisms linking the cardiac clock to metabolism remain a source of intense investigation. Here we summarize the current understanding of circadian alterations in cardiac metabolism and physiology, with an emphasis on novel findings from unbiased transcriptomic studies. Additionally, we describe progress in elucidating the links between the cardiac peripheral clock outputs and cardiac metabolism, as well as their implications for cardiac physiology.
Collapse
Affiliation(s)
- Paishiun Nelson Hsieh
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Room 4-503, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mukesh Kumar Jain
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Room 4-503, Cleveland, OH, USA.
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH, USA.
| |
Collapse
|
28
|
Parra V, Altamirano F, Hernández-Fuentes CP, Tong D, Kyrychenko V, Rotter D, Pedrozo Z, Hill JA, Eisner V, Lavandero S, Schneider JW, Rothermel BA. Down Syndrome Critical Region 1 Gene, Rcan1, Helps Maintain a More Fused Mitochondrial Network. Circ Res 2018; 122:e20-e33. [PMID: 29362227 DOI: 10.1161/circresaha.117.311522] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 01/05/2023]
Abstract
RATIONALE The regulator of calcineurin 1 (RCAN1) inhibits CN (calcineurin), a Ca2+-activated protein phosphatase important in cardiac remodeling. In humans, RCAN1 is located on chromosome 21 in proximity to the Down syndrome critical region. The hearts and brains of Rcan1 KO mice are more susceptible to damage from ischemia/reperfusion (I/R); however, the underlying cause is not known. OBJECTIVE Mitochondria are key mediators of I/R damage. The goal of these studies was to determine the impact of RCAN1 on mitochondrial dynamics and function. METHODS AND RESULTS Using both neonatal and isolated adult cardiomyocytes, we show that, when RCAN1 is depleted, the mitochondrial network is more fragmented because of increased CN-dependent activation of the fission protein, DRP1 (dynamin-1-like). Mitochondria in RCAN1-depleted cardiomyocytes have reduced membrane potential, O2 consumption, and generation of reactive oxygen species, as well as a reduced capacity for mitochondrial Ca2+ uptake. RCAN1-depleted cardiomyocytes were more sensitive to I/R; however, pharmacological inhibition of CN, DRP1, or CAPN (calpains; Ca2+-activated proteases) restored protection, suggesting that in the absence of RCAN1, CAPN-mediated damage after I/R is greater because of a decrease in the capacity of mitochondria to buffer cytoplasmic Ca2+. Increasing RCAN1 levels by adenoviral infection was sufficient to enhance fusion and confer protection from I/R. To examine the impact of more modest, and biologically relevant, increases in RCAN1, we compared the mitochondrial network in induced pluripotent stem cells derived from individuals with Down syndrome to that of isogenic, disomic controls. Mitochondria were more fused, and O2 consumption was greater in the trisomic induced pluripotent stem cells; however, coupling efficiency and metabolic flexibility were compromised compared with disomic induced pluripotent stem cells. Depletion of RCAN1 from trisomic induced pluripotent stem cells was sufficient to normalize mitochondrial dynamics and function. CONCLUSIONS RCAN1 helps maintain a more interconnected mitochondrial network, and maintaining appropriate RCAN1 levels is important to human health and disease.
Collapse
Affiliation(s)
- Valentina Parra
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.).
| | - Francisco Altamirano
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.)
| | - Carolina P Hernández-Fuentes
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.)
| | - Dan Tong
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.)
| | - Victoriia Kyrychenko
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.)
| | - David Rotter
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.)
| | - Zully Pedrozo
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.)
| | - Joseph A Hill
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.)
| | - Verónica Eisner
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.)
| | - Sergio Lavandero
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.)
| | - Jay W Schneider
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.)
| | - Beverly A Rothermel
- From the Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine (V.P., C.P.H.-F., Z.P., S.L.) and Institute of Biomedical Sciences, School of Medicine (Z.P.), University of Chile, Santiago; Department of Internal Medicine/Cardiology (V.P., F.A., D.T., V.K., D.R., Z.P., J.A.H., S.L., J.W.S., B.A.R.) and Department of Molecular Biology (V.K., J.A.H., B.A.R.), University of Texas Southwestern Medical Center, Dallas; and Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago (V.E.).
| |
Collapse
|
29
|
Quiles JM, Narasimhan M, Shanmugam G, Milash B, Hoidal JR, Rajasekaran NS. Differential regulation of miRNA and mRNA expression in the myocardium of Nrf2 knockout mice. BMC Genomics 2017; 18:509. [PMID: 28673258 PMCID: PMC5496330 DOI: 10.1186/s12864-017-3875-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Justin M Quiles
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, BMR2 Room 533|901 19th Street South, Birmingham, AL, 35294-2180, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Gobinath Shanmugam
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, BMR2 Room 533|901 19th Street South, Birmingham, AL, 35294-2180, USA
| | | | | | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, BMR2 Room 533|901 19th Street South, Birmingham, AL, 35294-2180, USA.
- Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
- Center for Free Radical Biology, University of Alabama at Birmingham, BMR2 Room 533|901 19th Street South, Birmingham, AL, 35294-2180, USA.
| |
Collapse
|
30
|
Parra V, Rothermel BA. Calcineurin signaling in the heart: The importance of time and place. J Mol Cell Cardiol 2017; 103:121-136. [PMID: 28007541 PMCID: PMC5778886 DOI: 10.1016/j.yjmcc.2016.12.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
The calcium-activated protein phosphatase, calcineurin, lies at the intersection of protein phosphorylation and calcium signaling cascades, where it provides an essential nodal point for coordination between these two fundamental modes of intracellular communication. In excitatory cells, such as neurons and cardiomyocytes, that experience rapid and frequent changes in cytoplasmic calcium, calcineurin protein levels are exceptionally high, suggesting that these cells require high levels of calcineurin activity. Yet, it is widely recognized that excessive activation of calcineurin in the heart contributes to pathological hypertrophic remodeling and the progression to failure. How does a calcium activated enzyme function in the calcium-rich environment of the continuously contracting heart without pathological consequences? This review will discuss the wide range of calcineurin substrates relevant to cardiovascular health and the mechanisms calcineurin uses to find and act on appropriate substrates in the appropriate location while potentially avoiding others. Fundamental differences in calcineurin signaling in neonatal verses adult cardiomyocytes will be addressed as well as the importance of maintaining heterogeneity in calcineurin activity across the myocardium. Finally, we will discuss how circadian oscillations in calcineurin activity may facilitate integration with other essential but conflicting processes, allowing a healthy heart to reap the benefits of calcineurin signaling while avoiding the detrimental consequences of sustained calcineurin activity that can culminate in heart failure.
Collapse
Affiliation(s)
- Valentina Parra
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago,Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chie, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
31
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
32
|
Bennardo M, Alibhai F, Tsimakouridze E, Chinnappareddy N, Podobed P, Reitz C, Pyle WG, Simpson J, Martino TA. Day-night dependence of gene expression and inflammatory responses in the remodeling murine heart post-myocardial infarction. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1243-R1254. [PMID: 27733386 DOI: 10.1152/ajpregu.00200.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 01/10/2023]
Abstract
Diurnal or circadian rhythms are fundamentally important for healthy cardiovascular physiology and play a role in timing of onset and tolerance to myocardial infarction (MI) in patients. Whether time of day of MI triggers different molecular and cellular responses that can influence myocardial remodeling is not known. This study was designed to test whether time of day of MI triggers different gene expression, humoral, and innate inflammatory responses that contribute to cardiac repair after MI. Mice were infarcted by left anterior descending coronary artery ligation (MI model) within a 2-h time window either shortly after lights on or lights off, and the early remodeling responses at 8 h postinfarction were examined. We found that sleep-MI preferentially triggers early expression of genes associated with inflammatory responses, whereas wake-MI triggers more genes associated with metabolic pathways and transcription/translation, by microarray analyses. Homozygous clock mutant mice exhibit altered diurnal gene expression profiles, consistent with their cycling before onset of MI. In the first 8 h, crucial for innate immune responses to MI, there are also significant differences in sleep-MI and wake-MI serum cytokine responses and in neutrophil infiltration to infarcted myocardium. By 1-wk post-MI, there are differences in survivorship between the sleep and wake MI mice that could be explained by the different molecular and cellular responses. Our whole body physiology, tissues, and cells exhibit endogenous daily rhythms, and understanding their role in triggering effective responses after MI could lead to new strategies to benefit patients with cardiovascular disease.
Collapse
Affiliation(s)
- Michael Bennardo
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Faisal Alibhai
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Elena Tsimakouridze
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Nirmala Chinnappareddy
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Peter Podobed
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Cristine Reitz
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - W Glen Pyle
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Jeremy Simpson
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tami A Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
33
|
Beesley S, Noguchi T, Welsh DK. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue. PLoS One 2016; 11:e0159618. [PMID: 27459195 PMCID: PMC4961434 DOI: 10.1371/journal.pone.0159618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+.
Collapse
Affiliation(s)
- Stephen Beesley
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Takako Noguchi
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - David K. Welsh
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| |
Collapse
|
34
|
Monassier L, Ayme-Dietrich E, Aubertin-Kirch G, Pathak A. Targeting myocardial reperfusion injuries with cyclosporine in the CIRCUS Trial - pharmacological reasons for failure. Fundam Clin Pharmacol 2016; 30:191-3. [DOI: 10.1111/fcp.12177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296); CHU de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine; 11 rue Humann Strasbourg France
| | - Estelle Ayme-Dietrich
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296); CHU de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine; 11 rue Humann Strasbourg France
| | - Gaëlle Aubertin-Kirch
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296); CHU de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine; 11 rue Humann Strasbourg France
| | - Atul Pathak
- Clinique Pasteur; Centre de Recherche Clinique Cardiovasculaire Pasteur; 45 avenue de Lombez 31000 Toulouse Toulouse France
| |
Collapse
|
35
|
Dyar KA, Ciciliot S, Tagliazucchi GM, Pallafacchina G, Tothova J, Argentini C, Agatea L, Abraham R, Ahdesmäki M, Forcato M, Bicciato S, Schiaffino S, Blaauw B. The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle. Mol Metab 2015; 4:823-33. [PMID: 26629406 PMCID: PMC4632177 DOI: 10.1016/j.molmet.2015.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 12/17/2022] Open
Abstract
Objective Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. Methods We compared the circadian transcriptomes of two mouse hindlimb muscles with vastly different circadian activity patterns, the continuously active slow soleus and the sporadically active fast tibialis anterior, in the presence or absence of a functional skeletal muscle clock (skeletal muscle-specific Bmal1 KO). In addition, we compared the effect of denervation on muscle circadian gene expression. Results We found that different skeletal muscles exhibit major differences in their circadian transcriptomes, yet core clock gene oscillations were essentially identical in fast and slow muscles. Furthermore, denervation caused relatively minor changes in circadian expression of most core clock genes, yet major differences in expression level, phase and amplitude of many muscle circadian genes. Conclusions We report that activity controls the oscillation of around 15% of skeletal muscle circadian genes independently of the core muscle clock, and we have identified the Ca2+-dependent calcineurin-NFAT pathway as an important mediator of activity-dependent circadian gene expression, showing that circadian locomotor activity rhythms drive circadian rhythms of NFAT nuclear translocation and target gene expression. Activity is a major extrinsic factor driving ∼15% of muscle circadian genes. Calcineurin-NFAT drives activity-dependent circadian gene expression in muscle. The majority of skeletal muscle circadian genes are muscle type-specific. A common set of skeletal muscle circadian genes are clock-dependent.
Collapse
Affiliation(s)
- Kenneth A Dyar
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | | | - Guidantonio Malagoli Tagliazucchi
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy ; Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via F. Sforza 35, 20122 Milan, Italy
| | - Giorgia Pallafacchina
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy ; Institute of Neurosciences, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
| | - Jana Tothova
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Carla Argentini
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Lisa Agatea
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Reimar Abraham
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Miika Ahdesmäki
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
| | - Mattia Forcato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy ; Institute of Neurosciences, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy ; Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
36
|
Saenz GJ, Hovanessian R, Gisis AD, Medh RD. Glucocorticoid-mediated co-regulation of RCAN1-1, E4BP4 and BIM in human leukemia cells susceptible to apoptosis. Biochem Biophys Res Commun 2015; 463:1291-6. [PMID: 26102033 DOI: 10.1016/j.bbrc.2015.06.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022]
Abstract
Glucocorticoids (GCs) are known to induce apoptosis of leukemia cells via gene regulatory changes affecting key pro-and anti-apoptotic genes. Three genes previously implicated in GC-evoked apoptosis in the CEM human T-cell leukemia model, RCAN1, E4BP4 and BIM, were studied in a panel of human lymphoid and myeloid leukemia cell lines. Of the two RCAN1 transcripts, the synthetic GC Dexamethasone (Dex) selectively upregulates RCAN1-1, but not RCAN1-4, in GC-susceptible Sup-B15, RS4;11, Kasumi-1 cells but not in GC-resistant Sup T1 and Loucy cells. E4BP4 and BIM regulation correlated with that of RCAN1-1. A putative GRE and four EBPREs were identified within 1500bp upstream from the transcription start site of RCAN1-1. GC-refractory CEM C1-15 cells sensitized to GC-evoked apoptosis by ectopic E4BP4 expression, CEM C1-15mE#3, showed restored RCAN1-1 upregulation, suggesting that RCAN1-1 is a downstream target of E4BP4. A model for coordinated regulation of RCAN1-1, E4BP4 and BIM, and their role in GC-evoked apoptosis is proposed.
Collapse
Affiliation(s)
- G Jonatan Saenz
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | - Rebeka Hovanessian
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | - Andrew D Gisis
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | - Rheem D Medh
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| |
Collapse
|
37
|
Kuzmicic J, Parra V, Verdejo HE, López-Crisosto C, Chiong M, García L, Jensen MD, Bernlohr DA, Castro PF, Lavandero S. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes. Biochem Pharmacol 2014; 91:323-36. [PMID: 25091560 DOI: 10.1016/j.bcp.2014.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022]
Abstract
Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25 nM free), TMZ (0.1-100 μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function.
Collapse
Affiliation(s)
- Jovan Kuzmicic
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Estudios Moleculares de la Célula, Facultad Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Estudios Moleculares de la Célula, Facultad Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Estudios Moleculares de la Célula, Facultad Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Estudios Moleculares de la Célula, Facultad Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Estudios Moleculares de la Célula, Facultad Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Estudios Moleculares de la Célula, Facultad Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|