1
|
Cannata A, Segev A, Madaudo C, Bobbio E, Baggio C, Schütze J, Gentile P, Sanguineti M, Monzo L, Schettino M, Ferone E, Elsanhoury A, Younis A, Palazzini M, Ferroni A, Giani V, Sadler M, Di Lisi D, Albarjas M, Calò L, Sado D, Polte CL, Garascia A, Scott PA, Shah AM, Giacca M, Sinagra G, Bollano E, McDonagh T, Tschöpe C, Novo G, Ammirati E, Beigel R, Gräni C, Merlo M, Ameri P, Bromage DI. Elevated Neutrophil-to-Lymphocyte Ratio Predicts Prognosis in Acute Myocarditis. JACC. HEART FAILURE 2025; 13:770-780. [PMID: 39846908 DOI: 10.1016/j.jchf.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Neutrophil-to-lymphocyte ratio (NLR) is an easy-to-use inflammatory biomarker. Baseline NLR is independently associated with incident cardiovascular events and all-cause mortality. However, whether this applies to acute myocarditis (AM) has not been evaluated. OBJECTIVES The present study aimed to investigate the prognostic value of NLR in patients with AM. METHODS A total of 1,150 consecutive patients with a diagnosis of AM admitted to 10 international tertiary referral cardiac centers were included in the study. The diagnosis was confirmed using cardiac magnetic resonance or endomyocardial biopsy. The primary outcome measure was a composite of all-cause mortality or heart transplantation. Patients were divided into 2 groups according to an NLR cutoff of 4 derived from spline regression analysis and 70:30 train-test split algorithm. RESULTS Patients with an NLR <4 were younger and more likely to present with chest pain, and those with an NLR ≥4 were more likely to present with breathlessness and have other comorbidities. Over a median follow-up of 228 weeks, a NLR ≥4 was associated with a worse prognosis (P < 0.0001). After adjustment for prognostic variables, NLR emerged as an independent predictor of outcome (HR: 3.03 [95% CI: 1.30-7.04]; P = 0.010). Elevated NLR remained associated with worse outcomes among patients with preserved ejection fraction at baseline, who are conventionally considered to be at lower risk of adverse events (P < 0.0001). CONCLUSIONS In patients with AM, elevated NLR is associated with worse prognosis and may be valuable for stratifying patients, even those conventionally considered at low risk.
Collapse
Affiliation(s)
- Antonio Cannata
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, London, United Kingdom; King's College Hospital NHS Foundation Trust, London, United Kingdom.
| | - Amitai Segev
- Cardiovascular Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; The Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Cristina Madaudo
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, London, United Kingdom; Policlinico P. Giaccone, University of Palermo, Palermo, Italy
| | - Emanuele Bobbio
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chiara Baggio
- CardioThoracoVascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste, Italy
| | - Jonathan Schütze
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Marta Sanguineti
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Luca Monzo
- Policlinico Casilino, Rome, Italy; Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Matteo Schettino
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Emma Ferone
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Ahmed Elsanhoury
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany; Department of Cardiology, Angiology, and Intensive Medicine (CVK), German Heart Center at Charite (DHZC), Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Anan Younis
- Cardiovascular Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; The Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Adriana Ferroni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Matthew Sadler
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Daniela Di Lisi
- Cardiovascular Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; The Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Mohammad Albarjas
- Princess Royal University Hospital, Orpington, London, United Kingdom
| | | | - Daniel Sado
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Christian Lars Polte
- Departments of Clinical Physiology and Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Paul A Scott
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Mauro Giacca
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Gianfranco Sinagra
- CardioThoracoVascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste, Italy
| | - Entela Bollano
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Theresa McDonagh
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany; Department of Cardiology, Angiology, and Intensive Medicine (CVK), German Heart Center at Charite (DHZC), Berlin, Germany; Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Giuseppina Novo
- Policlinico P. Giaccone, University of Palermo, Palermo, Italy
| | | | - Roy Beigel
- Cardiovascular Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; The Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Merlo
- CardioThoracoVascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste, Italy
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Genova, Italy; Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniel I Bromage
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, London, United Kingdom; King's College Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
2
|
Morrissey SM, Kirkland LG, Phillips TK, Levit RD, Hopke A, Jensen BC. Multifaceted roles of neutrophils in cardiac disease. J Leukoc Biol 2025; 117:qiaf017. [PMID: 39936506 DOI: 10.1093/jleuko/qiaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025] Open
Abstract
Neutrophils, the most abundant leukocytes in human blood, have long been recognized as critical first responders in the innate immune system's defense against pathogens. Some of the more notable innate antimicrobial properties of neutrophils include generation of superoxide free radicals like myeloperoxidase, production of proteases that reshape the extracellular matrix allowing for easier access to infected tissues, and release of neutrophil extracellular traps, extruded pieces of DNA that ensnare bacterial and fungi. These mechanisms developed to provide neutrophils with a vast array of specialized functions to provide the host defense against infection in an acute setting. However, emerging evidence over the past few decades has revealed a far more complex and nuanced role for these neutrophil-driven processes in various chronic conditions, particularly in cardiovascular diseases. The pathophysiology of cardiac diseases involves a complex interplay of hemodynamic, neurohumoral, and inflammatory factors. Neutrophils, as key mediators of inflammation, contribute significantly to this intricate network. Their involvement extends far beyond their classical role in pathogen clearance, encompassing diverse functions that can both exacerbate tissue damage and contribute to repair processes. Here, we consider the contributions of neutrophils to myocardial infarction, heart failure, cardiac arrhythmias, and nonischemic cardiomyopathies. Understanding these complex interactions is crucial for developing novel therapeutic strategies aimed at modulating neutrophil functions in these highly morbid cardiac diseases.
Collapse
Affiliation(s)
- Samantha M Morrissey
- Department of Medicine, University of North Carolina School of Medicine, 125 MacNider Hall, Chapel Hill, NC 27599-7005, United States
| | - Logan G Kirkland
- McAllister Heart Institute, University of North Carolina School of Medicine, 111 Mason Farm Rd., Chapel Hill, NC 27599-7126, United States
| | - Tasha K Phillips
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, United States
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Alex Hopke
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, PO Box 70300, Johnson City, TN 37614, United States
| | - Brian C Jensen
- Department of Medicine, University of North Carolina School of Medicine, 125 MacNider Hall, Chapel Hill, NC 27599-7005, United States
- McAllister Heart Institute, University of North Carolina School of Medicine, 111 Mason Farm Rd., Chapel Hill, NC 27599-7126, United States
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Rd., Chapel Hill, NC 27599-7365, United States
| |
Collapse
|
3
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Coffman JA. Enteroviruses Activate Cellular Innate Immune Responses Prior to Adaptive Immunity and Tropism Contributes to Severe Viral Pathogenesis. Microorganisms 2025; 13:870. [PMID: 40284705 PMCID: PMC12029620 DOI: 10.3390/microorganisms13040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Numerous innate immune mechanisms have been shown to be activated during viral infections, including pattern recognition receptors (PRRs) functioning outside and inside the cell along with other sensors promoting the production of interferon and other cytokines. Innate cells, including NK cells, NKT cells, γδ T cells, dendritic cells, macrophages, and even neutrophils, have been shown to respond to viral infections. Several innate humoral responses to viral infections have also been identified. Adaptive immunity includes common cell-mediated immunity (CMI) and humoral responses. Th1, Th2, and Tfh CD4+ T cell responses have been shown to help activate cytotoxic T lymphocytes (CTLs) and to help promote the class switching of antiviral antibodies. Enteroviruses were shown to induce innate immune responses and the tropism of the virus that was mediated through viral attachment proteins (VAPs) and cellular receptors was directly related to the risk of severe disease in a primary infection. Adaptive immune responses include cellular and humoral immunity, and its delay in primary infections underscores the importance of vaccination in ameliorating or preventing severe viral pathogenesis.
Collapse
Affiliation(s)
- Jonathan A Coffman
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| |
Collapse
|
5
|
Nappi F. Myocarditis and Inflammatory Cardiomyopathy in Dilated Heart Failure. Viruses 2025; 17:484. [PMID: 40284927 PMCID: PMC12031395 DOI: 10.3390/v17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory cardiomyopathy is a condition that is characterised by the presence of inflammatory cells in the myocardium, which can lead to a significant deterioration in cardiac function. The etiology of this condition involves multiple factors, both infectious and non-infectious causes. While it is primarily associated with viral infections, other potential causes include bacterial, protozoal, or fungal infections, as well as a wide variety of toxic substances and drugs, and systemic immune-mediated pathological conditions. In spite of comprehensive investigation, the presence of inflammatory cardiomyopathy accompanied by left ventricular dysfunction, heart failure or arrhythmia is indicative of an unfavourable outcome. The reasons for the occurrence of either favourable outcomes, characterised by the absence of residual myocardial injury, or unfavourable outcomes, marked by the development of dilated cardiomyopathy, in patients afflicted by the condition remain to be elucidated. The relative contributions of pathogenic agents, genomic profiles of the host, and environmental factors in disease progression and resolution remain subjects of ongoing discourse. This includes the determination of which viruses function as active inducers and which merely play a bystander role. It remains unknown which changes in the host immune profile are critical in determining the outcome of myocarditis caused by various viruses, including coxsackievirus B3 (CVB3), adenoviruses, parvoviruses B19 and SARS-CoV-2. The objective of this review is unambiguous: to provide a concise summary and comprehensive assessment of the extant evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy. Its focus is exclusively on virus-induced and virus-associated myocarditis. In addition, the extant lacunae of knowledge in this field are identified and the extant experimental models are evaluated, with the aim of proposing future directions for the research domain. This includes differential gene expression that regulates iron and lipid and metabolic remodelling. Furthermore, the current state of knowledge regarding the cardiovascular implications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is also discussed, along with the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
6
|
Lian Y, Lai X, Wu C, Wang L, Shang J, Zhang H, Jia S, Xing W, Liu H. The roles of neutrophils in cardiovascular diseases. Front Cardiovasc Med 2025; 12:1526170. [PMID: 40176832 PMCID: PMC11961988 DOI: 10.3389/fcvm.2025.1526170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
The immune response plays a vital role in the development of cardiovascular diseases (CVDs). As a crucial component of the innate immune system, neutrophils are involved in the initial inflammatory response following cardiovascular injury, thereby inducing subsequent damage and promoting recovery. Neutrophils exert their functional effects in tissues through various mechanisms, including activation and the formation of neutrophil extracellular traps (NETs). Once activated, neutrophils are recruited to the site of injury, where they release inflammatory mediators and cytokines. This study discusses the main mechanisms associated with neutrophil activity and proposes potential new therapeutic targets. In this review, we systematically summarize the diverse phenotypes of neutrophils in disease regulatory mechanisms, different modes of cell death, and focus on the relevance of neutrophils to various CVDs, including atherosclerosis, acute coronary syndrome, myocardial ischemia/reperfusion injury, hypertension, atrial fibrillation, heart failure, and viral myocarditis. Finally, we also emphasize the preclinical/clinical translational significance of neutrophil-targeted strategies.
Collapse
Affiliation(s)
- Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolei Lai
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cong Wu
- Beijing Hospital of Traditional Chinese Medicine, Huairou Hospital, Beijing, China
| | - Li Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JuJu Shang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Heyi Zhang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Sihan Jia
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongxu Liu
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Liao SX, Wang YW, Sun PP, Xu Y, Wang TH. Prospects of neutrophilic implications against pathobiology of chronic obstructive pulmonary disease: Pharmacological insights and technological advances. Int Immunopharmacol 2025; 144:113634. [PMID: 39577220 DOI: 10.1016/j.intimp.2024.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory condition that affects the lungs globally. A key feature of this inflammatory response is the migration and aggregation of polymorphonuclear neutrophils (PMNs). The presence of neutrophilic inflammation within the airways is as distinguishing characteristic of COPD. As research advances, PMNs and their products emerge as central players in the airway inflammatory cascade of COPD patients. Their involvement in phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs) significantly contributes to the pathogenesis of COPD. Moreover, studies have shown that excessive biological activities of neutrophils in the lungs can result in airway epithelial injury, emphysema, and mucus hypersecretion. Currently, there is growing empirical support for the moderate targeting neutrophils in the clinical management of COPD. This article delves into the pivotal role of neutrophils in COPD, emphasizing the urgency for novel therapeutic approaches that specifically target neutrophils. Additionally, it explores the potential of utilizing single-cell RNA sequencing to further investigate neutrophils and relevant risk genes as potential biomarkers for COPD treatment. By elucidating these mechanisms, this review aims to pave the way for future strategies to modulate neutrophil function, thereby addressing the pressing need for more effective COPD therapies.
Collapse
Affiliation(s)
- Shi-Xia Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yan-Wen Wang
- West China Clinical Medical College, Sichuan University, Chengdu 610041, China
| | - Peng-Peng Sun
- Department of Osteopathy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yang Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ting-Hua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
8
|
Ji M, Ran X, Zuo H, Zhang Q. Novel Insights into the Kallikrein-Kinin System in Fulminant Myocarditis: Physiological Basis and Potential Therapeutic Advances. J Inflamm Res 2024; 17:7347-7360. [PMID: 39429854 PMCID: PMC11490248 DOI: 10.2147/jir.s488237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Fulminant myocarditis (FM) is characterized by rapid cardiac deterioration often instigated by an inflammatory cytokine storm. The kallikrein-kinin system (KKS) is a metabolic cascade known for releasing vasoactive kinins, such as bradykinin-related peptides, possessing diverse pharmacological activities that include inflammation, regulation of vascular permeability, endothelial barrier dysfunction, and blood pressure modulation. The type 1 and type 2 bradykinin receptors (B1R and B2R), integral components of the KKS system, mediate the primary biological effects of kinin peptides. This review aims to offer a comprehensive overview of the primary mechanisms of the KKS in FM, including an examination of the structural components, regulatory activation, and downstream signaling pathways of the KKS. Furthermore, it explores the involvement of the tissue kallikrein/B1R/inducible nitric oxide synthase (TK/B1R/iNOS) pathway in myocyte dysfunction, modulation of the immune response, and preservation of endothelial barrier integrity. The potential therapeutic advances targeting the inhibition of the KKS in managing FM will be discussed, providing valuable insights for the development of clinical treatment strategies.
Collapse
Affiliation(s)
- Mengmeng Ji
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Houjuan Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
9
|
Kostin S, Krizanic F, Kelesidis T, Pagonas N. The role of NETosis in heart failure. Heart Fail Rev 2024; 29:1097-1106. [PMID: 39073665 PMCID: PMC12066148 DOI: 10.1007/s10741-024-10421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
The hallmark of heart failure (HF) is structural myocardial remodeling including cardiomyocyte hypertrophy, fibrosis, cardiomyocyte cell death, and a low-grade aseptic inflammation. The initiation and maintenance of persistent chronic low-grade inflammation in HF are not fully understood. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. In the settings of myocardial infarction, myocarditis, or cardiomyopathies, neutrophils infiltrate the cardiac tissue and undergo NETosis that further aggravate the inflammation. A number of stimuli may cause NETosis that is a form of programmed cell death of neutrophils that is different from apoptosis of these cells. Whether NETosis is directly involved in the pathogenesis and development of HF is still unclear. In this review, we analyzed the mechanisms and markers of NETosis, especially placing the accent on the activation of the neutrophil-specific myeloperoxidase (MPO), elastase (NE), and peptidylarginine deiminase 4 (PAD4). These conclusions are supported by the recent genetic and pharmacological studies which demonstrated that MPO, NE, and PAD4 inhibitors are effective at least in the settings of post-myocardial infarction adverse remodeling, cardiac valve diseases, cardiomyopathies, and decompensated left ventricular hypertrophy whose deterioration can lead to HF. This is essential for understanding NETosis as a contributor to pathophysiology of HF and developments of new therapies of HF.
Collapse
Affiliation(s)
- Sawa Kostin
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.
| | - Florian Krizanic
- Department of Internal Medicine and Cardiology, Medical School Theodor Fontane, University Hospital Ruppin-Brandenburg, Neuruppin, Germany
| | | | - Nikolaos Pagonas
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Department of Internal Medicine and Cardiology, Medical School Theodor Fontane, University Hospital Ruppin-Brandenburg, Neuruppin, Germany
| |
Collapse
|
10
|
Wang W, Jia H, Hua X, Song J. New insights gained from cellular landscape changes in myocarditis and inflammatory cardiomyopathy. Heart Fail Rev 2024; 29:883-907. [PMID: 38896377 DOI: 10.1007/s10741-024-10406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Advances in the etiological classification of myocarditis and inflammatory cardiomyopathy (ICM) have reached a consensus. However, the mechanism of myocarditis/ICM remains unclear, which affects the development of treatment and the improvement of outcome. Cellular transcription and metabolic reprogramming, and the interactions between cardiomyocytes and non-cardiomyocytes, such as the immune cells, contribute to the process of myocarditis/ICM. Recent efforts have been made by multi-omics techniques, particularly in single-cell RNA sequencing, to gain a better understanding of the cellular landscape alteration occurring in disease during the progression. This article aims to provide a comprehensive overview of the latest studies in myocarditis/ICM, particularly as revealed by single-cell sequencing.
Collapse
Affiliation(s)
- Weiteng Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
| |
Collapse
|
11
|
Veeram A, Shaikh TB, Kaur R, Chowdary EA, Andugulapati SB, Sistla R. Yohimbine Treatment Alleviates Cardiac Inflammation/Injury and Improves Cardiac Hemodynamics by Modulating Pro-Inflammatory and Oxidative Stress Indicators. Inflammation 2024; 47:1423-1443. [PMID: 38466531 DOI: 10.1007/s10753-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Acute myocarditis, also known as myocardial inflammation, is a self-limited condition caused by systemic infection with cardiotropic pathogens, primarily viruses, bacteria, or fungi. Despite significant research, inflammatory cardiomyopathy exacerbated by heart failure, arrhythmia, or left ventricular dysfunction and it has a dismal prognosis. In this study, we aimed to evaluate the therapeutic effect of yohimbine against lipopolysaccharide (LPS) induced myocarditis in rat model. The anti-inflammatory activity of yohimbine was assessed in in-vitro using RAW 264.7 and H9C2 cells. Myocarditis was induced in rats by injecting LPS (10 mg/kg), following the rats were treated with dexamethasone (2 mg/kg) or yohimbine (2.5, 5, and 10 mg/kg) for 12 h and their therapeutic activity was examined using various techniques. Yohimbine treatment significantly attenuated the LPS-mediated inflammatory markers expression in the in-vitro model. In-vivo studies proved that yohimbine treatment significantly reduced the LPS-induced increase of cardiac-specific markers, inflammatory cell counts, and pro-inflammatory markers expression compared to LPS-control samples. LPS administration considerably affected the ECG, RR, PR, QRS, QT, ST intervals, and hemodynamic parameters, and caused abnormal pathological parameters, in contrast, yohimbine treatment substantially improved the cardiac parameters, mitigated the apoptosis in myocardial cells and ameliorated the histopathological abnormalities that resulted in an improved survival rate. LPS-induced elevation of cardiac troponin-I, myeloperoxidase, CD-68, and neutrophil elastase levels were significantly attenuated upon yohimbine treatment. Further investigation showed that yohimbine exerts an anti-inflammatory effect partly by modulating the MAPK pathway. This study emphasizes yohimbine's therapeutic benefit against LPS-induced myocarditis and associated inflammatory markers response by regulating the MAPK pathway.
Collapse
Affiliation(s)
- Anjali Veeram
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - E Abhisheik Chowdary
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
12
|
Zhang Y, Chen S, Sun T, Duan G, Yang H, Feng H, Jiang W, Li D, Ji W, Zhu P, Jin Y. Abundant Neutrophil-Initiated Acute Myocardial Injury Following Coxsackievirus A6 Infection. J Infect Dis 2024; 229:1440-1450. [PMID: 37738556 DOI: 10.1093/infdis/jiad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
Coxsackievirus A6 (CVA6) is currently considered as a predominant pathogen of hand, foot, and mouth disease (HFMD), and is occasionally linked to myocardial injury. We first established a mouse model of CVA6-induced myocardial injury. Next, we analyzed the immune cell phenotypes CVA6-infected mice hearts by fluorescence-activated cell sorting, and found that CVA6 led to massive neutrophils infiltration, suggesting their potential link with the occurrence of myocardial injury. We further used either αGr-1 or αLy6G antibody to deplete neutrophils, and found that neutrophil-depleted animals showed decreased cardiac enzymes, lower degree of pathology in hearts, and reduced inflammatory cytokine production compared to isotype controls. Finally, we confirmed the involvement of neutrophils in myocardial injury of clinical patients with severe HFMD. Our study suggests that excessive neutrophils contribute to myocardial injury caused by CVA6 infection, which provides new insights into myocardial injury during the development of HFMD severity and the outcome of immune cell-mediated therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huifen Feng
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjie Jiang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Zhang Q, Yuan J, Zhao W, Ouyang W, Chen B, Li Y, Tao J, Chen X, Li G, Guo Z, Liu Y. Coxsackie B virus-induced myocarditis in a patient with a history of lymphoma: A case report and review of literature. Medicine (Baltimore) 2024; 103:e37248. [PMID: 38457543 PMCID: PMC10919497 DOI: 10.1097/md.0000000000037248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION In rare occasions, coxsackievirus infections can cause serious illness, such as encephalitis and myocarditis. The immunotherapies of cancer could increase the risk of myocarditis, especially when applying immune checkpoint inhibitors. Herein, we report a rare case of Coxsackie B virus-induced myocarditis in a patient with a history of lymphoma. CASE PRESENTATION A 32-year-old woman was admitted to the hospital with recurrent fever for more than 20 days, and she had a history of lymphoma. Before admission, the positron emission tomography/computed tomography result indicated that the patient had no tumor progression, and she was not considered the cancer-related fever upon arriving at our hospital. Patient's red blood cell, platelet count, and blood pressure were decreased. In addition, she had sinus bradycardia and 3 branch blocks, which was consistent with acute high lateral and anterior wall myocardial infarction. During hospitalization, the patient had recurrent arrhythmia, repeated sweating, poor mentation, dyspnea, and Coxsackie B virus were detected in patient's blood samples by pathogen-targeted next-generation sequencing. The creatine kinase, creatine kinase MB, and N-terminal pro-brain natriuretic peptide were persistently elevated. Consequently, the patient was diagnosed with viral myocarditis induced by Coxsackie B virus, and treated with acyclovir, gamma globulin combined with methylprednisolone shock therapy, trimetazidine, levosimendan, sildenan, continuous pump pressors with m-hydroxylamine, entecavir, adefovir, glutathione, pantoprazole, and low-molecular-weight heparin. Her symptoms worsened and died. CONCLUSION We reported a case with a history of lymphoma presented with fever, myocardial injury, who was ultimately diagnosed with Coxsackie B virus-induced myocarditis. Moreover, pathogen-targeted next-generation sequencing indeed exhibited higher sensitivity compared to mNGS in detecting Coxsackie B virus.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jia Yuan
- Department of Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Zhao
- Department of Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Weiwei Ouyang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Bowen Chen
- Department of Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yehong Li
- Department of Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junling Tao
- Department of Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianjun Chen
- Department of Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guangsu Li
- Department of Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhendong Guo
- Beijing Goldstandard Medicine Independent Clinical Laboratory Co. Ltd., Beijing, China
| | - Ying Liu
- Department of Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Zhang C, Cao Q, Li Y, Lu J, Xiong S, Yue Y. Exosome co-delivery of a STING agonist augments immunogenicity elicited by CVB3 VP1 vaccine via promoting antigen cross-presentation of CD8 + DCs. Int J Biol Macromol 2024; 261:129518. [PMID: 38244740 DOI: 10.1016/j.ijbiomac.2024.129518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
The induction of a robust CD8+ T cell response is critical for the success of an antiviral vaccine. In this study, we incorporated a STING agonist (SA) 2'3'-cGAMP into a previously developed exosome-based CVB3 viral myocarditis vaccine (Exo-VP1) to enhance its ability to induce CD8+ T cell responses and immunoprotection. Our results showed that compared to free SA adjuvant, exosome-mediated co-delivery (ExoSA-VP1) significantly enhanced SA uptake by dendritic cells (DCs) and more potently stimulated DC maturation. Immunization of mice showed that the ExoSA-VP1 vaccine-induced higher levels of CVB3-specific T cell proliferation and cytotoxicity, significantly increased the percentage of IFN-γ+CD8+ rather than CD4+ T cells, effectively reduced cardiac viral loads, attenuated myocarditis and improved survival in mice compared to the previous Exo-VP1 vaccine. Further investigation showed that ExoSA-VP1 significantly increased both the percentage and antigen cross-presentation capacity of splenic CD8+ DCs. Depletion of these CD8+ DCs by cytochrome C administration nearly abolished the advantage of ExoSA-VP1 in dominantly inducing IFN-γ+CD8+ cytotoxic T lymphocyte (CTL) production in immunized mice. Taken together, our results demonstrated the potential of ExoSA-VP1 as a promising candidate for anti-CVB3 vaccines and provide insights into immune-enhancing strategies aiming at augmenting antigen cross-presentation by DCs and enhancing potent CTL responses.
Collapse
Affiliation(s)
- Changwei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Qinghui Cao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yuanyu Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Juan Lu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Pei W, Zhang Y, Zhu X, Zhao C, Li X, Lü H, Lv K. Multitargeted Immunomodulatory Therapy for Viral Myocarditis by Engineered Extracellular Vesicles. ACS NANO 2024; 18:2782-2799. [PMID: 38232382 DOI: 10.1021/acsnano.3c05847] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Immune regulation therapies are considered promising for treating classically activated macrophage (M1)-driven viral myocarditis (VM). Alternatively, activated macrophage (M2)-derived extracellular vesicles (M2 EVs) have great immunomodulatory potential owing to their ability to reprogram macrophages, but their therapeutic efficacy is hampered by insufficient targeting capacity in vivo. Therefore, we developed cardiac-targeting peptide (CTP) and platelet membrane (PM)-engineered M2 EVs enriched with viral macrophage inflammatory protein-II (vMIP-II), termed CTP/PM-M2 EVsvMIP-II-Lamp2b, to improve the delivery of EVs "cargo" to the heart tissues. In a mouse model of VM, the intravenously injected CTP/PM-M2 EVsvMIP-II-Lamp2b could be carried into the myocardium via CTP, PM, and vMIP-II. In the inflammatory microenvironment, macrophages differentiated from circulating monocytes and macrophages residing in the heart showed enhanced endocytosis rates for CTP/PM-M2 EVsvMIP-II-Lamp2b. Subsequently, CTP/PM-M2 EVsvMIP-II-Lamp2b successfully released functional M2 EVsvMIP-II-Lamp2b into the cytosol, which facilitated the reprogramming of inflammatory M1 macrophages to reparative M2 macrophages. vMIP-II not only helps to increase the targeting ability of M2 EVs but also collaborates with M2 EVs to regulate M1 macrophages in the inflammatory microenvironment and downregulate the levels of multiple chemokine receptors. Finally, the cardiac immune microenvironment was protectively regulated to achieve cardiac repair. Taken together, our findings suggest that CTP-and-PM-engineered M2 EVsvMIP-II-Lamp2b represent an effective means for treating VM and show promise for clinical applications.
Collapse
Affiliation(s)
- Weiya Pei
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| | - Yingying Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, P.R. China
| | - Xiaolong Zhu
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| | - Chen Zhao
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215163, P.R. China
| | - Xueqin Li
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| | - Hezuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, P.R. China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu 233030, P.R. China
| | - Kun Lv
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| |
Collapse
|
16
|
Liu K, Han B. Role of immune cells in the pathogenesis of myocarditis. J Leukoc Biol 2024; 115:253-275. [PMID: 37949833 DOI: 10.1093/jleuko/qiad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that mostly affects young people. Myocarditis involves a complex immune network; however, its detailed pathogenesis is currently unclear. The diversity and plasticity of immune cells, either in the peripheral blood or in the heart, have been partially revealed in a number of previous studies involving patients and several kinds of animal models with myocarditis. It is the complexity of immune cells, rather than one cell type that is the culprit. Thus, recognizing the individual intricacies within immune cells in the context of myocarditis pathogenesis and finding the key intersection of the immune network may help in the diagnosis and treatment of this condition. With the vast amount of cell data gained on myocarditis and the recent application of single-cell sequencing, we summarize the multiple functions of currently recognized key immune cells in the pathogenesis of myocarditis to provide an immune background for subsequent investigations.
Collapse
Affiliation(s)
- Keyu Liu
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, 250021, Jinan, China
- Shandong Provincial Hospital, Shandong Provincial Clinical Research Center for Children' s Health and Disease office, No. 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
17
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
18
|
Zhang Y, Zhou X, Chen S, Sun X, Zhou C. Immune mechanisms of group B coxsackievirus induced viral myocarditis. Virulence 2023; 14:2180951. [PMID: 36827455 PMCID: PMC9980623 DOI: 10.1080/21505594.2023.2180951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Viral myocarditis is known to be a primary cause of dilated cardiomyopathy (DCM) that can lead to heart failure and sudden cardiac death and is invariably caused by myocardial viral infection following active inflammatory destruction of the myocardium. Although acute viral myocarditis frequently recovers on its own, current chronic myocarditis therapies are unsatisfactory, where the persistence of viral or immunological insults to the heart may play a role. Cellular and mouse experimental models that utilized the most prevalent Coxsackievirus group B type 3 (CVB3) virus infection causing myocarditis have illustrated the pathophysiology of viral myocarditis. In this review, immunological insights into the different stages of development of viral myocarditis were discussed, concentrating on the mechanisms of innate and adaptive immunity in the development of CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,School of public health, Nantong University, Nantong, China
| | - Xiaobin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Shuyi Chen
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xinchen Sun
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,CONTACT Chenglin Zhou Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
19
|
Lin YJ, Wang LC, Tsai HP, Chi CY, Chang CP, Chen SH, Wang SM. Antiviral and immunoregulatory effects of curcumin on coxsackievirus B3-infected hepatitis. Virus Res 2023; 336:199203. [PMID: 37625648 PMCID: PMC10485155 DOI: 10.1016/j.virusres.2023.199203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Fulminant hepatitis is a life-threatening complication of coxsackievirus B (CVB) 3 infections. The condition may deteriorate to disseminated intravascular coagulopathy with markedly increased liver enzymes, inflammatory cytokines, and chemokines, which significantly induce local and systemic inflammation. Curcumin exhibits anti-inflammatory and antiviral characteristics in inflammatory and infectious diseases. Here we determined effects of curcumin on viral replications, cytokine and chemokine expressions, and liver damage in CVB3-infected Huh-7 cells. The mouse-adapted CVB3 strain was used to investigate the antiviral and anti-inflammatory effects of curcumin on CVB3-induced hepatitis in a mouse model. In vitro studies showed that curcumin reduced viral protein and titer levels and increased cell viability. Curcumin enhanced the heme oxygenase-1 (HO-1) protein level and decreased the levels of cleaved caspase-3 protein and mRNA of gene encoding C-X-C motif chemokine 10 in infected cells. In vivo studies showed that curcumin improved the survival rate and clinical scores in mice and reduced the viral titer in the liver during CVB3 infection. Moreover, the HO-1 levels were increased, and the cleaved caspase-3 levels were diminished in the CVB3-infected liver. Curcumin reduced the levels of interferon (IFN)-γ and monokine induced by IFN-γ in liver and levels of interleukin (IL)-8 in serum, but increased levels of regulated activation, normal T cell expression in liver and levels of IL-10 in serum of CVB3-infected mice. In summary, curcumin presents antiviral and anti-inflammation efficacies in CVB3 infection in vitro and in vivo; these results provide potential evidence on the feasibility of curcumin for clinical treatment.
Collapse
Affiliation(s)
- Yu-Jheng Lin
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology,College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 70401, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan
| | - Chia-Yu Chi
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan.
| | - Shih-Min Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70401, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan.
| |
Collapse
|
20
|
Wang J, Liu T, Gu S, Yang HH, Xie W, Gao C, Gu D. Cytoplasm Hydrogelation-Mediated Cardiomyocyte Sponge Alleviated Coxsackievirus B3 Infection. NANO LETTERS 2023; 23:8881-8890. [PMID: 37751402 PMCID: PMC10573321 DOI: 10.1021/acs.nanolett.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Indexed: 09/28/2023]
Abstract
Viral myocarditis (VMC), commonly caused by coxsackievirus B3 (CVB3) infection, lacks specific treatments and leads to serious heart conditions. Current treatments, such as IFNα and ribavirin, show limited effectiveness. Herein, rather than inhibiting virus replication, this study introduces a novel cardiomyocyte sponge, intracellular gelated cardiomyocytes (GCs), to trap and neutralize CVB3 via a receptor-ligand interaction, such as CAR and CD55. By maintaining cellular morphology, GCs serve as sponges for CVB3, inhibiting infection. In vitro results revealed that GCs could inhibit CVB3 infection on HeLa cells. In vivo, GCs exhibited a strong immune escape ability and effectively inhibited CVB3-induced viral myocarditis with a high safety profile. The most significant implication of this study is to develop a universal antivirus infection strategy via intracellular gelation of the host cell, which can be employed not only for treating defined pathogenic viruses but also for a rapid response to infection outbreaks caused by mutable and unknown viruses.
Collapse
Affiliation(s)
- Jingzhe Wang
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
- Shenzhen
Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tonggong Liu
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Siyao Gu
- Shenzhen
Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui-hui Yang
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Weidong Xie
- Shenzhen
Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cheng Gao
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Dayong Gu
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| |
Collapse
|
21
|
Li H, Zhang M, Zhao Q, Zhao W, Zhuang Y, Wang J, Hang W, Wen Z, Wang L, Chen C, Wang DW. Self-recruited neutrophils trigger over-activated innate immune response and phenotypic change of cardiomyocytes in fulminant viral myocarditis. Cell Discov 2023; 9:103. [PMID: 37816761 PMCID: PMC10564723 DOI: 10.1038/s41421-023-00593-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/01/2023] [Indexed: 10/12/2023] Open
Abstract
Fulminant myocarditis (FM) is a life-threatening inflammatory disease. However, the mechanisms underlying its acute onset are unknown. By dynamic cardiac function measurement, we discovered that the initiation of sudden hemodynamic collapse was on day 4 in the mouse model of FM. Single-cell RNA-sequencing study revealed that healthy cardiomyocytes (CMs) lost their contractile and metabolic function and differentiated into pro-angiogenic and pro-inflammatory CMs. Meanwhile, neutrophils, the most expanded immune cells, exhibited a unique developmental trajectory only after migrating to the heart, where they continuously attracted peripheral neutrophils via Cxcl2/Cxcl3, resulting in the acute accumulation of neutrophils in the heart. Well-differentiated cardiac-infiltrating neutrophils, rather than viruses, induced phenotypic changes in CMs. Moreover, neutrophils could amplify cytokine storm by recruiting and activating pro-inflammatory monocytes. Blockade of the self-recruiting loop of neutrophils by targeting the Cxcl2/Cxcl3-Cxcr2 axis substantially alleviated FM in mice. Collectively, we provide a comprehensive single-cell atlas of immune cells and CMs in FM, elucidate the disease pathogenesis, and suggest potential therapeutic strategies.
Collapse
Affiliation(s)
- Huihui Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingzhi Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhuang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Tomatis C, León A, López Ortiz AO, Oneto P, Fuentes F, Ferrer MF, Carrera Silva EA, Scorticati C, Gómez RM. Theiler's Murine Encephalomyelitis Virus Replicates in Primary Neuron Cultures and Impairs Spine Density Formation. Neuroscience 2023; 529:162-171. [PMID: 37598833 DOI: 10.1016/j.neuroscience.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
In this study, we examined infection with the highly neurovirulent GDVII, the less neurovirulent DA strains, and with a mutant DA, which lacks the L* protein (L*-1) involved in viral persistence and demyelinating disease, to analyze the direct effects of Theiler's murine encephalomyelitis virus (TMEV) replication using primary cultures of mouse brain hippocampal neurons. All viruses replicate in cultured neurons, with GDVII having the highest titers and L*-1 the lowest. Accordingly, all were positive for viral antigen staining 3 days postinfection (dpi), and DA and L*-1 were also positive after 12 dpi. NeuN + immunostaining showed an early and almost complete absence of positive cells in cultures infected with GDVII, an approximately 50% reduction in cultures infected with DA, and fewer changes in L*-1 strains at 3 dpi. Accordingly, staining with chloromethyltetramethylrosamine orange (Mitotracker OrangeTM) as a parameter for cell viability showed similar results. Moreover, at 1 dpi, the strain DA induced higher transcript levels of neuroprotective genes such as IFN-Iβ, IRF7, and IRF8. At 3 dpi, strains GDVII and DA, but not the L*-1 mutant, showed lower PKR expression. In addition, confocal analysis showed that L*-1-infected neurons exhibited a decrease in spine density. Treatment with poly (I:C), which is structurally related to dsRNA and is known to trigger IFN type I synthesis, reduced spine density even more. These results confirmed the use of mouse hippocampal neuron cultures as a model to study neuronal responses after TMEV infection, particularly in the formation of spine density.
Collapse
Affiliation(s)
- Carla Tomatis
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina; Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-ANM, CABA, Argentina
| | - Antonella León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina
| | - Aída O López Ortiz
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Paula Oneto
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Federico Fuentes
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-ANM, CABA, Argentina
| | - María F Ferrer
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Eugenio A Carrera Silva
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, CONICET-ANM, CABA, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
| | - Ricardo M Gómez
- Laboratorio de Patogénesis viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| |
Collapse
|
23
|
Sun T, Dong C, Xiong S. Cardiomyocyte-derived HMGB1 takes a protective role in CVB3-induced viral myocarditis via inhibiting cardiac apoptosis. Immunol Cell Biol 2023; 101:735-745. [PMID: 37253434 DOI: 10.1111/imcb.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Coxsackievirus B3 (CVB3)-induced viral myocarditis (VMC) is characterized by immune cell infiltration and myocardial damage. High mobility group box 1 (HMGB1) is a highly conserved nuclear DNA-binding protein that participates in DNA replication, transcriptional regulation, repair response and inflammatory response in different disease models. To investigate the exact function of HMGB1 in CVB3-induced VMC, we crossed Hmgb1-floxed (Hmgb1f/f ) mice with mice carrying a suitable Cre recombinase transgenic strain to achieve conditional inactivation of the Hmgb1 gene in a cardiomyocyte-specific manner and to establish myocarditis. In this study, we found that cardiomyocyte-specific Hmgb1-deficient (Hmgb1f/f TgCre/+ ) mice exhibited exacerbated myocardial injury. Hmgb1-deficient cardiomyocytes may promote early apoptosis via the p53-mediated Bax mitochondrial pathway, as evidenced by the higher localization of p53 protein in the cytosol of Hmgb1-deficient cardiomyocytes upon CVB3 infection. Moreover, cardiomyocyte Hmgb1-deficient mice are more susceptible to cardiac dysfunction after infection. This study provides new insights into HMGB1 in VMC pathogenesis and a strategy for appropriate blocking of HMGB1 in the clinical treatment of VMC.
Collapse
Affiliation(s)
- Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Conley HE, Sheats MK. Targeting Neutrophil β 2-Integrins: A Review of Relevant Resources, Tools, and Methods. Biomolecules 2023; 13:892. [PMID: 37371473 DOI: 10.3390/biom13060892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophils are important innate immune cells that respond during inflammation and infection. These migratory cells utilize β2-integrin cell surface receptors to move out of the vasculature into inflamed tissues and to perform various anti-inflammatory responses. Although critical for fighting off infection, neutrophil responses can also become dysregulated and contribute to disease pathophysiology. In order to limit neutrophil-mediated damage, investigators have focused on β2-integrins as potential therapeutic targets, but so far these strategies have failed in clinical trials. As the field continues to move forward, a better understanding of β2-integrin function and signaling will aid the design of future therapeutics. Here, we provide a detailed review of resources, tools, experimental methods, and in vivo models that have been and will continue to be utilized to investigate the vitally important cell surface receptors, neutrophil β2-integrins.
Collapse
Affiliation(s)
- Haleigh E Conley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
25
|
Xu J, Zhou Z, Zheng Y, Yang S, Huang K, Li H. Roles of inflammasomes in viral myocarditis. Front Cell Infect Microbiol 2023; 13:1149911. [PMID: 37256114 PMCID: PMC10225676 DOI: 10.3389/fcimb.2023.1149911] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Viral myocarditis (VMC), characterized by viral infection-induced inflammation, is a life-threatening disease associated with dilated cardiomyopathy or heart failure. Innate immunity plays a crucial role in the progression of inflammation, in which inflammasomes provide a platform for the secretion of cytokines and mediate pyroptosis. Inflammasomes are rising stars gaining increasing attention. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the caspase recruitment domain-containing protein 8 (CARD8) inflammasome, and the caspase-11 inflammasome are three inflammasomes that were reported to affect the process and prognosis of VMC. These inflammasomes can be activated by a wide range of cellular events. Accumulating evidence has suggested that inflammasomes are involved in different stages of VMC, including the trigger and progression of myocardial injury and remodeling after infection. In this review, we summarized the pathways involving inflammasomes in VMC and discussed the potential therapies targeting inflammasomes and related pathways.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidan Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Rodríguez CS, Charó N, Tatti S, Gómez RM, D’Atri LP, Schattner M. Regulation of megakaryo/thrombopoiesis by endosomal toll-like receptor 7 and 8 activation of CD34 + cells in a viral infection model. Res Pract Thromb Haemost 2023; 7:100184. [PMID: 37538496 PMCID: PMC10394566 DOI: 10.1016/j.rpth.2023.100184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND CD34+ cells, megakaryocytes (MKs), and platelets express toll-like receptors (TLRs) that enable these cells to amplify the host innate immune response. However, the role of TLR7/TLR8 activation in megakaryopoiesis has not yet been investigated. OBJECTIVES We evaluated the effect of coxsackievirus B3 (CVB3) and synthetic TLR7/TLR8 agonists on the development of human MKs and production of platelets. METHODS CD34+ cells from human umbilical cord were inoculated with CVB3 or stimulated with synthetic TLR7/TLR8 agonists and then cultured in the presence of thrombopoietin. RESULTS CD34+ cells, MK progenitor cells, and mature MKs expressed TLR7 and TLR8, and exposure to CVB3 resulted in productive infection, as determined by the presence of viral infectious particles in culture supernatants. Cell expansion, differentiation into MKs, MK maturation, and platelet biogenesis were significantly reduced in CD34+-infected cultures. The reduction in MK growth was not due to an alteration in cellular proliferation but was accompanied by an increase in cellular apoptosis and pyroptosis. Impairment of MK generation and maturation of viable cells were also associated with decreased expression of transcription factors involved in these processes. These effects were completely abrogated by TLR7 but not TLR8 antagonists and mimicked by TLR7 but not TLR8 agonists. CVB3 infection of CD34+ cells increased the immunophenotype of MKs characterized as CD148+/CD48+ or CD41+/CD53+ cells. CONCLUSION These data suggest a novel role of TLR7 in megakaryo/thrombopoiesis that may contribute to a better understanding of the molecular basis underlying thrombocytopenia and the immunologic role of MKs in viral infection processes.
Collapse
Affiliation(s)
- Camila Sofía Rodríguez
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, IMEX-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Nancy Charó
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, IMEX-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | | | - Ricardo Martín Gómez
- Laboratory of Animal Viruses, Institute of Biotechnology and Molecular Biology, UNLP-CONICET, La Plata, Argentina
| | - Lina Paola D’Atri
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, IMEX-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, IMEX-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| |
Collapse
|
27
|
Carai P, González LF, Van Bruggen S, Spalart V, De Giorgio D, Geuens N, Martinod K, Jones EAV, Heymans S. Neutrophil inhibition improves acute inflammation in a murine model of viral myocarditis. Cardiovasc Res 2023; 118:3331-3345. [PMID: 35426438 PMCID: PMC9847559 DOI: 10.1093/cvr/cvac052] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Viral myocarditis (VM) is an inflammatory pathology of the myocardium triggered by a viral infection that may cause sudden death or heart failure (HF), especially in the younger population. Current treatments only stabilize and improve cardiac function without resolving the underlying inflammatory cause. The factors that induce VM to progress to HF are still uncertain, but neutrophils have been increasingly associated with the negative evolution of cardiac pathologies. The present study investigates the contribution of neutrophils to VM disease progression in different ways. METHODS AND RESULTS In a coxsackievirus B3- (CVB3) induced mouse model of VM, neutrophils and neutrophil extracellular traps (NETs) were prominent in the acute phase of VM as revealed by enzyme-linked immunosorbent assay analysis and immunostaining. Anti-Ly6G-mediated neutrophil blockade starting at model induction decreased cardiac necrosis and leucocyte infiltration, preventing monocyte and Ly6CHigh pro-inflammatory macrophage recruitment. Furthermore, genetic peptidylarginine deiminase 4-dependent NET blockade reduced cardiac damage and leucocyte recruitment, significantly decreasing cardiac monocyte and macrophage presence. Depleting neutrophils with anti-Ly6G antibodies at 7 days post-infection, after the acute phase, did not decrease cardiac inflammation. CONCLUSION Collectively, these results indicate that the repression of neutrophils and the related NET response in the acute phase of VM improves the pathological phenotype by reducing cardiac inflammation.
Collapse
Affiliation(s)
- Paolo Carai
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Laura Florit González
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiology, Experimental Cardiology Laboratory, Utrecht University, Utrecht, The Netherlands
| | - Stijn Van Bruggen
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Valerie Spalart
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Daria De Giorgio
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Nadéche Geuens
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Anne Vincent Jones
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Stephane Heymans
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
28
|
Harding D, Chong MHA, Lahoti N, Bigogno CM, Prema R, Mohiddin SA, Marelli-Berg F. Dilated cardiomyopathy and chronic cardiac inflammation: Pathogenesis, diagnosis and therapy. J Intern Med 2023; 293:23-47. [PMID: 36030368 DOI: 10.1111/joim.13556] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dilated cardiomyopathy (DCM) is typically defined by left ventricular dilation and systolic dysfunction in the absence of a clear precipitant. Idiopathic disease is common; up to 50% of patients with DCM have no cause found despite imaging, genetic and biopsy assessments. Treatment remains focused on managing symptoms, reducing the risk of sudden cardiac death and ameliorating the structural and electrical complications of disease progression. In the absence of aetiology-specific treatments, the condition remains associated with a poor prognosis; mortality is approximately 40% at 10 years. The role of immune-mediated inflammatory injury in the development and progression of DCM was first proposed over 30 years ago. Despite the subsequent failures of three large clinical trials of immunosuppressive treatment (ATTACH, RENEWAL and the Myocarditis Treatment Trial), evidence for an abnormal adaptive immune response in DCM remains significant. In this review, we summarise and discuss available evidence supporting immune dysfunction in DCM, with a specific focus on cellular immunity. We also highlight current clinical and experimental treatments. We propose that the success of future immunosuppressive treatment trials in DCM will be dependent on the deep immunophenotyping of patients, to identify those with active inflammation and/or an abnormal immune response who are most likely to respond to therapy.
Collapse
Affiliation(s)
- Daniel Harding
- Centre for Biochemical Pharmacology, William Harvey Research Institute, London, UK
| | - Ming H A Chong
- Barts and The London School of Medicine and Dentistry, London, UK
| | - Nishant Lahoti
- Conquest Hospital, East Sussex Healthcare NHS Trust, St Leonards-on-Sea, UK
| | - Carola M Bigogno
- Barts and The London School of Medicine and Dentistry, London, UK
| | - Roshni Prema
- University Hospital, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | | |
Collapse
|
29
|
Wienecke LM, Leid JM, Leuschner F, Lavine KJ. Imaging Targets to Visualize the Cardiac Immune Landscape in Heart Failure. Circ Cardiovasc Imaging 2023; 16:e014071. [PMID: 36649453 PMCID: PMC9858350 DOI: 10.1161/circimaging.122.014071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heart failure involves a complex interplay between diverse populations of immune cells that dynamically shift across the natural history of disease. Within this context, the character of the immune response is a key determinant of clinical outcomes. Recent technological advances in single-cell transcriptomic, spatial, and proteomic technologies have fueled an explosion of new and clinically relevant insights into distinct immune cell populations that reside within the diseased heart including potential targets for molecular imaging and therapy. In this review, we will discuss the immune cell types and their respective functions with respect to myocardial infarction remodeling, dilated cardiomyopathy, and heart failure with preserved ejection fraction. In addition, we give a brief overview regarding myocarditis and cardiac sarcoidosis as inflammatory heart failure etiologies. We will highlight markers and cell populations as targets for molecular imaging to visualize inflammation and tissue healing and discuss clinical implications including the development and implementation of precision medicine approaches.
Collapse
Affiliation(s)
- Laura M. Wienecke
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Jamison M. Leid
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Florian Leuschner
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Regenerative Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
30
|
Qian Y, Yang Y, Qing W, Li C, Kong M, Kang Z, Zuo Y, Wu J, Yu M, Yang Z. Coxsackievirus B3 infection induces glycolysis to facilitate viral replication. Front Microbiol 2022; 13:962766. [PMID: 36569097 PMCID: PMC9780277 DOI: 10.3389/fmicb.2022.962766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a leading cause of viral myocarditis, but no effective treatment strategy against CVB3 is available. Viruses lack an inherent metabolic system and thus depend on host cellular metabolism for their benefit. In this study, we observed that CVB3 enhanced glycolysis in H9c2 rat cardiomyocytes and HL-1 mouse cardiomyocytes. Therefore, three key glycolytic enzymes, namely, hexokinase 2 (HK2), muscle phosphofructokinase (PFKM), and pyruvate kinase M2 (PKM2), were measured in CVB3-infected H9c2 and HL-1 cells. Expression levels of HK2 and PFKM, but not PKM2, were increased in CVB3-infected H9c2 cells. All three key glycolytic enzymes showed elevated expression in CVB3-infected HL-1 cells. To further investigate this, we used 2 deoxyglucose, sodium citrate, and shikonin as glycolysis inhibitors for HK2, PFKM, and PKM2, respectively. Glycolysis inhibitors significantly reduced CVB3 replication, while the glycolysis enhancer dramatically promoted it. In addition, glycolysis inhibitors decreased autophagy and accelerated autophagosome degradation. The autophagy inducer eliminated partial inhibition effects of glycolysis inhibitors on CVB3 replication. These results demonstrate that CVB3 infection enhances glycolysis and thus benefits viral replication.
Collapse
Affiliation(s)
- Yujie Qian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yeyi Yang
- Department of Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenxiang Qing
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunyun Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Min Kong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijuan Kang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanbojiao Zuo
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiping Wu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meng Yu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Zuocheng Yang
| |
Collapse
|
31
|
Li B, Cao X, Ai G, Liu Y, Lv C, Jin L, Xu R, Zhao G, Yuan H. Interleukin-37 alleviates myocardial injury induced by coxsackievirus B3 via inhibiting neutrophil extracellular traps formation. Int Immunopharmacol 2022; 113:109343. [DOI: 10.1016/j.intimp.2022.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
32
|
Muacevic A, Adler JR. A Little Neutrophil Predominance May Not Be a Harbinger of Death: Clinical and Laboratory Characteristics of Meningitis in Jordan. Cureus 2022; 14:e29864. [PMID: 36337784 PMCID: PMC9628797 DOI: 10.7759/cureus.29864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background This study aims to evaluate the clinical features, laboratory findings, and outcomes of children and adults diagnosed with meningitis in Jordan. Methodology This is a retrospective chart review study that targeted patients diagnosed with meningitis at King Abdullah University Hospital, a tertiary care center in Northern Jordan, from March 21, 2015, to March 31, 2019. Patients were included in this study if they were older than 28 days and had no risk factors for meningitis. Results A total of 169 patients met the inclusion criteria. Males were overrepresented (67%) and were significantly younger than females (6 vs. 17 years, p = 0.01). Positive meningeal signs were not predictive of greater cerebrospinal fluid leukocytosis (p = 0.348), and they did not provide sufficient sensitivity to be used as screening tools. The most common etiology was aseptic (49%), followed by enterovirus (43%), while bacterial meningitis was an uncommon diagnosis (3.5%). Nearly half of the patients took antibiotics prior to their hospital presentation. During in-hospital admission, six patients died, four of whom had bacterial and two had aseptic meningitis. Enteroviral meningitis showed neutrophil predominance in 44% of cases on lumbar puncture and had a higher neutrophil proportion compared to aseptic meningitis (p = 0.026). Streptococcus pneumoniae was the most common bacterial etiology identified. Conclusions Meningitis in Jordan is most commonly of aseptic and enteroviral origin, and these etiologies carry significantly more favorable outcomes compared to bacterial meningitis. Enteroviral meningitis displays a higher percentage of neutrophils in cerebrospinal fluid compared to aseptic meningitis. S. pneumoniae is the leading cause of bacterial meningitis. Slight neutrophil predominance above half is a weak predictor of bacterial meningitis due to the small contribution of bacteria as a cause among enteroviruses and aseptic etiologies.
Collapse
|
33
|
Establishment of a novel myocarditis mouse model based on cyclosporine A. Genes Genomics 2022; 44:1593-1605. [PMID: 35666459 DOI: 10.1007/s13258-022-01267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Myocarditis is a myocardial injury that can easily cause adolescent death. Traditional research models of animal invasion with viral components, lipopolysaccharide (LPS) or porcine myocardial myosin, among others, have the shortcomings of potential biological safety hazards and high animal mortality. OBJECTIVE To explore the construction of a novel myocarditis model with cyclosporine A and the potential genes and pathways associated with it. METHODS BALB/c mice were used in this study, and cyclosporin A and LPS were injected into the peritoneal cavity of mice. The successful establishment of the model was assessed by detecting serum myocardial injury markers and inflammatory factors levels, HE, IHC staining, and RT-qPCR methods. Key genes were obtained using the GSE35182 dataset from the GEO database and validated with the RT-qPCR method. RESULTS We found that a large number of inflammatory cells infiltrated the myocardium of mice in each group of Cyclosporin A constructed model, while the expression of inflammatory factor indicators was increased, and this model has the characteristics of high degree of local inflammation in myocardial tissue, low mortality, and safe and non-toxic treatment. Using GSE35182 data, we selected 18 Hub genes and validated Hub genes in myocardial tissue with RT-qPCR and found that multiple signaling pathways such as Toll-likereceptor signaling pathway(TLRs), Rap1 signal pathway(Rap1), and Chemokine signaling pathway may be involved in the development of myocarditis. CONCLUSION Cyclosporin A can construct a new myocarditis model, and TLRs, Chemokines and Rap1 signaling pathways may be the core pathways of myocarditis.
Collapse
|
34
|
Zheng SY, Dong JZ. Role of Toll-Like Receptors and Th Responses in Viral Myocarditis. Front Immunol 2022; 13:843891. [PMID: 35514979 PMCID: PMC9062100 DOI: 10.3389/fimmu.2022.843891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Myocarditis is the common cause of sudden cardiac death, dilated cardiomyopathy (DCM) and heart failure (HF) in young adults. The most common type of myocarditis is viral myocarditis (VMC). Toll-like receptors (TLRs) are vital to identify pathogens in vivo. TLRs promote the differentiation of naive CD4+T cells to T helper (Th) cells, activate the immune response, and participate in the pathogenesis of autoimmune and allergic diseases. Although the pathogenesis of VMC is unclear, autoimmune responses have been confirmed to play a significant role; hence, it could be inferred that VMC is closely related to TLRs and Th responses. Some drugs have been found to improve the prognosis of VMC by regulating the immune response through activated TLRs. In this review, we discuss the role of TLRs and Th responses in VMC.
Collapse
Affiliation(s)
- Shi-Yue Zheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jian-Zeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Lasrado N, Borcherding N, Arumugam R, Starr TK, Reddy J. Dissecting the cellular landscape and transcriptome network in viral myocarditis by single-cell RNA sequencing. iScience 2022; 25:103865. [PMID: 35243228 PMCID: PMC8861636 DOI: 10.1016/j.isci.2022.103865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Coxsackievirus B3 (CVB3)-induced myocarditis is commonly employed to study viral pathogenesis in mice. Chronically affected mice may develop dilated cardiomyopathy, which may involve the mediation of immune and nonimmune cells. To dissect this complexity, we performed single-cell RNA sequencing on heart cells from healthy and myocarditic mice, leading us to note significant proportions of myeloid cells, T cells, and fibroblasts. Although the transcriptomes of myeloid cells were mainly of M2 phenotype, the Th17 cells, CTLs, and Treg cells had signatures critical for cytotoxic functions. Fibroblasts were heterogeneous expressing genes important in fibrosis and regulation of inflammation and immune responses. The intercellular communication networks revealed unique interactions and signaling pathways in the cardiac cellulome, whereas myeloid cells and T cells had upregulated unique transcription factors modulating cardiac remodeling functions. Together, our data suggest that M2 cells, T cells, and fibroblasts may cooperatively or independently participate in the pathogenesis of viral myocarditis.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Rajkumar Arumugam
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Timothy K. Starr
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
36
|
LncRNA ROR promotes NLRP3-mediated cardiomyocyte pyroptosis by upregulating FOXP1 via interactions with PTBP1. Cytokine 2022; 152:155812. [PMID: 35180562 DOI: 10.1016/j.cyto.2022.155812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The purpose of this design was to explore the specific role and related mechanism of long noncoding RNA (lncRNA) regulators of reprogramming (ROR) in viral myocarditis (VMC). METHODS AC16 cells were infected with coxsackievirus B3 (CVB3) to establish a VMC cell model in vitro. The release of interleukin (IL)-1β and IL-18 was evaluated by enzyme-linked immunosorbent assay (ELISA). Gene expression was calculated using quantitative real-time (qRT)-PCR. Cell pyroptosis was determined by flow cytometry and Western blot assays. Cell counting Kit-8 (CCK-8) detected cell viability. The molecular associations were verified by employing RNA immunoprecipitation (RIP), RNA pulldown and chromatin immunoprecipitation (ChIP) assays. RESULTS The lncRNA ROR was more highly expressed in CVB3 virus-infected AC16 cells than in controls. Knockdown of ROR markedly rescued cell viability and reduced the release of IL-1β and IL-18, cell pyroptosis and pyroptotic proteins such as NLRP3, ASC and cleaved caspase 1. Mechanistically, ROR destroyed the mRNA stability of Forkhead Box P Factor 1 (FOXP1) by binding polypyrimidine tract binding protein 1 (PTBP1). FOXP1 repressed the transcription of NLRP3 by directly interacting with its promoter. Importantly, coinhibition of FOXP1 impeded the protective role of ROR silencing in CVB3-infected AC16 cells. CONCLUSION In conclusion, these findings elucidated that ROR knockdown inhibited CVB3-induced cardiomyocyte inflammation and NLRP3-mediated pyroptosis by regulating the PTBP1/FOXP1 axis, implying that ROR might be a new inducer in CVB3-infected VMC.
Collapse
|
37
|
Nie X, Fan J, Li H, Wang J, Xie R, Chen C, Wang DW. Identification of Cardiac CircRNAs in Mice With CVB3-Induced Myocarditis. Front Cell Dev Biol 2022; 10:760509. [PMID: 35198554 PMCID: PMC8859109 DOI: 10.3389/fcell.2022.760509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Viral myocarditis could initiate various immune response to the myocardium, resulting in myocyte damage and subsequent cardiac dysfunction. The expression profile and functions of circRNAs in this process are unknown. Methods: Fulminant myocarditis (FM) and non-FM models were induced by coxsackie B3 virus (CVB3) infection in A/J mice and C57BL/6 mice, respectively. CircRNAs expression profile was identified by RNA-seq. Quantitative RT-PCR, Spearman rank correlation, KEGG pathway, GO analysis, Western blot and flow cytometry were performed for functional analysis. Results: Severer inflammatory cell infiltration and cardiomyocyte necrosis were presented in CVB3-treated A/J mice than those in C57BL/6 mice. The dysregulated circRNAs in both of the mouse strains displayed strong correlation with the immune response, but dysregulated circRNAs in A/J mice were more prone to cardiac dysfunction. KEGG analysis indicated that the target genes of dysregulated circRNAs in A/J mice were mainly involved in viral infection, T cell and B cell receptor signaling pathways, while the target genes of dysregulated circRNAs in C57BL/6 mice were unrelated to immune pathways. Furthermore, knockdown of circArhgap32 that was downregulated in CVB3-treated A/J mice promoted cardiomyocyte apoptosis in vitro. Conclusion: Our data showed that cardiac circRNAs dysregulation is an important characteristic of viral myocarditis.
Collapse
Affiliation(s)
| | | | | | | | | | - Chen Chen
- *Correspondence: Chen Chen, ; Dao Wen Wang,
| | | |
Collapse
|
38
|
Viruses in the Heart: Direct and Indirect Routes to Myocarditis and Heart Failure. Viruses 2021; 13:v13101924. [PMID: 34696354 PMCID: PMC8537553 DOI: 10.3390/v13101924] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023] Open
Abstract
Viruses are an underappreciated cause of heart failure. Indeed, several types of viral infections carry cardiovascular risks. Understanding shared and unique mechanisms by which each virus compromises heart function is critical to inform on therapeutic interventions. This review describes how the key viruses known to lead to cardiac dysfunction operate. Both direct host-damaging mechanisms and indirect actions on the immune systems are discussed. As viral myocarditis is a key pathologic driver of heart failure in infected individuals, this review also highlights the role of cytokine storms and inflammation in virus-induced cardiomyopathy.
Collapse
|
39
|
Nie X, Li H, Wang J, Cai Y, Fan J, Dai B, Chen C, Wang DW. Expression Profiles and Potential Functions of Long Non-Coding RNAs in the Heart of Mice With Coxsackie B3 Virus-Induced Myocarditis. Front Cell Infect Microbiol 2021; 11:704919. [PMID: 34504807 PMCID: PMC8423026 DOI: 10.3389/fcimb.2021.704919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Aims Long non-coding RNAs (lncRNAs) are critical regulators of viral infection and inflammatory responses. However, the roles of lncRNAs in acute myocarditis (AM), especially fulminant myocarditis (FM), remain unclear. Methods FM and non-fulminant myocarditis (NFM) were induced by coxsackie B3 virus (CVB3) in different mouse strains. Then, the expression profiles of the lncRNAs in the heart tissues were detected by sequencing. Finally, the patterns were analyzed by Pearson/Spearman rank correlation, Kyoto Encyclopedia of Genes and Genomes, and Cytoscape 3.7. Results First, 1,216, 983, 1,606, and 2,459 differentially expressed lncRNAs were identified in CVB3-treated A/J, C57BL/6, BALB/c, and C3H mice with myocarditis, respectively. Among them, 88 lncRNAs were commonly dysregulated in all four models. Quantitative real-time polymerase chain reaction analyses further confirmed that four out of the top six commonly dysregulated lncRNAs were upregulated in all four models. Moreover, the levels of ENSMUST00000188819, ENSMUST00000199139, and ENSMUST00000222401 were significantly elevated in the heart and spleen and correlated with the severity of cardiac inflammatory infiltration. Meanwhile, 923 FM-specific dysregulated lncRNAs were detected, among which the levels of MSTRG.26098.49, MSTRG.31307.11, MSTRG.31357.2, and MSTRG.32881.28 were highly correlated with LVEF. Conclusion Expression of lncRNAs is significantly dysregulated in acute myocarditis, which may play different roles in the progression of AM.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Li
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Cai
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Fan
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beibei Dai
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Ma Y, Zhang Y, Zhu L. Role of neutrophils in acute viral infection. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1186-1196. [PMID: 34472718 PMCID: PMC8589350 DOI: 10.1002/iid3.500] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
Neutrophils play multiple roles in acute viral infections. They restrict viral replication and diffusion through phagocytosis, degranulation, respiratory burst, secretion of cytokines, and the release of neutrophil extracellular traps, as well as, activate the adaptive immune response. However, the overactivation of neutrophils may cause tissue damage and lead to poor outcomes. Additionally, some characteristics and functions of neutrophils, such as cell number, lifespan, and antiviral capability, can be influenced while eliminating viruses. This review provides a general description of the protective and pathological roles of neutrophils in acute viral infection.
Collapse
Affiliation(s)
- Yuan Ma
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Comparison and Analysis on the Existing Single-Herbal Strategies against Viral Myocarditis. Genet Res (Camb) 2021; 2021:9952620. [PMID: 34456633 PMCID: PMC8371739 DOI: 10.1155/2021/9952620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Purpose Herbal medicine is one of crucial symbols of Chinese national medicine. Investigation on molecular responses of different herbal strategies against viral myocarditis is immeasurably conducive to targeting drug development in the current international absence of miracle treatment. Methods Literature retrieval platforms were applied in the collection of existing empirical evidences for viral myocarditis-related single-herbal strategies. SwissTargetPrediction, Metascape, and Discovery Studio coordinating with multidatabases investigated underlying target genes, interactive proteins, and docking molecules in turn. Results Six single-herbal medicines consisting of Huangqi (Hedysarum Multijugum Maxim), Yuganzi (Phyllanthi Fructus), Kushen (Sophorae Flavescentis Radix), Jianghuang (Curcumaelongae Rhizoma), Chaihu (Radix Bupleuri), and Jixueteng (Spatholobus Suberectus Dunn) meet the requirement. There were 11 overlapped and 73 unique natural components detected in these herbs. SLC6A2, SLC6A4, NOS2, PPARA, PPARG, ACHE, CYP2C19, CYP51A1, and CHRM2 were equally targeted by six herbs and identified as viral myocarditis-associated symbols. MCODE algorithm exposed the hub role of SRC and EGFR in strategies without Jianghuang. Subsequently, we learned intermolecular interactions of herbal components and their targeting heart-tissue-specific CHRM2, FABP3, TNNC1, TNNI3, TNNT2, and SCN5A and cardiac-myocytes-specific IL6, MMP1, and PLAT coupled with viral myocarditis. Ten interactive characteristics such as π-alkyl and van der Waals were modeled in which ARG111, LYS253, ILE114, and VAL11 on cardiac troponin (TNNC1-TNNI3-TNNT2) and ARG208, ASN106, and ALA258 on MMP1 fulfilled potential communicating anchor with ellagic acid, 5α, 9α-dihydroxymatrine, and leachianone g via hydrogen bond and hydrophobic interaction, respectively. Conclusions The comprehensive outcomes uncover differences and linkages between six herbs against viral myocarditis through component and target analysis, fostering development of drugs.
Collapse
|
42
|
Shi H, Yu Y, Wang Y, Liu X, Yu Y, Li M, Zou Y, Chen R, Ge J. Inhibition of Calpain Alleviates Apoptosis in Coxsackievirus B3-induced Acute Virus Myocarditis Through Suppressing Endoplasmic Reticulum Stress. Int Heart J 2021; 62:900-909. [PMID: 34234076 DOI: 10.1536/ihj.20-803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Virus myocarditis (VMC) is a common cardiovascular disease and a major cause of sudden death in young adults. However, there is still a lack of effective treatments. Our previous studies found that calpain activation was involved in VMC pathogenesis. This study aims to explore the underlying mechanisms further. Neonatal rat cardiomyocytes (NRCMs) and transgenic mice overexpressing calpastatin (Tg-CAST), the endogenous calpain inhibitor, were used to establish VMC model. Hematoxylin and eosin and Masson staining revealed inflammatory cell infiltration and fibrosis. An ELISA array detected myocardial injury. Cardiac function was measured using echocardiography. CVB3 replication was assessed by capsid protein VP1. Apoptosis was measured by TUNEL staining, flow cytometry, and western blot. The endoplasmic reticulum (ER) stress-related proteins were detected by western blot. Our data showed that CVB3 infection resulted in cardiac injury, as evidenced by increased inflammatory responses and fibrosis, which induced myocardial apoptosis. Inhibiting calpain, both by PD150606 and calpastatin overexpression, could attenuate these effects. Furthermore, ER stress was activated during CVB3 infection. However, calpain inhibition could downregulate some ER stress-associated protein levels such as GRP78, pancreatic ER kinase-like ER kinase (PERK), and inositol-requiring enzyme-1α (IRE-1α), and ER stress-related apoptotic factors, during CVB3 infection. In conclusion, calpain inhibition attenuated CVB3-induced myocarditis by suppressing ER stress, thereby inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Hui Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yucheng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Xiaoxiao Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yong Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Minghui Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| |
Collapse
|
43
|
Dai Q, He X, Yu H, Bai Y, Jiang L, Sheng H, Peng J, Wang M, Yu J, Zhang K. Berberine impairs coxsackievirus B3-induced myocarditis through the inhibition of virus replication and host pro-inflammatory response. J Med Virol 2021; 93:3581-3589. [PMID: 33336842 PMCID: PMC8247049 DOI: 10.1002/jmv.26747] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Berberine (BBR), an isoquinoline alkaloid isolated from Rhizoma coptidis, is reported to possess antiviral activity. Our previous study has shown that BBR alleviates coxsackievirus B3 (CVB3) replication in HeLa cells. However, the anti-CVB3 activity of BBR is still unclear in vivo. In this study, we explored the effect of BBR on CVB3-induced viral myocarditis in mice. These results demonstrated the beneficial effect of BBR on alleviating CVB3-induced myocarditis in vivo, which sheds new light on the utility of BBR as a therapeutic strategy against CVB3-induced viral myocarditis.
Collapse
Affiliation(s)
- Qian Dai
- Clinical Medicine Research Center, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaomei He
- Clinical Medicine Research Center, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Hua Yu
- Clinical Medicine Research Center, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Ying Bai
- Department of Endocrinology and Metabolism, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Lu Jiang
- Clinical Medicine Research Center, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Halei Sheng
- Clinical Medicine Research Center, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jin Peng
- Clinical Medicine Research Center, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Maolin Wang
- Clinical Medicine Research Center, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jiang Yu
- Department of Outpatient, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Kebin Zhang
- Clinical Medicine Research Center, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
44
|
Khawaja A, Bromage DI. The innate immune response in myocarditis. Int J Biochem Cell Biol 2021; 134:105973. [PMID: 33831592 DOI: 10.1016/j.biocel.2021.105973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Acute myocarditis is an inflammatory condition of the heart characterised by cellular injury and the influx of leucocytes, including neutrophils, monocytes, macrophages and lymphocytes. While this response is vital for tissue repair, excessive scar deposition and maladaptive ventricular remodelling can result in a legacy of heart failure. It is increasingly recognised as a clinical phenomenon due, in part, to increased availability of cardiac magnetic resonance imaging in patients presenting with chest pain in the absence of significant coronary artery disease. Emerging epidemiological evidence has associated myocarditis with poor outcomes in the context of left ventricular impairment, and even when the left ventricle is preserved outcomes are less benign than once thought. Despite this, our understanding of the contribution of the inflammatory response to the pathophysiology of acute myocarditis lags behind that of acute myocardial infarction, which is the vanguard cardiovascular condition for inflammation research. We recently reviewed monocyte and macrophage phenotype and function in acute myocardial infarction, concluding that their plasticity and heterogeneity might account for conflicting evidence from attempts to target specific leucocyte subpopulations. Here, we revise our understanding of myocardial inflammation, which is predominantly derived from myocardial infarction research, review experimental evidence for the immune response in acute myocarditis, focusing on innate immunity, and discuss potential future directions for immunotherapy research in acute myocarditis.
Collapse
Affiliation(s)
- Abdullah Khawaja
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
45
|
Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687096. [PMID: 33680285 PMCID: PMC7929675 DOI: 10.1155/2021/6687096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
46
|
Huang M, Zhang W, Chen H, Zeng J. Targeting Polyamine Metabolism for Control of Human Viral Diseases. Infect Drug Resist 2020; 13:4335-4346. [PMID: 33293837 PMCID: PMC7718961 DOI: 10.2147/idr.s262024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
A virus is an infectious particle which generally contains nucleic acid genome (DNA or RNA inside a protein shell), except for human immunodeficiency virus (HIV). Viruses have to reproduce by infecting their host cells. Polyamines are ubiquitous compounds in mammalian cells and play key roles in various cellular processes. The metabolic pathways of polyamines have been well studied. Targeting these metabolic pathways can reduce infections caused by viruses. In the study, we systematically reviewed the association of polyamine metabolic pathways and viruses including coxsackievirus B3 (CVB3), enterovirus 71 (EV71), poliovirus (PV), Zika virus (ZKV), hepatitis C virus (HCV), hepatitis B virus (HBV), dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), Ebola virus (EBOV), marburgvirus (MARV), chikungunya virus (CHIKV), sindbis virus (SINV), Semliki Forest virus (SFV), Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV), human cytomegalovirus (HCMV), vesicular stomatitis virus (VSV), Rabies virus (RABV), Rift Valley fever virus (RVFV), La Crosse virus (LACV), human immunodeficiency virus (HIV), Middle East respiratory syndrome virus (MERS-CoV), and coronavirus disease 2019 (SARS-CoV-2). This review revealed that targeting polyamine metabolic pathways may be a potential approach to control human viral infection.
Collapse
Affiliation(s)
- Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan523808, People’s Republic of China
| | - Weijian Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan523808, People’s Republic of China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong524023, People’s Republic of China
| |
Collapse
|
47
|
Katayama H. Can immunological manipulation defeat SARS-CoV-2? Why G-CSF induced neutrophil expansion is worth a clinical trial: G-CSF treatment against COVID-19. Bioessays 2020; 43:e2000232. [PMID: 33166093 DOI: 10.1002/bies.202000232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Immunity against SARS-CoV-2 that is acquired by convalescent COVID-19 patients is examined in reference to (A) the Th17 cell generation system in psoriatic epidermis and (B) a recently discovered phenomenon in which Th17 cells are converted into tissue-resident memory T (TRM ) cells with Th1 phenotype. Neutrophils that are attracted to the site of infection secrete IL-17A, which stimulates lung epithelial cells to express CCL20. Natural Th17 (nTh17) cells are recruited to the infection site by CCL20 and expand in the presence of IL-23. These nTh17 cells are converted to TRM cells upon encounter with SARS-CoV-2 and continue to exist as ex-Th17 cells, which exert Th1-like immunity during a memory response. G-CSF can induce nTh17 cell accumulation at the infection site because it promotes neutrophil egress from the bone marrow. Hence, G-CSF may be effective against COVID-19. Administration of G-CSF to patients infected with SARS-CoV-2 is worth a clinical trial.
Collapse
|
48
|
Abstract
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.
Collapse
|
49
|
Bouin A, Semler BL. Picornavirus Cellular Remodeling: Doubling Down in Response to Viral-Induced Inflammation. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:31-37. [PMID: 32704466 PMCID: PMC7377643 DOI: 10.1007/s40588-020-00138-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Purpose of Review To highlight recent findings on how picornavirus infections of the airways and cardiac tissues impact cellular inflammation and remodeling events. Recent Findings Recent published work has revealed that although many picornavirus infections appear to be initially asymptomatic, there are significant disease sequelae that result from chronic or persistent infections and the long-term, pathogenic effects on host tissues. Summary Because many acute picornavirus infections are asymptomatic, it is difficult to diagnose these pathologies at the early stages of disease. As a result, we must rely on preventative measures (i.e., vaccination) or discover novel treatments to reverse tissue damage and remodeling in affected individuals. Both of these strategies will require a comprehensive knowledge of virus-and cell-specific replication determinants and how these processes induce pathogenic effects in infected cells and tissues.
Collapse
Affiliation(s)
- Alexis Bouin
- Department of Microbiology & Molecular Genetics and Center for Virus Research, School of Medicine, University of California, Med Sci Bldg, Room B237, Irvine, CA 92697-4025, USA
| | - Bert L Semler
- Department of Microbiology & Molecular Genetics and Center for Virus Research, School of Medicine, University of California, Med Sci Bldg, Room B237, Irvine, CA 92697-4025, USA
| |
Collapse
|
50
|
Yan K, Yang J, Qian Q, Xu D, Liu H, Wei L, Li M, Xu W. Pathogenic Role of an IL-23/γδT17/Neutrophil Axis in Coxsackievirus B3-Induced Pancreatitis. THE JOURNAL OF IMMUNOLOGY 2019; 203:3301-3312. [PMID: 31748346 DOI: 10.4049/jimmunol.1900787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/12/2019] [Indexed: 12/16/2022]
Abstract
Coxsackievirus B is a common cause of viral myocarditis and pancreatitis. IL-17A is intensively involved in the pathogenesis of viral myocarditis. Whether IL-17A plays a role in Coxsackievirus B-induced pancreatitis, characterized by acinar cell destruction and immune infiltration, remains largely unknown. We found a significant, but transient, increase of IL-17A expression and γδT influx in the pancreas of C57BL/6J mice within 3 d following CVB3 infection. The pancreatic IL-17A was mainly produced by Vγ4 γδ T cells, to a lesser extent by CD4+ Th17 cells. IL-17A-/- and TCRδ-/- mice both reduced their susceptibility to CVB3 infection and pancreatitis severity when compared with the wild-type mice, without altering viral load. mAb depletion of Vγ4γδ T cells significantly improved mice survival and pancreatic pathology via decreasing Th17 expansion and neutrophil influx into the pancreas compared with isotype-treated mice. Transfer of Vγ4γδ T cells from wild-type, but not IL-17-/-, mice reconstituted TCRδ-/- mice to produce IL-17 and develop pancreatitis to the level of wild-type mice during CVB3 infection, indicating γδ T IL-17A is required for the onset of viral pancreatitis. IL-23 was robustly induced in the pancreas within the first day of infection. Administration of exogenous rIL-23 to mice increased CVB3 pancreatitis through in vivo expansion of IL-17+γδT17 cells at 12 h postinfection. Our findings reveal a key pathogenic role for early-activated γδT17 cells in viral pancreatitis via promoting neutrophil infiltration and Th17 induction. This IL-23/γδT17/neutrophil axis is critically involved in the onset of CVB3 pancreatitis and represents a potential treating target for the disease.
Collapse
Affiliation(s)
- Kepeng Yan
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Yang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Qian Qian
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Dan Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hui Liu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lin Wei
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|