1
|
Armillotta M, Angeli F, Paolisso P, Belmonte M, Raschi E, Di Dalmazi G, Amicone S, Canton L, Fedele D, Suma N, Foà A, Bergamaschi L, Pizzi C. Cardiovascular therapeutic targets of sodium-glucose co-transporter 2 (SGLT2) inhibitors beyond heart failure. Pharmacol Ther 2025; 270:108861. [PMID: 40245989 DOI: 10.1016/j.pharmthera.2025.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors are oral antidiabetic agents that have shown significant improvements in cardiovascular and renal outcomes among patients with heart failure (HF), regardless of diabetic status, establishing them as a cornerstone therapy. In addition to glycemic control and the osmotic diuretic effect, the inhibition of SGLT2 improves endothelial function and vasodilation, optimizing myocardial energy metabolism and preserving cardiac contractility. Moreover, SGLT2 inhibitors may exhibit anti-inflammatory properties and attenuate acute myocardial ischemia/reperfusion injury, thereby reducing cardiac infarct size, enhancing left ventricular function, and mitigating arrhythmias. These pleiotropic effects have demonstrated efficacy across various cardiovascular conditions, ranging from acute to chronic coronary syndromes and extending to arrhythmias, valvular heart disease, cardiomyopathies, cardio-oncology, and cerebrovascular disease. This review provides an overview of the current literature on the potential mechanisms underlying the effectiveness of SGLT2 inhibitors across a wide range of cardiovascular diseases beyond HF.
Collapse
Affiliation(s)
- Matteo Armillotta
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Francesco Angeli
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | | | - Marta Belmonte
- Cardiology Unit, Sant'Andrea University Hospital, Rome, Italy; Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Guido Di Dalmazi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Division of Endocrinology and Diabetes Prevention and Care Unit, IRCCS, University Hospital of Bologna, Bologna, Italy
| | - Sara Amicone
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Lisa Canton
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Damiano Fedele
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Nicole Suma
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
| | - Alberto Foà
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
| | - Luca Bergamaschi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy
| | - Carmine Pizzi
- Department of Medical and Surgical Sciences - DIMEC - Alma Mater Studiorum, University of Bologna, Bologna, Italy; Cardiovascular Division, Morgagni-Pierantoni University Hospital, Forlì, Italy.
| |
Collapse
|
2
|
Chambers JM, Croteau D, Pimentel DR, Gower AC, Panagia M, Baka T, Qin F, Luptak I, Colucci WS. SGLT2 inhibitor upregulates myocardial genes for oxidative phosphorylation and fatty acid metabolism in Gαq-mice. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 12:100296. [PMID: 40291834 PMCID: PMC12022632 DOI: 10.1016/j.jmccpl.2025.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Background Mitochondrial dysfunction with decreased ATP production and increased release of reactive oxygen species (ROS) is a hallmark of the failing heart. Although SGLT2 inhibitors have been shown to improve myocardial metabolism in the failing heart, independent of diabetes, the effect on mitochondria is not clear. Objectives Our goal was to test the effect of the SGLT2 inhibitor ertugliflozin on mitochondrial gene expression and function in myocardium and isolated mitochondria from non-diabetic mice with dilated cardiomyopathy due to cardiac-specific over-expression of Gαq. Methods Gαq and wild type (WT) littermates 4 weeks of age were treated for 16 weeks with or without the SGLT2 inhibitor ertugliflozin (ERTU) formulated in the chow (0.5 mg/g chow). Results From weeks 4 to 20, Gαq mice developed progressive cardiac hypertrophy, dilation, contractile dysfunction, myocyte apoptosis and interstitial fibrosis - all of which were prevented by ERTU treatment. Isolated cardiac mitochondria from Gαq mice had decreased maximal ATP production and increased ROS release - both of which were normalized by ERTU. In isolated beating hearts from Gαq mice, contractile reserve and high energy phosphates measured simultaneously by 31P NMR spectroscopy were decreased - and both were improved by ERTU. In Gαq mice, marked suppression of myocardial gene programs for oxidative phosphorylation and fatty acid metabolism was reversed by ERTU. Conclusions The SGLT2 inhibitor ERTU corrected the expression of myocardial gene programs for oxidative phosphorylation and fatty acid metabolism, and was associated with increased production of ATP, decreased release of mitochondrial ROS, and amelioration of the consequences of mitochondrial dysfunction on myocardial structure and function.
Collapse
Affiliation(s)
- Jordan M. Chambers
- Cardiovascular Medicine Section and Myocardial Biology Unit, and the Clinical and Translational Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Dominique Croteau
- Cardiovascular Medicine Section and Myocardial Biology Unit, and the Clinical and Translational Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - David R. Pimentel
- Cardiovascular Medicine Section and Myocardial Biology Unit, and the Clinical and Translational Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Adam C. Gower
- Cardiovascular Medicine Section and Myocardial Biology Unit, and the Clinical and Translational Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Marcello Panagia
- Cardiovascular Medicine Section and Myocardial Biology Unit, and the Clinical and Translational Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Tomas Baka
- Cardiovascular Medicine Section and Myocardial Biology Unit, and the Clinical and Translational Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Fuzhong Qin
- Cardiovascular Medicine Section and Myocardial Biology Unit, and the Clinical and Translational Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Ivan Luptak
- Cardiovascular Medicine Section and Myocardial Biology Unit, and the Clinical and Translational Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Wilson S. Colucci
- Cardiovascular Medicine Section and Myocardial Biology Unit, and the Clinical and Translational Institute, Boston University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
3
|
Weeks KL, Bernardo BC, Bell JR, Delbridge LMD, Mellor KM. New insights into diabetes-induced cardiac pathology. J Mol Cell Cardiol 2025; 203:76-81. [PMID: 40262687 DOI: 10.1016/j.yjmcc.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Individuals with diabetes have an elevated risk of heart disease, and there is a significant clinical need for evidence-based treatments. Heart disease in diabetes manifests as a distinct cardiopathology, with cardiac structural and functional remodeling underlying increased susceptibility to cardiac dysfunction and arrhythmias. An understanding of the mechanisms associated with cardiac vulnerability in diabetes is incomplete, but recent studies have advanced new insights into the roles of metabolic disturbances, gene dysregulation and epicardial adipose influence. This perspective article highlights these three promising new developments in proposed mechanisms, and discusses exciting advances in cardiac-targeting for potential treatment of diabetic heart disease.
Collapse
Affiliation(s)
- K L Weeks
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - B C Bernardo
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Victoria, Australia
| | - J R Bell
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - L M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - K M Mellor
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Cinti F, Laborante R, Cappannoli L, Morciano C, Gugliandolo S, Pontecorvi A, Burzotta F, Donniacuo M, Cappetta D, Patti G, Giaccari A, D'Amario D. The effects of SGLT2i on cardiac metabolism in patients with HFpEF: Fact or fiction? Cardiovasc Diabetol 2025; 24:208. [PMID: 40369599 PMCID: PMC12079913 DOI: 10.1186/s12933-025-02767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
The rising prevalence of Type 2 diabetes (T2D) has been closely associated with an increased incidence of cardiovascular diseases, particularly heart failure with preserved ejection fraction (HFpEF). Cardiometabolic disturbances in T2D, such as insulin resistance, hyperglycemia, and dyslipidemia, contribute to both microvascular and macrovascular complications, thereby intensifying the risk of heart failure. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), initially developed as glucose-lowering agents for T2D, have demonstrated promising cardiovascular benefits in patients with heart failure, including those with preserved ejection fraction (HFpEF), regardless of T2D status. These benefits include reduced heart failure hospitalization rates and improvements in various metabolic parameters. This review aims to critically examine the effects of SGLT2i on cardiac metabolism in HFpEF, evaluating whether the observed benefits can truly be attributed to their impact on myocardial energy regulation or whether they represent other, potentially confounding, mechanisms. We will focus on the key metabolic processes possibly modulated by SGLT2i, including myocardial glucose utilization, fatty acid oxidation, and mitochondrial function, and explore their effects on heart failure pathophysiology. Additionally, we will address the role of SGLT2i in other pathogenetic factors involved in HFpEF, such as sodium and fluid balance, inflammation, and fibrosis, and question the extent to which these mechanisms contribute to the observed clinical benefits. By synthesizing the current evidence, this review will provide an in-depth analysis of the mechanisms through which SGLT2i may influence cardiac metabolism in HFpEF, assessing whether their effects are supported by robust scientific data or remain speculative. We will also discuss the potential for personalized treatment strategies, based on individual patient characteristics, to optimize the therapeutic benefits of SGLT2i in managing both T2D and cardiovascular risk. This review seeks to clarify the true clinical utility of SGLT2i in the management of cardiometabolic diseases and HFpEF, offering insights into their role in improving long-term cardiovascular outcomes.
Collapse
Affiliation(s)
- Francesca Cinti
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Renzo Laborante
- Dipartimento di Scienze Cardiovascolari- CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Luigi Cappannoli
- Dipartimento di Scienze Cardiovascolari- CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Cassandra Morciano
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Shawn Gugliandolo
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alfredo Pontecorvi
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Francesco Burzotta
- Dipartimento di Scienze Cardiovascolari- CUORE, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Maria Donniacuo
- Dipartimento di Medicina Sperimentale, Università del Salento, Lecce, Italy
| | - Donato Cappetta
- Dipartimento di Medicina Sperimentale, Università del Salento, Lecce, Italy
| | - Giuseppe Patti
- Dipartimento di Medicina Traslazionale (DiMET), Università del Piemonte Orientale, Novara, Italy
| | - Andrea Giaccari
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Domenico D'Amario
- Dipartimento di Medicina Traslazionale (DiMET), Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
5
|
Wang M, Preckel B, Zuurbier CJ, Weber NC. Effects of SGLT2 inhibitors on ion channels in heart failure: focus on the endothelium. Basic Res Cardiol 2025:10.1007/s00395-025-01115-y. [PMID: 40366385 DOI: 10.1007/s00395-025-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Heart failure (HF) is a life-threatening cardiovascular disease associated with high mortality, diminished quality of life, and a significant economic burden on both patients and society. The pathogenesis of HF is closely related to the endothelium, where endothelial ion channels play an important role in regulating intracellular Ca2+ signals. These ion channels are essential to maintain vascular function, including endothelium-dependent vascular tone, inflammation response, and oxidative stress. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown promising cardiovascular benefits in HF patients, reducing mortality risk and hospitalization in several large clinical trials. Clinical and preclinical studies indicate that the cardioprotective effects of SGLT2i in HF are mediated by endothelial nitric oxide (NO) pathways, as well as by reducing inflammation and reactive oxygen species in cardiac endothelial cells. Additionally, SGLT2i may confer endothelial protection by lowering intracellular Ca2+ level through the inhibition of sodium-hydrogen exchanger 1 (NHE1) and sodium-calcium exchanger (NCX) in endothelial cells. In this review, we discuss present knowledge regarding the expression and role of Ca2+-related ion channels in endothelial cells in HF, focusing on the effects of SGLT2i on endothelial NHE1, NCX as well as on vascular tone.
Collapse
Affiliation(s)
- Mengnan Wang
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Karakasis P, Theofilis P, Vlachakis PK, Ktenopoulos N, Patoulias D, Antoniadis AP, Fragakis N. Atrial Cardiomyopathy in Atrial Fibrillation: Mechanistic Pathways and Emerging Treatment Concepts. J Clin Med 2025; 14:3250. [PMID: 40364280 PMCID: PMC12072501 DOI: 10.3390/jcm14093250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Atrial fibrillation (AF) is increasingly recognized not merely as an arrhythmia, but as a clinical manifestation of atrial cardiomyopathy (AtCM)-a progressive, multifaceted disease of the atrial myocardium involving structural, electrical, mechanical, and molecular remodeling. AtCM often precedes AF onset, sustains its perpetuation, and contributes to thromboembolic risk independently of rhythm status. Emerging evidence implicates diverse pathophysiological drivers of AtCM, including inflammation, epicardial adipose tissue, metabolic dysfunction, oxidative stress, ageing, and sex-specific remodeling. The NLRP3 inflammasome has emerged as a central effector in atrial inflammation and remodeling. Gut microbial dysbiosis, lipid dicarbonyl stress, and fibro-fatty infiltration are also increasingly recognized as contributors to arrhythmogenesis. AtCM is further linked to atrial functional valve regurgitation and adverse outcomes in AF. Therapeutically, substrate-directed strategies-ranging from metabolic modulation and immunomodulation to early rhythm control-offer promise for altering the disease trajectory. This review synthesizes mechanistic insights into AtCM and discusses emerging therapeutic paradigms that aim not merely to suppress arrhythmia but to modify the underlying substrate. Recognizing AF as a syndrome of atrial disease reframes management strategies and highlights the urgent need for precision medicine approaches targeting the atrial substrate.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Hippokration General Hospital, Medical School, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (P.T.); (P.K.V.); (N.K.)
| | - Panayotis K. Vlachakis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (P.T.); (P.K.V.); (N.K.)
| | - Nikolaos Ktenopoulos
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (P.T.); (P.K.V.); (N.K.)
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Antonios P. Antoniadis
- Second Department of Cardiology, Hippokration General Hospital, Medical School, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Hippokration General Hospital, Medical School, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.A.); (N.F.)
| |
Collapse
|
7
|
Sardu C, Trotta MC, Marfella LV, D'Amico G, La Marca C, Mauro C, Santamaria M, Giordano V, Turriziani F, Rafaniello C, Sasso FC, Calabro P, Pizzi C, Marfella R, Capuano A, Paolisso G. Effects of SGLT2i therapy on cardiac electrophysiological properties and arrhythmias in diabetic patients with implantable cardiac defibrillator. Pharmacol Res 2025; 216:107759. [PMID: 40328387 DOI: 10.1016/j.phrs.2025.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Sodium-glucose-transporter-2-inhibitors (SGLT2i) reduce ventricular-tachycardia (VT) and cardiac deaths in diabetic patients with internal-cardioverter-defibrillators (ICD) and/or cardiac-resynchronization-therapy (CRT). SGLT2i might improve cardiac electrophysiological-properties, reducing inflammation and sympathetic tone. We evaluated SGLT2i effects on lead-parameters, arrhythmias, ICDs' interventions, and heart failure (HF) hospitalizations and cardiac deaths in diabetics at 1 year of follow-up. At 1 year of follow-up, 334 SGLT2i-users vs. 794 non-users patients had lower heart rate, best clinical status, lowest B-type-natriuretic-peptide (BNP) and N-terminal pro-BNP, and inflammatory markers and catecholamines (p < 0.05). SGLT2i-users vs. non-users showed cardiac remodeling and increased cardiac pump (p < 0.05), significant reduction of right-ventricle (RV) and left-ventricle (LV) pacing, increase of RV/LV impedance and sensing at follow-up end (p < 0.05). C-reactive-protein (CRP) inversely linked to RV sensing and linearly to RV pacing. CRP and tumor-necrosis-alpha (TNFa) inversely linked to RV and shock impedance (p < 0.05). At follow-up end, SGLT2i-users vs. non-users showed lower rate of VT (36 (10.8 %) vs. 138 (17.4 %)), inappropriate-shocks (32 (9.6 %) vs. 118 (14.9 %)), HF hospitalizations (50 (15.0 %) vs. 216 (27.2 %)), and cardiac deaths (10 (3.0 %) vs. 53 (6.7 %)), (p < 0.05). BNP (HR 1.101, CI 95 % 1.000-1.305), CRP (HR 1.034, CI 95 % 1.007-1.061), and SGLT2i (HR 0.592, CI 95 % 0.410-0.854) predicted VT; SGLT2i (HR 0.611, CI 95 % 0.413-0.903) predicted inappropriate-shocks; BNP (HR 1.012, CI 95 % 1.001-1.040) predicted appropriate-shocks. CRP (HR 1.102, 1.077-1.127), ischemic cardiomyopathy (HR 1.284, CI 95 % 1.14-1.870), and SGLT2i (HR 0.497, CI 95 % 0.365-0.677) predicted HF-hospitalizations. SGLT2i (HR 0.677, CI 95 % 0.222-0.860) predicted cardiac deaths. SGLT2i improve electrophysiological-properties and reduce arrhythmias in diabetics with ICD/CRT.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy; Department of Cardiovascular Sciences, Responsible Research Hospital, Campobasso, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ludovica Vittoria Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovambattista D'Amico
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Carmine La Marca
- Department of Cardiovascular Diseases, Santa Maria della Pietà Hospital, Nola, Naples, Italy
| | - Ciro Mauro
- Operative Unit of Cardiovascular Diseases, Antonio Cardarelli Hospital, Naples, Italy
| | - Matteo Santamaria
- Department of Cardiovascular Sciences, Responsible Research Hospital, Campobasso, Italy
| | - Valerio Giordano
- Department of Cardiovascular Diseases and Arrhythmias, San Luca Hospital Hospital, Vallo della Lucania, Italy
| | - Fabrizio Turriziani
- Operative Unit of Cardiovascular Diseases, Santa Maria Hospital, Cava dei Tirreni, Salerno, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Paolo Calabro
- Department of Translational Medical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy; School of Medicine, "Saint Camillus University", Rome, Italy.
| |
Collapse
|
8
|
Abou Warda AE, Flohr RM, Sarhan RM, Salem MN, Salem HF, Moharram AN, Alanazi AS, Lteif C, Gawronski BE, Dumeny L, Alsahli TG, Elenizi K, Zarif B, Sarhan N, Duarte JD. Genetic polymorphisms in SLC5A2 are associated with clinical outcomes and dapagliflozin response in heart failure patients. Front Pharmacol 2025; 16:1539870. [PMID: 40356983 PMCID: PMC12066643 DOI: 10.3389/fphar.2025.1539870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Background Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have emerged as promising therapeutics for heart failure (HF). Nevertheless, evidence supporting the mechanism of SGLT2i efficacy in HF patients is currently limited. Genetic variation in SLC5A2 (encoding SGLT2) may influence HF progression and SGLT2i response, as well as inform potential SGLT2i mechanisms. Thus, this study investigated associations between SLC5A2 variation and clinical outcomes in SGLT2i-naïve and dapagliflozin-treated HF cohorts. Methods We analyzed two HF cohorts to identify variants associated with SGLT2i response pathways. Adjusted Cox proportional-hazard regression models were used to assess the effect of SLC5A2 variation on a primary composite outcome of cardiovascular (CV) hospitalization or all-cause mortality in SGLT2i-naïve patients, and HF hospitalization or CV death in dapagliflozin-treated patients. The initial cohort comprised 327 American HF patients naïve to SGLT2i throughout the study. Subsequently, a prospective cohort study of 190 Egyptian SGLT2i-naïve HF patients treated with dapagliflozin was analyzed. In this cohort, SNPs in UGT2B4 and SLC2A1 were also investigated. Changes in NT-proBNP levels, KCCQ-12 scores, echocardiographic parameters, and eGFR throughout 6-month follow-up were tested with linear regression models as secondary outcomes. Results In SGLT2i-naïve patients, rs3813008 (SLC5A2) was significantly associated with reduced risk of the composite outcome of all-cause death or hospitalization (HR = 0.65, 95% CI: 0.47-0.89, P = 0.008). In the dapagliflozin-treated cohort, rs3813008 was also associated with death or hospitalization, but with increased risk in treated patients (HR = 3.38, 95% CI: 1.35-8.42, P = 0.008). Conclusion Our study suggests that SLC5A2 variation is associated with clinical outcomes in SGLT2i-naïve and treated HF patients, warranting further investigation of SLC5A2 and SGLT2i interactions.
Collapse
Affiliation(s)
| | - Rylie M. Flohr
- Center for Pharmacogenomics and Precision Medicine and Department for Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
| | - Rania M. Sarhan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Nabil Salem
- Department of Internal Medicine, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Heba F. Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Program of Pharmaceutical Production, 6th October Technology University, Giza, Egypt
| | - Ayman N. Moharram
- Department of Critical Care Medicine, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Abdullah S. Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Christelle Lteif
- Center for Pharmacogenomics and Precision Medicine and Department for Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
| | - Brian E. Gawronski
- Center for Pharmacogenomics and Precision Medicine and Department for Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
| | - Leanne Dumeny
- Center for Pharmacogenomics and Precision Medicine and Department for Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
| | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Khaled Elenizi
- Department of Internal Medicine, College of Medicine, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Bassem Zarif
- Department of Cardiology, National Heart Institute, Giza, Egypt
| | - Neven Sarhan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Julio D. Duarte
- Center for Pharmacogenomics and Precision Medicine and Department for Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Mourmans SGJ, Achten A, Hermans R, Scheepers MJE, D'Alessandro E, Swennen G, Woudstra J, Appelman Y, Goor HV, Schalkwijk C, Knackstedt C, Weerts J, Eringa EC, van Empel VPM. The effect of empagliflozin on peripheral microvascular dysfunction in patients with heart failure with preserved ejection fraction. Cardiovasc Diabetol 2025; 24:182. [PMID: 40281528 PMCID: PMC12023568 DOI: 10.1186/s12933-025-02679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/10/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Empagliflozin is an effective treatment for heart failure with preserved ejection fraction (HFpEF), but its definite mechanism of action is unclear. Systemic microvascular dysfunction strongly relates to HFpEF aetiology, and we hypothesised that empagliflozin improves microvascular function in HFpEF. OBJECTIVE To investigate the effect of the sodium-glucose cotransporter-2 inhibitor empagliflozin on peripheral microvascular function in HFpEF. METHODS This is a pre-post intervention study in patients diagnosed with HFpEF who are eligible for treatment with empagliflozin. Microvascular function assessment using laser speckle contrast analysis of the dorsal forearm during iontophoresis of vasoactive stimuli (acetylcholine, insulin sodium nitroprusside) was performed at baseline and after 3 months of empagliflozin treatment (10 mg daily). The primary outcome was the difference in blood flow measured in the forearm microvasculature between baseline and at follow-up (cutaneous vascular conductance, CVC). Secondarily we investigated quality-of-life based on the EQ-5D-5 L questionnaire at baseline and follow-up. RESULTS Twenty six patients finished the study according to protocol (mean age of 74 ± 7 years, 62% female). We observed a decreased blood flow response to acetylcholine after 3 months of empagliflozin (CVC: 0.77 ± 0.24 vs. 0.64 ± 0.20, p < 0.001). In contrast, the response to insulin improved (CVC: 0.61 ± 0.43 vs. 0.81 ± 0.32, p = 0.03), and the response to sodium nitroprusside remained stable after 3 months. No significant correlations were found between the changes in blood flow and quality of life. CONCLUSION This study shows that three months treatment with empagliflozin changed peripheral microvascular function in patients with HFpEF. Empagliflozin may enhance microvascular blood flow specifically via vascular actions of insulin, rather than a general effect on endothelial vasoregulation or smooth muscle cell function. As such, systemic microvascular dysfunction can be a modifiable factor in patients with HFpEF, while the clinical implications thereof warrant further investigations. TRIAL REGISTRATION The trial was preregistered at clinicaltrials.gov (NCT06046612).
Collapse
Affiliation(s)
- Sanne G J Mourmans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Anouk Achten
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Raquel Hermans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Marijne J E Scheepers
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Elisa D'Alessandro
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Geertje Swennen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Janneke Woudstra
- Department of Cardiology, Amsterdam UMC Heart Centre, Amsterdam, The Netherlands
| | - Yolande Appelman
- Department of Cardiology, Amsterdam UMC Heart Centre, Amsterdam, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Casper Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Christian Knackstedt
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jerremy Weerts
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| |
Collapse
|
10
|
Mira Hernandez J, Shen EY, Ko CY, Hourani Z, Spencer ER, Smoliarchuk D, Bossuyt J, Granzier H, Bers DM, Hegyi B. Differential sex-dependent susceptibility to diastolic dysfunction and arrhythmia in cardiomyocytes from obese diabetic heart failure with preserved ejection fraction model. Cardiovasc Res 2025; 121:254-266. [PMID: 38666446 PMCID: PMC12012442 DOI: 10.1093/cvr/cvae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Sex differences in heart failure with preserved ejection fraction (HFpEF) are important, but key mechanisms involved are incompletely understood. While animal models can inform about sex-dependent cellular and molecular changes, many previous pre-clinical HFpEF models have failed to recapitulate sex-dependent characteristics of human HFpEF. We tested for sex differences in HFpEF using a two-hit mouse model (leptin receptor-deficient db/db mice plus aldosterone infusion for 4 weeks; db/db + Aldo). METHODS AND RESULTS We performed echocardiography, electrophysiology, intracellular Ca2+ imaging, and protein analysis. Female HFpEF mice exhibited more severe diastolic dysfunction in line with increased titin N2B isoform expression and PEVK element phosphorylation and reduced troponin-I phosphorylation. Female HFpEF mice had lower BNP levels than males despite similar comorbidity burden (obesity, diabetes) and cardiac hypertrophy in both sexes. Male HFpEF mice were more susceptible to cardiac alternans. Male HFpEF cardiomyocytes (vs. female) exhibited higher diastolic [Ca2+], slower Ca2+ transient decay, reduced L-type Ca2+ current, more pronounced enhancement of the late Na+ current, and increased short-term variability of action potential duration (APD). However, male and female HFpEF myocytes showed similar downregulation of inward rectifier and transient outward K+ currents, APD prolongation, and frequency of delayed afterdepolarizations. Inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) reversed all pathological APD changes in HFpEF in both sexes, and empagliflozin pre-treatment mimicked these effects of CaMKII inhibition. Vericiguat had only slight benefits, and these effects were larger in HFpEF females. CONCLUSION We conclude that the db/db + Aldo pre-clinical HFpEF murine model recapitulates key sex-specific mechanisms in HFpEF and provides mechanistic insights into impaired excitation-contraction coupling and sex-dependent differential arrhythmia susceptibility in HFpEF with potential therapeutic implications. In male HFpEF myocytes, altered Ca2+ handling and electrophysiology aligned with diastolic dysfunction and arrhythmias, while worse diastolic dysfunction in females may depend more on altered myofilament properties.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Male
- Female
- Disease Models, Animal
- Sex Factors
- Stroke Volume
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/etiology
- Action Potentials
- Ventricular Function, Left
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/etiology
- Obesity/complications
- Obesity/physiopathology
- Obesity/metabolism
- Calcium Signaling
- Heart Rate
- Mice, Inbred C57BL
- Connectin/metabolism
- Diastole
- Heart Failure, Diastolic/physiopathology
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/etiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/pathology
- Phosphorylation
- Mice
Collapse
Affiliation(s)
- Juliana Mira Hernandez
- Department of Pharmacology, University of California, 451 Health Sciences Drive, Davis, CA 95616, USA
- Research Group Biogenesis, Faculty of Agricultural Sciences, Veterinary Medicine, University of Antioquia, Medellin, Colombia
| | - Erin Y Shen
- Department of Pharmacology, University of California, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Christopher Y Ko
- Department of Pharmacology, University of California, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Emily R Spencer
- Department of Pharmacology, University of California, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Daria Smoliarchuk
- Department of Pharmacology, University of California, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California, 451 Health Sciences Drive, Davis, CA 95616, USA
| |
Collapse
|
11
|
Janssen-Telders C, Eringa EC, de Groot JR, de Man FS, Handoko ML. The role of epicardial adipose tissue remodelling in heart failure with preserved ejection fraction. Cardiovasc Res 2025:cvaf056. [PMID: 40238568 DOI: 10.1093/cvr/cvaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 04/18/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing global health problem characterized by high morbidity and mortality, with limited effective therapies available. Obesity significantly influences haemodynamic and structural changes in the myocardium and vasculature, primarily through the accumulation and action of visceral adipose tissue. Particularly, epicardial adipose tissue (EAT) contributes to HFpEF through inflammation and lipotoxic infiltration of the myocardium. However, the precise signalling pathways leading to diastolic stiffness in HFpEF require further elucidation. This review explores the dynamic role of EAT in health and disease. Drawing upon insights from studies in other conditions, we discuss potential EAT-mediated inflammatory pathways in HFpEF and how they may contribute to functional and structural myocardial and endothelial derangements, including intramyocardial lipid infiltration, fibrosis, endothelial dysfunction, cardiomyocyte stiffening, and left ventricular hypertrophy. Lastly, we propose potential targets for novel therapeutic avenues.
Collapse
Affiliation(s)
- Carolina Janssen-Telders
- Department of Cardiology Amsterdam UMC, Heart Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Etto C Eringa
- Amsterdam Cardiovascular Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht UMC, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Joris R de Groot
- Department of Cardiology Amsterdam UMC, Heart Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Frances S de Man
- Amsterdam Cardiovascular Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht UMC, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - M Louis Handoko
- Department of Cardiology Amsterdam UMC, Heart Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Pulmonology, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
12
|
Hesson AM, Sangtani A, Bergin IL, Langen E, Hunker K, Kumar N, Ganesh SK. Peripartum dapagliflozin improves late-life maternal cardiovascular outcomes in a murine model of superimposed preeclampsia. Am J Obstet Gynecol 2025:S0002-9378(25)00181-4. [PMID: 40164294 DOI: 10.1016/j.ajog.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Hypertensive disorders of pregnancy are important risk factors for later-life cardiovascular diseases. SGLT2 (sodium-glucose cotransporter-2) inhibition improves outcomes in heart failure, a later-life risk that disproportionately affects those with preeclampsia superimposed on chronic hypertension. SGLT2 inhibition during pregnancy and the postpartum period has not been effectively modeled or tested in superimposed preeclampsia as a potential cardiovascular risk-reducing intervention. OBJECTIVE This study aimed to (1) confirm the phenotype of superimposed preeclampsia in the BPH/2J mouse model, (2) test the short- and long-term obstetrical and cardiovascular effects of administering an SGLT2 inhibitor (dapagliflozin) in pregnancy and the immediate postpartum period in this model, and (3) identify molecular effects of SGLT2 inhibition in cardiovascular tissues during and after a treated pregnancy. STUDY DESIGN We established the BPH/2J model of superimposed preeclampsia and then randomly assigned pregnant BPH/2J mice with implanted telemetry devices to dapagliflozin-enriched chow or control chow starting early in gestation through 21 days after delivery. Maternal cardiovascular and obstetrical outcomes including circulating plasma protein markers, urine studies, obstetrical ultrasounds, and tissue histopathology were compared between the groups. Hearts and aortae were analyzed using serial echocardiography and spatial transcriptomics in late gestation or at 6 months postpartum. RESULTS BPH/2J mice had baseline chronic hypertension that worsened in pregnancy with the development of proteinuria and elevated plasma sFlt-1 levels, consistent with superimposed preeclampsia. Mid-gestation systolic blood pressures were higher in the untreated group than the dapagliflozin-treated group (+2.87 mm Hg; P<.001). There were no differences in the number of pups or estimated fetal pup weights between the groups, whereas amniotic fluid volume, placental size, and markers of placental perfusion were improved in the dapagliflozin-treated group. The untreated group had higher aortic peak velocities in late pregnancy compared with the dapagliflozin-treated group (748.1 vs 561.9 mm/s; P=.004×10-3). One maternal death occurred in the untreated group, with no events in the dapagliflozin-treated group. In late life, the untreated group had significant loss of left ventricular function relative to their prepregnancy baseline, whereas dapagliflozin-treated mice had relatively preserved left ventricular function (-20.0% vs -7.6% change; P=.004×10-3; 49.0%±6.34% untreated-baseline to 30.5%±6.78% untreated-aged; 44.9%±8.63% treated-baseline to 36.5%±6.39% treated-aged). Tissue transcriptomic analyses and Masson's trichrome staining demonstrated attenuation of cardiac fibrosis and extracellular remodeling processes with SGLT2 inhibition. CONCLUSION In a murine model of superimposed preeclampsia, dapagliflozin treatment during pregnancy and the puerperium improved physiological cardiovascular parameters during gestation and cardiac function later in life. This may be related to observed molecular effects of SGLT2 inhibition treatment, particularly its antifibrotic and metabolic actions associated with reduced markers of fibrotic pathologic remodeling in treated BPH/2Js during and after pregnancy.
Collapse
Affiliation(s)
- Ashley M Hesson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI.
| | - Ajleeta Sangtani
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, Pathology Core, University of Michigan, Ann Arbor, MI
| | - Elizabeth Langen
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
| | - Kristina Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Nitin Kumar
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; Department of Human Genetics, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
13
|
Feng Q, Wu M, Mai Z. Emerging horizons: clinical applications and multifaceted benefits of SGLT-2 inhibitors beyond diabetes. Front Cardiovasc Med 2025; 12:1482918. [PMID: 40182430 PMCID: PMC11965600 DOI: 10.3389/fcvm.2025.1482918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
SGLT-2 inhibitors, initially developed for type 2 diabetes, demonstrate profound cardiorenal and metabolic benefits. This review synthesizes evidence from clinical trials and mechanistic studies to elucidate their roles in cardiovascular diseases, chronic kidney disease, and non-alcoholic fatty liver disease. Key findings include a notable reduction in cardiovascular death/heart failure hospitalization, a marked decrease in heart failure hospitalization risk, and significant improvements in renal and hepatic outcomes. Emerging mechanisms, such as autophagy induction, ketone utilization, and anti-inflammatory effects, underpin these benefits. Ongoing trials explore their potential in non-diabetic populations, positioning SGLT-2 inhibitors as transformative agents in multisystem disease management.
Collapse
Affiliation(s)
- Qing Feng
- Department of Cardiology, Kaiping Central Hospital, Kaiping, China
| | - Miaoqiong Wu
- Department of Endocrinology, Kaiping Central Hospital, Kaiping, China
| | - Zizhao Mai
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Profili NI, Castelli R, Manetti R, Sircana MC, Pagni M, Sechi GL, Gidaro A, Cossu C, Bella F, Delitala AP. Sodium-Glucose Cotransporter-2 Inhibitors After Acute Myocardial Infarction. Biomedicines 2025; 13:720. [PMID: 40149696 PMCID: PMC11940571 DOI: 10.3390/biomedicines13030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are a specific class of drugs originally developed for treating type 2 diabetes mellitus. Subsequently, studies demonstrated that their action was not limited to glycemic control but could also have positive effects on other specific outcomes, particularly at the cardiovascular level. Indeed, due to their diuretic effect, SGLT2i improve the clinical control of chronic heart failure and reduce the risk of rehospitalization. In addition, other studies reported a protective effect on major cardiovascular events and mortality. More recently, it has been suggested that the prescription of SGLT2i after an acute myocardial infarction may have positive effects due to their possible effect on inflammation, arrhythmias, and ventricular remodeling. Here, we reviewed studies focused on SGLT2i after an acute myocardial infarction in patients treated with percutaneous coronary intervention.
Collapse
Affiliation(s)
- Nicia I. Profili
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy (R.M.); (M.P.)
| | - Roberto Castelli
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy (R.M.); (M.P.)
| | - Roberto Manetti
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy (R.M.); (M.P.)
| | - Marta C. Sircana
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy (R.M.); (M.P.)
| | - Michela Pagni
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy (R.M.); (M.P.)
| | - Gemma Lisa Sechi
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy (R.M.); (M.P.)
| | - Antonio Gidaro
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Costantino Cossu
- Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy (F.B.)
| | - Francesco Bella
- Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy (F.B.)
| | - Alessandro P. Delitala
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07100 Sassari, Italy (R.M.); (M.P.)
| |
Collapse
|
15
|
Mourad O, Vohra S, Nunes SS. Single cell transcriptomic analysis of SGLT2 expression supports an indirect or off-target role for the cardioprotective benefits of empagliflozin in heart failure. Sci Rep 2025; 15:8265. [PMID: 40065073 PMCID: PMC11894072 DOI: 10.1038/s41598-025-93144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), such as empagliflozin, have shown remarkable benefits in reducing cardiovascular events and mortality in patients with heart failure irrespective of diabetes. Because of the magnitude of the benefits and broad application in both heart failure with reduced and preserved ejection fraction, there have been concerted efforts to identify a mechanism for the observed benefits. One hypothesis is that SGLT2i act directly on the heart. Given empagliflozin's high specificity to SGLT2, we reasoned that SGLT2 expression would be a requirement for cells to respond to treatment via the expected drug target. Here, we present a comprehensive transcriptomic analysis of SLC5A2, which encodes SGLT2 at the single cell level in multiple datasets from healthy and HF donors, confirming its expression in a subset of kidney epithelial cells but minimal expression in other cell types. This was true irrespective of developmental stage, disease state, sequencing method or depth, and species. Therefore, it is likely that the cardioprotective benefits of SGLT2i cannot be explained by "canonical" interactions with SGLT2.
Collapse
Affiliation(s)
- Omar Mourad
- Toronto General Hospital Research Institute, University Health Network, Toronto, M5G 2C4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
| | - Shabana Vohra
- Toronto General Hospital Research Institute, University Health Network, Toronto, M5G 2C4, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, M5G 2C4, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada.
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, M5S 3G9, Canada.
- Ajmera Transplant Center, University Health Network, Toronto, M5G 2C4, Canada.
- Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, M5S 3H2, Canada.
- University Health Network, 101 College St. TMDT 3-904, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
16
|
Loh HH, Tay SP, Koa AJ, Yong MC, Said A, Chai CS, Abdul Malik NM, Su AT, Tang BBC, Tan FHS, Sukor N. Unveiling the benefits of Vitamin D3 with SGLT-2 inhibitors for hypertensive obese obstructive sleep apnea patients. J Transl Med 2025; 23:296. [PMID: 40055713 PMCID: PMC11889775 DOI: 10.1186/s12967-025-06312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is associated with poorer quality of life (QoL) and increased cardiovascular risks, which may be exacerbated by hypovitaminosis D. Sodium glucose transporter-2 inhibitor (SGLT2i) provides cardiovascular benefits beyond glycemic control. As vitamin D3 and SGLT2i act through different pathways with similar mechanisms in improving cardio-metabolic health, this study aimed to investigate the synergistic effects of this combination therapy in improving these parameters and QoL in hypertensive obese OSA patients. METHODS Patients who fulfilled the study criteria were randomized to receive: (i) Dapagliflozin, (ii) vitamin D3, (iii) Dapagliflozin plus vitamin D3, or (iv) no treatment, for 16 weeks. The parameters evaluated included anthropometric measurements, uric acid, HbA1c, lipid profile, steatotic liver disease grade, plasma aldosterone concentration, plasma renin concentration, ultrasound flow-mediated dilatation of brachial artery, hsCRP, heart rate variability (HRV), Epworth Sleepiness Scale (ESS), and QoL scores. RESULTS A total of 163 patients were recruited and 153 completed the study. The combination of vitamin D3 and Dapagliflozin treatment led to significant improvements in metabolic parameters and nocturnal heart rates, and prevented deterioration of HRV, with healthier HRV at the end of study visit compared to the control group. Only the combination group exhibited improvements in both ESS and QoL scores. CONCLUSIONS This is the first study to demonstrate beneficial effects of combining vitamin D3 and SGLT2i in cardio-metabolic outcomes and QoL in hypertensive obese OSA patients. These findings highlight the potential of this combination therapy in addressing the cardio-metabolic challenges and QoL in this patient population. TRIALS REGISTRATION NCT06690723. Registered 10 October 2024-Retrospectively registered, https://register. CLINICALTRIALS gov/prs/beta/studies/S000EWGF00000085/recordSummary.
Collapse
Affiliation(s)
- Huai Heng Loh
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia.
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 93350, Kota Samarahan, Sarawak, Malaysia.
| | - Siow Phing Tay
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 93350, Kota Samarahan, Sarawak, Malaysia
| | - Ai Jiun Koa
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 93350, Kota Samarahan, Sarawak, Malaysia
| | - Mei Ching Yong
- Department of Medicine, Sarawak General Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Asri Said
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 93350, Kota Samarahan, Sarawak, Malaysia
| | - Chee Shee Chai
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 93350, Kota Samarahan, Sarawak, Malaysia
| | | | - Anselm Ting Su
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 93350, Kota Samarahan, Sarawak, Malaysia
| | - Bonnie Bao Chee Tang
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 93350, Kota Samarahan, Sarawak, Malaysia
| | | | - Norlela Sukor
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
- Hospital Canselor Tuanku Muhriz, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Crispino SP, Segreti A, Nafisio V, Valente D, Crisci F, Ferro A, Cavallari I, Nusca A, Ussia GP, Grigioni F. The Role of SGLT2-Inhibitors Across All Stages of Heart Failure and Mechanisms of Early Clinical Benefit: From Prevention to Advanced Heart Failure. Biomedicines 2025; 13:608. [PMID: 40149587 PMCID: PMC11940307 DOI: 10.3390/biomedicines13030608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i), initially developed as antihyperglycemic agents, have revolutionized heart failure (HF) management, offering substantial benefits across all stages and phenotypes of the disease. Regardless of left ventricular ejection fraction (LVEF), these agents have proven efficacy in both chronic and acute HF presentations. This review explores SGLT2i applications spanning the HF continuum, from early stages (Stage A) in at-risk individuals to the mitigation of progression in advanced HF (Stage D). Evidence from numerous trials has shown that SGLT2i significantly lower rates of HF hospitalization, improve renal function, and decreases cardiovascular mortality, highlighting their multifaced mechanisms of action in HF care. This review also highlights the potential mechanisms by which SGLT2i exert their beneficial effects on the cardiovascular and renal systems, each contributing to early and sustained clinical improvements. However, the integration of SGLT2i into guideline-directed medical therapy poses practical challenges, including initiation timing, dosing, and monitoring, which are addressed to support effective treatment adaptation across patient populations. Ultimately, this review provides a comprehensive assessment of SGLT2i as a foundational therapy in HF, emphasizing their role as an intervention across multiple stages aimed at improving outcomes across the entire HF spectrum.
Collapse
Affiliation(s)
- Simone Pasquale Crispino
- Department of Cardiovascular Sciences, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy; (S.P.C.); (V.N.); (D.V.); (F.C.); (A.F.); (I.C.); (A.N.); (G.P.U.); (F.G.)
| | - Andrea Segreti
- Department of Cardiovascular Sciences, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy; (S.P.C.); (V.N.); (D.V.); (F.C.); (A.F.); (I.C.); (A.N.); (G.P.U.); (F.G.)
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Vincenzo Nafisio
- Department of Cardiovascular Sciences, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy; (S.P.C.); (V.N.); (D.V.); (F.C.); (A.F.); (I.C.); (A.N.); (G.P.U.); (F.G.)
| | - Daniele Valente
- Department of Cardiovascular Sciences, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy; (S.P.C.); (V.N.); (D.V.); (F.C.); (A.F.); (I.C.); (A.N.); (G.P.U.); (F.G.)
| | - Filippo Crisci
- Department of Cardiovascular Sciences, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy; (S.P.C.); (V.N.); (D.V.); (F.C.); (A.F.); (I.C.); (A.N.); (G.P.U.); (F.G.)
| | - Aurora Ferro
- Department of Cardiovascular Sciences, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy; (S.P.C.); (V.N.); (D.V.); (F.C.); (A.F.); (I.C.); (A.N.); (G.P.U.); (F.G.)
| | - Ilaria Cavallari
- Department of Cardiovascular Sciences, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy; (S.P.C.); (V.N.); (D.V.); (F.C.); (A.F.); (I.C.); (A.N.); (G.P.U.); (F.G.)
| | - Annunziata Nusca
- Department of Cardiovascular Sciences, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy; (S.P.C.); (V.N.); (D.V.); (F.C.); (A.F.); (I.C.); (A.N.); (G.P.U.); (F.G.)
| | - Gian Paolo Ussia
- Department of Cardiovascular Sciences, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy; (S.P.C.); (V.N.); (D.V.); (F.C.); (A.F.); (I.C.); (A.N.); (G.P.U.); (F.G.)
| | - Francesco Grigioni
- Department of Cardiovascular Sciences, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy; (S.P.C.); (V.N.); (D.V.); (F.C.); (A.F.); (I.C.); (A.N.); (G.P.U.); (F.G.)
| |
Collapse
|
18
|
Erdogan BR, Arioglu-Inan E. SGLT2 inhibitors: how do they affect the cardiac cells. Mol Cell Biochem 2025; 480:1359-1379. [PMID: 39160356 DOI: 10.1007/s11010-024-05084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
The first sodium-glucose cotransporter-2 inhibitor (SGLT2I), canagliflozin, was approved by the U.S. Food and Drug Administration for the treatment of type 2 diabetes in 2013. Since then, other members of this drug class (such as dapagliflozin, empagliflozin, and ertugliflozin) have become widely used. Unlike classical antidiabetic agents, these drugs do not interfere with insulin secretion or action, but instead promote renal glucose excretion. Since their approval, many preclinical and clinical studies have been conducted to investigate the diverse effects of SGLT2Is. While originally introduced as antidiabetic agents, the SGLT2Is are now recognized as pillars in the treatment of heart failure and chronic kidney disease, in patients with or without diabetes. The beneficial cardiac effects of this class have been attributed to several mechanisms. Among these, SGLT2Is inhibit fibrosis, hypertrophy, apoptosis, inflammation, and oxidative stress. They regulate mitochondrial function and ion transport, and stimulate autophagy through several underlying mechanisms. This review details the potential effects of SGLT2Is on cardiac cells.
Collapse
Affiliation(s)
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Emniyet District, Dogol Street, No:4, 06560, Yenimahalle, Ankara, Turkey.
| |
Collapse
|
19
|
Simela C, Walker JM, Ghosh AK, Chen DH. SGLT2 inhibitors for prevention and management of cancer treatment-related cardiovascular toxicity: a review of potential mechanisms and clinical insights. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:15. [PMID: 39934910 DOI: 10.1186/s40959-024-00284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/30/2024] [Indexed: 02/13/2025]
Abstract
More evidence-based strategies are needed for preventing and managing cancer treatment-related cardiovascular toxicity (CTR-CVT). Owing to the growing body of evidence supporting their cardioprotective role in several cardiac injury scenarios, sodium-glucose cotransporter 2 inhibitors (SGLT2i) may be beneficial for preventing and treating CTR-CVT. In October 2024, a search was conducted of the PubMed database to review full studies investigating the cardioprotective role of SGLT2i against CTR-CVT. We identified 44 full published/pre-print studies and 3 ongoing randomised controlled trial across eight types of cancer treatment (anthracyclines, platinum-containing therapy, immune checkpoint inhibitors, HER2-targeted therapies, kinase inhibitors, androgen deprivation therapies, multiple myeloma therapies and 5-fluorouracil). Most studies used animal models and focussed on primary prevention. 43 of the 44 studies found some cardioprotective effect of SGLT2i against CTR-CVT, which in some cases included preventing ejection fraction decline and aberrations in cardiac electrophysiological parameters. Some studies also observed beneficial effects on mortality. A central triad of anti-inflammatory, anti-oxidative and anti-apoptotic mechanisms likely underlie SGLT2i-mediated cardioprotection against CTR-CVT. Overall, this growing body of research suggests that SGLT2i may be a promising candidate for preventing CTR-CVT either as monotherapy or in combination with other cardioprotective drugs. However, the literature is limited in that no prospective randomised controlled trials investigating SGLT2i for the prevention and management of CTR-CVT exist and most existing human retrospective data is based on diabetic populations. Future work must focus on addressing these limitations of the current literature.
Collapse
Affiliation(s)
- Carl Simela
- University College London Hospital, London, UK
| | - J Malcolm Walker
- University College London Hospital, London, UK
- Hatter Cardiovascular Institute, University College London, London, UK
| | - Arjun K Ghosh
- University College London Hospital, London, UK
- Hatter Cardiovascular Institute, University College London, London, UK
- Barts Heart Centre, London, UK
| | - Daniel H Chen
- University College London Hospital, London, UK.
- Hatter Cardiovascular Institute, University College London, London, UK.
- Barts Heart Centre, London, UK.
- Prince of Wales Hospital, Sydney, NSW, Australia.
- St George Hospital, Sydney NSW, Australia.
| |
Collapse
|
20
|
Benedetti R, Chianese U, Papulino C, Scisciola L, Cortese M, Formisano P, Del Gaudio N, Cabaro S, D'Esposito V, Pesapane A, Conte M, Signoriello G, Barbieri M, Altucci L, Paolisso G. Unlocking the power of empagliflozin: Rescuing inflammation in hyperglycaemia- exposed human cardiomyocytes through comprehensive multi-level analysis. Eur J Heart Fail 2025. [PMID: 39809551 DOI: 10.1002/ejhf.3566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
AIMS Hyperglycaemic conditions increase cardiac stress, a common phenomenon associated with inflammation, aging, and metabolic imbalance. Sodium-glucose cotransporter 2 inhibitors, a class of anti-diabetic drugs, showed to improve cardiovascular functions although their mechanism of action has not yet been fully established. This study investigated the effects of empagliflozin on cardiomyocytes following high glucose exposure, specifically focusing on inflammatory and metabolic responses. METHODS AND RESULTS A three-part strategy was formulated: (i) a meta-analysis of selected randomized clinical trials was carried out to assess the anti-inflammatory effects of empagliflozin in diabetic patients; (ii) the impact of empagliflozin on human cardiomyocyte AC16 cells exposed to normal (5 mM) and high (33 mM) glucose concentrations for 2 and 7 days was explored by evaluating gene expression and protein levels of pivotal markers associated with cardiac inflammation, stress, endoplasmic reticulum damage, and calcium modulation; (iii) in silico data from bioinformatic analyses were exploited to construct an interaction map delineating the potential mechanism of action of empagliflozin on cardiac tissue. Empagliflozin reversed high-glucose mediated alterations at the transcriptional level, decreasing inflammatory, metabolic, and aging signatures. Specifically, in vitro experiments on human cardiomyocytes, meta-analyses of clinical data on inflammatory biomarkers from diabetic peripheral blood samples, and sequencing of pathological human heart tissues, all support that empagliflozin exerts anti-inflammatory effects both systemically and directly in cardiac tissue, on cardiomyocytes. CONCLUSION Our study provides insights based on robust mechanistic data for optimizing heart failure management and highlights the intricate interplay between diabetes, inflammation, aging, and cardiovascular health.
Collapse
Affiliation(s)
- Rosaria Benedetti
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Serena Cabaro
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Vittoria D'Esposito
- Institute of Endocrinology and Oncology "Gaetano Salvatore" (IEOS), Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Giuseppe Signoriello
- Department of Mental and Physical Health and Preventive Medicine, Section of Medical Statistics, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
- Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
21
|
Zhang S, Huang Y, Han C, Wang F, Chen M, Yang Z, Yang S, Wang C. Central SGLT2 mediate sympathoexcitation in hypertensive heart failure via attenuating subfornical organ endothelial cGAS ubiquitination to amplify neuroinflammation: Molecular mechanism behind sympatholytic effect of Empagliflozin. Int Immunopharmacol 2025; 145:113711. [PMID: 39647283 DOI: 10.1016/j.intimp.2024.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sodium/glucose co-transporter 2 (SGLT2) inhibitors have transformed heart failure (HF) treatment, offering sympatholytic effects whose mechanisms are not fully understood. Our previous studies identified Cyclic GMP-AMP synthase (cGAS)-derived neuroinflammation in the Subfornical organ (SFO) as a promoter of sympathoexcitation, worsening myocardial remodeling in HF. This research explored the role of central SGLT2 in inducing endothelial cGAS-driven neuroinflammation in the SFO during HF and assessed the impact of SGLT2 inhibitors on this process. METHODS Hypertensive HF was induced in mice via Angiotensin II infusion for four weeks. SGLT2 expression and localization in the SFO were determined through immunoblotting and double-immunofluorescence staining. AAV9-TIE-shRNA (SGLT2) facilitated targeted SGLT2 knockdown in SFO endothelial cells (ECs), with subsequent analyses via immunoblotting, staining, and co-immunoprecipitation to investigate interactions with cGAS, mitochondrial alterations, and pro-inflammatory pathway activation. Renal sympathetic nerve activity and heart rate variability were measured to assess sympathetic output, alongside evaluations of cardiac function in HF mice. RESULTS In HF model mice, SGLT2 levels are markedly raised in SFO ECs, disrupting mitochondrial function and elevating oxidative stress. SGLT2 knockdown preserved mitochondrial integrity and function, reduced inflammation, and highlighted the influence of SGLT2 on mitochondrial health. SGLT2's interaction with cGAS prevented its ubiquitination and degradation, amplifying neuroinflammation and HF progression. Conversely, Empagliflozin counteracted these effects, suggesting that targeting the SGLT2-cGAS interaction as a novel HF treatment avenue. CONCLUSION This study revealed that SGLT2 directly reduced cGAS degradation in brain ECs, enhancing neuroinflammation in the SFO, and promoting sympathoexcitation and myocardial remodeling. The significance of the central SGLT2-cGAS interaction in cardiovascular disease mechanisms is emphasized.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
22
|
Hopkins S, Baqai F, Gajagowni S, Hickey G. Direct Cardiac Mechanisms of the Sodium Glucose Co-Transporter 2 Inhibitor Class. J Cardiovasc Pharmacol Ther 2025; 30:10742484251323428. [PMID: 40221961 DOI: 10.1177/10742484251323428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
BackgroundSodium-glucose co-transporter 2 (SGLT2) inhibitors have demonstrated significant cardiovascular benefits in clinical trial. While their role in reducing heart failure hospitalizations and cardiovascular mortality is well established, the precise mechanisms underlying their direct cardiac effects remain unclear. This literature review aims to synthesize current knowledge on the molecular and physiological pathways by which SGLT2 inhibitors may exert effects on cardiac tissue, independent of glycemic control.MethodsA comprehensive review of peer-reviewed articles, randomized controlled trials, meta-analyses, and mechanistic studies published in PubMed and related databases was conducted. The search focused on studies examining the direct impact of SGLT2 inhibitors on cardiac function, remodeling, metabolism, and intracellular signaling pathways. Only studies evaluating the cardiac effects separate from their glucose-lowering action were included in the analysis.ResultsThis review identified several key mechanisms by which SGLT2 inhibitors may benefit the heart directly, including reductions in oxidative stress, inflammation, and myocardial fibrosis. Emerging evidence suggests that these drugs modulate key pathways such as sodium-hydrogen exchange (NHE) inhibition, improvement of mitochondrial function, and promotion of ketone body utilization in cardiomyocytes.ConclusionsSGLT2 inhibitors appear to confer direct cardioprotective effects. These include anti-inflammatory, anti-fibrotic, and energy efficiency improvements in the myocardium. The findings highlight new potential therapeutic mechanisms and provide a foundation for further research into the non-diabetic use of SGLT2 inhibitors in heart failure and other cardiac conditions. Understanding these direct effects could lead to optimized treatment strategies for patients with and without diabetes.
Collapse
Affiliation(s)
| | - Faiz Baqai
- Department of Internal Medicine, Baylor College of Medicine, Houston, USA
| | | | - Gavin Hickey
- Heart and Vascular Institute, UPMC, Pittsburgh, USA
| |
Collapse
|
23
|
Karakasis P, Theofilis P, Vlachakis PK, Korantzopoulos P, Patoulias D, Antoniadis AP, Fragakis N. Atrial Fibrosis in Atrial Fibrillation: Mechanistic Insights, Diagnostic Challenges, and Emerging Therapeutic Targets. Int J Mol Sci 2024; 26:209. [PMID: 39796066 PMCID: PMC11720255 DOI: 10.3390/ijms26010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Atrial fibrosis is a hallmark of atrial cardiomyopathy and plays a pivotal role in the pathogenesis of atrial fibrillation (AF), contributing to its onset and progression. The mechanisms underlying atrial fibrosis are multifaceted, involving stretch-induced fibroblast activation, oxidative stress, inflammation, and coagulation pathways. Variations in fibrosis types-reactive and replacement fibrosis-are influenced by patient-specific factors such as age, sex, and comorbidities, complicating therapeutic approaches. The heterogeneity of fibrosis leads to distinct electrophysiological abnormalities that promote AF via reentrant activity and enhanced automaticity mechanisms. Despite advancements in imaging, such as late gadolinium enhancement CMR and electroanatomical mapping, challenges in accurately quantifying fibrosis persist. Emerging therapeutic strategies include antifibrotic agents targeting the renin-angiotensin-aldosterone system, novel pathways like TGF-β signaling, and cardio-metabolic drugs like SGLT2 inhibitors and GLP-1 receptor agonists. Innovative interventions, including microRNA modulation and lipid nanoparticle-based therapies, show promise but require validation. Knowledge gaps remain in correlating clinical outcomes with fibrosis patterns and optimizing diagnostic tools. Future research should focus on precise phenotyping, integrating advanced imaging with molecular biomarkers, and conducting robust trials to evaluate antifibrotic therapies' efficacy in reducing AF burden and related complications.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.)
| | - Panayotis K. Vlachakis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.)
| | - Panagiotis Korantzopoulos
- First Department of Cardiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Antonios P. Antoniadis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.A.); (N.F.)
| |
Collapse
|
24
|
Badreldin H, Elshal M, El-Karef A, Ibrahim T. Empagliflozin protects the heart from atrial fibrillation in rats through inhibiting the NF-κB/HIF-1α regulatory axis and atrial remodeling. Int Immunopharmacol 2024; 143:113403. [PMID: 39437485 DOI: 10.1016/j.intimp.2024.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Atrial fibrillation (AF) is the most common form of sustained cardiac arrhythmia. The current study aimed to investigate the potential of empagliflozin (EMPA) to protect against acetylcholine (ACh)/calcium chloride (CaCl2)-induced AF in rats and elucidate the possible underlying mechanism of action. Rats were randomly assigned to five groups, as follows: CTRL group: received 1 ml/kg isotonic saline; AF group: received 1 ml/kg induction mixture of ACh/CaCl2 (60 µg ACh and 10 mg CaCl2 per ml); EMPA group: received 30 mg/kg EMPA; AF + EMPA10 group: received the induction mixture concurrent with 10 mg/kg EMPA; AF + EMPA30 group: received the induction mixture concurrent with 30 mg/kg EMPA. Our results showed that EMPA administration inhibited the AF-related electrocardiographic abnormalities and decreased the serum brain natriuretic peptide levels. EMPA treatment maintained the cardiac redox balance, as indicated by reduced levels of the lipid peroxidation biomarker malonaldehyde while enhancing the antioxidant glutathione levels. Moreover, EMPA markedly repressed ACh/CaCl2-induced C-reactive protein, tumor necrosis factor, and interleukin-6 production. Interestingly, EMPA administration strongly suppressed cardiac transforming growth factor beta1, collagen type I, and alpha-smooth muscle actin expression levels in the AF rats. These results were consistent with our histopathological findings, which revealed the ameliorative effect of EMPA on AF-induced inflammatory and fibrotic lesions. Mechanistically, EMPA dose-dependently downregulated nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor (HIF)-1α expressions. Besides, it attenuated the pro-apoptotic active caspase-3 while augmenting the anti-apoptotic B-cell lymphoma 2 expressions. Furthermore, EMPA dose-dependently suppressed cardiac phosphatidylinositol 3-kinase (PI3K)/Akt signaling. In conclusion, this study demonstrates that EMPA intervention, within AF induction, protects against ACh/CaCl2-induced AF in rats, exerting powerful antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects. These effects are mainly mediated through the targeting of the NF-κB/HIF-1α regulatory axis in a dose-dependent manner.
Collapse
Affiliation(s)
- Hussein Badreldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Amr El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt; Department of Pathology, Faculty of Medicine, Horus University, Egypt
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
25
|
Dominic KL, Schmidt AV, Granzier H, Campbell KS, Stelzer JE. Mechanism-based myofilament manipulation to treat diastolic dysfunction in HFpEF. Front Physiol 2024; 15:1512550. [PMID: 39726859 PMCID: PMC11669688 DOI: 10.3389/fphys.2024.1512550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major public health challenge, affecting millions worldwide and placing a significant burden on healthcare systems due to high hospitalization rates and limited treatment options. HFpEF is characterized by impaired cardiac relaxation, or diastolic dysfunction. However, there are no therapies that directly treat the primary feature of the disease. This is due in part to the complexity of normal diastolic function, and the challenge of isolating the mechanisms responsible for dysfunction in HFpEF. Without a clear understanding of the mechanisms driving diastolic dysfunction, progress in treatment development has been slow. In this review, we highlight three key areas of molecular dysregulation directly underlying impaired cardiac relaxation in HFpEF: altered calcium sensitivity in the troponin complex, impaired phosphorylation of myosin-binding protein C (cMyBP-C), and reduced titin compliance. We explore how targeting these pathways can restore normal relaxation, improve diastolic function, and potentially provide new therapeutic strategies for HFpEF treatment. Developing effective HFpEF therapies requires precision targeting to balance systolic and diastolic function, avoiding both upstream non-specificity and downstream rigidity. This review highlights three rational molecular targets with a strong mechanistic basis and potential for therapeutic success.
Collapse
Affiliation(s)
- Katherine L. Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alexandra V. Schmidt
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
26
|
Carter K, Shah E, Waite J, Rana D, Zhao ZQ. Pathophysiology of Angiotensin II-Mediated Hypertension, Cardiac Hypertrophy, and Failure: A Perspective from Macrophages. Cells 2024; 13:2001. [PMID: 39682749 PMCID: PMC11640308 DOI: 10.3390/cells13232001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Heart failure is a complex syndrome characterized by cardiac hypertrophy, fibrosis, and diastolic/systolic dysfunction. These changes share many pathological features with significant inflammatory responses in the myocardium. Among the various regulatory systems that impact on these heterogeneous pathological processes, angiotensin II (Ang II)-activated macrophages play a pivotal role in the induction of subcellular defects and cardiac adverse remodeling during the progression of heart failure. Ang II stimulates macrophages via its AT1 receptor to release oxygen-free radicals, cytokines, chemokines, and other inflammatory mediators in the myocardium, and upregulates the expression of integrin adhesion molecules on both monocytes and endothelial cells, leading to monocyte-endothelial cell-cell interactions. The transendothelial migration of monocyte-derived macrophages exerts significant biological effects on the proliferation of fibroblasts, deposition of extracellular matrix proteins, induction of perivascular/interstitial fibrosis, and development of hypertension, cardiac hypertrophy and heart failure. Inhibition of macrophage activation using Ang II AT1 receptor antagonist or depletion of macrophages from the peripheral circulation has shown significant inhibitory effects on Ang II-induced vascular and myocardial injury. The purpose of this review is to discuss the current understanding in Ang II-induced maladaptive cardiac remodeling and dysfunction, particularly focusing on molecular signaling pathways involved in macrophages-mediated hypertension, cardiac hypertrophy, fibrosis, and failure. In addition, the challenges remained in translating these findings to the treatment of heart failure patients are also addressed.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Qing Zhao
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, GA 31404, USA
| |
Collapse
|
27
|
Antonetti DA, Lin CM, Shanmugam S, Hager H, Cao M, Liu X, Dreffs A, Habash A, Abcouwer SF. Diabetes Renders Photoreceptors Susceptible to Retinal Ischemia-Reperfusion Injury. Invest Ophthalmol Vis Sci 2024; 65:46. [PMID: 39570639 PMCID: PMC11585066 DOI: 10.1167/iovs.65.13.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Purpose Studies have suggested that photoreceptors (PR) are altered by diabetes, contributing to diabetic retinopathy (DR) pathology. Here, we explored the effect of diabetes on retinal ischemic injury. Methods Retinal ischemia-reperfusion (IR) injury was caused by elevation of intraocular pressure in 10-week-old BKS db/db type 2 diabetes mellitus (T2DM) mice or C57BL/6J mice at 4 or 12 weeks after streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), and respective nondiabetic controls. Retinal neurodegeneration was evaluated by retinal layer thinning, TUNEL staining, and neuron loss. Vascular permeability was evaluated as retinal accumulation of circulating fluorescent albumin. The effects of pretreatment with a sodium-glucose co-transporter (SGLT1/2) inhibitor, phlorizin, were examined. Results Nondiabetic control mice exhibited no significant outer retinal layer thinning or PR loss after IR injury. In contrast, db/db mice exhibited significant outer retina thinning (49%, P < 0.0001), loss of PR nuclei (45%, P < 0.05) and inner segment (IS) length decline (45%, P < 0.0001). STZ-induced diabetic mice at 4 weeks showed progressive thinning of the outer retina (55%, by 14 days, P < 0.0001) and 4.3-fold greater number of TUNEL+ cells in the outer nuclear layer (ONL) than injured retinas of control mice (P < 0.0001). After 12 weeks of diabetes, the retinas exhibited similar outer layer thinning and PR loss after IR. Diabetes also delayed restoration of the blood-retinal barrier after IR injury. Phlorizin reduced outer retinal layer thinning from 49% to 3% (P < 0.0001). Conclusions Diabetes caused PR to become highly susceptible to IR injury. The ability of phlorizin pretreatment to block outer retinal thinning after IR suggests that the effects of diabetes on PR are readily reversible.
Collapse
Affiliation(s)
- David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Manjing Cao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Alyssa Dreffs
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Adam Habash
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| |
Collapse
|
28
|
Yerra VG, Connelly KA. Extrarenal Benefits of SGLT2 Inhibitors in the Treatment of Cardiomyopathies. Physiology (Bethesda) 2024; 39:0. [PMID: 38888433 DOI: 10.1152/physiol.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as pivotal medications for heart failure, demonstrating remarkable cardiovascular benefits extending beyond their glucose-lowering effects. The unexpected cardiovascular advantages have intrigued and prompted the scientific community to delve into the mechanistic underpinnings of these novel actions. Preclinical studies have generated many mechanistic theories, ranging from their renal and extrarenal effects to potential direct actions on cardiac muscle cells, to elucidate the mechanisms linking these drugs to clinical cardiovascular outcomes. Despite the strengths and limitations of each theory, many await validation in human studies. Furthermore, whether SGLT2 inhibitors confer therapeutic benefits in specific subsets of cardiomyopathies akin to their efficacy in other heart failure populations remains unclear. By examining the shared pathological features between heart failure resulting from vascular diseases and other causes of cardiomyopathy, certain specific molecular actions of SGLT2 inhibitors (particularly those targeting cardiomyocytes) would support the concept that these medications will yield therapeutic benefits across a broad range of cardiomyopathies. This article aims to discuss the important mechanisms of SGLT2 inhibitors and their implications in hypertrophic and dilated cardiomyopathies. Furthermore, we offer insights into future research directions for SGLT2 inhibitor studies, which hold the potential to further elucidate the proposed biological mechanisms in greater detail.
Collapse
Affiliation(s)
- Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
29
|
Liu CH, Ho YC, Lee WC, Huang CY, Lee YK, Hsieh CB, Huang NC, Wu CC, Nguyen NUN, Hsu CC, Chen CH, Chen YC, Huang WC, Lu YY, Fang CC, Chang YC, Chang CL, Tsai MK, Wen ZH, Li CZ, Li CC, Chuang PK, Yang SM, Chu TH, Huang SC. Sodium-Glucose Co-Transporter-2 Inhibitor Empagliflozin Attenuates Sorafenib-Induced Myocardial Inflammation and Toxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:4844-4858. [PMID: 38884142 DOI: 10.1002/tox.24362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Environmental antineoplastics such as sorafenib may pose a risk to humans through water recycling, and the increased risk of cardiotoxicity is a clinical issue in sorafenib users. Thus, developing strategies to prevent sorafenib cardiotoxicity is an urgent work. Empagliflozin, as a sodium-glucose co-transporter-2 (SGLT2) inhibitor for type 2 diabetes control, has been approved for heart failure therapy. Still, its cardioprotective effect in the experimental model of sorafenib cardiotoxicity has not yet been reported. Real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to study the effect of sorafenib exposure on cardiac SGLT2 expression. The impact of empagliflozin on cell viability was investigated in the sorafenib-treated cardiomyocytes using Alamar blue assay. Immunoblot analysis was employed to delineate the effect of sorafenib and empagliflozin on ferroptosis/proinflammatory signaling in cardiomyocytes. Ferroptosis/DNA damage/fibrosis/inflammation of myocardial tissues was studied in mice with a 28-day sorafenib ± empagliflozin treatment using histological analyses. Sorafenib exposure significantly promoted SGLT2 upregulation in cardiomyocytes and mouse hearts. Empagliflozin treatment significantly attenuated the sorafenib-induced cytotoxicity/DNA damage/fibrosis in cardiomyocytes and mouse hearts. Moreover, GPX4/xCT-dependent ferroptosis as an inducer for releasing high mobility group box 1 (HMGB1) was also blocked by empagliflozin administration in the sorafenib-treated cardiomyocytes and myocardial tissues. Furthermore, empagliflozin treatment significantly inhibited the sorafenib-promoted NFκB/HMGB1 axis in cardiomyocytes and myocardial tissues, and sorafenib-stimulated proinflammatory signaling (TNF-α/IL-1β/IL-6) was repressed by empagliflozin administration. Finally, empagliflozin treatment significantly attenuated the sorafenib-promoted macrophage recruitments in mouse hearts. In conclusion, empagliflozin may act as a cardioprotective agent for humans under sorafenib exposure by modulating ferroptosis/DNA damage/fibrosis/inflammation. However, further clinical evidence is required to support this preclinical finding.
Collapse
Affiliation(s)
- Ching-Han Liu
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Department of Internal Medicine, Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Yi Huang
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Nan-Chieh Huang
- Division of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, Medical College, I-Shou University, Kaohsiung, Taiwan
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chiu-Hua Chen
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chieh Fang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chen-Lin Chang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Kai Tsai
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiao-Zhu Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chiao-Ching Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Surgery, Division of Urology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Po-Kai Chuang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Chung Huang
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Cardiology, Pingtung Branch of Kaohsiung Armed Forces General Hospital, Pingtung, Taiwan
| |
Collapse
|
30
|
Harris DD, Broadwin M, Sabe SA, Stone C, Kanuparthy M, Nho JW, Bellam K, Banerjee D, Abid MR, Sellke FW. Effects of diet-induced metabolic syndrome on cardiac function and angiogenesis in response to the sodium-glucose cotransporter-2 inhibitor canagliflozin. J Thorac Cardiovasc Surg 2024; 168:e183-e199. [PMID: 38879117 PMCID: PMC11560687 DOI: 10.1016/j.jtcvs.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION Sodium-glucose cotransporter-2 inhibitors are antidiabetic medications that have been shown to decrease cardiovascular events and heart failure-related mortality in clinical studies. We attempt to examine the complex interplay between metabolic syndrome and the sodium-glucose cotransporter-2 inhibitor canagliflozin (CAN) in a clinically relevant model of chronic myocardial ischemia. METHODS Twenty-one Yorkshire swine were fed a high-fat diet starting at 6 weeks of age to induce metabolic syndrome. At 11 weeks, all underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce chronic myocardial ischemia. After 2 weeks, swine received either control (CON) (n = 11) or CAN 300 mg by mouth daily (n = 10) for 5 weeks, whereupon all underwent terminal harvest. RESULTS There was a significant increase in cardiac output and heart rate with a decrease in pulse pressure in the CAN group compared with CON (all P values < .05). The CAN group had a significant increase in capillary density (P = .02). There was no change in myocardial perfusion or arteriolar density. CAN induced a significant increase in markers of angiogenesis, including Phospho-endothelial nitric oxide synthase, Endothelial nitric oxide synthase, vascular endothelial growth factor receptor-1, heat shock protein 70, and extracellular signal-regulated kinases (all P values < .05), plausibly resulting in capillary angiogenesis. CONCLUSIONS CAN treatment leads to a significant increase in capillary density and augmented cardiac function in a swine model of chronic myocardial ischemia in the setting of metabolic syndrome. This work further elucidates the mechanism of sodium-glucose cotransporter-2 inhibitors in patients with cardiac disease; however, more studies are needed to determine if this increase in capillary density plays a role in the improvements seen in clinical studies.
Collapse
Affiliation(s)
- Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Chris Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Meghamsh Kanuparthy
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Ju-Woo Nho
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Krishna Bellam
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Debolina Banerjee
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI.
| |
Collapse
|
31
|
Alsereidi FR, Khashim Z, Marzook H, Al-Rawi AM, Salomon T, Almansoori MK, Madkour MM, Hamam AM, Ramadan MM, Peterson QP, Saleh MA. Dapagliflozin mitigates cellular stress and inflammation through PI3K/AKT pathway modulation in cardiomyocytes, aortic endothelial cells, and stem cell-derived β cells. Cardiovasc Diabetol 2024; 23:388. [PMID: 39472869 PMCID: PMC11520772 DOI: 10.1186/s12933-024-02481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Dapagliflozin (DAPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is well-recognized for its therapeutic benefits in type 2 diabetes (T2D) and cardiovascular diseases. In this comprehensive in vitro study, we investigated DAPA's effects on cardiomyocytes, aortic endothelial cells (AECs), and stem cell-derived beta cells (SC-β), focusing on its impact on hypertrophy, inflammation, and cellular stress. Our results demonstrate that DAPA effectively attenuates isoproterenol (ISO)-induced hypertrophy in cardiomyocytes, reducing cell size and improving cellular structure. Mechanistically, DAPA mitigates reactive oxygen species (ROS) production and inflammation by activating the AKT pathway, which influences downstream markers of fibrosis, hypertrophy, and inflammation. Additionally, DAPA's modulation of SGLT2, the Na+/H + exchanger 1 (NHE1), and glucose transporter (GLUT 1) type 1 highlights its critical role in maintaining cellular ion balance and glucose metabolism, providing insights into its cardioprotective mechanisms. In aortic endothelial cells (AECs), DAPA exhibited notable anti-inflammatory properties by restoring AKT and phosphoinositide 3-kinase (PI3K) expression, enhancing mitogen-activated protein kinase (MAPK) activation, and downregulating inflammatory cytokines at both the gene and protein levels. Furthermore, DAPA alleviated tumor necrosis factor (TNFα)-induced inflammation and stress responses while enhancing endothelial nitric oxide synthase (eNOS) expression, suggesting its potential to preserve vascular function and improve endothelial health. Investigating SC-β cells, we found that DAPA enhances insulin functionality without altering cell identity, indicating potential benefits for diabetes management. DAPA also upregulated MAFA, PI3K, and NRF2 expression, positively influencing β-cell function and stress response. Additionally, it attenuated NLRP3 activation in inflammation and reduced NHE1 and glucose-regulated protein GRP78 expression, offering novel insights into its anti-inflammatory and stress-modulating effects. Overall, our findings elucidate the multifaceted therapeutic potential of DAPA across various cellular models, emphasizing its role in mitigating hypertrophy, inflammation, and cellular stress through the activation of the AKT pathway and other signaling cascades. These mechanisms may not only contribute to enhanced cardiac and endothelial function but also underscore DAPA's potential to address metabolic dysregulation in T2D.
Collapse
Affiliation(s)
- Fatmah R Alsereidi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Emirates Health Services (EHS), Dubai, United Arab Emirates
| | - Zenith Khashim
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hezlin Marzook
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed M Al-Rawi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Tiana Salomon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Mahra K Almansoori
- College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Moustafa M Madkour
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed Mohamed Hamam
- Endocrinology and Metabolism Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Mahmoud M Ramadan
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mohamed A Saleh
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
32
|
Prosperi S, D’Amato A, Labbro Francia A, Monosilio S, Cestiè C, Marek Iannucci S, Netti L, Angotti D, Filomena D, Mariani MV, Myftari V, Germanò R, Cimino S, Mancone M, Badagliacca R, Maestrini V, Severino P, Vizza CD. Sodium-Glucose Cotransporter 2 Inhibitor Therapy in Different Scenarios of Heart Failure: An Overview of the Current Literature. Int J Mol Sci 2024; 25:11458. [PMID: 39519011 PMCID: PMC11546829 DOI: 10.3390/ijms252111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Heart failure (HF) is a complex syndrome that requires tailored and patient-centered treatment. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) constitute one of the four pillars of the medical treatment of HF. However, the 2023 ESC guidelines treat HF as a single entity without making clear distinctions in phenotypes according to etiology. This creates a "gap in knowledge", causing much debate about the applicability of these drugs in peculiar clinical settings that are etiological and/or predisposing clinical conditions for HF. Furthermore, considering the variety of etiologies and different pathophysiological backgrounds of HF, one might question whether the use of SGLT2is is equally beneficial in all types of HF and whether certain drug-related properties may be exploited in different contexts. For example, SGLT2is can improve the metabolic and inflammatory state, which is fundamental in ischemic heart disease. Anti-inflammatory power can also play a paramount role in myocarditis or cardiotoxicity, while improving the congestive state and reducing filling pressure may be even more fundamental in restrictive heart disease or advanced heart disease. This review aims to gather the evidence currently present in the literature concerning the advantages or the disadvantages of using these drugs in these particular clinical settings, with the goal being an optimized and highly personalized treatment for HF.
Collapse
Affiliation(s)
- Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Andrea D’Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
- Department of Cardiology, Ospedale Fabrizio Spaziani, 03100 Frosinone, Italy
| | - Aurora Labbro Francia
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Sara Monosilio
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Claudia Cestiè
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Stefanie Marek Iannucci
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Lucrezia Netti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Danilo Angotti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Domenico Filomena
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Marco Valerio Mariani
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Vincenzo Myftari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Rosanna Germanò
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Sara Cimino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Massimo Mancone
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Roberto Badagliacca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| | - Carmine Dario Vizza
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (S.P.); (A.L.F.); (S.M.); (C.C.); (S.M.I.); (L.N.); (D.A.); (D.F.); (M.V.M.); (V.M.); (R.G.); (S.C.); (M.M.); (R.B.); (V.M.); (P.S.); (C.D.V.)
| |
Collapse
|
33
|
Goron AR, Connolly C, Valdez-Sinon AN, Hesson A, Helou C, Kirschen GW. Anti-Hyperglycemic Medication Management in the Perioperative Setting: A Review and Illustrative Case of an Adverse Effect of GLP-1 Receptor Agonist. J Clin Med 2024; 13:6259. [PMID: 39458209 PMCID: PMC11509032 DOI: 10.3390/jcm13206259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
A host of anti-hyperglycemic agents are currently available and widely prescribed for diabetes and weight loss management. In patients undergoing surgery, use of these agents poses a clinical challenge to surgeons, anesthesiologists, and other perioperative care providers with regard to optimal timing of discontinuation and resumption of use, as well as possible effects of these agents on physiology and risk of postoperative complications. Here, we provide a comprehensive review of anti-hyperglycemic medications' effects on physiology, risks/benefits, and best practice management in the perioperative setting. Additionally, we report an illustrative case of small bowel obstruction in a patient taking semaglutide for 6 months prior to an otherwise uncomplicated laparoscopic hysterectomy and bilateral salpingo-oophorectomy. This review is meant to serve not as a replacement of, but rather as a consolidated complement to, various society guidelines regarding perioperative anti-hyperglycemic agent management.
Collapse
Affiliation(s)
- Abby R. Goron
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Courtney Connolly
- Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (C.C.); (A.N.V.-S.)
| | - Arielle N. Valdez-Sinon
- Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (C.C.); (A.N.V.-S.)
| | - Ashley Hesson
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Christine Helou
- Department of Obstetrics and Gynecology, Greater Baltimore Medical Center, Towson, MD 21204, USA;
| | - Gregory W. Kirschen
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Vallon V. State-of-the-Art-Review: Mechanisms of Action of SGLT2 Inhibitors and Clinical Implications. Am J Hypertens 2024; 37:841-852. [PMID: 39017631 PMCID: PMC11471837 DOI: 10.1093/ajh/hpae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Inhibitors of the Na+-coupled glucose transporter SGLT2 (SGLT2i) primarily shift the reabsorption of large amounts of glucose from the kidney's early proximal tubule to downstream tubular segments expressing SGLT1, and the non-reabsorbed glucose is spilled into the urine together with some osmotic diuresis. How can this protect the kidneys and heart from failing as observed in individuals with and without type 2 diabetes? GOAL Mediation analyses identified clinical phenotypes of SGLT2i associated with improved kidney and heart outcome, including a reduction of plasma volume or increase in hematocrit, and lowering of serum urate levels and albuminuria. This review outlines how primary effects of SGLT2i on the early proximal tubule can explain these phenotypes. RESULTS The physiology of tubule-glomerular communication provides the basis for acute lowering of GFR and glomerular capillary pressure, which contributes to lowering of albuminuria but also to long term preservation of GFR, at least in part by reducing kidney cortex oxygen demand. Functional co-regulation of SGLT2 with other sodium and metabolite transporters in the early proximal tubule explains why SGLT2i initially excrete more sodium than expected and are uricosuric, thereby reducing plasma volume and serum urate. Inhibition of SGLT2 reduces early proximal tubule gluco-toxicity and by shifting transport downstream may simulate "systemic hypoxia", and the resulting increase in erythropoiesis, together with the osmotic diuresis, enhances hematocrit and improves blood oxygen delivery. Cardio-renal protection by SGLT2i is also provided by a fasting-like and insulin-sparing metabolic phenotype and, potentially, by off-target effects on the heart and microbiotic formation of uremic toxins.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
35
|
Kusunose K, Imai T, Tanaka A, Doi M, Koide Y, Fukumoto K, Kadokami T, Ohishi M, Teragawa H, Ohte N, Yamada H, Sata M, Node K. Effects of ipragliflozin on left ventricular diastolic function in patients with type 2 diabetes: A sub-analysis of the PROTECT trial. J Cardiol 2024; 84:246-252. [PMID: 38378130 DOI: 10.1016/j.jjcc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND We hypothesized that the beneficial effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors on diastolic function might depend on baseline left ventricular (LV) systolic function. METHODS To investigate the effects of SGLT2 inhibitors on LV diastolic function in patients with type 2 diabetes mellitus (T2DM), we conducted a post-hoc sub-study of the PROTECT trial, stratifying the data according to LV ejection fraction (LVEF) at baseline. After excluding patients without echocardiographic data at baseline or 24 months into the PROTECT trial, 31 and 38 patients with T2DM from the full analysis dataset of the PROTECT trial who received ipragliflozin or no SGLT2 inhibitor (control), respectively, were included. The primary endpoint was a comparison of the changes in echocardiographic parameters and N-terminal pro-brain natriuretic peptide levels from baseline to 24 months between the two groups stratified according to baseline LVEF. RESULTS Differences in diastolic functional parameters (e' and E/e') were noted between the two groups. Among the subgroups defined according to median LVEF values, those with higher LVEF (≥60 %) who received ipragliflozin appeared to have a higher e' and lower E/e' than did those who received the standard of care with no SGLT2 inhibitor, indicating longitudinal improvements between baseline and follow up (p = 0.001 and 0.016, respectively). CONCLUSIONS Ipragliflozin generally improved LV diastolic function in patients with type 2 diabetes, the extent of this improvement might appear to vary with LV systolic function.
Collapse
Affiliation(s)
- Kenya Kusunose
- Department of Cardiovascular Medicine, Nephrology, and Neurology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takumi Imai
- Clinical and Translational Research Center, Kobe University Hospital, Kobe, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Masaru Doi
- Doi Internal Medical Clinic, Kumamoto, Japan
| | - Yuji Koide
- Department of Cardiovascular Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuo Fukumoto
- Department of Medical Education and General Practice, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Toshiaki Kadokami
- Department of Cardiovascular Medicine, Saiseikai Futsukaichi Hospital, Chikushino, Japan
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroki Teragawa
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Hiroshima, Japan
| | - Nobuyuki Ohte
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| |
Collapse
|
36
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
37
|
Chambers KH, Williamson RA, Maynard KKMA, Reid RM. Effects of Sodium-Glucose Cotransporter-2 (SGLT-2) Inhibitors on Health-Related Quality of Life and Exercise Capacity in Heart Failure Patients With a Preserved Ejection Fraction: A Scoping Review. Cureus 2024; 16:e72530. [PMID: 39606546 PMCID: PMC11600462 DOI: 10.7759/cureus.72530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
This scoping review examines the effects of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on health-related quality of life (HRQoL) and exercise capacity in heart failure patients with preserved ejection fraction (HFpEF). Five randomized controlled trials were analyzed, revealing consistent improvements in HRQoL metrics, such as the Kansas City Cardiomyopathy Questionnaire (KCCQ) scores and exercise capacity, measured by the six-minute walk distance (6MWD). The findings suggest that SGLT-2 inhibitors significantly enhance physical functioning and overall well-being in HFpEF patients. These benefits align with existing literature on SGLT-2 inhibitors' efficacy in heart failure with reduced ejection fraction (HFrEF), indicating broader applicability across heart failure phenotypes. However, the review highlights the need for long-term studies to confirm sustained benefits and further investigate the underlying mechanisms. Methodological improvements, such as standardized outcome measures, are also recommended to enhance future research robustness. Clinically, these findings advocate for incorporating SGLT-2 inhibitors into HFpEF management strategies, emphasizing their potential to improve patient outcomes and quality of life. Future research should focus on diverse patient populations and long-term effects to optimize the therapeutic use of SGLT-2 inhibitors in HFpEF.
Collapse
Affiliation(s)
| | | | | | - Rysheme M Reid
- School of Medicine, Nanjing Medical University, Nanjing, CHN
| |
Collapse
|
38
|
Chen S, Wang Q, Bakker D, Hu X, Zhang L, van der Made I, Tebbens AM, Kovácsházi C, Giricz Z, Brenner GB, Ferdinandy P, Schaart G, Gemmink A, Hesselink MKC, Rivaud MR, Pieper MP, Hollmann MW, Weber NC, Balligand JL, Creemers EE, Coronel R, Zuurbier CJ. Empagliflozin prevents heart failure through inhibition of the NHE1-NO pathway, independent of SGLT2. Basic Res Cardiol 2024; 119:751-772. [PMID: 39046464 PMCID: PMC11461573 DOI: 10.1007/s00395-024-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute the only medication class that consistently prevents or attenuates human heart failure (HF) independent of ejection fraction. We have suggested earlier that the protective mechanisms of the SGLT2i Empagliflozin (EMPA) are mediated through reductions in the sodium hydrogen exchanger 1 (NHE1)-nitric oxide (NO) pathway, independent of SGLT2. Here, we examined the role of SGLT2, NHE1 and NO in a murine TAC/DOCA model of HF. SGLT2 knockout mice only showed attenuated systolic dysfunction without having an effect on other signs of HF. EMPA protected against systolic and diastolic dysfunction, hypertrophy, fibrosis, increased Nppa/Nppb mRNA expression and lung/liver edema. In addition, EMPA prevented increases in oxidative stress, sodium calcium exchanger expression and calcium/calmodulin-dependent protein kinase II activation to an equal degree in WT and SGLT2 KO animals. In particular, while NHE1 activity was increased in isolated cardiomyocytes from untreated HF, EMPA treatment prevented this. Since SGLT2 is not required for the protective effects of EMPA, the pathway between NHE1 and NO was further explored in SGLT2 KO animals. In vivo treatment with the specific NHE1-inhibitor Cariporide mimicked the protection by EMPA, without additional protection by EMPA. On the other hand, in vivo inhibition of NOS with L-NAME deteriorated HF and prevented protection by EMPA. In conclusion, the data support that the beneficial effects of EMPA are mediated through the NHE1-NO pathway in TAC/DOCA-induced heart failure and not through SGLT2 inhibition.
Collapse
Affiliation(s)
- Sha Chen
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Qian Wang
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Diane Bakker
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Xin Hu
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Liping Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna M Tebbens
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Csenger Kovácsházi
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary
| | - Zoltán Giricz
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary
- Pharmahungary Group, 6722, Szeged, Hungary
| | - Gábor B Brenner
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary
| | - Peter Ferdinandy
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary
- Pharmahungary Group, 6722, Szeged, Hungary
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Anne Gemmink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mathilde R Rivaud
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael P Pieper
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Esther E Creemers
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Vallon V. How can inhibition of glucose and sodium transport in the early proximal tubule protect the cardiorenal system? Nephrol Dial Transplant 2024; 39:1565-1573. [PMID: 38439675 PMCID: PMC11427065 DOI: 10.1093/ndt/gfae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Indexed: 03/06/2024] Open
Abstract
What mechanisms can link the inhibition of sodium-glucose cotransporter 2 (SGLT2) in the early proximal tubule to kidney and heart protection in patients with and without type 2 diabetes? Due to physical and functional coupling of SGLT2 to other sodium and metabolite transporters in the early proximal tubule (including NHE3, URAT1), inhibitors of SGLT2 (SGLT2i) reduce reabsorption not only of glucose, inducing osmotic diuresis, but of other metabolites plus of a larger amount of sodium than expected based on SGLT2 inhibition alone, thereby reducing volume retention, hypertension and hyperuricemia. Metabolic adaptations to SGLT2i include a fasting-like response, with enhanced lipolysis and formation of ketone bodies that serve as additional fuel for kidneys and heart. Making use of the physiology of tubulo-glomerular communication, SGLT2i functionally lower glomerular capillary pressure and filtration rate, thereby reducing physical stress on the glomerular filtration barrier, tubular exposure to albumin and nephrotoxic compounds, and the oxygen demand for reabsorbing the filtered load. Together with reduced gluco-toxicity in the early proximal tubule and better distribution of transport work along the nephron, SGLT2i can preserve tubular integrity and transport function and, thereby, glomerular filtration rate in the long-term. By shifting transport downstream, SGLT2i may simulate systemic hypoxia at the oxygen sensors in the deep cortex/outer medulla, which stimulates erythropoiesis and, together with osmotic diuresis, enhances hematocrit and thereby improves oxygen delivery to all organs. The described SGLT2-dependent effects may be complemented by off-target effects of SGLT2i on the heart itself and on the microbiome formation of cardiovascular-effective uremic toxins.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
40
|
Albulushi A, Tanoh DB, Almustafa A, Al Matrooshi N, Zolty R, Lowes B. Comparative effects of glucagon-like peptide-1 receptor agonists and sodium-glucose co-transporter-2 inhibitors on heart failure with preserved ejection fraction in diabetic patients: a meta-analysis. Cardiovasc Diabetol 2024; 23:324. [PMID: 39217337 PMCID: PMC11366143 DOI: 10.1186/s12933-024-02415-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is common in type 2 diabetes mellitus (T2D), leading to high morbidity and mortality. Managing HFpEF in diabetic patients is challenging with limited treatments. Sodium-glucose co-transporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists (GLP1-RA) have shown potential cardiovascular benefits. This meta-analysis compares the effects of GLP1-RA and SGLT2 inhibitors on HFpEF in T2D patients. METHODS We conducted a meta-analysis of randomized controlled trials (RCTs) and observational studies evaluating GLP1-RA and SGLT2 inhibitors' impact on HFpEF in T2D patients. Databases searched included PubMed, MEDLINE, and Cochrane Library up to July 2024. Primary outcomes were changes in left ventricular ejection fraction (LVEF), myocardial fibrosis (extracellular volume fraction, ECV), and functional capacity (6-minute walk test, 6MWT). Secondary outcomes included HbA1c, body weight, and systolic blood pressure (SBP). RESULTS: Twelve studies with 3,428 patients (GLP1-RA: 1,654; SGLT2 inhibitors: 1,774) were included. Both GLP1-RA and SGLT2 inhibitors significantly improved LVEF compared to placebo (GLP1-RA: mean difference [MD] 2.8%, 95% confidence interval [CI] 1.5 to 4.1, p < 0.001; SGLT2 inhibitors: MD 3.2%, 95% CI 2.0 to 4.4, p < 0.001). SGLT2 inhibitors significantly reduced myocardial fibrosis (MD -3.5%, 95% CI -4.2 to -2.8, p < 0.001) more than GLP1-RA (MD -2.3%, 95% CI -3.0 to -1.6, p < 0.001). Functional capacity improved significantly with both treatments (GLP1-RA: MD 45 m, 95% CI 30 to 60, p < 0.001; SGLT2 inhibitors: MD 50 m, 95% CI 35 to 65, p < 0.001). Secondary outcomes showed reductions in HbA1c (GLP1-RA: MD -1.1%, 95% CI -1.4 to -0.8, p < 0.001; SGLT2 inhibitors: MD -1.0%, 95% CI -1.3 to -0.7, p < 0.001) and body weight (GLP1-RA: MD -2.5 kg, 95% CI -3.1 to -1.9, p < 0.001; SGLT2 inhibitors: MD -2.0 kg, 95% CI -2.6 to -1.4, p < 0.001). Both treatments significantly lowered SBP (GLP1-RA: MD -5.2 mmHg, 95% CI -6.5 to -3.9, p < 0.001; SGLT2 inhibitors: MD -4.8 mmHg, 95% CI -6.0 to -3.6, p < 0.001). CONCLUSIONS GLP1-RA and SGLT2 inhibitors significantly benefit HFpEF management in T2D patients. SGLT2 inhibitors reduce myocardial fibrosis more effectively, while both improve LVEF, functional capacity, and metabolic parameters. These therapies should be integral to HFpEF management in diabetic patients. Further research is needed on long-term outcomes and potential combined therapy effects.
Collapse
Affiliation(s)
- Arif Albulushi
- Department of Adult Cardiology, National Heart Center, The Royal Hospital, Muscat, Oman.
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Advanced Heart Failure & Transplant Cardiology, National Heart Center, The Royal Hospital, Muscat, Oman.
| | - Desmond Boakye Tanoh
- Department of Medicine, Insight Hospital and Medical Center Chicago, Chicago, IL, USA
| | - Ahmed Almustafa
- Heart Centre, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nadya Al Matrooshi
- Department of Cardiology, Heart, Vascular and Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ronald Zolty
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brian Lowes
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
41
|
Hernández-Serda MA, Alarcón-López AY, Vázquez-Valadez VH, Briseño-Lugo P, Martínez-Soriano PA, Leguízamo V, Torres N, González-Terán R, Cárdenas-Granados LA, Sánchez Muñoz F, Rodríguez E, Lerma C, Zúñiga Muñoz AM, Ángeles E, Carbó R. Hypoxic Cardioprotection by New Antihypertensive Compounds in High Salt-Diet Hypertensive Rats: Glucose Transport Participation and Its Possible Pathway. Int J Mol Sci 2024; 25:8812. [PMID: 39201496 PMCID: PMC11354541 DOI: 10.3390/ijms25168812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertension (HP) is a health condition that overloads the heart and increases the risk of heart attack and stroke. In an infarction, the lack of oxygen causes an exclusive use of glycolysis, which becomes a crucial source of ATP for the heart with a higher glucose uptake mediated by glucose transporters (GLUTs). Due to the unpleasant effects of antihypertensives, new drugs need to be researched to treat this disease. This study aimed to evaluate the cardioprotective effect of three novel antihypertensive compounds (LQMs, "Laboratorio de Química Medicinal") synthesized from Changrolin under hypoxic conditions with the participation of two primary cardiac GLUT1 and GLUT4 using a high-salt diet HP model. The model used a diet with 10% salt to increase arterial blood pressure in Wistar rats. In isolated cardiomyocytes from these rats, glucose uptake was measured during hypoxia, evaluating the participation of GLUTs with or without the animals' previous treatment with LQM312, 319, and 345 compounds. In silico calculations were performed to understand the affinity of the compounds for the trafficking of GLUTs. Results: Control cells do shift to glucose uptake exclusively in hypoxia (from 1.84 ± 0.09 µg/g/h to 2.67 ± 0.1 µg/g/h). Meanwhile, HP does not change its glucose uptake (from 2.38 ± 0.24 µg/g/h to 2.33 ± 0.26 µg/g/h), which is associated with cardiomyocyte damage. The new compounds lowered the systolic blood pressure (from 149 to 120 mmHg), but only LQM312 and LQM319 improved the metabolic state of hypoxic cardiomyocytes mediated by GLUT1 and GLUT4. In silico studies suggested that Captopril and LQM312 may mimic the interaction with the AMPK γ-subunit. Therefore, these compounds could activate AMPK, promoting the GLUT4 trafficking signaling pathway. These compounds are proposed to be cardioprotective during hypoxia under HP.
Collapse
Affiliation(s)
- Manuel A. Hernández-Serda
- Departamento de Ciencias Químicas FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (M.A.H.-S.); (A.Y.A.-L.)
| | - Aldo Y. Alarcón-López
- Departamento de Ciencias Químicas FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (M.A.H.-S.); (A.Y.A.-L.)
| | - Víctor H. Vázquez-Valadez
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
- QSAR Analytics SA de CV. Tempano 10, Colonia Atlanta, Cuautitlán Izcalli 54740, Estado de México, Mexico
| | - Paola Briseño-Lugo
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Pablo A. Martínez-Soriano
- Laboratorio de Química Medicinal y Teórica, Departamento de Ciencias Químicas, FESC, UNAM, Av. 1° de Mayo, Col. Sta. María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico; (P.A.M.-S.); (L.A.C.-G.); (E.Á.)
| | - Viridiana Leguízamo
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Nalleli Torres
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Rodrigo González-Terán
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Luis A. Cárdenas-Granados
- Laboratorio de Química Medicinal y Teórica, Departamento de Ciencias Químicas, FESC, UNAM, Av. 1° de Mayo, Col. Sta. María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico; (P.A.M.-S.); (L.A.C.-G.); (E.Á.)
| | - Fausto Sánchez Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Emma Rodríguez
- Laboratorio de Medicina Traslacional UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Claudia Lerma
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Alejandra María Zúñiga Muñoz
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Enrique Ángeles
- Laboratorio de Química Medicinal y Teórica, Departamento de Ciencias Químicas, FESC, UNAM, Av. 1° de Mayo, Col. Sta. María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico; (P.A.M.-S.); (L.A.C.-G.); (E.Á.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| |
Collapse
|
42
|
Bailey CJ. Diabetes and gout: another role for SGLT2 inhibitors? Ther Adv Endocrinol Metab 2024; 15:20420188241269178. [PMID: 39131662 PMCID: PMC11311190 DOI: 10.1177/20420188241269178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 08/13/2024] Open
Affiliation(s)
- Clifford J. Bailey
- College of Health and Life Sciences, Aston University, Gosta Green, Birmingham B4 7ET, UK
| |
Collapse
|
43
|
Badreldin H, El-Karef A, Ibrahim T, Elshal M. Targeting Nrf2/HO-1 and NF-κB/TNF-α signaling pathways with empagliflozin protects against atrial fibrillation-induced acute kidney injury in rats. Toxicology 2024; 506:153879. [PMID: 38971551 DOI: 10.1016/j.tox.2024.153879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
A bidirectional relationship exists between atrial fibrillation (AF) and kidney function. Uncontrolled AF may lead to kidney injury, whereas renal dysfunction may contribute to AF initiation and maintenance. This study aimed to investigate the protective effect of the sodium glucose cotransporter-2 inhibitor empagliflozin (EMPA) on acute kidney injury (AKI) associated with AF induced by acetylcholine and calcium chloride (ACh/CaCl2) in rats and elucidate the potential underlying mechanism. Rats were randomly divided as follows: control (CTRL) group: administered vehicles only; AF group: intravenously injected 1 ml/kg of an ACh/CaCl2 mixture for seven days to induce AF; EMPA group: orally administered EMPA (30 mg/kg) for seven days; AF+EMPA10 and AF+EMPA30 groups: co-administered the induction mixture and EMPA (10 and 30 mg/kg, respectively) for seven days. Our results showed that EMPA (10 and 30 mg/kg) effectively maintained kidney function and demonstrated a significant antioxidant potential. EMPA also suppressed AF-induced renal tubulointerstitial injury and fibrotic changes concurrently with reducing renal levels of the pro-inflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin-6, as well as the pro-fibrotic marker transforming growth factor beta-1 and collagen type I. Mechanistically, EMPA boosted nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) renal tissue expression while repressing nuclear factor kappa B (NF-κB) activation. In addition, these beneficial effects of EMPA on kidneys were concurrent with its ability to effectively inhibit AF-related electrocardiographic changes, reduce incidence and duration of AF episodes, and markedly suppress serum B-type natriuretic peptide and C-reactive protein levels. In conclusion, EMPA protected against AKI associated with AF induced by ACh/CaCl2 in rats through simultaneous modulation of the Nrf2/HO-1 and the NF-κB/TNF-α signaling pathways, exerting antioxidant, anti-inflammatory, and anti-fibrotic effects.
Collapse
Affiliation(s)
- Hussein Badreldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Amr El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt; Department of Pathology, Faculty of Medicine, Horus University, Egypt.
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
44
|
Schmidt K, Schmidt A, Groß S, Just A, Pfanne A, Fuchs M, Jordan M, Mohr E, Pich A, Fiedler J, Thum T. SGLT2 inhibitors attenuate endothelial to mesenchymal transition and cardiac fibroblast activation. Sci Rep 2024; 14:16459. [PMID: 39013942 PMCID: PMC11252266 DOI: 10.1038/s41598-024-65410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Beneficial effects of sodium glucose co-transporter 2 inhibitors (SGLT2is) in cardiovascular diseases have been extensively reported leading to the inclusion of these drugs in the treatment guidelines for heart failure. However, molecular actions especially on non-myocyte cells remain uncertain. We observed dose-dependent inhibitory effects of two SGLT2is, dapagliflozin (DAPA) and empagliflozin (EMPA), on inflammatory signaling in human umbilical vein endothelial cells. Proteomic analyses and subsequent enrichment analyses discovered profound effects of these SGLT2is on proteins involved in mitochondrial respiration and actin cytoskeleton. Validation in functional oxygen consumption measurements as well as tube formation and migration assays revealed strong impacts of DAPA. Considering that most influenced parameters played central roles in endothelial to mesenchymal transition (EndMT), we performed in vitro EndMT assays and identified substantial reduction of mesenchymal and fibrosis marker expression as well as changes in cellular morphology upon treatment with SGLT2is. In line, human cardiac fibroblasts exposed to DAPA showed less proliferation, reduced ATP production, and decelerated migration capacity while less extensive impacts were observed upon EMPA. Mechanistically, sodium proton exchanger 1 (NHE1) as well as sodium-myoinositol cotransporter (SMIT) and sodium-multivitamin cotransporter (SMVT) could be identified as relevant targets of SGLT2is in non-myocyte cardiovascular cells as validated by individual siRNA-knockdown experiments. In summary, we found comprehensive beneficial effects of SGLT2is on human endothelial cells and cardiac fibroblasts. The results of this study therefore support a distinct effect of selected SGLT2i on non-myocyte cardiovascular cells and grant further insights into potential molecular mode of action of these drugs.
Collapse
Affiliation(s)
- Kevin Schmidt
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Arne Schmidt
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Maria Jordan
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Elisa Mohr
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology and Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany.
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
45
|
Ionică LN, Lința AV, Bătrîn AD, Hâncu IM, Lolescu BM, Dănilă MD, Petrescu L, Mozoș IM, Sturza A, Muntean DM. The Off-Target Cardioprotective Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors: An Overview. Int J Mol Sci 2024; 25:7711. [PMID: 39062954 PMCID: PMC11277154 DOI: 10.3390/ijms25147711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a novel class of glucose-lowering drugs, have revolutionized the management of heart failure with reduced and preserved ejection fraction, regardless of the presence of diabetes, and are currently incorporated in the heart failure guidelines. While these drugs have consistently demonstrated their ability to decrease heart failure hospitalizations in several landmark clinical trials, their cardioprotective effects are far from having been completely elucidated. In the past decade, a growing body of experimental research has sought to address the molecular and cellular mechanisms of SGLT2i in order to provide a better understanding of the off-target acute and chronic cardiac benefits, beyond the on-target renal effect responsible for blood glucose reduction. The present narrative review addresses the direct cardioprotective effects of SGLT2i, delving into the off-target mechanisms of the drugs currently approved for heart failure therapy, and provides insights into future perspectives.
Collapse
Affiliation(s)
- Loredana N. Ionică
- Department of Internal Medicine-Medical Semiotics, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Adina V. Lința
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alina D. Bătrîn
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Bogdan M. Lolescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Maria D. Dănilă
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Ioana M. Mozoș
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Adrian Sturza
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Danina M. Muntean
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
46
|
Drueke TB, Massy ZA. Unexpected metabolic effects of sodium-glucose cotransporter 2 inhibitors. Kidney Int 2024; 106:12-15. [PMID: 38775770 DOI: 10.1016/j.kint.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 06/23/2024]
Affiliation(s)
- Tilman B Drueke
- Inserm Unit 1018, Team 5, CESP, Hôpital Paul Brousse, Paris-Sud University (UPS) and Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ), Villejuif, France.
| | - Ziad A Massy
- Inserm Unit 1018, Team 5, CESP, Hôpital Paul Brousse, Paris-Sud University (UPS) and Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ), Villejuif, France; Association pour l'Utilisation du Rein Artificiel dans la région parisienne (AURA), Paris, France; Department of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt/Paris, France
| |
Collapse
|
47
|
Kasperova BJ, Mraz M, Svoboda P, Hlavacek D, Kratochvilova H, Modos I, Vrzackova N, Ivak P, Janovska P, Kobets T, Mahrik J, Riecan M, Steiner Mrazova L, Stranecky V, Netuka I, Cajka T, Kuda O, Melenovsky V, Stemberkova Hubackova S, Haluzik M. Sodium-glucose cotransporter 2 inhibitors induce anti-inflammatory and anti-ferroptotic shift in epicardial adipose tissue of subjects with severe heart failure. Cardiovasc Diabetol 2024; 23:223. [PMID: 38943140 PMCID: PMC11214218 DOI: 10.1186/s12933-024-02298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are glucose-lowering agents used for the treatment of type 2 diabetes mellitus, which also improve heart failure and decrease the risk of cardiovascular complications. Epicardial adipose tissue (EAT) dysfunction was suggested to contribute to the development of heart failure. We aimed to elucidate a possible role of changes in EAT metabolic and inflammatory profile in the beneficial cardioprotective effects of SGLT-2i in subjects with severe heart failure. METHODS 26 subjects with severe heart failure, with reduced ejection fraction, treated with SGLT-2i versus 26 subjects without treatment, matched for age (54.0 ± 2.1 vs. 55.3 ± 2.1 years, n.s.), body mass index (27.8 ± 0.9 vs. 28.8 ± 1.0 kg/m2, n.s.) and left ventricular ejection fraction (20.7 ± 0.5 vs. 23.2 ± 1.7%, n.s.), who were scheduled for heart transplantation or mechanical support implantation, were included in the study. A complex metabolomic and gene expression analysis of EAT obtained during surgery was performed. RESULTS SGLT-2i ameliorated inflammation, as evidenced by the improved gene expression profile of pro-inflammatory genes in adipose tissue and decreased infiltration of immune cells into EAT. Enrichment of ether lipids with oleic acid noted on metabolomic analysis suggests a reduced disposition to ferroptosis, potentially further contributing to decreased oxidative stress in EAT of SGLT-2i treated subjects. CONCLUSIONS Our results show decreased inflammation in EAT of patients with severe heart failure treated by SGLT-2i, as compared to patients with heart failure without this therapy. Modulation of EAT inflammatory and metabolic status could represent a novel mechanism behind SGLT-2i-associated cardioprotective effects in patients with heart failure.
Collapse
Affiliation(s)
- Barbora Judita Kasperova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 1660/32, 121 08, Prague, Czech Republic
| | - Milos Mraz
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 499/2, 128 08, Prague, Czech Republic
| | - Petr Svoboda
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - Daniel Hlavacek
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00, Prague, Czech Republic
| | - Helena Kratochvilova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Istvan Modos
- Department of Informatics, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Nikola Vrzackova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - Peter Ivak
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00, Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tatyana Kobets
- Department of Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jakub Mahrik
- First Faculty of Medicine, Charles University in Prague, Katerinska 1660/32, 121 08, Prague, Czech Republic
- Department of Cardiac Anesthesia, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Martin Riecan
- Department of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Lenka Steiner Mrazova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, 128 08, Prague, Czech Republic
| | - Viktor Stranecky
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, 128 08, Prague, Czech Republic
| | - Ivan Netuka
- Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Tomas Cajka
- Department of Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Ondrej Kuda
- Department of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Vojtech Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Sona Stemberkova Hubackova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic.
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic.
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 499/2, 128 08, Prague, Czech Republic.
| |
Collapse
|
48
|
Madonna R, Biondi F, Alberti M, Ghelardoni S, Mattii L, D'Alleva A. Cardiovascular outcomes and molecular targets for the cardiac effects of Sodium-Glucose Cotransporter 2 Inhibitors: A systematic review. Biomed Pharmacother 2024; 175:116650. [PMID: 38678962 DOI: 10.1016/j.biopha.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new class of glucose-lowering drugs traditionally used to control blood glucose levels in patients with type 2 diabetes mellitus, have been proven to reduce major adverse cardiovascular events, including cardiovascular death, in patients with heart failure irrespective of ejection fraction and independently of the hypoglycemic effect. Because of their favorable effects on the kidney and cardiovascular outcomes, their use has been expanded in all patients with any combination of diabetes mellitus type 2, chronic kidney disease and heart failure. Although mechanisms explaining the effects of these drugs on the cardiovascular system are not well understood, their effectiveness in all these conditions suggests that they act at the intersection of the metabolic, renal and cardiac axes, thus disrupting maladaptive vicious cycles while contrasting direct organ damage. In this systematic review we provide a state of the art of the randomized controlled trials investigating the effect of SGLT2i on cardiovascular outcomes in patients with chronic kidney disease and/or heart failure irrespective of ejection fraction and diabetes. We also discuss the molecular targets and signaling pathways potentially explaining the cardiac effects of these pharmacological agents, from a clinical and experimental perspective.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy.
| | - Filippo Biondi
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Mattia Alberti
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, Histology Division, University of Pisa, Pisa, Italy
| | - Alberto D'Alleva
- Cardiac Intensive Care and Interventional Cardiology Unit, Santo Spirito Hospital, Pescara, Italy
| |
Collapse
|
49
|
Lin J, Liu S, Liu T, Chuang S, Huang C, Chen Y, Lee C, Chien M, Hou CJ, Yeh H, Chiang C, Hung C. ELUCIDATE Trial: A Single-Center Randomized Controlled Study. J Am Heart Assoc 2024; 13:e033832. [PMID: 38639353 PMCID: PMC11179944 DOI: 10.1161/jaha.123.033832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, is an epochal oral antidiabetic drug that improves cardiorenal outcomes. However, the effect of early dapagliflozin intervention on left ventricular (LV) remodeling in patients with type 2 diabetes free from cardiovascular disease remains unclear. METHODS AND RESULTS The ELUCIDATE trial was a prospective, open-label, randomized, active-controlled study that enrolled 76 patients with asymptomatic type 2 diabetes with LV ejection fraction ≥50%, randomized to the dapagliflozin 10 mg/day add-on or standard-of-care group. Speckle-tracking echocardiography-based measurements of the cardiac global longitudinal strain were performed at baseline and 24 weeks after treatment initiation. Patients who received dapagliflozin had a greater reduction in LV dimension (1.68 mm [95% CI, 0.53-2.84]; P=0.005), LV end-systolic volume (5.51 mL [95% CI, 0.86-10.17]; P=0.021), and LV mass index (4.25 g/m2.7 [95% CI, 2.42-6.09]; P<0.0001) compared with standard of care in absolute mean differences. Dapagliflozin add-on therapy led to a significant LV global longitudinal strain increment (0.74% [95% CI, 1.00-0.49]; P<0.0001) and improved LV systolic and early diastolic strain rates (0.27/s [95% CI, 0.17-0.60]; and 0.11/s [95% CI, 0.06-0.16], respectively; both P<0.0001) but not in global circumferential strain. No significant changes were found in insulin resistance, NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels, or other biomarkers at 6 months after the dapagliflozin administration. CONCLUSIONS Dapagliflozin add-on therapy could lead to more favorable cardiac remodeling accompanied by enhanced cardiac mechanical function among patients with asymptomatic type 2 diabetes. Our findings provide evidence of the efficacy of dapagliflozin use for the primary prevention of diabetic cardiomyopathy. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03871621.
Collapse
Affiliation(s)
- Jiun‐Lu Lin
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Sung‐Chen Liu
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Tze‐Fan Liu
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Shih‐Ming Chuang
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Chun‐Ta Huang
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Ying‐Ju Chen
- Department of TelehealthMacKay Memorial HospitalTaipeiTaiwan
| | - Chun‐Chuan Lee
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Ming‐Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Charles Jia‐Yin Hou
- Division of Cardiology, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
| | - Hung‐I. Yeh
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
- Division of Cardiology, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
| | - Chern‐En Chiang
- Division of Cardiology, General Clinical Research CenterTaipei Veterans General Hospital, National Yang‐Ming UniversityTaipeiTaiwan
| | - Chung‐Lieh Hung
- Department of TelehealthMacKay Memorial HospitalTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Institute of Biomedical Science, MacKay Medical CollegeNew Taipei CityTaiwan
| |
Collapse
|
50
|
Youn YJ, Kim S, Jeong HJ, Ah YM, Yu YM. Sodium-glucose cotransporter-2 inhibitors and their potential role in dementia onset and cognitive function in patients with diabetes mellitus: a systematic review and meta-analysis. Front Neuroendocrinol 2024; 73:101131. [PMID: 38367940 DOI: 10.1016/j.yfrne.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
This systematic review and meta-analysis aimed to determine the association between the use of sodium-glucose cotransporter 2 (SGLT-2) inhibitors and dementia onset as well as cognitive function in patients with diabetes mellitus. We comprehensively searched the MEDLINE, Embase, and CENTRAL databases to select relevant studies published up to August 2023. The use of SGLT-2 inhibitors significantly lowers dementia risk compared to SGLT-2i non-users (Hazard ratio: 0.68, 95 % CI: 0.50-0.92). Furthermore, our findings indicated a positive effect of SGLT-2 inhibitor use on cognitive function score improvement, as demonstrated by the standardized mean difference of 0.88 (95 % CI: 0.32-1.44), particularly among populations with mild cognitive impairment or dementia. This systematic review and meta-analysis indicate a potential role of SGLT-2 inhibitors in reducing the risk of dementia in patients with diabetes mellitus. These findings underscore the need for well-controlled large clinical trials and future research in this field.
Collapse
Affiliation(s)
- Yea Jin Youn
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Seungyeon Kim
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Hyun-Jeong Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Young-Mi Ah
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Yun Mi Yu
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea; Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and Pharmacy, Yonsei University, Incheon, Republic of Korea.
| |
Collapse
|