1
|
Dishisha T, Jain M, Hatti-Kaul R. High cell density sequential batch fermentation for enhanced propionic acid production from glucose and glycerol/glucose mixture using Acidipropionibacterium acidipropionici. Microb Cell Fact 2024; 23:91. [PMID: 38532467 DOI: 10.1186/s12934-024-02366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Propionic acid fermentation from renewable feedstock suffers from low volumetric productivity and final product concentration, which limits the industrial feasibility of the microbial route. High cell density fermentation techniques overcome these limitations. Here, propionic acid (PA) production from glucose and a crude glycerol/glucose mixture was evaluated using Acidipropionibacterium acidipropionici, in high cell density (HCD) batch fermentations with cell recycle. The agro-industrial by-product, heat-treated potato juice, was used as N-source. RESULTS Using 40 g/L glucose for nine consecutive batches yielded an average of 18.76 ± 1.34 g/L of PA per batch (0.59 gPA/gGlu) at a maximum rate of 1.15 gPA/L.h, and a maximum biomass of 39.89 gCDW/L. Succinic acid (SA) and acetic acid (AA) were obtained as major by-products and the mass ratio of PA:SA:AA was 100:23:25. When a crude glycerol/glucose mixture (60 g/L:30 g/L) was used for 6 consecutive batches with cell recycle, an average of 35.36 ± 2.17 g/L of PA was obtained per batch (0.51 gPA/gC-source) at a maximum rate of 0.35 g/L.h, and reaching a maximum biomass concentration of 12.66 gCDW/L. The PA:SA:AA mass ratio was 100:29:3. Further addition of 0.75 mg/L biotin as a supplement to the culture medium enhanced the cell growth reaching 21.89 gCDW/L, and PA productivity to 0.48 g/L.h, but also doubled AA concentration. CONCLUSION This is the highest reported productivity from glycerol/glucose co-fermentation where majority of the culture medium components comprised industrial by-products (crude glycerol and HTPJ). HCD batch fermentations with cell recycling are promising approaches towards industrialization of the bioprocess.
Collapse
Affiliation(s)
- Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Mridul Jain
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, P.O. Box 124, 221 00, Lund, Sweden
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, P.O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
2
|
Neves D, Meinen D, Alter TB, Blank LM, Ebert BE. Expanding Pseudomonas taiwanensis VLB120's acyl-CoA portfolio: Propionate production in mineral salt medium. Microb Biotechnol 2024; 17:e14309. [PMID: 37537795 PMCID: PMC10832534 DOI: 10.1111/1751-7915.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 08/05/2023] Open
Abstract
As one of the main precursors, acetyl-CoA leads to the predominant production of even-chain products. From an industrial biotechnology perspective, extending the acyl-CoA portfolio of a cell factory is vital to producing industrial relevant odd-chain alcohols, acids, ketones and polyketides. The bioproduction of odd-chain molecules can be facilitated by incorporating propionyl-CoA into the metabolic network. The shortest pathway for propionyl-CoA production, which relies on succinyl-CoA catabolism encoded by the sleeping beauty mutase operon, was evaluated in Pseudomonas taiwanensis VLB120. A single genomic copy of the sleeping beauty mutase genes scpA, argK and scpB combined with the deletion of the methylcitrate synthase PVLB_08385 was sufficient to observe propionyl-CoA accumulation in this Pseudomonas. The chassis' capability for odd-chain product synthesis was assessed by expressing an acyl-CoA hydrolase, which enabled propionate synthesis. Three fed-batch strategies during bioreactor fermentations were benchmarked for propionate production, in which a maximal propionate titre of 2.8 g L-1 was achieved. Considering that the fermentations were carried out in mineral salt medium under aerobic conditions and that a single genome copy drove propionyl-CoA production, this result highlights the potential of Pseudomonas to produce propionyl-CoA derived, odd-chain products.
Collapse
Affiliation(s)
- Dário Neves
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBtRWTH Aachen UniversityAachenGermany
| | - Daniel Meinen
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBtRWTH Aachen UniversityAachenGermany
| | - Tobias B. Alter
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBtRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBtRWTH Aachen UniversityAachenGermany
| | - Birgitta E. Ebert
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBtRWTH Aachen UniversityAachenGermany
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
3
|
Zou Y, Yan H, Li C, Wen F, Jize X, Zhang C, Liu S, Zhao Y, Fu Y, Li L, Liu F, Chen J, Li R, Chen X, Tian M. A Pectic Polysaccharide from Codonopsis pilosula Alleviates Inflammatory Response and Oxidative Stress of Aging Mice via Modulating Intestinal Microbiota-Related Gut-Liver Axis. Antioxidants (Basel) 2023; 12:1781. [PMID: 37760084 PMCID: PMC10525188 DOI: 10.3390/antiox12091781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a biological process that leads to the progressive deterioration and loss of physiological functions in the human body and results in an increase in morbidity and mortality, and aging-related disease is a major global problem that poses a serious threat to public health. Polysaccharides have been shown to delay aging by reducing oxidative damage, suppressing inflammatory responses, and modulating intestinal microbiota. Our previous studies have shown that polysaccharide CPP-1 extracted from the root of Codonopsis pilosula possesses noticeable anti-oxidant activity in vitro. Thus, in our study, we tested the anti-aging effect of CPP-1 in naturally aging mice (in vivo). Eighteen C57/BL mice (48-week-old, male) were divided into a control group, high-dose CPP-1 group (20 mg/mL), and low-dose CPP-1 group (10 mg/mL). We discovered that CPP-1 can exert a reparative effect on aging stress in the intestine and liver, including alleviating inflammation and oxidative damage. We revealed that CPP-1 supplementation improved the intestinal microbiota composition and repaired the intestinal barrier in the gut. Furthermore, CPP-1 was proved to modulate lipid metabolism and repair hepatocyte injury in the liver by influencing the enterohepatic axis associated with the intestinal microbiota. Therefore, we concluded that CPP-1 prevents and alleviates oxidative stress and inflammatory responses in the intestine and liver of aging mice by modulating the intestinal microbiota-related gut-liver axis to delay aging.
Collapse
Affiliation(s)
- Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Hong Yan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Cenyu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Fang Wen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Xiaoping Jize
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Chaowen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Siqi Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Yuzhe Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Yuping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China (L.L.)
| | - Fan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Rui Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Xingfu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (F.L.)
| |
Collapse
|
4
|
Qin N, Li L, Wang Z, Shi S. Microbial production of odd-chain fatty acids. Biotechnol Bioeng 2023; 120:917-931. [PMID: 36522132 DOI: 10.1002/bit.28308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Odd-chain fatty acids (OcFAs) and their derivatives have attracted much attention due to their beneficial physiological effects and their potential to be alternatives to advanced fuels. However, cells naturally produce even-chain fatty acids (EcFAs) with negligible OcFAs. In the process of biosynthesis of fatty acids (FAs), the acetyl-CoA serves as the starter unit for EcFAs, and propionyl-CoA works as the starter unit for OcFAs. The lack of sufficient propionyl-CoA, the precursor, is usually regarded as the main restriction for large-scale bioproduction of OcFAs. In recent years, synthetic biology strategies have been used to modify several microorganisms to produce more propionyl-CoA that would enable an efficient biosynthesis of OcFAs. This review discusses several reported and potential metabolic pathways for propionyl-CoA biosynthesis, followed by advances in engineering several cell factories for OcFAs production. Finally, trends and challenges of synthetic biology driven OcFAs production are discussed.
Collapse
Affiliation(s)
- Ning Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lingyun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zheng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
5
|
Huang C, Liu H, Yang W, Li Y, Wu B, Chen J, Yang Z, Liao C, Liu L, Zhang X. Distinct Gut Microbiota Structure and Function of Children with Idiopathic Central and Peripheral Precocious Puberty. Int J Endocrinol 2022; 2022:7175250. [PMID: 36405779 PMCID: PMC9668478 DOI: 10.1155/2022/7175250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Precocious puberty (PP) is one of the most common endocrine diseases in children, and the pathogenesis is currently unknown. Recent studies on the gut-brain axis have shown that there is a correlation between childhood endocrine diseases and the gut microbiota (GM). To explore the GM characteristics of children with different types of PP, we recruited 27 idiopathic central precocious puberty children (ICPP group), 18 peripheral precocious puberty children (PPP group), and 23 healthy children of the same age (HC group). Their stool samples were subjected to 16S rDNA sequencing. In this study, we found that the OTUs numbers, the annotated genera, and α-diversity of GM of the ICPP and PPP group were all significantly higher than that in the HC group (P < 0.05). The abundance of butyrate-producing bacteria Prevotella, Lachnospiracea incertae sedis, Roseburia, Ruminococcus, and Alistipes was significantly higher in the ICPP group and the PPP group, and Bacteroides and Faecalibacterium showed significantly higher abundance in the HC group. The GM symbiosis network showed that both Bacteroides and Faecalibacterium were negatively correlated with these butyrate-producing bacteria. The abundances of most significantly changed genera were gradually increased from HC to PPP, and to the ICPP group, while only Bacteroides was gradually decreased. After the prediction of the metabolic pathways of the GM, the cell motility, signal transduction, and environmental adaptation were significantly enriched in the ICPP and the PPP groups (P < 0.05), while the carbohydrate metabolism pathway was significantly lower (P < 0.001). Overall, this study showed that the GM composition and predicted functional pattern of children with ICPP and PPP are different from healthy children, and PPP may be a transitional stage between ICPP and HC children, which provide a theoretical basis for clinical intervention based on GM in the treatment of PP.
Collapse
Affiliation(s)
- Congfu Huang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Haiying Liu
- Department of Pediatrics, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wei Yang
- Department of Pediatrics, The People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Yinhu Li
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Bin Wu
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Junru Chen
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Zhenyu Yang
- School of Statistics and Data Science, NanKai University, Tianjin, China
| | - Cuifang Liao
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Limei Liu
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Baur T, Wentzel A, Dürre P. Production of propionate using metabolically engineered strains of Clostridium saccharoperbutylacetonicum. Appl Microbiol Biotechnol 2022; 106:7547-7562. [PMID: 36282302 PMCID: PMC9666320 DOI: 10.1007/s00253-022-12210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022]
Abstract
Abstract The carboxylic acid propionate is a valuable platform chemical with applications in various fields. The biological production of this acid has become of great interest as it can be considered a sustainable alternative to petrochemical synthesis. In this work, Clostridium saccharoperbutylacetonicum was metabolically engineered to produce propionate via the acrylate pathway. In total, the established synthetic pathway comprised eight genes encoding the enzymes catalyzing the conversion of pyruvate to propionate. These included the propionate CoA-transferase, the lactoyl-CoA dehydratase, and the acryloyl-CoA reductase from Anaerotignum neopropionicum as well as a D-lactate dehydrogenase from Leuconostoc mesenteroides subsp. mesenteroides. Due to difficulties in assembling all genes on one plasmid under the control of standard promoters, the PtcdB-tcdR promoter system from Clostridium difficile was integrated into a two-plasmid system carrying the acrylate pathway genes. Several promoters were analyzed for their activity in C. saccharoperbutylacetonicum using the fluorescence-activating and absorption-shifting tag (FAST) as a fluorescent reporter to identify suitable candidates to drive tcdR expression. After selecting the lactose-inducible PbgaL promoter, engineered C. saccharoperbutylacetonicum strains produced 0.7 mM propionate upon induction of gene expression. The low productivity was suspected to be a consequence of a metabolic imbalance leading to acryloyl-CoA accumulation in the cells. To even out the proposed imbalance, the propionate-synthesis operons were rearranged, thereby increasing the propionate concentration by almost four-fold. This study is the first one to report recombinant propionate production using a clostridial host strain that has opened a new path towards bio-based propionate to be improved further in subsequent work. Key points • Determination of promoter activities in C. saccharoperbutylacetonicum using FAST. • Implementation of propionate production in C. saccharoperbutylacetonicum. • Elevation of propionate production by 375% to a concentration of 3 mM. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12210-8.
Collapse
|
7
|
Tiwari R, Sathesh-Prabu C, Lee SK. Bioproduction of propionic acid using levulinic acid by engineered Pseudomonas putida. Front Bioeng Biotechnol 2022; 10:939248. [PMID: 36032729 PMCID: PMC9399607 DOI: 10.3389/fbioe.2022.939248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
The present study elaborates on the propionic acid (PA) production by the well-known microbial cell factory Pseudomonas putida EM42 and its capacity to utilize biomass-derived levulinic acid (LA). Primarily, the P. putida EM42 strain was engineered to produce PA by deleting the methylcitrate synthase (PrpC) and propionyl-CoA synthase (PrpE) genes. Subsequently, a LA-inducible expression system was employed to express yciA (encoding thioesterase) from Haemophilus influenzae and ygfH (encoding propionyl-CoA: succinate CoA transferase) from Escherichia coli to improve the PA production by up to 10-fold under flask scale cultivation. The engineered P. putida EM42:ΔCE:yciA:ygfH was used to optimize the bioprocess to further improve the PA production titer. Moreover, the fed-batch fermentation performed under optimized conditions in a 5 L bioreactor resulted in the titer, productivity, and molar yield for PA production of 26.8 g/L, 0.3 g/L/h, and 83%, respectively. This study, thus, successfully explored the LA catabolic pathway of P. putida as an alternative route for the sustainable and industrial production of PA from LA.
Collapse
|
8
|
Collograi KC, da Costa AC, Ienczak JL. Fermentation strategies to improve propionic acid production with propionibacterium ssp.: a review. Crit Rev Biotechnol 2022; 42:1157-1179. [PMID: 35264026 DOI: 10.1080/07388551.2021.1995695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Propionic acid (PA) is a carboxylic acid applied in a variety of processes, such as food and feed preservative, and as a chemical intermediate in the production of polymers, pesticides and drugs. PA production is predominantly performed by petrochemical routes, but environmental issues are making it necessary to use sustainable processes based on renewable materials. PA production by fermentation with the Propionibacterium genus is a promising option in this scenario, due to the ability of this genus to consume a variety of renewable carbon sources with higher productivity than other native microorganisms. However, Propionibacterium fermentation processes present important challenges that must be faced to make this route competitive, such as: a high fermentation time, product inhibition and low PA final titer, which increase the cost of product recovery. This article summarizes the state of the art regarding strategies to improve PA production by fermentation with the Propionibacterium genus. Firstly, strategies associated with environmental fermentation conditions and nutrition requirements are discussed. Subsequently, advantages and disadvantages of various strategies proposed to improve process performance (high cell concentration by immobilization or recycle, co-culture fermentation, genome shuffling, evolutive and metabolic engineering, and in situ recovery) are evaluated.
Collapse
Affiliation(s)
| | | | - Jaciane Lutz Ienczak
- Chemical Engineering and Food Engineering Department- Santa Catarina, Federal University, Florianópolis, Brazil
| |
Collapse
|
9
|
Westerholm M, Calusinska M, Dolfing J. Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol Rev 2022; 46:fuab057. [PMID: 34875063 PMCID: PMC8892533 DOI: 10.1093/femsre/fuab057] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes.
Collapse
Affiliation(s)
- Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, SE-75007 Uppsala, Sweden
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, rue du Brill 41, L-4422 Belvaux, Luxembourg
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Wynne Jones 2.11, Ellison Place, Newcastle-upon-Tyne NE1 8QH, UK
| |
Collapse
|
10
|
Hackmann TJ. Redefining the coenzyme A transferase superfamily with a large set of manually-annotated proteins. Protein Sci 2022; 31:864-881. [PMID: 35049101 PMCID: PMC8927868 DOI: 10.1002/pro.4277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
The coenzyme A (CoA) transferases are a superfamily of proteins central to the metabolism of acetyl-CoA and other CoA thioesters. They are diverse group, catalyzing over a hundred biochemical reactions and spanning all three domains of life. A deeply rooted idea, proposed two decades ago, is these enzymes fall into three families (I, II, III). Here we find they fall into different families, which we achieve by analyzing all CoA transferases characterized to date. We manually annotated 94 CoA transferases with functional information (including rates of catalysis for 208 reactions) from 97 publications. This represents all enzymes we could find in the primary literature, and it is double the number annotated in four protein databases (BRENDA, KEGG, MetaCyc, UniProt). We found family I transferases are not closely related to each other in terms of sequence, structure, and reactions catalyzed. This family is not even monophyletic. These problems are solved by regrouping the three families into six, including one family with many non-CoA transferases. The problem (and solution) became apparent only by analyzing our large set of manually-annotated proteins. It would have been missed if we had used the small number of proteins annotated in UniProt and other databases. Our work is important to understanding the biology of CoA transferases. It also warns investigators doing phylogenetic analyses of proteins to go beyond information in databases. This article is protected by copyright. All rights reserved.
Collapse
|
11
|
Zhang Y, Li X, Wang Z, Wang Y, Ma Y, Su Z. Metabolic Flux Analysis of Simultaneous Production of Vitamin B 12 and Propionic Acid in a Coupled Fermentation Process by Propionibacterium freudenreichii. Appl Biochem Biotechnol 2021; 193:3045-3061. [PMID: 33990931 DOI: 10.1007/s12010-021-03584-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 01/19/2023]
Abstract
The metabolic processes involved in simultaneous production of vitamin B12 and propionic acid by Propionibacterium freudenreichii are very complicated. To further investigate the regulatory mechanism of this metabolism, a simplified metabolic network was established. The effects of glucose feeding, propionic acid removal, and 5,6-dimethylbenzimidazole (DMB) addition on the metabolic flux distribution were investigated. The results showed that synthesis of propionic acid can be increased by increasing the metabolic flux through the oxaloacetate and methylmalonyl-CoA branches in the early and middle stages of the coupled fermentation. After DMB addition, the synthesis of vitamin B12 was significantly enhanced via increased metabolic flux through the δ-aminolevulinate branch, which promoted the synthesis of uroporphyrinogen III, a precursor of vitamin B12. Therefore, the analysis of metabolic flux at key nodes can provide theoretical guidance for the optimization of P. freudenreichii fermentation processes. In an experimental coupled fermentation process, the concentrations of vitamin B12 and propionic acid reached 21.6 and 50.12 g/L respectively, increased by 105.71% and 73.91% compared with batch fermentation, which provides a new strategy for industrial production.
Collapse
Affiliation(s)
- Yuhan Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolian Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ziqiang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yunshan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyuan Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
12
|
Khalyfa A, Qiao Z, Raju M, Shyu CR, Coghill L, Ericsson A, Gozal D. Monocarboxylate Transporter-2 Expression Restricts Tumor Growth in a Murine Model of Lung Cancer: A Multi-Omic Analysis. Int J Mol Sci 2021; 22:ijms221910616. [PMID: 34638954 PMCID: PMC8508890 DOI: 10.3390/ijms221910616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Monocarboxylate transporter 2 (MCT2) is a major high-affinity pyruvate transporter encoded by the SLC16A7 gene, and is associated with glucose metabolism and cancer. Changes in the gut microbiota and host immune system are associated with many diseases, including cancer. Using conditionally expressed MCT2 in mice and the TC1 lung carcinoma model, we examined the effects of MCT2 on lung cancer tumor growth and local invasion, while also evaluating potential effects on fecal microbiome, plasma metabolome, and bulk RNA-sequencing of tumor macrophages. Conditional MCT2 mice were generated in our laboratory using MCT2loxP mouse intercrossed with mCre-Tg mouse to generate MCT2loxP/loxP; Cre+ mouse (MCT2 KO). Male MCT2 KO mice (8 weeks old) were treated with tamoxifen (0.18 mg/g BW) KO or vehicle (CO), and then injected with mouse lung carcinoma TC1 cells (10 × 105/mouse) in the left flank. Body weight, tumor size and weight, and local tumor invasion were assessed. Fecal DNA samples were extracted using PowerFecal kits and bacterial 16S rRNA amplicons were also performed. Fecal and plasma samples were used for GC−MS Polar, as well as non-targeted UHPLC-MS/MS, and tumor-associated macrophages (TAMs) were subjected to bulk RNAseq. Tamoxifen-treated MCT2 KO mice showed significantly higher tumor weight and size, as well as evidence of local invasion beyond the capsule compared with the controls. PCoA and hierarchical clustering analyses of the fecal and plasma metabolomics, as well as microbiota, revealed a distinct separation between the two groups. KO TAMs showed distinct metabolic pathways including the Acetyl-coA metabolic process, activation of immune response, b-cell activation and differentiation, cAMP-mediated signaling, glucose and glutamate processes, and T-cell differentiation and response to oxidative stress. Multi-Omic approaches reveal a substantial role for MCT2 in the host response to TC1 lung carcinoma that may involve alterations in the gut and systemic metabolome, along with TAM-related metabolic pathway. These findings provide initial opportunities for potential delineation of oncometabolic immunomodulatory therapeutic approaches.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
- Correspondence: (A.K.); (D.G.); Tel.: +1-573-884-7685 (A.K. & D.G.)
| | - Zhuanhong Qiao
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
| | - Murugesan Raju
- Department of Ophthalmology, School of Medicine, University of Missouri, Mizzou, Columbia, MO 65212, USA; (M.R.); (L.C.)
| | - Chi-Ren Shyu
- Institute for Data Science and Informatics, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 64110, USA;
| | - Lyndon Coghill
- Department of Ophthalmology, School of Medicine, University of Missouri, Mizzou, Columbia, MO 65212, USA; (M.R.); (L.C.)
| | - Aaron Ericsson
- Department of Veterinary Pathobiology and Metagenomics Core, University of Missouri, Columbia, MO 65212, USA;
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
- Correspondence: (A.K.); (D.G.); Tel.: +1-573-884-7685 (A.K. & D.G.)
| |
Collapse
|
13
|
Fermentative production of propionic acid: prospects and limitations of microorganisms and substrates. Appl Microbiol Biotechnol 2021; 105:6199-6213. [PMID: 34410439 DOI: 10.1007/s00253-021-11499-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Propionic acid is an important organic acid with wide industrial applications, especially in the food industry. It is currently produced from petrochemicals via chemical routes. Increasing concerns about greenhouse gas emissions from fossil fuels and a growing consumer preference for bio-based products have led to interest in fermentative production of propionic acid, but it is not yet competitive with chemical production. To improve the economic feasibility and sustainability of bio-propionic acid, fermentation performance in terms of concentration, yield, and productivity must be improved and the cost of raw materials must be reduced. These goals require robust microbial producers and inexpensive renewable feedstocks, so the present review focuses on bacterial producers of propionic acid and promising sources of substrates as carbon sources. Emphasis is placed on assessing the capacity of propionibacteria and the various approaches pursued in an effort to improve their performance through metabolic engineering. A wide range of substrates employed in propionic acid fermentation is analyzed with particular interest in the prospects of inexpensive renewable feedstocks, such as cellulosic biomass and industrial residues, to produce cost-competitive bio-propionic acid. KEY POINTS: • Fermentative propionic acid production emerges as competitor to chemical synthesis. • Various bacteria synthesize propionic acid, but propionibacteria are the best producers. • Biomass substrates hold promise to reduce propionic acid fermentation cost.
Collapse
|
14
|
Chilakamarry CR, Sakinah AMM, Zularisam AW, Pandey A. Glycerol waste to value added products and its potential applications. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 1:378-396. [PMID: 38624889 PMCID: PMC8182736 DOI: 10.1007/s43393-021-00036-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
The rapid industrial and economic development runs on fossil fuel and other energy sources. Limited oil reserves, environmental issues, and high transportation costs lead towards carbon unbiased renewable and sustainable fuel. Compared to other carbon-based fuels, biodiesel is attracted worldwide as a biofuel for the reduction of global dependence on fossil fuels and the greenhouse effect. During biodiesel production, approximately 10% of glycerol is formed in the transesterification process in a biodiesel plant. The ditching of crude glycerol is important as it contains salt, free fatty acids, and methanol that cause contamination of soil and creates environmental challenges for researchers. However, the excessive cost of crude glycerol refining and market capacity encourage the biodiesel industries for developing a new idea for utilising and produced extra sources of income and treat biodiesel waste. This review focuses on the significance of crude glycerol in the value-added utilisation and conversion to bioethanol by a fermentation process and describes the opportunities of glycerol in various applications. Graphic abstract
Collapse
Affiliation(s)
- Chaitanya Reddy Chilakamarry
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - A. M. Mimi Sakinah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - A. W. Zularisam
- Faculty of Civil Engineering Technology , Universiti Malaysia Pahang, Gambang, Kuantan , Malaysia 26300
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001 India
| |
Collapse
|
15
|
Folch PL, Bisschops MM, Weusthuis RA. Metabolic energy conservation for fermentative product formation. Microb Biotechnol 2021; 14:829-858. [PMID: 33438829 PMCID: PMC8085960 DOI: 10.1111/1751-7915.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO2 binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
Collapse
Affiliation(s)
- Pauline L. Folch
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Markus M.M. Bisschops
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| |
Collapse
|
16
|
Ma C, Shi Y, Mu Q, Li R, Xue Y, Yu B. Unravelling the thioesterases responsible for propionate formation in engineered Pseudomonas putida KT2440. Microb Biotechnol 2021; 14:1237-1242. [PMID: 33739583 PMCID: PMC8085926 DOI: 10.1111/1751-7915.13804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 03/07/2021] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas putida KT2440 is becoming a new robust metabolic chassis for biotechnological applications, due to its metabolic versatility, low nutritional requirements and biosafety status. We have previously engineered P. putida KT2440 to be an efficient propionate producer from L-threonine, although the internal enzymes converting propionyl-CoA to propionate are not clear. In this study, we thoroughly investigated 13 genes annotated as potential thioesterases in the KT2440 mutant. One thioesterase encoded by locus tag PP_4975 was verified to be the major contributor to propionate production in vivo. Deletion of PP_4975 significantly decreased propionate production, whereas the performance was fully restored by gene complement. Compared with thioesterase HiYciA from Haemophilus influenza, thioesterase PP_4975 showed a faster substrate conversion rate in vitro. Thus, this study expands our knowledge on acyl-CoA thioesterases in P. putida KT2440 and may also reveal a new target for further engineering the strain to improve propionate production performance.
Collapse
Affiliation(s)
- Chao Ma
- CAS Key Laboratory of Microbial Physiological & Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Ya’nan Shi
- CAS Key Laboratory of Microbial Physiological & Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qingxuan Mu
- CAS Key Laboratory of Microbial Physiological & Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rongshan Li
- CAS Key Laboratory of Microbial Physiological & Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Yanfen Xue
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| |
Collapse
|
17
|
Li J, Rong L, Zhao Y, Li S, Zhang C, Xiao D, Foo JL, Yu A. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnol Adv 2020; 43:107605. [DOI: 10.1016/j.biotechadv.2020.107605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
|
18
|
Propionic acid production by Propionibacterium freudenreichii using sweet sorghum bagasse hydrolysate. Appl Microbiol Biotechnol 2020; 104:9619-9629. [PMID: 33047167 DOI: 10.1007/s00253-020-10953-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Propionic acid, a widely used food preservative and intermediate in the manufacture of various chemicals, is currently produced from petroleum-based chemicals, raising concerns about its long-term sustainability. A key way to make propionic acid more sustainable is through fermentation of low-cost renewable and inedible sugar sources, such as lignocellulosic biomass. To this end, we utilized the cellulosic hydrolysate of sweet sorghum bagasse (SSB), a residue from a promising biomass source that can be cultivated around the world, for fermentative propionic acid production using Propionibacterium freudenreichii. In serum bottles, SSB hydrolysate supported a higher propionic acid yield than glucose (0.51 vs. 0.44 g/g, respectively), which can be attributed to the presence of additional nutrients in the hydrolysate enhancing propionic acid biosynthesis and the pH buffering capacity of the hydrolysate. Additionally, SSB hydrolysate supported better cell growth kinetics and higher tolerance to product inhibition by P. freudenreichii. The yield was further improved by co-fermenting glycerol, a renewable byproduct of the biodiesel industry, reaching up to 0.59 g/g, whereas volumetric productivity was enhanced by running the fermentation with high cell density inoculum. In the bioreactor, although the yield was slightly lower than in serum bottles (0.45 g/g), higher final concentration and overall productivity of propionic acid were achieved. Compared to glucose (this study) and hydrolysates from other biomass species (literature), use of SSB hydrolysate as a renewable glucose source resulted in comparable or even higher propionic acid yields. KEY POINTS: • Propionic acid yield and cell growth were higher in SSB hydrolysate than glucose. • The yield was enhanced by co-fermenting SSB hydrolysate and glycerol. • The productivity was enhanced under high cell density fermentation conditions. • SSB hydrolysate is equivalent or superior to other reported hydrolysates.
Collapse
|
19
|
Liu S, Yu Q, Huang H, Hou K, Dong R, Chen Y, Xie J, Nie S, Xie M. The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber in vivo and in vitro. Food Funct 2020; 11:748-758. [PMID: 31913387 DOI: 10.1039/c9fo02277e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growing attention has been paid to the importance of bound polyphenols in dietary fiber. This study aimed to elucidate the effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber (CDF) in vivo and in vitro. Compared with CDF treatment, 16S rRNA pyrosequencing of in vivo mice feces and in vitro human fecal fermentation samples showed that dephenolized carrot dietary fiber (CDF-DF) treatment decreases operational taxonomic units (OTUs), ACE and Chao1 indexes, increases Firmicute/Bacteroidetes ratio and relative abundance (RA) of Parabacteroides at phylum, restrains RAs of typical beneficial bacteria as well as improves RAs of various harmful bacteria at genus. Meanwhile, short-chain fatty acid (SCFA) contents were lower, while the pH value was higher in the CDF-DF group than those in the CDF group. Interestingly, the combination of bound polyphenols and CDF-DF (CDDP) could recover these indexes influenced by the removal of bound polyphenols in in vitro fermentation samples. Furthermore, the CDF-DF-fed mice exhibited higher MDA content and lower SOD and GSH-Px activities in the colon. The cellular antioxidant activity (CAA) value of CDF-DF was lower than that of CDF and CDDP. These results revealed that bound polyphenols significantly contribute to the fermentation and antioxidant properties of CDF.
Collapse
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A Pan-Genome Guided Metabolic Network Reconstruction of Five Propionibacterium Species Reveals Extensive Metabolic Diversity. Genes (Basel) 2020; 11:genes11101115. [PMID: 32977700 PMCID: PMC7650540 DOI: 10.3390/genes11101115] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
Propionibacteria have been studied extensively since the early 1930s due to their relevance to industry and importance as human pathogens. Still, their unique metabolism is far from fully understood. This is partly due to their signature high GC content, which has previously hampered the acquisition of quality sequence data, the accurate annotation of the available genomes, and the functional characterization of genes. The recent completion of the genome sequences for several species has led researchers to reassess the taxonomical classification of the genus Propionibacterium, which has been divided into several new genres. Such data also enable a comparative genomic approach to annotation and provide a new opportunity to revisit our understanding of their metabolism. Using pan-genome analysis combined with the reconstruction of the first high-quality Propionibacterium genome-scale metabolic model and a pan-metabolic model of current and former members of the genus Propionibacterium, we demonstrate that despite sharing unique metabolic traits, these organisms have an unexpected diversity in central carbon metabolism and a hidden layer of metabolic complexity. This combined approach gave us new insights into the evolution of Propionibacterium metabolism and led us to propose a novel, putative ferredoxin-linked energy conservation strategy. The pan-genomic approach highlighted key differences in Propionibacterium metabolism that reflect adaptation to their environment. Results were mathematically captured in genome-scale metabolic reconstructions that can be used to further explore metabolism using metabolic modeling techniques. Overall, the data provide a platform to explore Propionibacterium metabolism and a tool for the rational design of strains.
Collapse
|
21
|
Castro PGM, Maeda RN, Rocha VAL, Fernandes RP, Pereira N. Improving propionic acid production from a hemicellulosic hydrolysate of sorghum bagasse by means of cell immobilization and sequential batch operation. Biotechnol Appl Biochem 2020; 68:1120-1127. [PMID: 32942342 DOI: 10.1002/bab.2031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Propionic acid (PA) is an important organic compound with extensive application in different industrial sectors and is currently produced by petrochemical processes. The production of PA by large-scale fermentation processes presents a bottleneck, particularly due to low volumetric productivity. In this context, the present work aimed to produce PA by a biochemical route from a hemicellulosic hydrolysate of sorghum bagasse using the strain Propionibacterium acidipropionici CIP 53164. Conditions were optimized to increase volumetric productivity and process efficiency. Initially, in simple batch fermentation, a final concentration of PA of 17.5 g⋅L-1 was obtained. Next, fed batch operation with free cells was adopted to minimize substrate inhibition. Although a higher concentration of PA was achieved (38.0 g⋅L-1 ), the response variables (YP/S = 0.409 g⋅g-1 and QP = 0.198 g⋅L-1 ⋅H-1 ) were close to those of the simple batch experiment. Finally, the fermentability of the hemicellulosic hydrolysate was investigated in a sequential batch with immobilized cells. The PA concentration achieved a maximum of 35.3 g⋅L-1 in the third cycle; moreover, the volumetric productivity was almost sixfold higher (1.17 g⋅L-1 ⋅H-1 ) in sequential batch than in simple batch fermentation. The results are highly promising, providing preliminary data for studies on scaling up the production of this organic acid.
Collapse
Affiliation(s)
- Patrycia G M Castro
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Roberto N Maeda
- Novozymes Latin America, Barigui, Rua Professor Francisco Ribeiro, Araucaria, Parana, CEP, Brazil
| | - Vanessa A L Rocha
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Rodrigo P Fernandes
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Nei Pereira
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| |
Collapse
|
22
|
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 2020; 104:51-65. [PMID: 31773206 PMCID: PMC6942593 DOI: 10.1007/s00253-019-10226-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Microorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
23
|
Luo D, Chen K, Li J, Fang Z, Pang H, Yin Y, Rong X, Guo J. Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. Biomed Pharmacother 2019; 121:109550. [PMID: 31704617 DOI: 10.1016/j.biopha.2019.109550] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
The aging process is accompanied by changes in the gut microbiota and metabolites. This study aimed to reveal the relationship between gut microbiota and the metabolome at different ages, as well as the anti-aging effect of FTZ, which is an effective clinical prescription for the treatment of hyperlipidemia and diabetes. METHODS In the present study, mice were randomly divided into different age and FTZ treatment groups. The aging-relevant behavioral phenotype the levels of blood glucose, cholesterol, triglycerides, low density lipoprotein cholesterol, free fatty acids, high density lipoprotein-cholesterol and cytokine TNF-α,IL-6, IL-8 in the serum were measured. Changes of serum metabolties were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-Q-TOF/MS). Gut microbiota were identified using 16S rDNA sequencing. RESULTS Our results indicated that with age, the aging-relevant behavioral phenotype appeared, glucose and lipid metabolism disordered, secretion levels of cytokine TNF-α, IL-6 and IL-8 increased.The Firmicutes/Bacteroidetes ratio changed with age, first increasing and then decreasing, and the microbial diversity and the community richness of the aging mice were improved by FTZ. The abundance of opportunistic bacteria decreased (Lactobacillus murinus, Erysipelatoclostridium), while the levels of protective bacteria such as Butyricimonas, Clostridium and Akkermansia increased. Metabolic analysis identified 24 potential biomarkers and 10 key pathways involving arachidonic acid metabolism, phospholipid metabolism, fatty acid metabolism, taurine and hypotaurine metabolism. Correlation analysis between the gut microbiota and biomarkers suggested that the relative abundance of protective bacteria was negatively correlated with the levels of leukotriene E4, 20-HETE and arachidonic acid, which was different from protective bacteria. CONCLUSION Shifts of gut microbiota and metabolomic profiles were observed in the mice during the normal aging process, and treatment with FTZ moderately corrected the aging, which may be mediated via interference with arachidonic acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, taurine and hypotaurine metabolism and gut microbiota in mice.
Collapse
Affiliation(s)
- Duosheng Luo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Kechun Chen
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Jingbiao Li
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Zhaoyan Fang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Huiting Pang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yifan Yin
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Xianglu Rong
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Jiao Guo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| |
Collapse
|
24
|
Bao T, Zhao J, Li J, Liu X, Yang ST. n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases. BIORESOURCE TECHNOLOGY 2019; 285:121316. [PMID: 30959389 DOI: 10.1016/j.biortech.2019.121316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 05/22/2023]
Abstract
With high cellulolytic and acetic/butyric acids production abilities, Clostridium cellulovorans is promising for use to produce cellulosic n-butanol. Here, we introduced three different aldehyde/alcohol dehydrogenases encoded by bdhB, adhE1, and adhE2 from Clostridium acetobutylicum into C. cellulovorans and studied their effects on ethanol and n-butanol production. Compared to AdhE2, AdhE1 was more specific for n-butanol biosynthesis over ethanol. Co-expressing adhE1 with bdhB produced a comparable amount of butanol but significantly less ethanol, leading to a high butanol/ethanol ratio of 7.0 and 5.6 (g/g) in glucose and cellulose fermentation, respectively. Co-expressing adhE1 or adhE2 with bdhB did not increase butanol production because the activity of BdhB was limited by the NADPH availability in C. cellulovorans. Overall, the strain overexpressing adhE2 alone produced the most n-butanol (4.0 g/L, yield: 0.22 ± 0.01 g/g). Based on the insights from this study, further metabolic engineering of C. cellulovorans for cellulosic n-butanol production is suggested.
Collapse
Affiliation(s)
- Teng Bao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210, USA
| | - Jingbo Zhao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210, USA
| | - Jing Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210, USA; College of Biology & Engineering, Hebei University of Economics & Business, Shijiazhuang 050061, PR China
| | - Xin Liu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210, USA; School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Navone L, McCubbin T, Gonzalez-Garcia RA, Nielsen LK, Marcellin E. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production. Metab Eng Commun 2018; 6:1-12. [PMID: 29255672 PMCID: PMC5725212 DOI: 10.1016/j.meteno.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/12/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp. shermanii and the pan-Propionibacterium genome-scale metabolic models (GEMs) to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp. shermanii, two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP), Zwf (glucose-6-phosphate 1-dehydrogenase) and Pgl (6-phosphogluconolactonase). Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) and sodium-pumping methylmalonyl-CoA decarboxylase (MMD) was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in Propionibacterium. We also describe the benefit of carbon dioxide to propionibacteria growth, substrate conversion and propionate yield.
Collapse
Affiliation(s)
- Laura Navone
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | | | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Australia
| |
Collapse
|
26
|
Yang H, Wang Z, Lin M, Yang ST. Propionic acid production from soy molasses by Propionibacterium acidipropionici: Fermentation kinetics and economic analysis. BIORESOURCE TECHNOLOGY 2018; 250:1-9. [PMID: 29153644 DOI: 10.1016/j.biortech.2017.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Propionic acid (PA) is a specialty chemical; its calcium salt is widely used as food preservative. Soy molasses (SM), a low-value byproduct from soybean refinery, contains sucrose and raffinose-family oligosaccharides (RFO), which are difficult to digest for most animals and industrial microorganisms. The feasibility of using SM for PA production by P. acidipropionici, which has genes encoding enzymes necessary for RFO hydrolysis, was studied. With corn steep liquor as the nitrogen source, stable long-term PA production from SM was demonstrated in sequential batch fermentations, achieving PA productivity of >0.8 g/L h and yield of 0.42 g/g sugar at pH 6.5. Economic analysis showed that calcium propionate as the main component (63.5%) in the product could be produced at US $1.55/kg for a 3000-MT plant with a capital investment of US $10.82 million. At $3.0/kg for the product, the process offers attractive 40% return of investment and is promising for commercial application.
Collapse
Affiliation(s)
- Hopen Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Zhongqiang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Ścibisz I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl Microbiol Biotechnol 2018; 102:515-538. [PMID: 29167919 PMCID: PMC5756557 DOI: 10.1007/s00253-017-8616-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
Bacteria from the Propionibacterium genus consists of two principal groups: cutaneous and classical. Cutaneous Propionibacterium are considered primary pathogens to humans, whereas classical Propionibacterium are widely used in the food and pharmaceutical industries. Bacteria from the Propionibacterium genus are capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of the bacteria from the Propionibacterium genus constitutes sources of vitamins from the B group, including B12, trehalose, and numerous bacteriocins. These bacteria are also capable of synthesizing organic acids such as propionic acid and acetic acid. Because of GRAS status and their health-promoting characteristics, bacteria from the Propionibacterium genus and their metabolites (propionic acid, vitamin B12, and trehalose) are commonly used in the cosmetic, pharmaceutical, food, and other industries. They are also used as additives in fodders for livestock. In this review, we present the major species of Propionibacterium and their properties and provide an overview of their functions and applications. This review also presents current literature concerned with the possibilities of using Propionibacterium spp. to obtain valuable metabolites. It also presents the biosynthetic pathways as well as the impact of the genetic and environmental factors on the efficiency of their production.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology, Division of Fruit and Vegetable Technology, Faculty of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| |
Collapse
|
28
|
Guan N, Du B, Li J, Shin HD, Chen RR, Du G, Chen J, Liu L. Comparative genomics and transcriptomics analysis-guided metabolic engineering ofPropionibacterium acidipropionicifor improved propionic acid production. Biotechnol Bioeng 2017; 115:483-494. [DOI: 10.1002/bit.26478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta
| | - Bin Du
- Department of Bioengineering; University of California; San Diego La Jolla California
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta
| | - Rachel R. Chen
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
| |
Collapse
|
29
|
Vivek N, Sindhu R, Madhavan A, Anju AJ, Castro E, Faraco V, Pandey A, Binod P. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview. BIORESOURCE TECHNOLOGY 2017; 239:507-517. [PMID: 28550990 DOI: 10.1016/j.biortech.2017.05.056] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 05/12/2023]
Abstract
One of the major ecological concerns associated with biodiesel production is the generation of waste/crude glycerol during the trans-esterification process. Purification of this crude glycerol is not economically viable. In this context, the development of an efficient and economically viable strategy would be biotransformation reactions converting the biodiesel derived crude glycerol into value added chemicals. Hence the process ensures the sustainability and waste management in biodiesel industry, paving a path to integrated biorefineries. This review addresses a waste to wealth approach for utilization of crude glycerol in the production of value added chemicals, current trends, challenges, future perspectives, metabolic approaches and the genetic tools developed for the improved synthesis over wild type microorganisms were described.
Collapse
Affiliation(s)
- Narisetty Vivek
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Alphonsa Jose Anju
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126 Naples, Italy
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160 071, Punjab, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.
| |
Collapse
|
30
|
Gonzalez-Garcia RA, McCubbin T, Wille A, Plan M, Nielsen LK, Marcellin E. Awakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase. Microb Cell Fact 2017; 16:121. [PMID: 28716098 PMCID: PMC5512728 DOI: 10.1186/s12934-017-0735-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Propionic acid is used primarily as a food preservative with smaller applications as a chemical building block for the production of many products including fabrics, cosmetics, drugs, and plastics. Biological production using propionibacteria would be competitive against chemical production through hydrocarboxylation of ethylene if native producers could be engineered to reach near-theoretical yield and good productivity. Unfortunately, engineering propionibacteria has proven very challenging. It has been suggested that activation of the sleeping beauty operon in Escherichia coli is sufficient to achieve propionic acid production. Optimising E. coli production should be much easier than engineering propionibacteria if tolerance issues can be addressed. RESULTS Propionic acid is produced in E. coli via the sleeping beauty mutase operon under anaerobic conditions in rich medium via amino acid degradation. We observed that the sbm operon enhances amino acids degradation to propionic acid and allows E. coli to degrade isoleucine. However, we show here that the operon lacks an epimerase reaction that enables propionic acid production in minimal medium containing glucose as the sole carbon source. Production from glucose can be restored by engineering the system with a methylmalonyl-CoA epimerase from Propionibacterium acidipropionici (0.23 ± 0.02 mM). 1-Propanol production was also detected from the promiscuous activity of the native alcohol dehydrogenase (AdhE). We also show that aerobic conditions are favourable for propionic acid production. Finally, we increase titre 65 times using a combination of promoter engineering and process optimisation. CONCLUSIONS The native sbm operon encodes an incomplete pathway. Production of propionic acid from glucose as sole carbon source is possible when the pathway is complemented with a methylmalonyl-CoA epimerase. Although propionic acid via the restored succinate dissimilation pathway is considered a fermentative process, the engineered pathway was shown to be functional under anaerobic and aerobic conditions.
Collapse
Affiliation(s)
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Annalena Wille
- Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Manuel Plan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
31
|
|
32
|
Eş I, Khaneghah AM, Hashemi SMB, Koubaa M. Current advances in biological production of propionic acid. Biotechnol Lett 2017; 39:635-645. [PMID: 28150076 DOI: 10.1007/s10529-017-2293-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
Abstract
Propionic acid and its derivatives are considered "Generally Recognized As Safe" food additives and are generally used as an anti-microbial and anti-inflammatory agent, herbicide, and artificial flavor in diverse industrial applications. It is produced via biological pathways using Propionibacterium and some anaerobic bacteria. However, its commercial chemical synthesis from the petroleum-based feedstock is the conventional production process bit results in some environmental issues. Novel biological approaches using microorganisms and renewable biomass have attracted considerable recent attention due to economic advantages as well as great adaptation with the green technology. This review provides a comprehensive overview of important biotechnological aspects of propionic acid production using recent technologies such as employment of co-culture, genetic and metabolic engineering, immobilization technique and efficient bioreactor systems.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, Faculty of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Caixa Postal: 6121, CEP: 13083-862, Campinas, SP, Brazil.
| | | | - Mohamed Koubaa
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOMEA 4297 TIMR), Centre de Recherche de Royallieu, CS 60319, 60203, Compiègne Cedex, France
| |
Collapse
|
33
|
Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli. ACTA ACUST UNITED AC 2016; 43:1659-1670. [DOI: 10.1007/s10295-016-1843-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022]
Abstract
Abstract
Acrylic acid and propionic acid are important chemicals requiring affordable, renewable production solutions. Here, we metabolically engineered Escherichia coli with genes encoding components of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula for conversion of glucose to acrylic and propionic acids. To construct an acrylic acid-producing pathway in E. coli, heterologous expression of malonyl-CoA reductase (MCR), malonate semialdehyde reductase (MSR), 3-hydroxypropionyl-CoA synthetase (3HPCS), and 3-hydroxypropionyl-CoA dehydratase (3HPCD) from M. sedula was accompanied by overexpression of succinyl-CoA synthetase (SCS) from E. coli. The engineered strain produced 13.28 ± 0.12 mg/L of acrylic acid. To construct a propionic acid-producing pathway, the same five genes were expressed, with the addition of M. sedula acryloyl-CoA reductase (ACR). The engineered strain produced 1430 ± 30 mg/L of propionic acid. This approach can be expanded to synthesize many important organic chemicals, creating new opportunities for the production of chemicals by carbon dioxide fixation.
Collapse
|
34
|
Wei P, Lin M, Wang Z, Fu H, Yang H, Jiang W, Yang ST. Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for xylose fermentation. BIORESOURCE TECHNOLOGY 2016; 219:91-97. [PMID: 27479799 DOI: 10.1016/j.biortech.2016.07.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 05/12/2023]
Abstract
Propionibacterium freudenreichii cannot use xylose, the second most abundant sugar in lignocellulosic biomass. Although Propionibacterium acidipropionici can use xylose as a carbon source, it is difficult to genetically modify, impeding further improvement through metabolic engineering. This study identified three xylose catabolic pathway genes encoding for xylose isomerase (xylA), xylose transporter (xylT), and xylulokinase (xylB) in P. acidipropionici and overexpressed them in P. freudenreichii subsp. shermanii via an expression plasmid pKHEM01, enabling the mutant to utilize xylose efficiently even in the presence of glucose without glucose-induced carbon catabolite repression. The mutant showed similar fermentation kinetics with glucose, xylose, and the mixture of glucose and xylose, respectively, as carbon source, and with or without the addition of antibiotic for selection pressure. The engineered P. shermanii thus can provide a novel cell factory for industrial production of propionic acid and other value-added products from lignocellulosic biomass.
Collapse
Affiliation(s)
- Peilian Wei
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Meng Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA; Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Zhongqiang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Hongxin Fu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Hopen Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Wenyan Jiang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Gao J, Yuan W, Li Y, Bai F, Zhong S, Jiang Y. Application of redox potential control to improve ethanol productivity from inulin by consolidated bioprocessing. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Liu Z, Ge Y, Xu J, Gao C, Ma C, Xu P. Efficient production of propionic acid through high density culture with recycling cells of Propionibacterium acidipropionici. BIORESOURCE TECHNOLOGY 2016; 216:856-861. [PMID: 27318164 DOI: 10.1016/j.biortech.2016.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to explore propionic acid production via high density culture of Propionibacterium acidipropionici and recycling of cells. Results showed that final cells of P. acidipropionici from high density culture still had high metabolic activity for reuse. Using our process, 75.9gl(-1) propionic acid was produced, which was 1.84-fold of that in fed-batch fermentation with low cell density (41.2gl(-1)); the corresponding productivity was 100.0% higher than that in fed-batch fermentation with low cell density (0.16gl(-1)h(-1)). This bioprocess may have potential for the industrial production of propionic acid.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China; Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - Yongsheng Ge
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
37
|
Luo H, Zhou D, Liu X, Nie Z, Quiroga-Sánchez DL, Chang Y. Production of 3-Hydroxypropionic Acid via the Propionyl-CoA Pathway Using Recombinant Escherichia coli Strains. PLoS One 2016; 11:e0156286. [PMID: 27227837 PMCID: PMC4882031 DOI: 10.1371/journal.pone.0156286] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/11/2016] [Indexed: 11/30/2022] Open
Abstract
Our study aimed to produce the commercially promising platform chemical 3-hydroxypropionic acid (3-HP) via the propionyl-CoA pathway in genetically engineered Escherichia coli. Recombinant E. coli Ec-P overexpressing propionyl-CoA dehydrogenase (PACD, encoded by the pacd gene from Candida rugosa) under the T7 promoter produced 1.33 mM of 3-HP in a shake flask culture supplemented with 0.5% propionate. When propionate CoA-transferase (PCT, encoded by the pct gene from Megasphaera elsdenii) and 3-hydroxypropionyl-CoA dehydratase (HPCD, encoded by the hpcd gene from Chloroflexus aurantiacus) were expressed along with PACD, the 3-HP titer of the resulting E. coli Ec-PPH strain was improved by 6-fold. The effect of the cultivation conditions on the 3-HP yield from propionate in the Ec-PPH strain was also investigated. When cultured at 30°C with 1% glucose in addition to propionate, 3-HP production by Ec-PPH increased 2-fold and 12-fold compared to the cultivation at 37°C (4.23 mM) or without glucose (0.68 mM). Deletion of the ygfH gene encoding propionyl-CoA: succinate CoA-transferase from Ec-PPH (resulting in the strain Ec-△Y-PPH) led to increase of 3-HP production in shake flask experiments (15.04 mM), whereas the strain Ec-△Y-PPH with deletion of the prpC gene (encoding methylcitrate synthase in the methylcitrate cycle) produced 17.76 mM of 3-HP. The strain Ec-△Y-△P-PPH with both ygfH and prpC genes deleted produced 24.14 mM of 3-HP, thus showing an 18-fold increase in the 3-HP titer in compare to the strain Ec-P.
Collapse
Affiliation(s)
- Hui Luo
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- * E-mail: (HL); (YC)
| | - Dafeng Zhou
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaohui Liu
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhihua Nie
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Key Laboratory of Educational Ministry for High Efficient Mining and Safety in Metal Mine, University of Science and Technology Beijing, Beijing, 100083, China
| | - Diego Leandro Quiroga-Sánchez
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanhong Chang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Key Laboratory of Educational Ministry for High Efficient Mining and Safety in Metal Mine, University of Science and Technology Beijing, Beijing, 100083, China
- * E-mail: (HL); (YC)
| |
Collapse
|
38
|
Liu L, Guan N, Zhu G, Li J, Shin HD, Du G, Chen J. Pathway engineering of Propionibacterium jensenii for improved production of propionic acid. Sci Rep 2016; 6:19963. [PMID: 26814976 PMCID: PMC4750426 DOI: 10.1038/srep19963] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/27/2015] [Indexed: 11/09/2022] Open
Abstract
Propionic acid (PA) is an important chemical building block widely used in the food, pharmaceutical, and chemical industries. In our previous study, a shuttle vector was developed as a useful tool for engineering Propionibacterium jensenii, and two key enzymes—glycerol dehydrogenase and malate dehydrogenase—were overexpressed to improve PA titer. Here, we aimed to improve PA production further via the pathway engineering of P. jensenii. First, the phosphoenolpyruvate carboxylase gene (ppc) from Klebsiella pneumoniae was overexpressed to access the one-step synthesis of oxaloacetate directly from phosphoenolpyruvate without pyruvate as intermediate. Next, genes encoding lactate dehydrogenase (ldh) and pyruvate oxidase (poxB) were deleted to block the synthesis of the by-products lactic acid and acetic acid, respectively. Overexpression of ppc and deleting ldh improved PA titer from 26.95 ± 1.21 g·L−1 to 33.21 ± 1.92 g·L−1 and 30.50 ± 1.63 g·L−1, whereas poxB deletion decreased it. The influence of this pathway engineering on gene transcription, enzyme expression, NADH/NAD+ ratio, and metabolite concentration was also investigated. Finally, PA production in P. jensenii with ppc overexpression as well as ldh deletion was investigated, which resulted in further increases in PA titer to 34.93 ± 2.99 g·L−1 in a fed-batch culture.
Collapse
Affiliation(s)
- Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Gexin Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
39
|
Wang J, Lin M, Xu M, Yang ST. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:323-361. [DOI: 10.1007/10_2015_5009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii. Biotechnol Bioeng 2015; 113:1294-304. [PMID: 26666200 DOI: 10.1002/bit.25902] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/12/2015] [Accepted: 12/07/2015] [Indexed: 11/11/2022]
Abstract
Propionic acid (PA) and its salts are widely used in the food, pharmaceutical, and chemical industries. Microbial production of PA by propionibacteria is a typical product-inhibited process, and acid resistance is crucial in the improvement of PA titers and productivity. We previously identified two key acid resistance elements-the arginine deaminase and glutamate decarboxylase systems-that protect propionibacteria against PA stress by maintaining intracellular pH homeostasis. In this study, we attempted to improve the acid resistance and PA production of Propionibacterium jensenii ATCC 4868 by engineering these elements. Specifically, five genes (arcA, arcC, gadB, gdh, and ybaS) encoding components of the arginine deaminase and glutamate decarboxylase systems were overexpressed in P. jensenii. The activities of the five enzymes in the engineered strains were 26.7-489.0% higher than those in wild-type P. jensenii. The growth rates of the engineered strains decreased, whereas specific PA production increased significantly compared with those of the wild-type strain. Among the overexpressed genes, gadB (encoding glutamate decarboxylase) increased PA resistance and yield most effectively; the PA resistance of P. jensenii-gadB was more than 10-fold higher than that of the wild-type strain, and the production titer, yield, and conversion ratio of PA reached 10.81 g/L, 5.92 g/g cells, and 0.56 g/g glycerol, representing increases of 22.0%, 23.8%, and 21.7%, respectively. We also investigated the effects of introducing these acid resistance elements on the transcript levels of related enzymes. The results showed that the expression of genes in the engineered pathways affected the expression of the other genes. Additionally, the intracellular pools of amino acids were altered as different genes were overexpressed, which may further contribute to the enhanced PA production. This study provides an effective strategy for improving PA production in propionibacteria; this strategy may be useful for the production of other organic acids. Biotechnol. Bioeng. 2016;113: 1294-1304. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
41
|
Wang Z, Lin M, Wang L, Ammar EM, Yang ST. Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: Effects of overexpressing three biotin-dependent carboxylases. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|