1
|
Li Y, Li Y, Huang B, Zhang R, He J, Luo L, Yang Y. Long-term labelling and tracing of endodermal cells using a perpetual cycling Gal4-UAS system. Development 2025; 152:dev204289. [PMID: 40116142 PMCID: PMC11959616 DOI: 10.1242/dev.204289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Cell labelling and lineage tracing are indispensable tools in developmental biology, offering powerful means with which to visualise and understand the complex dynamics of cell populations during embryogenesis. Traditional cell labelling relies heavily on signal stability, promoter strength and stage specificity, limiting its application in long-term tracing. In this report, we optimise and reconfigure a perpetual cycling Gal4-UAS system employing a previously unreported Gal4 fusion protein and the autoregulatory Gal4 expression loop. As validated through heat-shock induction, this configuration ensures sustained transcription of reporter genes in target cells and their descendant cells while minimising cytotoxicity, thereby achieving long-term labelling and tracing. Further exploiting this system, we generate zebrafish transgenic lines with continuous fluorescent labelling specific to the endoderm, and demonstrate its effectiveness in long-term tracing by showing the progression of endoderm development from embryo to adult, providing visualisation of endodermal cells and their derived tissues. This continuous labelling and tracing strategy can span the entire process of endodermal differentiation, from progenitor cells to mature functional cells, and is applicable to studying endoderm patterning and organogenesis.
Collapse
Affiliation(s)
- Yanfeng Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - You Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Bangzhuo Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Ruhao Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei 400715, Chongqing, China
| |
Collapse
|
2
|
Park SY, Kim KY, Jang WY, Bae YS, Jun DY, Kim YH. 3,6-Anhydro-L-galactose suppresses mouse lymphocyte proliferation by attenuating JAK-STAT growth factor signal transduction and G 1-S cell cycle progression. Int Immunopharmacol 2025; 147:113998. [PMID: 39764992 DOI: 10.1016/j.intimp.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/30/2024] [Accepted: 12/29/2024] [Indexed: 01/29/2025]
Abstract
Recombinant GH16B β-agarase-catalyzed liquefaction of 5-7 %(w/v) melted agarose at 50 °C completely hydrolyzed agarose into neoagarohexaose (NA6) and neoagarotetraose (NA4). Subsequent saccharification by recombinant GH50A β-agarase or recombinant GH50A β-agarase/recombinant GH117A α-neoagarobiose hydrolase at 35 °C converted NA6/NA4 into neoagarobiose (NA2) or 3,6-anhydro-L-galactose (L-AHG)/D-galactose, respectively. Purification of NA6/NA4 and NA2 was achieved by Sephadex G-15 column chromatography, while L-AHG was purified by Sephadex G-10, achieving ≥ 98 % purity. L-AHG (25-200 μg/mL), but not NA2, NA4, or NA6, inhibited the proliferation of immobilized anti-CD3/anti-CD28-activated T cells and immobilized anti-CD40 + soluble anti-IgM + interleukin (IL)-4-activated B cells. This inhibition impacted the G1-S traverse in the cell cycle without influencing CD69 expression and p27Kip1 down-regulation, markers of the exit from G0 into G1 phase in activated lymphocytes. L-AHG impeded cyclin-dependent kinases (CDKs)-driven retinoblastoma phosphorylation, necessary for the G1-S traverse, by reducing the activating phosphorylation of CDKs (CDK4, CDK2, and CDK1) and lowering cyclin D3, cyclin A2 and cyclin B1 levels. Furthermore, L-AHG diminished the production of growth factors, including IL-2 in activated T cells and IL-6 in activated B cells. The antiproliferative effect of L-AHG on T cells was partially restored by exogenous IL-2 but was unaffected by exogenous IL-6 on B cells. L-AHG inhibited the activating phosphorylation of Janus kinase 1 (JAK1), affecting signal transducer and activator of transcription 1 (STAT1) and STAT3 signaling. These results demonstrate that L-AHG may serve as a novel immunosuppressant by impairing JAK-STAT growth factor signaling and G1-S cell cycle progression in T and B lymphocytes.
Collapse
Affiliation(s)
- Shin Young Park
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ki Yun Kim
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Won Young Jang
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young-Seuk Bae
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Do Youn Jun
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young Ho Kim
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Terashima S, Tatemura R, Saito W, Hosokawa Y. Evaluation of the influence of radiation-induced cohort effect in cell populations receiving different doses. Int J Radiat Biol 2025; 101:341-350. [PMID: 39899278 DOI: 10.1080/09553002.2025.2459086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE A non-targeted effect called radiation-induced cohort effect, which results in interactions among irradiated neighboring cells through cellular communication, has been reported. In high-precision radiotherapy, the dose is localized to the tumor, and rapid spatial changes occur in dose distribution. However, the effect of irradiating a population of cells with non-uniform doses remains unknown. In this study, we evaluated the influence of cohort effect by creating cell populations irradiated with different doses using human oral squamous cell carcinoma (SAS) and human lung (A549) cells. MATERIALS AND METHODS Cell populations irradiated with different doses were created in two ways: direct contact co-culture (DCC) using a cell tracer dye and indirect contact co-culture (ICC) using cell culture inserts to assess the effects of soluble factors. Target cells were irradiated with 4 Gy and co-cultured cells with 0, 0.8, 3.2, and 4 Gy. In DCC, cell proliferation assays were performed using a flow cytometer, and in ICC, modified high-density survival, clonogenic, and apoptosis assays were performed. RESULTS In DCC, irradiation of co-cultured cells with X-rays increased the relative proliferation rate of the target cells. Similarly, irradiating co-cultured cells using ICC with X-rays increased the relative survival rate of target cells. CONCLUSIONS The results of this study showed that, even if there is a sharp decrease in dose near the tumor, the cytocidal effect on the tumor is not adversely affected. In addition, soluble factors were found to be involved in cohort effect.
Collapse
Affiliation(s)
- Shingo Terashima
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Ryota Tatemura
- Department of Radiology, Division of Medical Technology, Hirosaki University School of Medicine and Hospital, Hirosaki, Japan
| | - Wataru Saito
- Plant Operation Department, Reprocessing Plant, Reprocessing Business Division, Japan Nuclear Fuel Limited, Rokkasho-mura, Japan
| | - Yoichiro Hosokawa
- Department of Rehabilitation Sciences, Hirosaki University of Health and Welfare, Hirosaki, Japan
| |
Collapse
|
4
|
Heym S, Krebs P, Ott K, Donhauser N, Kemeter LM, Simon F, Millen S, Thoma-Kress AK. A Novel Tax-Responsive Reporter T-Cell Line to Analyze Infection of HTLV-1. Pathogens 2024; 13:1015. [PMID: 39599568 PMCID: PMC11597676 DOI: 10.3390/pathogens13111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T-cells through close cell-cell contacts. The viral Tax-1 (Tax) protein regulates transcription by transactivating the HTLV-1 U3R promoter in the 5' long terminal repeat of the integrated provirus. Here, we generated a clonal Tax-responsive T-cell line to track HTLV-1 infection at the single-cell level using flow cytometry, bypassing intracellular viral protein staining. Jurkat T-cells stably transduced with the SMPU vector carrying green fluorescent protein (GFP) under control of 18 × 21 bp Tax-responsive element repeats of the U3R were evaluated. Among 40 clones analyzed for Tax responsiveness, the top two were characterized. Upon overexpression of Tax, over 40% of the cells showed GFP positivity, and approximately 90% of the Tax-positive cells were GFP-positive, indicating efficient reporter activity. However, with CREB-deficient Tax mutant M47, both total GFP-positive cell counts and those within the Tax-positive group significantly decreased. Co-culture with chronically HTLV-1-infected MT-2 or C91-PL cells led to an average of 0.9% or 2.4% GFP-positive cells, respectively, confirming the suitability to monitor HTLV-1 transmission and that HTLV-1 infection is very low. Thus, the novel Tax-responsive reporter T-cell line is a suitable tool to monitor infection of HTLV-1 on the single-cell level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (K.O.); (N.D.); (L.M.K.); (F.S.)
| |
Collapse
|
5
|
Parker J, Hockney S, Knill C, McDonald D, Filby A, Pal D. Protocol for in vitro co-culture, proliferation, and cell cycle analyses of patient-derived leukemia cells. STAR Protoc 2024; 5:103202. [PMID: 39033505 PMCID: PMC11325771 DOI: 10.1016/j.xpro.2024.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Leukemia niche impacts quiescence; however, culturing patient-derived samples ex vivo is technically challenging. Here, we present a protocol for in vitro co-culture of patient-derived xenograft acute lymphoblastic leukemia (PDX-ALL) cells with human mesenchymal stem cells (MSCs). We describe steps for labeling PDX-ALL cells with CellTrace Violet dye to demonstrate MSC-primed PDX-ALL cycling. We then detail procedures to identify MSC-primed G0/quiescent PDX-ALL cells via Hoechst-33342/Pyronin Y live cell cycle analysis. For complete details on the use and execution of this protocol, please refer to Pal et al.1,2.
Collapse
Affiliation(s)
- Jessica Parker
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Sean Hockney
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Carly Knill
- Flow Cytometry Core Facility (FCCF), Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Biosciences Institute, Innovation, Methodology and Application (IMA) Research Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David McDonald
- Flow Cytometry Core Facility (FCCF), Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Biosciences Institute, Innovation, Methodology and Application (IMA) Research Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Filby
- Flow Cytometry Core Facility (FCCF), Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Biosciences Institute, Innovation, Methodology and Application (IMA) Research Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK; School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
6
|
Tario JD, Soh KT, Wallace PK, Muirhead KA. Monitoring Cell Proliferation by Dye Dilution: Considerations for Panel Design. Methods Mol Biol 2024; 2779:159-216. [PMID: 38526787 DOI: 10.1007/978-1-0716-3738-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
High dimensional studies that include proliferation dyes face two inherent challenges in panel design. First, the more rounds of cell division to be monitored based on dye dilution, the greater the starting intensity of the labeled parent cells must be in order to distinguish highly divided daughter cells from background autofluorescence. Second, the greater their starting intensity, the more difficult it becomes to avoid spillover of proliferation dye signal into adjacent spectral channels, with resulting limitations on the use of other fluorochromes and ability to resolve dim signals of interest. In the third and fourth editions of this series, we described the similarities and differences between protein-reactive and membrane-intercalating dyes used for general cell tracking, provided detailed protocols for optimized labeling with each dye type, and summarized characteristics to be tested by the supplier and/or user when validating either dye type for use as a proliferation dye. In this fifth edition, we review: (a) Fundamental assumptions and critical controls for dye dilution proliferation assays; (b) Methods to evaluate the effect of labeling on cell growth rate and test the fidelity with which dye dilution reports cell division; and. (c) Factors that determine how many daughter generations can be accurately included in proliferation modeling. We also provide an expanded section on spectral characterization, using data collected for three protein-reactive dyes (CellTrace™ Violet, CellTrace™ CFSE, and CellTrace™ Far Red) and three membrane-intercalating dyes (PKH67, PKH26, and CellVue® Claret) on three different cytometers to illustrate typical decisions and trade-offs required during multicolor panel design. Lastly, we include methods and controls for assessing regulatory T cell potency, a functional assay that incorporates the "know your dye" and "know your cytometer" principles described herein.
Collapse
Affiliation(s)
- Joseph D Tario
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kah Teong Soh
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Agenus, Inc., Lexington, MA, USA
| | - Paul K Wallace
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- SciGro, Inc., Sedona, AZ, USA
| | | |
Collapse
|
7
|
Sloan SL, Brown F, Long M, Weigel C, Koirala S, Chung JH, Pray B, Villagomez L, Hinterschied C, Sircar A, Helmig-Mason J, Prouty A, Brooks E, Youssef Y, Hanel W, Parekh S, Chan WK, Chen Z, Lapalombella R, Sehgal L, Vaddi K, Scherle P, Chen-Kiang S, Di Liberto M, Elemento O, Meydan C, Foox J, Butler D, Mason CE, Baiocchi RA, Alinari L. PRMT5 supports multiple oncogenic pathways in mantle cell lymphoma. Blood 2023; 142:887-902. [PMID: 37267517 PMCID: PMC10517215 DOI: 10.1182/blood.2022019419] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell malignancy with an overall poor prognosis, particularly for patients that progress on targeted therapies. Novel, more durable treatment options are needed for patients with MCL. Protein arginine methyltransferase 5 (PRMT5) is overexpressed in MCL and plays an important oncogenic role in this disease via epigenetic and posttranslational modification of cell cycle regulators, DNA repair genes, components of prosurvival pathways, and RNA splicing regulators. The mechanism of targeting PRMT5 in MCL remains incompletely characterized. Here, we report on the antitumor activity of PRMT5 inhibition in MCL using integrated transcriptomics of in vitro and in vivo models of MCL. Treatment with a selective small-molecule inhibitor of PRMT5, PRT-382, led to growth arrest and cell death and provided a therapeutic benefit in xenografts derived from patients with MCL. Transcriptional reprograming upon PRMT5 inhibition led to restored regulatory activity of the cell cycle (p-RB/E2F), apoptotic cell death (p53-dependent/p53-independent), and activation of negative regulators of B-cell receptor-PI3K/AKT signaling (PHLDA3, PTPROt, and PIK3IP1). We propose pharmacologic inhibition of PRMT5 for patients with relapsed/refractory MCL and identify MTAP/CDKN2A deletion and wild-type TP53 as biomarkers that predict a favorable response. Selective targeting of PRMT5 has significant activity in preclinical models of MCL and warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Shelby L. Sloan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Fiona Brown
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Mackenzie Long
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Shirsha Koirala
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ji-Hyun Chung
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Betsy Pray
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Lynda Villagomez
- Division of Hematology and Oncology, Department of Pediatrics, The Ohio State University and Nationwide Children’s Hospital, Columbus, OH
| | - Claire Hinterschied
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Anuvrat Sircar
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - JoBeth Helmig-Mason
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Alexander Prouty
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Eric Brooks
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Walter Hanel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Samir Parekh
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | | | | | - Selina Chen-Kiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Maurizio Di Liberto
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Cem Meydan
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Jonathan Foox
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Daniel Butler
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
8
|
Jia Y, Xu S, Han G, Wang B, Wang Z, Lan C, Zhao P, Gao M, Zhang Y, Jiang W, Qiu B, Liu R, Hsu YC, Sun Y, Liu C, Liu Y, Bai R. Transmembrane water-efflux rate measured by magnetic resonance imaging as a biomarker of the expression of aquaporin-4 in gliomas. Nat Biomed Eng 2023; 7:236-252. [PMID: 36376487 DOI: 10.1038/s41551-022-00960-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The water-selective channel protein aquaporin-4 (AQP4) contributes to the migration and proliferation of gliomas, and to their resistance to therapy. Here we show, in glioma cell cultures, in subcutaneous and orthotopic gliomas in rats, and in glioma tumours in patients, that transmembrane water-efflux rate is a sensitive biomarker of AQP4 expression and can be measured via conventional dynamic-contrast-enhanced magnetic resonance imaging. Water-efflux rates correlated with stages of glioma proliferation as well as with changes in the heterogeneity of intra-tumoural and inter-tumoural AQP4 in rodent and human gliomas following treatment with temozolomide and with the AQP4 inhibitor TGN020. Regions with low water-efflux rates contained higher fractions of stem-like slow-cycling cells and therapy-resistant cells, suggesting that maps of water-efflux rates could be used to identify gliomas that are resistant to therapies.
Collapse
Affiliation(s)
- Yinhang Jia
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangchen Xu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangxu Han
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Bao Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zejun Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Chuanjin Lan
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Zhao
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng Gao
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Zhang
- Department of Radiology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenhong Jiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Biying Qiu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Liu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Chong Liu
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yingchao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Shandong National Center for Applied Mathematics, Shandong University, Jinan, China.
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Ganesan N, Ronsmans S, Hoet P. Methods to Assess Proliferation of Stimulated Human Lymphocytes In Vitro: A Narrative Review. Cells 2023; 12:cells12030386. [PMID: 36766728 PMCID: PMC9913443 DOI: 10.3390/cells12030386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/10/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The ability to monitor lymphocyte responses is critical for developing our understanding of the immune response in humans. In the current clinical setting, relying on the metabolic incorporation of [3H] thymidine into cellular DNA via a lymphocyte proliferation test (LPT) is the only method that is routinely performed to determine cell proliferation. However, techniques that measure DNA synthesis with a radioactive material such as [3H] thymidine are intrinsically more sensitive to the different stages of the cell cycle, which could lead to over-analyses and the subsequent inaccurate interpretation of the information provided. With cell proliferation assays, the output should preferably provide a direct and accurate measurement of the number of actively dividing cells, regardless of the stimuli properties or length of exposure. In fact, an ideal technique should have the capacity to measure lymphocyte responses on both a quantitative level, i.e., cumulative magnitude of lymphoproliferative response, and a qualitative level, i.e., phenotypical and functional characterization of stimulated immune cells. There are many LPT alternatives currently available to measure various aspects of cell proliferation. Of the nine techniques discussed, we noted that the majority of these LPT alternatives measure lymphocyte proliferation using flow cytometry. Across some of these alternatives, the covalent labelling of cells with a high fluorescence intensity and low variance with minimal cell toxicity while maximizing the number of detectable cell divisions or magnitude of proliferation was achieved. Herein, we review the performance of these different LPT alternatives and address their compatibility with the [3H] thymidine LPT so as to identify the "best" alternative to the [3H] thymidine LPT.
Collapse
Affiliation(s)
- Nirosha Ganesan
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium
| | - Steven Ronsmans
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Clinic for Occupational and Environmental Medicine, Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Peter Hoet
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
10
|
Stempels F, de Wit A, Swierstra M, Maassen S, Bianchi F, van den Bogaart G, Baranov M. A sensitive and less cytotoxic assay for identification of proliferating T cells based on bioorthogonally-functionalized uridine analogue. J Immunol Methods 2022; 502:113228. [DOI: 10.1016/j.jim.2022.113228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
|
11
|
Lemieszek MB, Findlay SD, Siegers GM. CellTrace™ Violet Flow Cytometric Assay to Assess Cell Proliferation. Methods Mol Biol 2022; 2508:101-114. [PMID: 35737236 DOI: 10.1007/978-1-0716-2376-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CellTrace™ Violet (CTV) is a powerful tool for tracking cell proliferation by permanently binding cellular proteins and rendering the cell fluorescent. After cell division, each daughter cell contains half of the parent cell's fluorescence, enabling quantification of proliferation via flow cytometry. This method enables monitoring of several generations of cell division and tracking of different cell populations in co-culture. Here we describe the use of CellTrace™ Violet in different cell types, and we share important observations we made during protocol optimization.
Collapse
Affiliation(s)
- Marina B Lemieszek
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Scott D Findlay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
12
|
Wang Z, Ran L, Chen C, Shi R, Dong Y, Li Y, Zhou X, Qi Y, Zhu P, Gao Y, Wu Y. Identification of HLA-A2-Restricted Mutant Epitopes from Neoantigens of Esophageal Squamous Cell Carcinoma. Vaccines (Basel) 2021; 9:vaccines9101118. [PMID: 34696226 PMCID: PMC8541546 DOI: 10.3390/vaccines9101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the deadliest gastrointestinal cancers, has had limited effective therapeutic strategies up to now. Accumulating evidence suggests that effective immunotherapy in cancer patients has been associated with T cells responsive to mutant peptides derived from neoantigens. Here, we selected 35 human leukocyte antigen-A2 (HLA-A2)-restricted mutant (MUT) peptides stemmed from neoantigens of ESCC. Among them, seven mutant peptides had potent binding affinity to HLA-A*0201 molecules and could form a stable peptide/HLA-A*0201 complex. Three mutant peptides (TP53-R267P, NFE2L2-D13N, and PCLO-E4090Q) of those were immunogenic and could induce the cytotoxic T lymphocytes (CTLs) recognizing mutant peptides presented on transfected cells in an HLA-A2-restricted and MUT peptide-specific manner. In addition, the CTL response in immunized HLA-A2.1/Kb transgenic (Tg) mice was enhanced by coupling MUT peptides to peptide WH, a peptide delivery carrier targeting Clec9a+ DCs. Then, the possible binding model conversions between the WT and MUT candidate peptides were analyzed by docking with the pockets of HLA-A*0201 molecule. We therefore propose a novel strategy and epitopes for immunotherapy of ESCC based on neoantigens.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Ling Ran
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Yu Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Yubing Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510080, China
- Correspondence: (Y.G.); (Y.W.); Tel./Fax: +86-371-6778-3235 (Y.W.)
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (L.R.); (C.C.); (R.S.); (Y.D.); (Y.L.); (X.Z.); (Y.Q.); (P.Z.)
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.G.); (Y.W.); Tel./Fax: +86-371-6778-3235 (Y.W.)
| |
Collapse
|
13
|
Circularly permuted LOV2 as a modular photoswitch for optogenetic engineering. Nat Chem Biol 2021; 17:915-923. [PMID: 33958793 DOI: 10.1038/s41589-021-00792-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/02/2021] [Indexed: 02/02/2023]
Abstract
Plant-based photosensors, such as the light-oxygen-voltage sensing domain 2 (LOV2) from oat phototropin 1, can be modularly wired into cell signaling networks to remotely control protein activity and physiological processes. However, the applicability of LOV2 is hampered by the limited choice of available caging surfaces and its preference to accommodate the effector domains downstream of the C-terminal Jα helix. Here, we engineered a set of LOV2 circular permutants (cpLOV2) with additional caging capabilities, thereby expanding the repertoire of genetically encoded photoswitches to accelerate the design of optogenetic devices. We demonstrate the use of cpLOV2-based optogenetic tools to reversibly gate ion channels, antagonize CRISPR-Cas9-mediated genome engineering, control protein subcellular localization, reprogram transcriptional outputs, elicit cell suicide and generate photoactivatable chimeric antigen receptor T cells for inducible tumor cell killing. Our approach is widely applicable for engineering other photoreceptors to meet the growing need of optogenetic tools tailored for biomedical and biotechnological applications.
Collapse
|
14
|
Shi R, Li Y, Ran L, Dong Y, Zhou X, Tang J, Han L, Wang M, Pang L, Qi Y, Wu Y, Gao Y. Screening and identification of HLA-A2-restricted neoepitopes for immunotherapy of non-microsatellite instability-high colorectal cancer. SCIENCE CHINA-LIFE SCIENCES 2021; 65:572-587. [PMID: 34236583 DOI: 10.1007/s11427-021-1944-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022]
Abstract
Colorectal cancer has one of the highest mortality rates among malignant tumors, and most patients with non-microsatellite instability-high (MSI-H) colorectal cancer do not benefit from targeted therapy or immune checkpoint inhibitors. Identification of immunogenic neoantigens is a promising strategy for inducing specific antitumor T cells for cancer immunotherapy. Here, we screened potential high-frequency neoepitopes from non-MSI-H colorectal cancer and tested their abilities to induce tumor-specific cytotoxic T cell responses. Three HLA-A2-restricted neoepitopes (P31, P50, and P52) were immunogenic and could induce cytotoxic T lymphocytes in peripheral blood mononuclear cells from healthy donors and colorectal cancer patients. Cytotoxic T lymphocytes induced in HLA-A2.1/Kb transgenic mice could recognize and lyse mutant neoepitope-transfected HLA-A2+ cancer cells. Adoptive transfer of cytotoxic T lymphocytes induced by the peptide pool of these three neoepitopes effectively inhibited tumor growth and increased the therapeutic effects of anti-PD-1 antibody. These results revealed the potential of high-frequency mutation-specific peptide-based immunotherapy as a personalized treatment approach for patients with non-MSI-H colorectal cancer. The combination of adoptive T cell therapy based on these neoepitopes with immune checkpoint inhibitors, such as anti-PD-1, could provide a promising treatment strategy for non-MSI-H colorectal cancer.
Collapse
Affiliation(s)
- Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yubing Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ling Ran
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingwen Tang
- Department of Integrated Chinse and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lu Han
- Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
15
|
Ward AI, Olmo F, Atherton RL, Taylor MC, Kelly JM. Trypanosoma cruzi amastigotes that persist in the colon during chronic stage murine infections have a reduced replication rate. Open Biol 2020; 10:200261. [PMID: 33321060 PMCID: PMC7776577 DOI: 10.1098/rsob.200261] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic Trypanosoma cruzi infections are typically lifelong, with small numbers of parasites surviving in restricted tissue sites, which include the gastrointestinal tract. There is considerable debate about the replicative status of these persistent parasites and whether there is a role for dormancy in long-term infection. Here, we investigated T. cruzi proliferation in the colon of chronically infected mice using 5-ethynyl-2′deoxyuridine incorporation into DNA to provide ‘snapshots’ of parasite replication status. Highly sensitive imaging of the extremely rare infection foci, at single-cell resolution, revealed that parasites are three times more likely to be in S-phase during the acute stage than during the chronic stage. By implication, chronic infections of the colon are associated with a reduced rate of parasite replication. Despite this, very few host cells survived infection for more than 14 days, suggesting that T. cruzi persistence continues to involve regular cycles of replication, host cell lysis and re-infection. We could find no evidence for wide-spread dormancy in parasites that persist in this tissue reservoir.
Collapse
Affiliation(s)
- Alexander I Ward
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Richard L Atherton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
16
|
Lissandrello CA, Santos JA, Hsi P, Welch M, Mott VL, Kim ES, Chesin J, Haroutunian NJ, Stoddard AG, Czarnecki A, Coppeta JR, Freeman DK, Flusberg DA, Balestrini JL, Tandon V. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing. Sci Rep 2020; 10:18045. [PMID: 33093518 PMCID: PMC7582186 DOI: 10.1038/s41598-020-73755-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
Implementation of gene editing technologies such as CRISPR/Cas9 in the manufacture of novel cell-based therapeutics has the potential to enable highly-targeted, stable, and persistent genome modifications without the use of viral vectors. Electroporation has emerged as a preferred method for delivering gene-editing machinery to target cells, but a major challenge remaining is that most commercial electroporation machines are built for research and process development rather than for large-scale, automated cellular therapy manufacturing. Here we present a microfluidic continuous-flow electrotransfection device designed for precise, consistent, and high-throughput genetic modification of target cells in cellular therapy manufacturing applications. We optimized our device for delivery of mRNA into primary human T cells and demonstrated up to 95% transfection efficiency with minimum impact on cell viability and expansion potential. We additionally demonstrated processing of samples comprising up to 500 million T cells at a rate of 20 million cells/min. We anticipate that our device will help to streamline the production of autologous therapies requiring on the order of 10[Formula: see text]-10[Formula: see text] cells, and that it is well-suited to scale for production of trillions of cells to support emerging allogeneic therapies.
Collapse
Affiliation(s)
| | - Jose A Santos
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Peter Hsi
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Michaela Welch
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Vienna L Mott
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Ernest S Kim
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Jordan Chesin
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | - Aaron G Stoddard
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Andrew Czarnecki
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | - Daniel K Freeman
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | | | - Vishal Tandon
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
| |
Collapse
|
17
|
Predicting in vivo therapeutic efficacy of bioorthogonally labeled endothelial progenitor cells in hind limb ischemia models via non-invasive fluorescence molecular tomography. Biomaterials 2020; 266:120472. [PMID: 33120201 DOI: 10.1016/j.biomaterials.2020.120472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/04/2020] [Accepted: 10/18/2020] [Indexed: 01/15/2023]
Abstract
Human embryonic stem cells-derived endothelial progenitor cells (hEPCs) were utilized as cell therapeutics for the treatment of ischemic diseases. However, in vivo tracking of hEPCs for predicting their therapeutic efficacy is very difficult. Herein, we developed bioorthogonal labeling strategy of hEPCs that could non-invasively track them after transplantation in hind limb ischemia models. First, hEPCs were treated with tetraacylated N-azidomannosamine (Ac4ManNAz) for generating unnatural azide groups on the hEPCs surface. Second, near-infrared fluorescence (NIRF) dye, Cy5, conjugated dibenzocylooctyne (DBCO-Cy5) was chemically conjugated to the azide groups on the hEPC surface via copper-free click chemistry, resulting Cy5-hEPCs. The bioorthogonally labeled Cy5-hEPCs showed strong NIRF signal without cytotoxicity and functional perturbation in tubular formation, oxygen consumption and paracrine effect of hEPCs in vitro. In hind limb ischemia models, the distribution and migration of transplanted Cy5-hEPCs were successfully monitored via fluorescence molecular tomography (FMT) for 28 days. Notably, blood reperfusion and therapeutic neovascularization effects were significantly correlated with the initial transplantation forms of Cy5-hEPCs such as 'condensed round shape' and 'spread shape' in the ischemic lesion. The condensed transplanted Cy5-hEPCs substantially increased the therapeutic efficacy of hind limb ischemia, compared to that of spread Cy5-hEPCs. Therefore, our new stem cell labeling strategy can be used to predict therapeutic efficacy in hind limb ischemia and it can be applied a potential application in developing cell therapeutics for regenerative medicine.
Collapse
|
18
|
A modified two-color flow cytometry assay to quantify in-vitro reinvasion and determine invasion phenotypes at low Plasmodium falciparum parasitemia. Exp Parasitol 2020; 218:107969. [PMID: 32858043 DOI: 10.1016/j.exppara.2020.107969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/22/2022]
Abstract
Invasion of human red blood cells (RBCs) by Plasmodium parasites is a crucial yet poorly characterised phenotype. Two-color flow cytometry (2cFCM) promises to be a very sensitive and high throughput method for phenotyping parasite invasion. However, current protocols require high (~1.0%) parasitemia for assay set-up and need to be adapted for low parasitemia samples, which are becoming increasingly common in low transmission settings. Background fluorescence from nuclei-containing uninfected RBCs and high autologous reinvasion rates (merozoite invasion of donor uninfected RBCs present at 50% assay volume) are some of the limitations to the method's sensitivity to enumerate low parasitemia (<0.5%) with nucleic acid-based stains. Here, we describe modifications for plating unlabeled donor to labeled target RBCs per assay well and for gating parasitemia, that produces accurate quantifications of low reinvasion parasitemia. Plasmodium falciparum 3D7, Dd2 and field isolates at various low and high parasitemia (0.05%-2.0%) were used to set-up SyBr Green 1-based 2cFCM invasion assays. Target RBCs were labeled with CTFR proliferation dye. We show that this dye combination allowed for efficient parasite invasion into target RBCs and that a 1:3 ratio of unlabeled to labeled RBCs per assay greatly skewed autologous reinvasion (p < 0.001). Accuracy of quantifying reinvasion was limited to an assay parasitemia of 0.02% with minimal background interference. Invasion inhibition by enzymatic treatments increased averagely by 10% (p<0.05) across the entire parasitemia range. The effect was greater for samples with <0.5% parasitemia. Overall, a more sensitive method for phenotyping invasion of low P. falciparum parasitemia is described.
Collapse
|
19
|
Pal A, Ashworth JC, Collier P, Probert C, Jones S, Leza EP, Meakin ML, A. Ritchie A, Onion D, Clarke PA, Allegrucci C, Grabowska AM. A 3D Heterotypic Breast Cancer Model Demonstrates a Role for Mesenchymal Stem Cells in Driving a Proliferative and Invasive Phenotype. Cancers (Basel) 2020; 12:E2290. [PMID: 32824003 PMCID: PMC7465555 DOI: 10.3390/cancers12082290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023] Open
Abstract
Previous indirect 2D co-culture studies have demonstrated that mesenchymal stem cells (MSCs) promote breast cancer (BC) progression through secretion of paracrine factors including growth factors, cytokines and chemokines. In order to investigate this aspect of the tumour microenvironment in a more relevant 3D co-culture model, spheroids incorporating breast cancer cells (BCCs), both cell lines and primary BCCs expanded as patient-derived xenografts, and MSCs were established. MSCs in co-cultures were shown to enhance proliferation of estrogen receptor (ER)/progesterone receptor (PR)-positive BCCs. In addition, co-culture resulted in downregulation of E-cadherin in parallel with upregulation of the epithelial-mesenchymal transition (EMT)-relation transcription factor, SNAIL. Cytoplasmic relocalization of ski-related novel protein N (SnON), a negative regulator of transforming growth factor-beta (TGF-β) signalling, and of β-catenin, involved in a number of pathways including Wnt signalling, was also observed in BCCs in co-cultures in contrast to monocultures. In addition, the β-catenin inhibitor, 3-[[(4-methylphenyl)sulfonyl]amino]-benzoic acid methyl ester (MSAB), mediated reduced growth and invasion in the co-cultures. This study highlights the potential role for SnON as a biomarker for BC invasiveness, and the importance of interactions between TGF-β and Wnt signalling, involving SnON. Such pathways may contribute towards identifying possible targets for therapeutic intervention in BC patients.
Collapse
Affiliation(s)
- Amarnath Pal
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Jennifer C. Ashworth
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Pamela Collier
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Catherine Probert
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Sal Jones
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Eduardo Pernaut Leza
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Marian L. Meakin
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Alison A. Ritchie
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - David Onion
- Flow Cytometry Facility, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Philip A Clarke
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Cinzia Allegrucci
- SVMS, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna M. Grabowska
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| |
Collapse
|
20
|
Halabi EA, Arasa J, Püntener S, Collado-Diaz V, Halin C, Rivera-Fuentes P. Dual-Activatable Cell Tracker for Controlled and Prolonged Single-Cell Labeling. ACS Chem Biol 2020; 15:1613-1620. [PMID: 32298071 PMCID: PMC7309267 DOI: 10.1021/acschembio.0c00208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cell
trackers are fluorescent chemical tools that facilitate imaging
and tracking cells within live organisms. Despite their versatility,
these dyes lack specificity, tend to leak outside of the cell, and
stain neighboring cells. Here, we report a dual-activatable cell tracker
for increased spatial and temporal staining control, especially for
single-cell tracking. This probe overcomes the typical problems of
current cell trackers: off-target staining, high background signal,
and leakage from the intracellular medium. Staining with this dye
is not cytotoxic, and it can be used in sensitive primary cells. Moreover,
this dye is resistant to harsh fixation and permeabilization conditions
and allows for multiwavelength studies with confocal microscopy and
fluorescence-activated cell sorting. Using this cell tracker, we performed in vivo homing experiments in mice with primary splenocytes
and tracked a single cell in a heterogeneous, multicellular culture
environment for over 20 h. These experiments, in addition to comparative
proliferation studies with other cell trackers, demonstrated that
the signal from this dye is retained in cells for over 72 h after
photoactivation. We envision that this type of probes will facilitate
the analysis of single-cell behavior and migration in cell culture
and in vivo experiments.
Collapse
Affiliation(s)
- Elias A. Halabi
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Salome Püntener
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Pablo Rivera-Fuentes
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
21
|
Jadhav U, Manieri E, Nalapareddy K, Madha S, Chakrabarti S, Wucherpfennig K, Barefoot M, Shivdasani RA. Replicational Dilution of H3K27me3 in Mammalian Cells and the Role of Poised Promoters. Mol Cell 2020; 78:141-151.e5. [PMID: 32027840 PMCID: PMC7376365 DOI: 10.1016/j.molcel.2020.01.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/02/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Polycomb repressive complex 2 (PRC2) places H3K27me3 at developmental genes and is causally implicated in keeping bivalent genes silent. It is unclear if that silence requires minimum H3K27me3 levels and how the mark transmits faithfully across mammalian somatic cell generations. Mouse intestinal cells lacking EZH2 methyltransferase reduce H3K27me3 proportionately at all PRC2 target sites, but ∼40% uniform residual levels keep target genes inactive. These genes, derepressed in PRC2-null villus cells, remain silent in intestinal stem cells (ISCs). Quantitative chromatin immunoprecipitation and computational modeling indicate that because unmodified histones dilute H3K27me3 by 50% each time DNA replicates, PRC2-deficient ISCs initially retain sufficient H3K27me3 to avoid gene derepression. EZH2 mutant human lymphoma cells also require multiple divisions before H3K27me3 dilution relieves gene silencing. In both cell types, promoters with high basal H3K4me2/3 activate in spite of some residual H3K27me3, compared to less-poised promoters. These findings have implications for PRC2 inhibition in cancer therapy.
Collapse
Affiliation(s)
- Unmesh Jadhav
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elisa Manieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kodandaramireddy Nalapareddy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shaon Chakrabarti
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kai Wucherpfennig
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
22
|
J Lacy K, Parlane NA, Riley CB, Gee EK, Roberts JM, McIlwraith CW. CellTrace Violet™ inhibits equine lymphocyte proliferation. Vet Immunol Immunopathol 2020; 223:110037. [PMID: 32229340 DOI: 10.1016/j.vetimm.2020.110037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 01/23/2023]
Abstract
CellTrace Violet™ is a commonly used fluorescent dye used with flow cytometry to identify cell proliferation. Activated equine lymphocytes were examined using flow cytometry, microscopy and tritiated thymidine proliferation assays. CellTrace Violet™ was incorporated into the equine lymphocytes effectively. Equine lymphocytes proliferated when activated with pokeweed mitogen, but did not proliferate when previously stained with CellTrace Violet™. Serial dilutions of CellTrace Violet™ did not eliminate the inhibition of activated lymphocytes. Equine lymphocyte viability was greater than 90 % for both stained and unstained cells. Based on these data, CellTrace Violet™ is not recommended for the assessment of lymphocyte proliferation in equine cells. The mechanism of inhibition of equine lymphocyte proliferation by CellTrace Violet™ is unknown.
Collapse
Affiliation(s)
- Kamm J Lacy
- Massey University, Tennent Drive, Palmerston North, 4474, New Zealand.
| | - Natalie A Parlane
- AgResearch, University and Library Rd, Massey University, Palmerston North, 4472, New Zealand
| | | | - Erica K Gee
- Massey University, Tennent Drive, Palmerston North, 4474, New Zealand
| | - Joanna M Roberts
- Flowjoanna Tapui Ltd, 429 No 1 Line, Palmerston North, 4475, New Zealand
| | - C Wayne McIlwraith
- Colorado State University Veterinary Teaching Hospital, 300 W Drake Rd Fort Collins, CO, 80523, USA
| |
Collapse
|
23
|
Chen S, Gong P, Zhang J, Shan Y, Han X, Zhang L. Quantitative analysis of Lactobacillus delbrueckii subsp. bulgaricus cell division and death using fluorescent dye tracking. J Microbiol Methods 2020; 169:105832. [DOI: 10.1016/j.mimet.2020.105832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/30/2022]
|
24
|
Thiam LG, Aniweh Y, Quansah EB, Donkor JK, Gwira TM, Kusi KA, Niang M, Awandare GA. Cell trace far-red is a suitable erythrocyte dye for multi-color Plasmodium falciparum invasion phenotyping assays. Exp Biol Med (Maywood) 2020; 245:11-20. [PMID: 31903776 PMCID: PMC6987746 DOI: 10.1177/1535370219897393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum erythrocyte invasion phenotyping assays are a very useful tool for assessing parasite diversity and virulence, and for characterizing the formation of ligand–receptor interactions. However, such assays need to be highly sensitive and reproducible, and the selection of labeling dyes for differentiating donor and acceptor erythrocytes is a critical factor. We investigated the suitability of cell trace far-red (CTFR) as a dye for P. falciparum invasion phenotyping assays. Using the dyes carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and dichloro dimethyl acridin one succinimidyl ester (DDAO-SE) as comparators, we used a dye-dilution approach to assess the limitations and specific staining procedures for the applicability of CTFR in P. falciparum invasion phenotyping assays. Our data show that CTFR effectively labels acceptor erythrocytes and provides a stable fluorescent intensity at relatively low concentrations. CTFR also yielded a higher fluorescence intensity relative to DDAO-SE and with a more stable fluorescence intensity over time. Furthermore, CTFR did not affect merozoites invasion of erythrocytes and was not toxic to the parasite’s intraerythrocytic development. Additionally, CTFR offers flexibility in the choice of combinations with several other DNA dyes, which broaden its usage for P. falciparum erythrocyte invasion assays, considering a wider range of flow cytometers with various laser settings.
Collapse
Affiliation(s)
- Laty G Thiam
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Evelyn B Quansah
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Jacob K Donkor
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Theresa M Gwira
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Kwadwo A Kusi
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
- Department of Immunology, Noguchi Memorial Institute for Medical
Research, University of Ghana, P. O. Box LG 581, Legon, Accra
| | - Makhtar Niang
- Unité d’Immunologie, Institut Pasteur de Dakar, Dakar 220,
Senegal
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| |
Collapse
|
25
|
Obeidy P, Ju LA, Oehlers SH, Zulkhernain NS, Lee Q, Galeano Niño JL, Kwan RY, Tikoo S, Cavanagh LL, Mrass P, Cook AJ, Jackson SP, Biro M, Roediger B, Sixt M, Weninger W. Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes. Immunol Cell Biol 2019; 98:93-113. [PMID: 31698518 PMCID: PMC7028084 DOI: 10.1111/imcb.12304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin‐related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F‐actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3‐knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon‐like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three‐dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3‐dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities.
Collapse
Affiliation(s)
- Peyman Obeidy
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Lining A Ju
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.,Heart Research Institute and Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program, The Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.,Discipline of Infectious Diseases & Immunology, Marie Bashir Institute, The University of Sydney, Sydney, NSW, 2006, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nursafwana S Zulkhernain
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Quintin Lee
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jorge L Galeano Niño
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Kensington, NSW, 2033, Australia
| | - Rain Yq Kwan
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Shweta Tikoo
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lois L Cavanagh
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Paulus Mrass
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Adam Jl Cook
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shaun P Jackson
- Heart Research Institute and Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Maté Biro
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Kensington, NSW, 2033, Australia
| | - Ben Roediger
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Michael Sixt
- Institute of Science and Technology, Klosterneuburg, 3400, Austria
| | - Wolfgang Weninger
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.,Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
26
|
miRNAs that Induce Human Cardiomyocyte Proliferation Converge on the Hippo Pathway. Cell Rep 2019; 23:2168-2174. [PMID: 29768213 PMCID: PMC6261450 DOI: 10.1016/j.celrep.2018.04.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/28/2017] [Accepted: 04/12/2018] [Indexed: 11/23/2022] Open
Abstract
Understanding the mechanisms that control human cardiomyocyte proliferation might be applicable to regenerative medicine. We screened a whole genome collection of human miRNAs, identifying 96 to be capable of increasing proliferation (DNA synthesis and cytokinesis) of human iPSC-derived cardiomyocytes. Chemical screening and computational approaches indicated that most of these miRNAs (67) target different components of the Hippo pathway and that their activity depends on the nuclear translocation of the Hippo transcriptional effector YAP. 53 of the 67 miRNAs are present in human iPSC cardiomyocytes, yet anti-miRNA screening revealed that none are individually essential for basal proliferation of hiPSC cardiomyocytes despite the importance of YAP for proliferation. We propose a model in which multiple endogenous miRNAs redundantly suppress Hippo signaling to sustain the cell cycle of immature cardiomyocytes.
Collapse
|
27
|
da Hora CC, Schweiger MW, Wurdinger T, Tannous BA. Patient-Derived Glioma Models: From Patients to Dish to Animals. Cells 2019; 8:E1177. [PMID: 31574953 PMCID: PMC6829406 DOI: 10.3390/cells8101177] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults associated with a poor survival. Current standard of care consists of surgical resection followed by radiation and chemotherapy. GBMs are highly heterogeneous, having a complex interaction among different cells within the tumor as well as the tumor microenvironment. One of the main challenges in the neuro-oncology field in general, and GBM in particular, is to find an optimum culture condition that maintains the molecular genotype and phenotype as well as heterogeneity of the original tumor in vitro and in vivo. Established cell lines were shown to be a poor model of the disease, failing to recapitulate the phenotype and harboring non-parental genotypic mutations. Given the growing understanding of GBM biology, the discovery of glioma cancer stem-like cells (GSCs), and their role in tumor formation and therapeutic resistance, scientists are turning more towards patient-derived cells and xenografts as a more representative model. In this review, we will discuss the current state of patient-derived GSCs and their xenografts; and provide an overview of different established models to study GBM biology and to identify novel therapeutics in the pre-clinical phase.
Collapse
Affiliation(s)
- Cintia Carla da Hora
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Markus W Schweiger
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, USA.
- Neuroscience Program, Harvard Medical School, Boston MA 02129, USA.
| |
Collapse
|
28
|
Vargas-Patron LA, Agudelo-Dueñas N, Madrid-Wolff J, Venegas JA, González JM, Forero-Shelton M, Akle V. Xenotransplantation of Human glioblastoma in Zebrafish larvae: in vivo imaging and proliferation assessment. Biol Open 2019; 8:bio.043257. [PMID: 31085547 PMCID: PMC6550087 DOI: 10.1242/bio.043257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent type of primary brain tumor. Treatment options include maximal surgical resection and drug-radiotherapy combination. However, patient prognosis remains very poor, prompting the search for new models for drug discovery and testing, especially those that allow assessment of in vivo responses to treatment. Zebrafish xenograft models have an enormous potential to study tumor behavior, proliferation and cellular interactions. Here, an in vivo imaging and proliferation assessment method of human GBM xenograft in zebrafish larvae is introduced. Zebrafish larvae microinjected with fluorescently labeled human GBM cells were screened daily using a stereomicroscope and imaged by light sheet fluorescence microscopy (LSFM); volumetric modeling and composite reconstructions were done in single individuals. Larvae containing tumors were enzymatically dissociated, and proliferation of cancer cells was measured using dye dilution by flow cytometry. GBM micro-tumors formed mainly in the zebrafish yolk sac and perivitelline space following injection in the yolk sac, with an engraftment rate of 73%. Daily image analysis suggested cellular division, as micro-tumors progressively grew with differentiated fluorescence intensity signals. Using dye dilution assay by flow cytometry, at least three GBM cells' division cycles were identified. The combination of LSFM and flow cytometry allows assessment of proliferation and tumor growth of human GBM inside zebrafish, making it a useful model to identify effective anti-proliferative agents in a preclinical setting.
Collapse
Affiliation(s)
- Luis A Vargas-Patron
- Laboratory of Neurosciences and Circadian Rhythms, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia.,Biomedical Sciences Laboratory, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| | - Nathalie Agudelo-Dueñas
- Laboratory of Neurosciences and Circadian Rhythms, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia.,Biophysics Group, Department of Physics, Universidad de los Andes, Bogota, 111711, Colombia
| | - Jorge Madrid-Wolff
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogota, 111711, Colombia
| | - Juan A Venegas
- Biomedical Sciences Laboratory, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| | - John M González
- Biomedical Sciences Laboratory, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| | - Manu Forero-Shelton
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogota, 111711, Colombia
| | - Veronica Akle
- Laboratory of Neurosciences and Circadian Rhythms, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| |
Collapse
|
29
|
Gorter de Vries AR, Koster CC, Weening SM, Luttik MAH, Kuijpers NGA, Geertman JMA, Pronk JT, Daran JMG. Phenotype-Independent Isolation of Interspecies Saccharomyces Hybrids by Dual-Dye Fluorescent Staining and Fluorescence-Activated Cell Sorting. Front Microbiol 2019; 10:871. [PMID: 31105669 PMCID: PMC6498416 DOI: 10.3389/fmicb.2019.00871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
Interspecies hybrids of Saccharomyces species are found in a variety of industrial environments and often outperform their parental strains in industrial fermentation processes. Interspecies hybridization is therefore increasingly considered as an approach for improvement and diversification of yeast strains for industrial application. However, current hybridization methods are limited by their reliance on pre-existing or introduced selectable phenotypes. This study presents a high-throughput phenotype-independent method for isolation of interspecies Saccharomyces hybrids based on dual dye-staining and subsequent mating of two strains, followed by enrichment of double-stained hybrid cells from a mating population by fluorescence-activated cell sorting (FACS). Pilot experiments on intra-species mating of heterothallic haploid S. cerevisiae strains showed that 80% of sorted double-stained cells were hybrids. The protocol was further optimized by mating an S. cerevisiae haploid with homothallic S. eubayanus spores with complementary selectable phenotypes. In crosses without selectable phenotype, using S. cerevisiae and S. eubayanus haploids derived from laboratory as well as industrial strains, 10 to 15% of double-stained cells isolated by FACS were hybrids. When applied to rare mating, sorting of double-stained cells consistently resulted in about 600-fold enrichment of hybrid cells. Mating of dual-stained cells and FACS-based selection allows efficient enrichment of interspecies Saccharomyces hybrids within a matter of days and without requiring selectable hybrid phenotypes, both for homothallic and heterothallic strains. This strategy should accelerate the isolation of laboratory-made hybrids, facilitate research into hybrid heterosis and offer new opportunities for non-GM industrial strain improvement and diversification.
Collapse
Affiliation(s)
| | - Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Susan M Weening
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Niels G A Kuijpers
- Global Innovation and Research, HEINEKEN Supply Chain B.V., Zoeterwoude, Netherlands
| | | | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
30
|
Khanna K, Chaudhuri R, Aich J, Pattnaik B, Panda L, Prakash YS, Mabalirajan U, Ghosh B, Agrawal A. Secretory Inositol Polyphosphate 4-Phosphatase Protects against Airway Inflammation and Remodeling. Am J Respir Cell Mol Biol 2019; 60:399-412. [PMID: 30335467 PMCID: PMC6444634 DOI: 10.1165/rcmb.2017-0353oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 09/14/2018] [Indexed: 01/16/2023] Open
Abstract
The asthma candidate gene inositol polyphosphate 4-phosphatase type I A (INPP4A) is a lipid phosphatase that negatively regulates the PI3K/Akt pathway. Destabilizing genetic variants of INPP4A increase the risk of asthma, and lung-specific INPP4A knockdown induces asthma-like features. INPP4A is known to localize intracellularly, and its extracellular presence has not been reported yet. Here we show for the first time that INPP4A is secreted by airway epithelial cells and that extracellular INPP4A critically inhibits airway inflammation and remodeling. INPP4A was present in blood and BAL fluid, and this extracellular INPP4A was reduced in patients with asthma and mice with allergic airway inflammation. In both naive mice and mice with allergic airway inflammation, antibody-mediated neutralization of extracellular INPP4A potentiated PI3K/Akt signaling and induced airway hyperresponsiveness, with prominent airway remodeling, subepithelial fibroblast proliferation, and collagen deposition. The link between extracellular INPP4A and fibroblasts was investigated in vitro. Cultured airway epithelial cells secreted enzymatically active INPP4A in extracellular vesicles and in a free form. Extracellular vesicle-mediated transfer of labeled INPP4A, from epithelial cells to fibroblasts, was observed. Inhibition of such transfer by anti-INPP4A antibody increased fibroblast proliferation. We propose that secretory INPP4A is a novel "paracrine" layer of the intricate regulation of lung homeostasis, by which airway epithelium dampens PI3K/Akt signaling in inflammatory cells or local fibroblasts, thereby limiting inflammation and remodeling.
Collapse
Affiliation(s)
- Kritika Khanna
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rituparna Chaudhuri
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Jyotirmoi Aich
- Centre of Excellence for Translational Research in Asthma and Lung Disease
| | - Bijay Pattnaik
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India; and
| | - Lipsa Panda
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Y. S. Prakash
- Department of Anesthesiology
- Department of Physiology, and
- Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Ulaganathan Mabalirajan
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
| | - Balaram Ghosh
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Anurag Agrawal
- Centre of Excellence for Translational Research in Asthma and Lung Disease
- Molecular Immunogenetics Laboratory, and
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
31
|
Zhang J, Whitehead J, Liu Y, Yang Q, Leach JK, Liu GY. Direct Observation of Tunneling Nanotubes within Human Mesenchymal Stem Cell Spheroids. J Phys Chem B 2018; 122:9920-9926. [PMID: 30350968 PMCID: PMC11971924 DOI: 10.1021/acs.jpcb.8b07305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tunneling nanotubes (TNTs) play an important role in cell-cell communication. TNTs have been predominantly reported among cells in monolayer culture. Using various imaging modalities, including scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM), this work reports the finding of TNTs between cells within human mesenchymal stem cell (MSC) spheroids. TNTs visualized by SEM are consistent in size and geometry with those observed in cellular monolayer culture. LSCM imaging of living spheroids confirms the presence of F-actin filaments within the TNTs, which are known to maintain nanotube integrity. In addition, LSCM revealed the distribution of F-actin fibers across the entire spheroid body instead of being confined within individual cells. Intracellular material transport by TNTs was tested in MSC spheroids treated with cytochalasin D (CytoD), a known actin polymerization inhibitor for disrupting TNT formation. CytoD treatment decreased the transport of cytosolic material by at least four-fold compared to untreated spheroids. To the best of our knowledge, this work represents the first direct observation of TNTs within MSC spheroids. These findings offer new physical insight into cellular interactions within spheroids, providing structural information for increasing interests in spheroid-based cell therapy.
Collapse
Affiliation(s)
- Jiali Zhang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Yang Liu
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Qingbo Yang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California 95817, United States
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
32
|
Gretzinger S, Beckert N, Gleadall A, Lee-Thedieck C, Hubbuch J. 3D bioprinting – Flow cytometry as analytical strategy for 3D cell structures. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bprint.2018.e00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Gao Q, Xiang SD, Wilson K, Madondo M, Stephens AN, Plebanski M. Sperm Protein 17 Expression by Murine Epithelial Ovarian Cancer Cells and Its Impact on Tumor Progression. Cancers (Basel) 2018; 10:cancers10080276. [PMID: 30127274 PMCID: PMC6115966 DOI: 10.3390/cancers10080276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The cancer testis antigen sperm protein 17 (Sp17) is a promising antigenic target in epithelial ovarian cancer (EOC) vaccine development. However, its role in ovarian cancer is unclear. We isolated and expanded Sp17+ and Sp17− clones from the murine EOC cell line ID8, and compared their in-vitro cell growth characteristics and in-vivo tumorigenicity. We also examined the potential co-expression of molecules that may influence cancer cell survival and interaction with immune cells. These include stimulatory and immunosuppressive molecules, such as major histocompatibility class I molecules (MHC I), MHC II, cytotoxic T lymphocyte associated antigen-4 (CTLA-4), CD73, CD39, tumor necrosis factor receptor II (TNFRII), signal transducer and activator of transcription 3 (STAT3) and programmed death-ligand 1 (PD-L1). Whilst the presence of Sp17 was not correlated with the ID8 cell proliferation/growth capacity in vitro, it was critical to enable progressive tumor formation in vivo. Flow cytometry revealed that Sp17+ ID8 cells displayed higher expression of both STAT3 and PD-L1, whilst MHC II expression was lower. Moreover, Sp17high (PD-L1+MHCII−) cell populations showed significantly enhanced resistance to Paclitaxel-induced cell death in vitro compared to Sp17low (PD-L1−MHCII+) cells, which was associated in turn with increased STAT3 expression. Together, the data support Sp17 as a factor associated with in-vivo tumor progression and chemo-resistance, validating it as a suitable target for vaccine development.
Collapse
Affiliation(s)
- Qian Gao
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Sue D Xiang
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia.
| | - Kirsty Wilson
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
| | - Mutsa Madondo
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
| | - Andrew N Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
34
|
Chaudhuri R, Khanna K, Koundinya D, Pattnaik B, Vatsa D, Agrawal A, Ghosh B. Novel nuclear translocation of inositol polyphosphate 4-phosphatase is associated with cell cycle, proliferation and survival. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:S0167-4889(18)30188-5. [PMID: 30071275 DOI: 10.1016/j.bbamcr.2018.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Inositol polyphosphate 4 phosphatase type I enzyme (INPP4A) has a well-documented function in the cytoplasm where it terminates the phosphatidylinositol 3-kinase (PI 3-K) pathway by acting as a negative regulator. In this study, we demonstrate for the first time that INPP4A shuttles between the cytoplasm and the nucleus. Nuclear INPP4A is enzymatically active and in dynamic equilibrium between the nucleus and cytoplasm depending on the cell cycle stage, with highest amounts detected in the nucleus during the G0/G1 phase. Moreover, nuclear INPP4A is found to have direct proliferation suppressive activity. Cells constitutively overexpressing nuclear INPP4A exhibit massive apoptosis. In human tissues as well as cell lines, lower nuclear localization of INPP4A correlate with cancerous growth. Together, our findings suggest that nuclear compartmentalization of INPP4A may be a mechanism to regulate cell cycle progression, proliferation and apoptosis. Our results imply a role for nuclear-localized INPP4A in tumor suppression in humans.
Collapse
Affiliation(s)
- Rituparna Chaudhuri
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Kritika Khanna
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - D Koundinya
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Bijay Pattnaik
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Damini Vatsa
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India
| | - Anurag Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Balaram Ghosh
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007,India.; Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India..
| |
Collapse
|
35
|
Dagher Z, Xu S, Negoro PE, Khan NS, Feldman MB, Reedy JL, Tam JM, Sykes DB, Mansour MK. Fluorescent Tracking of Yeast Division Clarifies the Essential Role of Spleen Tyrosine Kinase in the Intracellular Control of Candida glabrata in Macrophages. Front Immunol 2018; 9:1058. [PMID: 29868018 PMCID: PMC5964189 DOI: 10.3389/fimmu.2018.01058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023] Open
Abstract
Macrophages play a critical role in the elimination of fungal pathogens. They are sensed via cell surface pattern-recognition receptors and are phagocytosed into newly formed organelles called phagosomes. Phagosomes mature through the recruitment of proteins and lysosomes, resulting in addition of proteolytic enzymes and acidification of the microenvironment. Our earlier studies demonstrated an essential role of Dectin-1-dependent activation of spleen tyrosine kinase (Syk) in the maturation of fungal containing phagosomes. The absence of Syk activity interrupted phago-lysosomal fusion resulting in arrest at an early phagosome stage. In this study, we sought to define the contribution of Syk to the control of phagocytosed live Candida glabrata in primary macrophages. To accurately measure intracellular yeast division, we designed a carboxyfluorescein succinimidyl ester (CFSE) yeast division assay in which bright fluorescent parent cells give rise to dim daughter cells. The CFSE-labeling of C. glabrata did not affect the growth rate of the yeast. Following incubation with macrophages, internalized CFSE-labeled C. glabrata were retrieved by cellular lysis, tagged using ConA-647, and the amount of residual CFSE fluorescence was assessed by flow cytometry. C. glabrata remained undivided (CFSE bright) for up to 18 h in co-culture with primary macrophages. Treatment of macrophages with R406, a specific Syk inhibitor, resulted in loss of intracellular control of C. glabrata with initiation of division within 4 h. Delayed Syk inhibition after 8 h was less effective indicating that Syk is critically required at early stages of macrophage–fungal interaction. In conclusion, we demonstrate a new method of tracking division of C. glabrata using CFSE labeling. Our results suggest that early Syk activation is essential for macrophage control of phagocytosed C. glabrata.
Collapse
Affiliation(s)
- Zeina Dagher
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shuying Xu
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paige E Negoro
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nida S Khan
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Biomedical Engineering and Biotechnology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Michael B Feldman
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, United States
| | - Jennifer L Reedy
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jenny M Tam
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Michael K Mansour
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Rodriguez-Fernandez S, Pujol-Autonell I, Brianso F, Perna-Barrull D, Cano-Sarabia M, Garcia-Jimeno S, Villalba A, Sanchez A, Aguilera E, Vazquez F, Verdaguer J, Maspoch D, Vives-Pi M. Phosphatidylserine-Liposomes Promote Tolerogenic Features on Dendritic Cells in Human Type 1 Diabetes by Apoptotic Mimicry. Front Immunol 2018; 9:253. [PMID: 29491866 PMCID: PMC5817077 DOI: 10.3389/fimmu.2018.00253] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a metabolic disease caused by the autoimmune destruction of insulin-producing β-cells. With its incidence increasing worldwide, to find a safe approach to permanently cease autoimmunity and allow β-cell recovery has become vital. Relying on the inherent ability of apoptotic cells to induce immunological tolerance, we demonstrated that liposomes mimicking apoptotic β-cells arrested autoimmunity to β-cells and prevented experimental T1D through tolerogenic dendritic cell (DC) generation. These liposomes contained phosphatidylserine (PS)—the main signal of the apoptotic cell membrane—and β-cell autoantigens. To move toward a clinical application, PS-liposomes with optimum size and composition for phagocytosis were loaded with human insulin peptides and tested on DCs from patients with T1D and control age-related subjects. PS accelerated phagocytosis of liposomes with a dynamic typical of apoptotic cell clearance, preserving DCs viability. After PS-liposomes phagocytosis, the expression pattern of molecules involved in efferocytosis, antigen presentation, immunoregulation, and activation in DCs concurred with a tolerogenic functionality, both in patients and control subjects. Furthermore, DCs exposed to PS-liposomes displayed decreased ability to stimulate autologous T cell proliferation. Moreover, transcriptional changes in DCs from patients with T1D after PS-liposomes phagocytosis pointed to an immunoregulatory prolife. Bioinformatics analysis showed 233 differentially expressed genes. Genes involved in antigen presentation were downregulated, whereas genes pertaining to tolerogenic/anti-inflammatory pathways were mostly upregulated. In conclusion, PS-liposomes phagocytosis mimics efferocytosis and leads to phenotypic and functional changes in human DCs, which are accountable for tolerance induction. The herein reported results reinforce the potential of this novel immunotherapy to re-establish immunological tolerance, opening the door to new therapeutic approaches in the field of autoimmunity.
Collapse
Affiliation(s)
- Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Ferran Brianso
- Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain
| | - Sonia Garcia-Jimeno
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain
| | - Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Alex Sanchez
- Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Eva Aguilera
- Endocrinology Section, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Federico Vazquez
- Endocrinology Section, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Joan Verdaguer
- Department of Experimental Medicine, University of Lleida & IRBLleida, Lleida, Spain.,CIBERDEM, ISCiii, Madrid, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain.,ICREA, Barcelona, Spain
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain.,CIBERDEM, ISCiii, Madrid, Spain
| |
Collapse
|
37
|
Tario JD, Conway AN, Muirhead KA, Wallace PK. Monitoring Cell Proliferation by Dye Dilution: Considerations for Probe Selection. Methods Mol Biol 2018; 1678:249-299. [PMID: 29071683 DOI: 10.1007/978-1-4939-7346-0_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In the third edition of this series, we described protocols for labeling cell populations with tracking dyes, and addressed issues to be considered when combining two different tracking dyes with other phenotypic and viability probes for the assessment of cytotoxic effector activity and regulatory T cell functions. We summarized key characteristics of and differences between general protein and membrane labeling dyes, discussed determination of optimal staining concentrations, and provided detailed labeling protocols for both dye types. Examples of the advantages of two-color cell tracking were provided in the form of protocols for: (a) independent enumeration of viable effector and target cells in a direct cytotoxicity assay; and (b) an in vitro suppression assay for simultaneous proliferation monitoring of effector and regulatory T cells.The number of commercially available fluorescent cell tracking dyes has expanded significantly since the last edition, with new suppliers and/or new spectral properties being added at least annually. In this fourth edition, we describe evaluations to be performed by the supplier and/or user when characterizing a new cell tracking dye and by the user when selecting one for use in multicolor proliferation monitoring. These include methods for: (a) Assessment of the dye's spectral profile on the laboratory's flow cytometer(s) to optimize compatibility with other employed fluorochromes and minimize compensation problems; (b) Evaluating the effect of labeling on cell growth rate;
Collapse
Affiliation(s)
- Joseph D Tario
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | | | | | - Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
38
|
Gonzalez M, Doña I, Palomares F, Campo P, Rodriguez MJ, Rondon C, Gomez F, Fernandez TD, Perkins JR, Escribese MM, Torres MJ, Mayorga C. Dermatophagoides pteronyssinus immunotherapy changes the T-regulatory cell activity. Sci Rep 2017; 7:11949. [PMID: 28931869 PMCID: PMC5607227 DOI: 10.1038/s41598-017-12261-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/05/2017] [Indexed: 01/12/2023] Open
Abstract
Subcutaneous specific immunotherapy (SCIT) has been shown to modify the Dermatophagoides pteronissinus (DP) allergic response, characterized by generation of Treg cells. However, studies have reported no changes in the proportion of Treg cells after immunotherapy, indicating that the effects may be due to modifications in their regulatory activities. We aimed to determine whether Tregs generated by DP-SCIT can switch the allergic response to tolerant and study the involvement of suppressive cytokines on it. Twenty-four DP-allergic rhinitis patients were recruited, 16 treated with DP-SCIT and 8 untreated. Treg and T effector cells were isolated before and after DP-SCIT, and cocultured in different combinations with α-IL-10, α-TGF-β blocking antibodies and nDer p 1. Treg cells after DP-SCIT increased Th1 and decreased Th2 and Th9 proliferation. Similarly, they increased IL-10 and decreased IL-4 and IL-9-producing cells. α-IL-10 affected the activity of Treg cells obtained after DP-SCIT only. Finally, DP-specific IgG4 levels, Treg percentage and IL-10 production were correlated after DP-SCIT. These results demonstrate that DP-SCIT induces Treg cells with different suppressive activities. These changes could be mediated by IL-10 production and appear to play an important role in the induction of the tolerance response leading to a clinical improvement of symptoms.
Collapse
Affiliation(s)
- M Gonzalez
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - I Doña
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - F Palomares
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - P Campo
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - M J Rodriguez
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - C Rondon
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - F Gomez
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - T D Fernandez
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - J R Perkins
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - M M Escribese
- Institute for Applied Molecular Medicine (IMMA), School of Medicine, Universidad CEU San Pablo, Madrid, Spain
- Basical Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Madrid, Spain
| | - M J Torres
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - C Mayorga
- Research Laboratory-Allergy Unit, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain.
- Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Malaga, Spain.
| |
Collapse
|
39
|
Chung S, Kim SH, Seo Y, Kim SK, Lee JY. Quantitative analysis of cell proliferation by a dye dilution assay: Application to cell lines and cocultures. Cytometry A 2017; 91:704-712. [PMID: 28375566 DOI: 10.1002/cyto.a.23105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 03/05/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Cell proliferation represents one of the most fundamental processes in biological systems, thus the quantitative analysis of cell proliferation is important in many biological applications such as drug screening, production of biologics, and assessment of cytotoxicity. Conventional proliferation assays mainly quantify cell number based on a calibration curve of a homogeneous cell population, and therefore are not applicable for the analysis of cocultured cells. Moreover, these assays measure cell proliferation indirectly, based on cellular metabolic activity or DNA content. To overcome these shortcomings, a dye dilution assay employing fluorescent cell tracking dyes that are retained within cells was applied and was diluted proportionally by subsequent cell divisions. Here, it was demonstrated that this assay could be implemented to quantitatively analyze the cell proliferation of different types of cell lines, and to concurrently analyze the proliferation of two types of cell lines in coculture by utilizing cell tracking dyes with different spectral characteristics. The mean division time estimated by the dye dilution assay is compared with the population doubling time obtained from conventional methods and values from literature. Additionally, dye transfer between cocultured cells was investigated and it was found that it is a characteristic of the cells rather than a characteristic of the dye. It was suggested that this method can be easily combined with other flow cytometric analyses of cellular properties, providing valuable information on cell status under diverse conditions. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Soobin Chung
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Youseong-gu, Daejeon, 34113, Republic of Korea
| | - Seol-Hee Kim
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Yuri Seo
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Sook-Kyung Kim
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Youseong-gu, Daejeon, 34113, Republic of Korea
| | - Ji Youn Lee
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
40
|
A simple non-perturbing cell migration assay insensitive to proliferation effects. Sci Rep 2016; 6:31694. [PMID: 27535324 PMCID: PMC4989229 DOI: 10.1038/srep31694] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells.
Collapse
|
41
|
Davies D, O’Toole P. Guest Editor’s Introduction. Methods 2015; 82:1-2. [DOI: 10.1016/j.ymeth.2015.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|