1
|
Gao B, Sun Q. Post-translational assembly of multi-functional antibody. Biotechnol Adv 2025; 80:108533. [PMID: 39929326 DOI: 10.1016/j.biotechadv.2025.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/27/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
The advent of multi-specific antibodies has introduced a significant advantage over traditional monoclonal antibody therapeutics by engaging multiple targets and pathways. This review delves into the post-translational assembly techniques for multi-specific antibodies, highlighting the innovations and challenges associated with approaches of chemical conjugation, oligonucleotide-mediated assembly, and protein-protein interactions. Chemical conjugation methods have evolved to enhance the assembly process's specificity and flexibility, enabling transient engagement and versatile antibody formats. Meanwhile, oligonucleotide-mediated assembly leverages the precision of Watson-Crick base pairing, granting unmatched control over the antibody's structure and functional orientation. Additionally, protein-protein interaction strategies, notably through SpyTag/SpyCatcher systems, present a direct assembly approach without necessitating ancillary modifications, streamlining the production process. This review summarizes the significance of these methodologies in generating antibodies with diverse structures and multi-target engagement capabilities, underscoring their potential in improving therapeutic efficacy and reducing production complexity.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Interdisciplinary Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States.
| |
Collapse
|
2
|
Zong HF, Li X, Han L, Wang L, Liu JJ, Yue YL, Chen J, Ke Y, Jiang H, Xie YQ, Zhang BH, Zhu JW. A novel bispecific antibody drug conjugate targeting HER2 and HER3 with potent therapeutic efficacy against breast cancer. Acta Pharmacol Sin 2024; 45:1727-1739. [PMID: 38605180 PMCID: PMC11272928 DOI: 10.1038/s41401-024-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Antibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. Bispecific targeting could enhance the efficacy and safety of ADC by improving its specificity, affinity and internalization. In this study we constructed a HER2/HER3-targeting bispecific ADC (BsADC) and characterized its physiochemical properties, target specificity and internalization in vitro, and assessed its anti-tumor activities in breast cancer cell lines and in animal models. The HER2/HER3-targeting BsADC had a drug to antibody ratio (DAR) of 2.89, displayed a high selectivity against the target JIMT-1 breast cancer cells in vitro, as well as a slightly higher level of internalization than HER2- or HER3-monospecific ADCs. More importantly, the bispecific ADC potently inhibited the viability of MCF7, JIMT-1, BT474, BxPC-3 and SKOV-3 cancer cells in vitro. In JIMT-1 breast cancer xenograft mice, a single injection of bispecific ADC (3 mg/kg, i.v.) significantly inhibited the tumor growth with an efficacy comparable to that caused by combined injection of HER2 and HER3-monospecific ADCs (3 mg/kg for each). Our study demonstrates that the bispecific ADC concept can be applied to development of more potent new cancer therapeutics than the monospecific ADCs.
Collapse
Affiliation(s)
- Hui-Fang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Jecho Institute Co., Ltd., Shanghai, 200240, China
| | - Xi Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Han
- Jecho Institute Co., Ltd., Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun-Jun Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Li Yue
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Chen
- Jecho Institute Co., Ltd., Shanghai, 200240, China
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Jiang
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA
| | - Yue-Qing Xie
- Jecho Institute Co., Ltd., Shanghai, 200240, China
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA
| | - Bao-Hong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Jecho Institute Co., Ltd., Shanghai, 200240, China.
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA.
| |
Collapse
|
3
|
Zhang J, Liu J, Yue Y, Wang L, He Q, Xu S, Li J, Liao Y, Chen Y, Wang S, Xie Y, Zhang B, Bian Y, Dimitrov DS, Yuan Y, Zhu J. The immunotoxin targeting PRLR increases tamoxifen sensitivity and enhances the efficacy of chemotherapy in breast cancer. J Exp Clin Cancer Res 2024; 43:173. [PMID: 38898487 PMCID: PMC11188579 DOI: 10.1186/s13046-024-03099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.
Collapse
Affiliation(s)
- Jiawei Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junjun Liu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yali Yue
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Qunye He
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Shuyi Xu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junyan Li
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yunji Liao
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yu Chen
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | | | - Yueqing Xie
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA, 15261, USA
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA.
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China.
| |
Collapse
|
4
|
Yamada R, Nakahara I, Kumagai I, Asano R, Nakanishi T, Makabe K. Construction of IgG-Fab 2 bispecific antibody via intein-mediated protein trans-splicing reaction. Sci Rep 2023; 13:15961. [PMID: 37749185 PMCID: PMC10520027 DOI: 10.1038/s41598-023-43110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
A bispecific antibody (bsAb) is a class of engineered antibody molecules that simultaneously binds to two different antigens by having two kinds of antigen-binding domains. One of the major obstacles for the bsAb production is the incorrect chain-pairing problem, wherein each heavy and light chain should form pairings with the correct counterpart's chains, but the structural similarity of the incorrect partners also forms the incorrect pairings. This study aimed to demonstrate a bsAb construction method using intein-mediated protein trans-splicing to create IgG-Fab2-type bsAbs, which is a modified antibody with a structure in which two additional Fabs are linked to the N-terminus of the heavy chain of an IgG molecule. The chain-paring problem between a heavy chain and a light chain is circumvented by separate expression and purification of the IgG part and the Fab part. We found that the deletion of a possible glycosylation residue improved the reaction yield and side-reaction cleavage in the protein ligation step. The resulting bsAb, IgG-Fab2 (Her2/CD3), demonstrated target binding activity and cytotoxicity mediated by activated T cells. These results indicate that the use of the protein ligation to produce the IgG-Fab2 type bsAb will expand the bsAb production method.
Collapse
Affiliation(s)
- Risa Yamada
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Ishin Nakahara
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8538, Japan
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8538, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8538, Japan
| | - Takeshi Nakanishi
- Division of Science and Engineering for Materials, Chemistry and Biology, Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
5
|
The Generation of Dual-Targeting Fusion Protein PD-L1/CD47 for the Inhibition of Triple-Negative Breast Cancer. Biomedicines 2022; 10:biomedicines10081843. [PMID: 36009390 PMCID: PMC9405206 DOI: 10.3390/biomedicines10081843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subset of breast cancer with limited therapeutic options. However, its immune evasion mechanisms, characterized by the over-expression of the immune checkpoint molecules PD-L1 and CD47, can be targeted in order to facilitate cancer elimination by cells of innate and adaptive immunity. In this paper, we describe the design, preparation, and evaluation of three novel dual-targeting fusion proteins that were based on the structure frame of prototype IAB (innate and adaptive dependent bispecific fusion protein) and the “Orcutt-type IgG-scFv” molecular model. Three molecules with different spatial conformations were designed to improve antigen–antibody affinity by the addition of Ag–Ab binding sites from the variable region sequences of the anti-PD-L1 monoclonal antibody (mAb) atezolizumab and CV1, a high-affinity receptor of CD47. The results showed that the best-performing among the three proteins designed in this study was protein Pro3; its CV1 N-terminus and Fc domain C-terminus were not sterically hindered. Pro3 was better at boosting T cell proliferation and the engulfment of macrophages than the IAB prototype and, at the same time, retained a level of ADCC activity similar to that of IAB. Through improved design, the novel constructed dual-targeting immunomodulatory protein Pro3 was superior at activating the anti-tumor immune response and has thus shown potential for use in clinical applications.
Collapse
|
6
|
Zong HF, Zhang BH, Zhu JW. Generating a Bispecific Antibody Drug Conjugate Targeting PRLR and HER2 with Improving the Internalization. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1749334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractAntibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. The bispecific targeting could improve the specificity, affinity, and internalization of the ADC molecules. Prolactin preceptor (PRLR) and HER2 have crosstalk signaling in breast cancer, and PRLR undergoes a rapid internalization compared with HER2. To improve the efficacy of HER2 ADCs with enhancing the target specificity and internalization, we constructed a PRLR/HER2-targeting bispecific ADC (BsADC). We evaluated the characterization of PRLR × HER2 BsADC from the affinity and internalization, and further assessed its in vitro cytotoxicity in human breast-cancer cell lines (BT474, T47D, and MDA-MB-231) using Cell Count Kit-8 analysis. Our data demonstrated that PRLR × HER2 BsADC kept the affinity to two targeting antigens after conjugating drugs and exhibited higher internalization efficiency in comparison to HER2 ADC. Furthermore, PRLR × HER2 BsADC demonstrated to have superior antitumor activity in human breast cancer in vitro. In conclusion, our findings indicate that it is feasible through increasing the internalization of target antibody to enhance the antitumor activity and therapeutic potential that could be further evaluated in in vivo animal model.
Collapse
Affiliation(s)
- Hui-Fang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Bao-Hong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Jecho Institute Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
7
|
Wang L, Qiao Y, Zong H, Han L, Ke Y, Pan Z, Chen J, Lu J, Li J, Ying T, Zhang B, Zhu J. IgG-like Bispecific Antibody CD3×EpCAM Generated by Split Intein Against Colorectal Cancer. Front Pharmacol 2022; 13:803059. [PMID: 35281893 PMCID: PMC8905292 DOI: 10.3389/fphar.2022.803059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Colorectal cancer is a commonly diagnosed cancer with high mortality worldwide. Postoperative recidivation and metastasis still are the main challenges in clinical treatments. Thus, it is urgent to develop new therapies against colorectal cancer. Epithelial Cell Adhesion Molecule (EpCAM) is overexpressed in colorectal cancer cells and strongly associated with cancer development. Bispecific antibody (BsAb) is a kind of promising immunotherapy, which could recognize T cells and cancer cells simultaneously to achieve the anti-tumor effects. Methods: A bispecific antibody targeting EpCAM and CD3 with IgG format was genereated by split intein based on the Bispecific Antibody by Protein Splicing" platform. In vitro, the affinity of CD3×EpCAM BsAb was determined by Biolayer interferometry, its cytotoxicity was detected by LDH release assay, T cell recruitment and activation was detected by Flow Cytometry. In vivo, its pharmacokinetic parameters were detected, and anti-tumor effects were evaluated on the tumor cell xenograft mouse model. Results: The results showed that the CD3×EpCAM BsAb could activate and recruit T cells via binding colorectal cells and T cells, which could lead to more potent cytotoxicity to various colorectal cell lines than its parent EpCAM monoclonal antibody (mAb) in vitro. The CD3×EpCAM BsAb had similar pharmacokinetic parameters with EpCAM mAb and inhibits tumor growth on the SW480 tumor cell xenograft mouse model. Conclusion: The CD3×EpCAM BsAb could be a promising candidate for colorectal cancer treatment.
Collapse
Affiliation(s)
- Lei Wang
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Qiao
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zong
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Han
- Jecho Institute, Co. Ltd., Shanghai, China
- Jecho Biopharmaceuticals Co. Ltd., Tianjin, China
| | - Yong Ke
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - ZhiDi Pan
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- School of Science, and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Jecho Institute, Co. Ltd., Shanghai, China
- Jecho Biopharmaceuticals Co. Ltd., Tianjin, China
- Jecho Laboratories, Inc., Frederick, MD, United States
| |
Collapse
|
8
|
Standing D, Dandawate P, Anant S. Prolactin receptor signaling: A novel target for cancer treatment - Exploring anti-PRLR signaling strategies. Front Endocrinol (Lausanne) 2022; 13:1112987. [PMID: 36714582 PMCID: PMC9880166 DOI: 10.3389/fendo.2022.1112987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Prolactin (PRL) is a peptide hormone mainly secreted from the anterior pituitary gland. PRL is reported to play a role in pregnancy, mammary gland development, immune modulation, reproduction, and differentiation of islet cells. PRL binds to its receptor PRLR, which belongs to a superfamily of the class I cytokine receptor that has no intrinsic kinase activity. In canonical signaling, PRL binding to PRLR induces downstream signaling including JAK-STAT, AKT and MAPK pathways. This leads to increased cell proliferation, stemness, migration, apoptosis inhibition, and resistance to chemotherapy. PRL-signaling is upregulated in numerous hormone-dependent cancers including breast, prostate, ovarian, and endometrial cancer. However, more recently, the pathway has been reported to play a tumor-promoting role in other cancer types such as colon, pancreas, and hepatocellular cancers. Hence, the signaling pathway is an attractive target for drug development with blockade of the receptor being a potential therapeutic approach. Different strategies have been developed to target this receptor including modification of PRL peptides (Del1-9-G129R-hPRL, G129R-Prl), growth hormone receptor/prolactin receptor bispecific antibody antagonist, neutralizing antibody LFA102, an antibody-drug conjugate (ABBV-176) of the humanized antibody h16f (PR-1594804) and pyrrolobenzodiazepine dimer, a bispecific antibody targeting both PRLR and CD3, an in vivo half-life extended fusion protein containing PRLR antagonist PrlRA and albumin binding domain. There have also been attempts to discover and develop small molecular inhibitors targeting PRLR. Recently, using structure-based virtual screening, we identified a few antipsychotic drugs including penfluridol as a molecule that inhibits PRL-signaling to inhibit PDAC tumor progression. In this review, we will summarize the recent advances in the biology of this receptor in cancer and give an account of PRLR antagonist development for the treatment of cancer.
Collapse
|
9
|
Zong H, Han L, Chen J, Pan Z, Wang L, Sun R, Ding K, Xie Y, Jiang H, Lu H, Gilly J, Zhang B, Zhu J. Kinetics study of the natural split Npu DnaE intein in the generation of bispecific IgG antibodies. Appl Microbiol Biotechnol 2021; 106:161-171. [PMID: 34882254 DOI: 10.1007/s00253-021-11707-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Rapid and efficient bispecific antibody (BsAb) production for industrial applications is still facing many challenges. We reported a technology platform for generating bispecific IgG antibodies, "Bispecific Antibody by Protein Trans-splicing (BAPTS)." While the "BAPTS" method has shown potential in high-throughput screening of BsAbs, further understanding and optimizing the methodology is desirable. A large number of BsAbs were selected to illustrate the conversion efficiency and kinetics parameters. The temperature of reaction makes no significant influence in conversion efficiency, which can reach more than 70% within 2 h, and CD3 × HER2 BsAb can reach 90%. By fitting trans-splicing reaction to single-component exponential decay curves, the apparent first-order rate constants at a series of temperatures were determined. The rate constant ranges from 0.02 to 0.11 min-1 at 37 °C, which is a high rate reported for the protein trans-splicing reaction (PTS). The reaction process is activated rapidly with activation energy of 8.9 kcal·mol-1 (CD3 × HER2) and 5.2 kcal·mol-1 (CD3 × EGFR). The BsAbs generated by "BAPTS" technology not only had the similar post-translation modifications to the parental antibodies, but also demonstrated excellent in vitro and in vivo bioactivity. The kinetics parameters and activation energy of the reaction illustrate feasible for high-throughput screening and industrial applications using the "BAPTS" approach. KEY POINTS: • The trans-splicing reaction of Npu DnaE intein in "BAPTS" platform is a rapid process with low reaction activation and high rate. • The BsAb generated by "BAPTS" remained effective in tumor cell killing. • The kinetics parameters and activation energy of the reaction illustrate feasible for high-throughput screening and industrial applications using the "BAPTS" approach.
Collapse
Affiliation(s)
- Huifang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Han
- Jecho Biopharmaceuticals Co., Ltd., Tianjin, China
| | - Jie Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhidi Pan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Ding
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yueqing Xie
- Jecho Laboratories, Inc., Frederick, MD, USA
| | - Hua Jiang
- Jecho Biopharmaceuticals Co., Ltd., Tianjin, China.,Jecho Laboratories, Inc., Frederick, MD, USA
| | - Huili Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - John Gilly
- Jecho Biopharmaceuticals Co., Ltd., Tianjin, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China. .,Jecho Biopharmaceuticals Co., Ltd., Tianjin, China. .,Jecho Laboratories, Inc., Frederick, MD, USA.
| |
Collapse
|
10
|
Production of IgG1-based bispecific antibody without extra cysteine residue via intein-mediated protein trans-splicing. Sci Rep 2021; 11:19411. [PMID: 34593913 PMCID: PMC8484483 DOI: 10.1038/s41598-021-98855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
A major class of bispecific antibodies (BsAbs) utilizes heterodimeric Fc to produce the native immunoglobulin G (IgG) structure. Because appropriate pairing of heavy and light chains is required, the design of BsAbs produced through recombination or reassembly of two separately-expressed antigen-binding fragments is advantageous. One such method uses intein-mediated protein trans-splicing (IMPTS) to produce an IgG1-based structure. An extra Cys residue is incorporated as a consensus sequence for IMPTS in successful examples, but this may lead to potential destabilization or disturbance of the assay system. In this study, we designed a BsAb linked by IMPTS, without the extra Cys residue. A BsAb binding to both TNFR2 and CD30 was successfully produced. Cleaved side product formation was inevitable, but it was minimized under the optimized conditions. The fine-tuned design is suitable for the production of IgG-like BsAb with high symmetry between the two antigen-binding fragments that is advantageous for screening BsAbs.
Collapse
|
11
|
Sun R, Zhou Y, Han L, Pan Z, Chen J, Zong H, Bian Y, Jiang H, Zhang B, Zhu J. A Rational Designed Novel Bispecific Antibody for the Treatment of GBM. Biomedicines 2021; 9:biomedicines9060640. [PMID: 34204931 PMCID: PMC8230177 DOI: 10.3390/biomedicines9060640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) is highly and specifically expressed in a subset of lethal glioblastoma (GBM), making the receptor a unique therapeutic target for GBM. Recently, bispecific antibodies (BsAbs) have shown exciting clinical benefits in cancer immunotherapy. Here, we report remarkable results for GBM treatment with a BsAb constructed by the "BAPTS" method. The BsAb was characterized through LC/MS, SEC-HPLC, and SPR. Furthermore, the BsAb was evaluated in vitro for bioactivities through FACS, antigen-dependent T-cell-mediated cytotoxicity, and a cytokine secretion assay, as well as in vivo for antitumor activity and pharmacokinetic (PK) parameters through immunodeficient NOD/SCID and BALB/c mouse models. The results indicated that the EGFRvIII-BsAb eliminated EGFRvIII-positive GBM cells by recruiting and stimulating effector T cells secreting cytotoxic cytokines that killed GBM cells in vitro. The results demonstrated the antitumor potential and long circulation time of EGFRvIII-BsAb in NOD/SCID mice bearing de2-7 subcutaneously heterotopic transplantation tumors and BALB/c mice. In conclusion, our experiments in both in vitro and in vivo have shown the remarkable antitumor activities of EGFRvIII-BsAb, highlighting its potential in clinical applications for the treatment of GBM. Additional merits, including a long circulation time and low immunogenicity, have also made the novel BsAb a promising therapeutic candidate.
Collapse
Affiliation(s)
- Rui Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Yuexian Zhou
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Lei Han
- Jecho Biopharmaceuticals Co., Ltd. No. 2018 Zhongtian Avenue, Binhai New Area, Tianjin 300457, China; (L.H.); (H.J.)
- Jecho Biopharmaceutical Institute, No. 58 Yuanmei Road, Minhang District, Shanghai 200241, China
| | - Zhidi Pan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Jie Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Huifang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
| | - Hua Jiang
- Jecho Biopharmaceuticals Co., Ltd. No. 2018 Zhongtian Avenue, Binhai New Area, Tianjin 300457, China; (L.H.); (H.J.)
- Jecho Laboratories Inc., 7320 Executive Way, Frederick, MD 21704, USA
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
- Correspondence: (B.Z.); (J.Z.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; (R.S.); (Y.Z.); (Z.P.); (J.C.); (H.Z.); (Y.B.)
- Jecho Laboratories Inc., 7320 Executive Way, Frederick, MD 21704, USA
- Correspondence: (B.Z.); (J.Z.)
| |
Collapse
|
12
|
Hofmann T, Schmidt J, Ciesielski E, Becker S, Rysiok T, Schütte M, Toleikis L, Kolmar H, Doerner A. Intein mediated high throughput screening for bispecific antibodies. MAbs 2021; 12:1731938. [PMID: 32151188 PMCID: PMC7153837 DOI: 10.1080/19420862.2020.1731938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies comprise extremely diverse architectures enabling complex modes of action, such as effector cell recruitment or conditional target modulation via dual targeting, not conveyed by monospecific antibodies. In recent years, research on bispecific therapeutics has substantially grown. However, evaluation of binding moiety combinations often leads to undesired prolonged development times. While high throughput screening for small molecules and classical antibodies has evolved into a mature discipline in the pharmaceutical industry, dual-targeting antibody screening methodologies lack the ability to fully evaluate the tremendous number of possible combinations and cover only a limited portion of the combinatorial screening space. Here, we propose a novel combinatorial screening approach for bispecific IgG-like antibodies to extenuate screening limitations in industrial scale, expanding the limiting screening space. Harnessing the ability of a protein trans-splicing reaction by the split intein Npu DnaE, antibody fragments were reconstituted within the hinge region in vitro. This method allows for fully automated, rapid one-pot antibody reconstitution, providing biological activity in several biochemical and functional assays. The technology presented here is suitable for automated functional and combinatorial high throughput screening of bispecific antibodies.
Collapse
Affiliation(s)
- Tim Hofmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Johannes Schmidt
- Compound Logistic & Bioassay Automation, Merck KGaA, Darmstadt, Germany
| | - Elke Ciesielski
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Thomas Rysiok
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Mark Schütte
- Global Innovation and Alliance Management, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
13
|
Sawant MS, Streu CN, Wu L, Tessier PM. Toward Drug-Like Multispecific Antibodies by Design. Int J Mol Sci 2020; 21:E7496. [PMID: 33053650 PMCID: PMC7589779 DOI: 10.3390/ijms21207496] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic.
Collapse
Affiliation(s)
- Manali S. Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Streu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, Albion College, Albion, MI 49224, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Zhou Y, Zong H, Han L, Xie Y, Jiang H, Gilly J, Zhang B, Lu H, Chen J, Sun R, Pan Z, Zhu J. A novel bispecific antibody targeting CD3 and prolactin receptor (PRLR) against PRLR-expression breast cancer. J Exp Clin Cancer Res 2020; 39:87. [PMID: 32398042 PMCID: PMC7216678 DOI: 10.1186/s13046-020-01564-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Prolactin receptor (PRLR) is highly expressed in a subset of human breast cancer and prostate cancer, which makes it a potential target for cancer treatment. In clinical trials, the blockade of PRLR was shown to be safe but with poor efficacy. It is therefore urgent to develop new therapies against PRLR target. Bispecific antibodies (BsAbs) could guide immune cells toward tumor cells, and produced remarkable effects in some cancers. METHODS In this study, a bispecific antibody targeting both tumor antigen PRLR and T cell surface CD3 antigen (PRLR-DbsAb) was constructed by split intein mediated protein transsplicing (BAPTS) system for the first time. Its binding activity was determined by Biacore and Flow cytometry, and target-dependent T cell mediated cytotoxicity was detected using LDH release assay. ELISA was utilized to study the secretion of cytokines by immune cells. Subcutaneous tumor mouse models were used to analyze the in vivo anti-tumor effects of PRLR-DbsAb. RESULTS PRLR-DbsAb in vitro could recruit and activate T cells to promote the release of Th1 cytokines IFN- γ and TNF- α, which could kill PRLR expressed breast cancer cells. In xenograft models with breast cancer cell line T47D, NOD/SCID mice intraperitoneally injected with PRLR-DbsAb exhibited significant inhibition of tumor growth and a longer survival compared to mice treated with PRLR monoclonal antibody (PRLR mAb). CONCLUSIONS Both in vitro and in vivo experiments showed PRLR-DbsAb had a potential therapy of cancer treatment potential therapy for cancer. Immunotherapy may be a promising treatment against the tumor target of PRLR.
Collapse
Affiliation(s)
- Yuexian Zhou
- Engineering Research Center of Cell & Therapeutic Antibody, MOE,Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
| | - Huifang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, MOE,Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
| | - Lei Han
- Engineering Research Center of Cell & Therapeutic Antibody, MOE,Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
| | | | - Hua Jiang
- Jecho Laboratories, Inc, Frederick, MD, USA
| | - John Gilly
- Jecho Laboratories, Inc, Frederick, MD, USA
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE,Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
| | - Huili Lu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE,Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
| | - Jie Chen
- Engineering Research Center of Cell & Therapeutic Antibody, MOE,Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
| | - Rui Sun
- Engineering Research Center of Cell & Therapeutic Antibody, MOE,Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
| | - Zhidi Pan
- Engineering Research Center of Cell & Therapeutic Antibody, MOE,Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE,Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China.
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China.
- Jecho Laboratories, Inc, Frederick, MD, USA.
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, China.
| |
Collapse
|
15
|
|