1
|
Srinivasan A, Magner D, Kozłowski P, Philips A, Kajdasz A, Wojciechowski P, Wojciechowska M. Global dysregulation of circular RNAs in frontal cortex and whole blood from DM1 and DM2. Hum Genet 2025; 144:417-432. [PMID: 39903274 PMCID: PMC12003446 DOI: 10.1007/s00439-025-02729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular disorders associated with expansions of microsatellites, respectively, in DMPK and CNBP. Their pathogenesis is linked to the global aberrant alternative splicing (AAS) of many genes and marks mostly muscular and neuronal tissues, while blood is the least affected. Recent data in DM1 skeletal muscles indicated that abnormalities in RNA metabolism also include global upregulation of circular RNAs (circRNAs). CircRNAs are a heterogeneous group considered splicing errors and by-products of canonical splicing. To elucidate whether circRNA dysregulation is an inherent feature of the myotonic environment, we perform their analysis in the frontal cortex and whole blood of DM1 and DM2 patients. We find a global elevation of circRNAs in both tissues, and its magnitude is neither correlated with the differences in their parental gene expression nor is associated with AAS published earlier. Aberrantly spliced cassette exons of linear transcripts affected in DM1 and DM2 are not among the circularized exons, which unique genomic features prerequisite back-splicing. However, the blueprint of the AAS of linear RNAs is found in a variety of circRNA isoforms. The heterogeneity of circRNAs also originates from the utilization of exonic and intronic cryptic donors/acceptors in back splice junctions, and intron-containing circRNAs are more characteristic of the blood. Overall, this study reveals circRNA dysregulation in various tissues from DM1 and DM2; however, their levels do not correlate with the AAS in linear RNAs, suggesting a potential independent regulatory mechanism underlying circRNA upregulation in myotonic dystrophy.
Collapse
Affiliation(s)
- Arvind Srinivasan
- Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dorota Magner
- Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan, Poland
| | - Piotr Kozłowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Department of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Arkadiusz Kajdasz
- Department of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paweł Wojciechowski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marzena Wojciechowska
- Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
2
|
Aparo A, Avesani S, Parmigiani L, Napoli S, Bertoni F, Bonnici V, Cascione L, Giugno R. EasyCircR: Detection and reconstruction of circular RNAs post-transcriptional regulatory interaction networks. Comput Biol Med 2025; 188:109846. [PMID: 39987699 DOI: 10.1016/j.compbiomed.2025.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
Circular RNAs (circRNAs) are regulatory RNAs that play a crucial role in various biological activities and have been identified as potential biomarkers for neurological disorders and cancer. CircRNAs have emerged as significant regulators of gene expression through different mechanisms, including regulation of transcription and splicing, modulation of translation, and post-translational modifications. Additionally, some circRNAs operate as microRNA (miRNA) sponges in the cytoplasm, boosting post-transcriptional expression of target genes by inhibiting miRNA activity. Although existing pipelines can reconstruct circRNAs, identify miRNAs sponged by them, retrieve cascade-regulated mRNAs, and represent the regulatory interactions as complex circRNA-miRNA-mRNA networks, none of the state-of-the-art approaches can discriminate the biological level at which the mRNAs involved in the interactions are regulated, avoiding considering potential target mRNAs not regulated at the post-transcriptional level. EasyCircR is a novel R package that combines circRNA detection and reconstruction with post-transcriptional gene expression analysis (exon-intron split analysis) and miRNA response element prediction. The package enables estimation and visualization of circRNA-miRNA-mRNA interactions through an intuitive Shiny application, leveraging the post-transcriptional regulatory nature of circRNA-miRNA relationship and excluding unrealistic regulatory interactions at the biological level. EasyCircR source code, Docker container and user guide are available at: https://github.com/InfOmics/EasyCircR.
Collapse
Affiliation(s)
- Antonino Aparo
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy; Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, 37134, Italy
| | - Simone Avesani
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy.
| | - Luca Parmigiani
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld, 33615, Germany; Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld, 33615, Germany; Graduate School "Digital Infrastructure for the Life Sciences"(DILS), Bielefeld, 33615, Germany
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, 6500, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, 6500, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland
| | - Vincenzo Bonnici
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, 43124, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, 6500, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| |
Collapse
|
3
|
Karousi P, Kontos CK, Nikou ST, Carell T, Sideris DC, Scorilas A. Discovery of circular transcripts of the human BCL2-like 12 (BCL2L12) apoptosis-related gene, using targeted nanopore sequencing, provides new insights into circular RNA biology. Funct Integr Genomics 2025; 25:66. [PMID: 40106061 PMCID: PMC11923030 DOI: 10.1007/s10142-025-01578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Circular RNAs (circRNAs) constitute an RNA type formed by back-splicing. BCL2-like 12 (BCL2L12) is an apoptosis-related gene comprising 7 exons. In this study, we used targeted nanopore sequencing to identify circular BCL2L12 transcripts in human colorectal cancer cells and investigated the effect of circRNA silencing on mRNA expression of the parental gene. In brief, nanopore sequencing following nested PCR amplification of cDNAs of BCL2L12 circRNAs from 7 colorectal cancer cell lines unraveled 46 BCL2L12 circRNAs, most of which described for the first time. Interestingly, 40 novel circRNAs are likely to form via back-splicing between non-canonical back-splice sites residing in highly similar regions of the primary transcripts. All back-splice junctions were validated using next-generation sequencing (NGS) after circRNA enrichment. Surprisingly, 2 novel circRNAs also comprised a poly(A) tract after BCL2L12 exon 7; this poly(A) tract was back-spliced to exon 1, in both cases. Furthermore, the selective silencing of a BCL2L12 circRNA resulted in a subsequent decrease of BCL2L12 mRNA levels in HCT 116 cells, thus providing evidence of parental gene expression regulation by circRNAs. In conclusion, our study led to the discovery of many circular transcripts from a single human gene and provided new insights into circRNA biogenesis and mode of action.
Collapse
Affiliation(s)
- Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | - Stavroula T Nikou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Carell
- Department for Chemistry, Institute for Chemical Epigenetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Hu X, Du M, Tao C, Wang J, Zhang Y, Jin Y, Yang E. Species-specific circular RNA circDS-1 enhances adaptive evolution in Talaromyces marneffei through regulation of dimorphic transition. PLoS Genet 2025; 21:e1011482. [PMID: 40048447 PMCID: PMC11928065 DOI: 10.1371/journal.pgen.1011482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/21/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Thermal adaptability is a crucial characteristic for mammalian pathogenic fungi that originally inhabit natural ecosystems. Thermally dimorphic fungi have evolved a unique ability to respond to host body temperature by shifting from mycelia to yeast. The high similarity of protein-coding genes between these fungi and their relatives suggests the indispensable but often overlooked roles of non-coding elements in fungal thermal adaptation. Here, we systematically delineated the landscape of full-length circRNAs in both mycelial and yeast conditions of Talaromyces marneffei, a typical thermally dimorphic fungus causing fatal Talaromycosis, by optimizing an integrative pipeline for circRNA detection utilizing next- and third-generation sequencing. We found T. marneffei circRNA demonstrated features such as shorter length, lower abundance, and circularization-biased splicing. We then identified and validated that circDS-1, independent of its parental gene, promotes the hyphae-to-yeast transition, maintains yeast morphology, and is involved in virulence regulation. Further analysis and experiments among Talaromyces confirmed that the generation of circDS-1 is driven by a T. marneffei-specific region in the flanking intron of circDS-1. Together, our findings not only provide fresh insights into the role of circRNA in fungal thermal adaptation but also reveal a novel molecular mechanism for the adaptive evolution of functional circRNAs derived from intronic mutations.
Collapse
Affiliation(s)
- Xueyan Hu
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Changyu Tao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Juan Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yun Zhang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yueqi Jin
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Lin H, Conn VM, Conn SJ. Past, present, and future strategies for detecting and quantifying circular RNA variants. FEBS J 2025. [PMID: 39934961 DOI: 10.1111/febs.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
Circular RNAs (circRNAs) are a family of covalently closed RNA transcripts ubiquitous across the eukaryotic kingdom. CircRNAs are generated by a class of alternative splicing called backsplicing, with the resultant circularization of a part of parental RNA producing the characteristic backsplice junction (BSJ). Because of the noncontiguous sequence of the BSJ with respect to the DNA genome, circRNAs remained hidden in plain sight through over a decade of RNA next-generation sequencing, yet over 3 million unique circRNA transcripts have been illuminated in the past decade alone. CircRNAs are expressed in a cell type-specific manner, are highly stable, with many examples of circRNAs being evolutionarily conserved and/or functional in specific contexts. However, circRNAs can be very lowly expressed and predictions of the circRNA context from BSJ-spanning reads alone can confound extrapolation of the exact sequence composition of the circRNA transcript. For these reasons, specific and ultrasensitive detection, combined with enrichment, bespoke bioinformatics pipelines and, more recently, long-read, highly processive sequencing is becoming critical for complete characterization of all circRNA variants. Concomitantly, the need for targeted detection and quantification of specific circRNAs has sparked numerous laboratory-based and commercial approaches to visualize circRNAs in cells and quantify them in biological samples, including biospecimens. This review focuses on advancements in the detection and quantification of circRNAs, with a particular focus on recent next-generation sequencing approaches to bolster detection of circRNA variants and accurately normalize between sequencing libraries.
Collapse
Affiliation(s)
- He Lin
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, Australia
| | - Vanessa M Conn
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
6
|
Srinivasan A, Mroczko-Młotek E, Wojciechowska M. Circular RNA Formation and Degradation Are Not Directed by Universal Pathways. Int J Mol Sci 2025; 26:726. [PMID: 39859439 PMCID: PMC11766002 DOI: 10.3390/ijms26020726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms. The intricate biogenesis of circRNAs is regulated by the interplay of cis-regulatory elements and trans-acting factors, with intronic Alu repeats and RNA-binding proteins playing pivotal roles, at least in the formation of exonic circRNAs. Various hypotheses regarding pathways of circRNA turnover are forwarded, including endonucleolytic cleavage and exonuclease-mediated degradation; however, similarly to the inconclusive nature of circRNA biogenesis, the process of their degradation and the factors involved remain largely unclear. There is a knowledge gap regarding whether these processes are guided by universal pathways or whether each category of circRNAs requires special tools and particular mechanisms for their life cycles. Understanding these factors is pivotal for fully comprehending the biological significance of circRNAs. This review provides an overview of the various pathways involved in the biogenesis and degradation of different types of circRNAs and explores key factors that have beneficial or adverse effects on the formation and stability of these unique transcripts in higher eukaryotes.
Collapse
Affiliation(s)
| | | | - Marzena Wojciechowska
- Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (A.S.); (E.M.-M.)
| |
Collapse
|
7
|
Liu YC, Ishikawa M, Sakakibara S, Kadi MA, Motooka D, Naito Y, Ito S, Imamura Y, Matsumoto H, Sugihara F, Hirata H, Ogura H, Okuzaki D. Full-length nanopore sequencing of circular RNA landscape in peripheral blood cells following sequential BNT162b2 mRNA vaccination. Gene 2025; 933:148971. [PMID: 39343185 DOI: 10.1016/j.gene.2024.148971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Circular RNAs (circRNA) lack 5' or 3' ends; their unique covalently closed structures prevent RNA degradation by exonucleases. These characteristics provide circRNAs with high pharmaceutical stability and biostability relative to current standard-of-care linear mRNAs. CircRNA levels are reportedly associated with certain human diseases, making them novel disease biomarkers and a noncanonical class of therapeutic targets. In this study, the endogenous circRNAs underlying the response to BNT162b2 mRNA vaccination were evaluated. To this end, peripheral blood samples were subjected to full-length sequencing of circRNAs via nanopore sequencing and transcriptome sequencing. Fifteen samples, comprising pre-, first, and second vaccination cohorts, were obtained from five healthcare workers with no history of SARS-CoV-2 infection or previous vaccination. A total of 4706 circRNAs were detected; following full-length sequencing, 4217 novel circRNAs were identified as being specifically expressed during vaccination. These circRNAs were enriched in the binding motifs of stress granule assemblies and SARS-CoV-2 RNA binding proteins, namely poly(A) binding protein cytoplasmic 1 (PABPC1), pumilio RNA binding family member 1 (PUM1), and Y box binding protein 1 (YBX1). Moreover, 489 circRNAs were identified as previously reported miRNA sponges. The differentially expressed circRNAs putatively originated from plasma B cells compared to circRNAs reported in human blood single-cell RNA sequencing datasets. The pre- and post-vaccination differences observed in the circRNA expression landscape in response to the SARS-CoV-2 BNT162b2 mRNA vaccine.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Japan; Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan
| | - Masakazu Ishikawa
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Japan; Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan
| | - Shuhei Sakakibara
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Japan
| | - Mohamad Al Kadi
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Japan; Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Yoko Naito
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Shingo Ito
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Yuko Imamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Hisatake Matsumoto
- Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan; Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Japan
| | - Fuminori Sugihara
- Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan; Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Disease, Osaka University, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Japan
| | - Daisuke Okuzaki
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Japan; Center for Infectious Disease Education and Research (CiDER), OsakaUniversity, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Japan; Institute for Open and Transdisciplinary Research Initiatives, OsakaUniversity, Osaka, Japan.
| |
Collapse
|
8
|
Wang Y, Li X, Lu W, Li F, Yao L, Liu Z, Shi H, Zhang W, Bai Y. Full-length circRNA sequencing method using low-input RNAs and profiling of circRNAs in MPTP-PD mice on a nanopore platform. Analyst 2024; 149:5118-5130. [PMID: 39240088 DOI: 10.1039/d4an00715h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Considering the importance of accurate information of full-length (FL) transcripts in functional analysis, researchers prefer to develop new sequencing methods based on third-generation sequencing (TGS) rather than short-read sequencing. Several FL circRNA sequencing strategies have been developed. However, the current methods are inapplicable to low-biomass samples, since a large amount of total RNAs are acquired for circRNA enrichment before library preparation. In this work, we developed an effective method to detect FL circRNAs from a nanogram level (1-100 ng) of total RNAs based on a nanopore platform. Additionally, prior to the library preparation process, we added a series of 24 nt barcodes for each sample to reduce the cost and operating time. Using this method, we profiled circRNA expression in the striatum, hippocampus and cerebral cortex of a Parkinson's disease (PD) mouse model. Over 6% of reads were effective for FL circRNA identification in most datasets. Notably, a reduction in the RNA initial input resulted in a lower correlation between replicates and the detection efficiency for longer circRNA, but the lowest input (1 ng) was able to detect numerous FL circRNAs. Next, we systematically identified over 263 934 circRNAs in PD and healthy mice using the lower-input FL sequencing method, some of which came from 50.52% of PD-associated genes. Moreover, significant changes were observed in the circRNA expression pattern at an isoform level, and high-confidence protein translation evidence was predicted. Overall, we developed an effective method to characterize FL circRNAs from low-input samples and provide a comprehensive insight into the biological function of circRNAs in PD at an isoform level.
Collapse
Affiliation(s)
- Ying Wang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Xiaohan Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenxiang Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Fuyu Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Lingsong Yao
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zhiyu Liu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Huajuan Shi
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Weizhong Zhang
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Yunfei Bai
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
9
|
Hernández-Contreras KA, Martínez-Díaz JA, Hernández-Aguilar ME, Herrera-Covarrubias D, Rojas-Durán F, Chi-Castañeda LD, García-Hernández LI, Aranda-Abreu GE. Alterations of mRNAs and Non-coding RNAs Associated with Neuroinflammation in Alzheimer's Disease. Mol Neurobiol 2024; 61:5826-5840. [PMID: 38236345 DOI: 10.1007/s12035-023-03908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease is a neurodegenerative pathology whose pathognomonic hallmarks are increased generation of β-amyloid (Aβ) peptide, production of hyperphosphorylated (pTau), and neuroinflammation. The last is an alteration closely related to the progression of AD and although it is present in multiple neurodegenerative diseases, the pathophysiological events that characterize neuroinflammatory processes vary depending on the disease. In this article, we focus on mRNA and non-coding RNA alterations as part of the pathophysiological events characteristic of neuroinflammation in AD and the influence of these alterations on the course of the disease through interaction with multiple RNAs related to the generation of Aβ, pTau, and neuroinflammation itself.
Collapse
Affiliation(s)
- Karla Aketzalli Hernández-Contreras
- Doctorado en Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Jorge Antonio Martínez-Díaz
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - María Elena Hernández-Aguilar
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Lizbeth Donají Chi-Castañeda
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Luis Isauro García-Hernández
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Gonzalo Emiliano Aranda-Abreu
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México.
| |
Collapse
|
10
|
Digby B, Finn S, Ó Broin P. Computational approaches and challenges in the analysis of circRNA data. BMC Genomics 2024; 25:527. [PMID: 38807085 PMCID: PMC11134749 DOI: 10.1186/s12864-024-10420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Circular RNAs (circRNA) are a class of non-coding RNA, forming a single-stranded covalently closed loop structure generated via back-splicing. Advancements in sequencing methods and technologies in conjunction with algorithmic developments of bioinformatics tools have enabled researchers to characterise the origin and function of circRNAs, with practical applications as a biomarker of diseases becoming increasingly relevant. Computational methods developed for circRNA analysis are predicated on detecting the chimeric back-splice junction of circRNAs whilst mitigating false-positive sequencing artefacts. In this review, we discuss in detail the computational strategies developed for circRNA identification, highlighting a selection of tool strengths, weaknesses and assumptions. In addition to circRNA identification tools, we describe methods for characterising the role of circRNAs within the competing endogenous RNA (ceRNA) network, their interactions with RNA-binding proteins, and publicly available databases for rich circRNA annotation.
Collapse
Affiliation(s)
- Barry Digby
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland.
| | - Stephen Finn
- Discipline of Histopathology, School of Medicine, Trinity College Dublin and Cancer Molecular Diagnostic Laboratory, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
11
|
Budnick A, Franklin MJ, Utley D, Edwards B, Charles M, Hornstein ED, Sederoff H. Long- and short-read sequencing methods discover distinct circular RNA pools in Lotus japonicus. THE PLANT GENOME 2024; 17:e20429. [PMID: 38243772 DOI: 10.1002/tpg2.20429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs, generated through a back-splicing process that links a downstream 5' site to an upstream 3' end. The only distinction in the sequence between circRNA and their linear cognate RNA is the back splice junction. Their low abundance and sequence similarity with their linear origin RNA have made the discovery and identification of circRNA challenging. We have identified almost 6000 novel circRNAs from Lotus japonicus leaf tissue using different enrichment, amplification, and sequencing methods as well as alternative bioinformatics pipelines. The different methodologies identified different pools of circRNA with little overlap. We validated circRNA identified by the different methods using reverse transcription polymerase chain reaction and characterized sequence variations using nanopore sequencing. We compared validated circRNA identified in L. japonicus to other plant species and showed conservation of high-confidence circRNA-expressing genes. This is the first identification of L. japonicus circRNA and provides a resource for further characterization of their function in gene regulation. CircRNAs identified in this study originated from genes involved in all biological functions of eukaryotic cells. The comparison of methodologies and technologies to sequence, identify, analyze, and validate circRNA from plant tissues will enable further research to characterize the function and biogenesis of circRNA in L. japonicus.
Collapse
Affiliation(s)
- Asa Budnick
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Megan J Franklin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Delecia Utley
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
Venø MT, Su J, Yan Y, Kjems J. Nanopore-Mediated Sequencing of Circular RNA. Methods Mol Biol 2024; 2765:143-157. [PMID: 38381338 DOI: 10.1007/978-1-0716-3678-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circular RNAs (circRNAs) constitute a group of RNAs defined by a covalent bond between the 5' and 3' end formed by a unique back-splicing event. Most circRNAs are composed of more than one exon, which are spliced together in a linear fashion. This protocol describes methods to sequence full-length circRNA across the back-splicing junction, allowing unambiguous characterization of circRNA-specific exon-intron structures by long-read sequencing (LRS). Two different sequencing approaches are provided: (1) Global circRNA sequencing (the circNick-LRS strategy) relying on circRNA enrichment from total RNA followed by total circRNA long-read sequencing, and (2) targeted circRNA sequencing (the circPanel-LRS strategy) where a preselected panel of circRNA are sequenced without prior circRNA enrichment. Both methods were originally described in Karim et al. (Rahimi et al., Nat Commun 12: 4825, 2021) where they were applied to characterize the exon-intron structure of >10.000 circRNAs in mouse and human brains.
Collapse
Affiliation(s)
| | - Junyi Su
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | | | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Ma XK, Zhai SN, Yang L. Approaches and challenges in genome-wide circular RNA identification and quantification. Trends Genet 2023; 39:897-907. [PMID: 37839990 DOI: 10.1016/j.tig.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Numerous circular RNAs (circRNAs) produced from back-splicing of exon(s) have been recently revealed on a genome-wide scale across species. Although generally expressed at a low level, some relatively abundant circRNAs can play regulatory roles in various biological processes, prompting continuous profiling of circRNA in broader conditions. Over the past decade, distinct strategies have been applied in both transcriptome enrichment and bioinformatic tools for detecting and quantifying circRNAs. Understanding the scope and limitations of these strategies is crucial for the subsequent annotation and characterization of circRNAs, especially those with functional potential. Here, we provide an overview of different transcriptome enrichment, deep sequencing and computational approaches for genome-wide circRNA identification, and discuss strategies for accurate quantification and characterization of circRNA.
Collapse
Affiliation(s)
- Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Si-Nan Zhai
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Kontos CK, Hadjichambi D, Papatsirou M, Karousi P, Christodoulou S, Sideris DC, Scorilas A. Discovery and Comprehensive Characterization of Novel Circular RNAs of the Apoptosis-Related BOK Gene in Human Ovarian and Prostate Cancer Cells, Using Nanopore Sequencing. Noncoding RNA 2023; 9:57. [PMID: 37888203 PMCID: PMC10609399 DOI: 10.3390/ncrna9050057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
CircRNAs have become a novel scientific research hotspot, and an increasing number of studies have shed light on their involvement in malignant progression. Prompted by the apparent scientific gap in circRNAs from apoptosis-related genes, such as BOK, we focused on the identification of novel BOK circRNAs in human ovarian and prostate cancer cells. Total RNA was extracted from ovarian and prostate cancer cell lines and reversely transcribed using random hexamer primers. A series of PCR assays utilizing gene-specific divergent primers were carried out. Next, third-generation sequencing based on nanopore technology followed by extensive bioinformatics analysis led to the discovery of 23 novel circRNAs. These novel circRNAs consist of both exonic and intronic regions of the BOK gene. Interestingly, the exons that form the back-splice junction were truncated in most circRNAs, and multiple back-splice sites were found for each BOK exon. Moreover, several BOK circRNAs are predicted to sponge microRNAs with a key role in reproductive cancers, while the presence of putative open reading frames indicates their translational potential. Overall, this study suggests that distinct alternative splicing events lead to the production of novel BOK circRNAs, which could come into play in the molecular landscape and clinical investigation of ovarian and prostate cancer.
Collapse
Affiliation(s)
- Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| | - Despina Hadjichambi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| | - Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| | - Spyridon Christodoulou
- Fourth Department of Surgery, University General Hospital “Attikon”, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.H.); (M.P.); (P.K.); (D.C.S.); (A.S.)
| |
Collapse
|
15
|
Liu M, Cao S, Guo Z, Wu Z, Meng J, Wu Y, Shao Y, Li Y. Roles and mechanisms of CircRNAs in ovarian cancer. Front Cell Dev Biol 2022; 10:1044897. [PMID: 36506086 PMCID: PMC9727202 DOI: 10.3389/fcell.2022.1044897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Ovarian cancer (OC) is one of the female malignancies with nearly 45% 5-year survival rate. Circular RNAs (circRNAs), a kind of single-stranded non-coding RNAs, are generated from the back-splicing of cellular housekeeping noncoding RNAs and precursor messenger RNAs. Recent studies revealed that circRNAs have different biological function, including sponging miRNAs, encoding micropeptides, regulating stability of cytoplasmic mRNAs, affecting transcription and splicing, via interacting with DNA, RNA and proteins. Due to their stability, circRNAs have the potential of acting as biomarkers and treatment targets. In this review, we briefly illustrate the biogenesis mechanism and biological function of circRNAs in OC, and make a perspective of circRNAs drug targeting immune responses and signaling pathways in OC. This article can provide a systematic view into the current situation and future of circRNAs in OC.
Collapse
Affiliation(s)
- Min Liu
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Siyu Cao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ziyi Guo
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zong Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanli Li
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Abstract
Covalently closed, single-stranded circular RNAs can be produced from viral RNA genomes as well as from the processing of cellular housekeeping noncoding RNAs and precursor messenger RNAs. Recent transcriptomic studies have surprisingly uncovered that many protein-coding genes can be subjected to backsplicing, leading to widespread expression of a specific type of circular RNAs (circRNAs) in eukaryotic cells. Here, we discuss experimental strategies used to discover and characterize diverse circRNAs at both the genome and individual gene scales. We further highlight the current understanding of how circRNAs are generated and how the mature transcripts function. Some circRNAs act as noncoding RNAs to impact gene regulation by serving as decoys or competitors for microRNAs and proteins. Others form extensive networks of ribonucleoprotein complexes or encode functional peptides that are translated in response to certain cellular stresses. Overall, circRNAs have emerged as an important class of RNAmolecules in gene expression regulation that impact many physiological processes, including early development, immune responses, neurogenesis, and tumorigenesis.
Collapse
Affiliation(s)
- Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China;
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA;
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China;
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
17
|
Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, Kadener S, Kristensen LS, Legnini I, Morlando M, Jarlstad Olesen MT, Pasterkamp RJ, Preibisch S, Rajewsky N, Suenkel C, Kjems J. Best practice standards for circular RNA research. Nat Methods 2022; 19:1208-1220. [PMID: 35618955 PMCID: PMC9759028 DOI: 10.1038/s41592-022-01487-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/16/2022] [Indexed: 12/26/2022]
Abstract
Circular RNAs (circRNAs) are formed in all domains of life and via different mechanisms. There has been an explosion in the number of circRNA papers in recent years; however, as a relatively young field, circRNA biology has an urgent need for common experimental standards for isolating, analyzing, expressing and depleting circRNAs. Here we propose a set of guidelines for circRNA studies based on the authors' experience. This Perspective will specifically address the major class of circRNAs in Eukarya that are generated by a spliceosome-catalyzed back-splicing event. We hope that the implementation of best practice principles for circRNA research will help move the field forward and allow a better functional understanding of this fascinating group of RNAs.
Collapse
Affiliation(s)
- Anne F Nielsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Albrecht Bindereif
- Department of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Irene Bozzoni
- Department of Biology and Biotechnology, Charles Darwin, and Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Sapienza University of Rome, Rome, Italy
| | - Mor Hanan
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- TargoVax - Clinical Science, Oslo, Norway
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | | | | | - Ivano Legnini
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mariangela Morlando
- Department of Pharmaceutical Sciences, 'Department of Excellence 2018-2022', University of Perugia, Perugia, Italy
| | | | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- HHMI Janelia Research campus, Ashburn, VA, USA
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christin Suenkel
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Lonza - Drug Product Services, Basel, Switzerland
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
18
|
Najafi S. The emerging roles and potential applications of circular RNAs in ovarian cancer: a comprehensive review. J Cancer Res Clin Oncol 2022; 149:2211-2234. [PMID: 36053324 DOI: 10.1007/s00432-022-04328-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 12/25/2022]
Abstract
Ovarian cancer (OC) is among the most common human malignancies and the first cause of deaths among gynecologic cancers. Early diagnosis can help improving prognosis in those patients, and accordingly exploring novel molecular mechanisms may lead to find therapeutic targets. Circular RNAs (circRNAs) comprise a group of non-coding RNAs in multicellular organisms, which are identified with characteristic circular structure. CircRNAs have been found with substantial functions in regulating gene expression through interacting with RNA-binding proteins, targeting microRNAs, and transcriptional regulation. They have been found to be involved in regulating several critical processes such as cell growth, and death, organ development, signal transduction, and tumorigenesis. Accordingly, circRNAs have been implicated in a number of human diseases including malignancies. They are particularly reported to contribute to several hallmarks of cancer leading to cancer development and progression, although a number also are described with tumor-suppressor function. In OC, circRNAs are linked to regulation of cell growth, invasiveness, metastasis, angiogenesis, and chemoresistance. Notably, clinical studies also have shown potentials in diagnosis, prediction of prognosis, and therapeutic targets for OC. In this review, I have an overview to the putative mechanisms, and functions of circRNAs in regulating OC pathogenesis in addition to their clinical potentials.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Xu X, Du T, Mao W, Li X, Ye CY, Zhu QH, Fan L, Chu Q. PlantcircBase 7.0: Full-length transcripts and conservation of plant circRNAs. PLANT COMMUNICATIONS 2022; 3:100343. [PMID: 35637632 PMCID: PMC9284285 DOI: 10.1016/j.xplc.2022.100343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Circular RNA (circRNA) is a special type of non-coding RNA that participates in diverse biological processes in both animals and plants. Five years ago, we developed a comprehensive plant circRNA database (PlantcircBase), which has attracted much attention from the plant circRNA community. Here, we report an updated PlantcircBase (v.7.0), which contains 171,118 circRNAs from 21 plant species. Over 31,000 of the circRNAs have full-length sequences constructed based on analysis of 749 bulk RNA sequencing (RNA-seq) datasets downloaded from the public domain and Nanopore long-read sequencing results of rice RNAs newly generated in this study. A plant multiple conservation score (PMCS), based on the conservation of both sequence and expression profiles, was calculated for each circRNA to quantify and compare the conservation of all circRNAs. A new parameter, plant circRNA confidence level (PCCL), is introduced to measure the identity reliability of each circRNA based on experimental validation results and the number of references that support the circRNA. All this information and other details of circRNAs can be browsed, searched, and downloaded from PlantcircBase 7.0, which also provides online bioinformatics tools for visualization and sequence alignment. PlantcircBase 7.0 is publicly and freely accessible at http://ibi.zju.edu.cn/plantcircbase/.
Collapse
Affiliation(s)
- Xiaoxu Xu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Shandong (Linyi) Institute of Modern Agriculture of Zhejiang University, Linyi 310014, China
| | - Tianyu Du
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Shandong (Linyi) Institute of Modern Agriculture of Zhejiang University, Linyi 310014, China
| | - Weihua Mao
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Li
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Chu-Yu Ye
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Shandong (Linyi) Institute of Modern Agriculture of Zhejiang University, Linyi 310014, China
| | - Qinjie Chu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell 2022; 185:2016-2034. [PMID: 35584701 DOI: 10.1016/j.cell.2022.04.021] [Citation(s) in RCA: 520] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Most circular RNAs are produced from the back-splicing of exons of precursor mRNAs. Recent technological advances have in part overcome problems with their circular conformation and sequence overlap with linear cognate mRNAs, allowing a better understanding of their cellular roles. Depending on their localization and specific interactions with DNA, RNA, and proteins, circular RNAs can modulate transcription and splicing, regulate stability and translation of cytoplasmic mRNAs, interfere with signaling pathways, and serve as templates for translation in different biological and pathophysiological contexts. Emerging applications of RNA circles to interfere with cellular processes, modulate immune responses, and direct translation into proteins shed new light on biomedical research. In this review, we discuss approaches used in circular RNA studies and the current understanding of their regulatory roles and potential applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
21
|
Chen LL, Wilusz JE. Methods for circular RNAs. Methods 2021; 196:1-2. [PMID: 34601050 DOI: 10.1016/j.ymeth.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|