1
|
Wancham P, Phatthanakunanan S, Jala S, Woramahatthanon K, Sripiboon S, Lertwatcharasarakul P. Sex identification of sun conure ( Aratinga solstitialis) using loop-mediated isothermal amplification of W and Z spindlin chromosomes. Vet World 2024; 17:2000-2007. [PMID: 39507791 PMCID: PMC11536737 DOI: 10.14202/vetworld.2024.2000-2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/02/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim The sun conure (Aratinga solstitialis), a bird belonging to the Psittaciformes family, is a popular pet because of its bright color and beautiful appearance. The sun conure is a monomorphic bird with similar appearances between males and females, making sex identification difficult by observing the external morphology. Therefore, molecular techniques are utilized. Loop-mediated isothermal amplification (LAMP) is a molecular technique that is often applied for sex identification in birds and is a quick and simple method that can be used in the field. This study used the LAMP technique to improve sex identification in sun conures by observing the color change of hydroxy naphthol blue. Materials and Methods Two primer sets, SunSpin-W and SunSpin-Z, were designed for sex identification in sun conures using the LAMP technique specific to the spindlin gene. The developed LAMP reaction was tested for optimal conditions, sensitivity, and specificity compared with the polymerase chain reaction (PCR) technique. Results The SunSpin-W primer set amplified only female birds, whereas the SunSpin-Z primer set amplified DNA from both male and female birds. The primer sets were optimized at 62°C for 45 min. A positive result was visible to the naked eye from the color change of the reaction. In the LAMP assay, the lowest detectable concentration was 10 pg/μL and in the PCR assay, it was 1 ng/μL, while a 100% accuracy rate in sex identification was observed when comparing the LAMP assay results with the PCR assay. Conclusion This study successfully developed a LAMP technique for sex identification of sun conure, which took 45 min to complete and can be expanded for use in the field.
Collapse
Affiliation(s)
- Parichart Wancham
- Animal Health and Biomedical Sciences Study Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Sakuna Phatthanakunanan
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Nakorn Pathom 73140, Thailand
| | - Siriluk Jala
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Nakorn Pathom 73140, Thailand
| | - Kanyakodchanan Woramahatthanon
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Nakorn Pathom 73140, Thailand
| | - Supaphen Sripiboon
- Department of Large Animal and Wildlife Clinical Science, Kasetsart University, Nakorn Pathom 73140, Thailand
| | | |
Collapse
|
2
|
Host-Parasite Relationships of Quill Mites (Syringophilidae) and Parrots (Psittaciformes). DIVERSITY 2022. [DOI: 10.3390/d15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The family Syringophilidae (Acari: Prostigmata) includes obligatory ectoparasites, which occupy feather quills from various parts of avian plumage, where they feed and reproduce. Our study was concerned with the global fauna of syringophilid mites associated with Psittaciformes, as well as host-parasite specificity and evolution. We assumed that the system composed of quill mites and parrots represents a model group that can be used in a broader study of the relationships between parasites and hosts. In total, we examined 1524 host individuals of parrots belonging to 195 species, 73 genera, and 4 families (which constitute ca. 50% of global parrot fauna) from all zoogeographical regions where Psittaciformes occur. Among them, 89 individuals representing 81 species have been infested by quill mites belonging to 45 species and 8 genera. The prevalence of host infestations by syringophilid mites varied from 2.8% to 100% (95% confidence interval (CI Sterne method) = 0.1–100). We applied a bipartite analysis to determine the parasite-host interaction, network indices, and host specificity at the species and whole network levels. The Syringophilidae-Psittaciformes network was composed of 24 mite species and 47 host species. The bipartite network was characterized by a high network level specialization H2′ = 0.98, connectance C = 0.89, and high modularity Q = 0.90, with 23 modules, but low nestedness N = 0.0333. Moreover, we reconstructed the phylogeny of the quill mites on the generic level, and this analysis shows two distinct clades: Psittaciphilus (Peristerophila + Terratosyringophilus) (among Syringophilinae subfamily) and Lawrencipicobia (Pipicobia + Rafapicobia) (among Picobiinae). Finally, the distributions and host-parasite relationships in the system composed of syringophilid mites and parrots are discussed.
Collapse
|
3
|
Marciniak-Musial N, Sikora B. Quill Mites of the Family Syringophilidae (Acariformes: Prostigmata) Associated With the New World and African Parrots (Psittaciformes: Psittacidae) With the Description of Eight New Species. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1562-1588. [PMID: 35964241 DOI: 10.1093/jme/tjac087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 06/15/2023]
Abstract
In this paper, we review the quill mite fauna of the family Syringophilidae Lavoipierre, 1953 (Acariformes: Prostigmata) associated with New World and African parrots (Aves: Psittaciformes: Psittacidae), and describe eight new species including: Neoaulobia unsoeldi Marciniak-Musial & Sikora sp. nov. from the Burrowing Parakeet Cyanoliseus patagonus in Argentina; Lawrencipicobia arini Marciniak-Musial & Sikora sp. nov. from the Black-headed Parrot Pionites melanocephalus in Surinam; L. ararauna Marciniak-Musial & Sikora sp. nov. from the Black-headed Parrot Ara ararauna in Brazil; L. touiti Marciniak-Musial & Sikora sp. nov. from the Golden-tailed Parrotlet Touit surdus in Brazil; Rafapicobia valdiviana Marciniak-Musial & Sikora sp. nov. from the Burrowing Parrot Cyanoliseus patagonus in Brazil; R. pyrrhura Marciniak-Musial & Sikora sp. nov. from the Green-cheeked Parakeet Pyrrhura molinae in Bolivia; R. xanthopterygius Marciniak-Musial & Sikora sp. nov. from the Blue-winged Parrotlet Forpus xanthopterygius in Brazil; and R. trainidadi Marciniak-Musial & Sikora sp. nov. from the Lilac-tailed Parrotlet Touit batavicus in Trinidad and Tobago. Additionally, we note fifteen new host species and many new locality records for the previously described taxa, and provide the keys for all species associated with psittaciform birds. Finally, we discuss the host-parasite relationships between syringophilid mites and parrots.
Collapse
Affiliation(s)
- Natalia Marciniak-Musial
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Bozena Sikora
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
4
|
Kemp JR, Young L, Mosen C, Bolitho L, Orr-Walker T, Yockney I, Elliott G. Irruptive dynamics of invasive carnivores and prey populations, and predator control, affect kea survivorship across the Southern Alps. NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2021.2021249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Joshua R. Kemp
- New Zealand Department of Conservation, Nelson, New Zealand
| | - Laura Young
- New Zealand Department of Conservation, Nelson, New Zealand
- Kea Conservation Trust, Queenstown, New Zealand
| | - Corey Mosen
- New Zealand Department of Conservation, Nelson, New Zealand
- Kea Conservation Trust, Queenstown, New Zealand
| | - Liam Bolitho
- New Zealand Department of Conservation, Nelson, New Zealand
- Kea Conservation Trust, Queenstown, New Zealand
- Southern Cross University, Lismore, Australia
| | | | - Ivor Yockney
- Manaaki Whenua Landcare Research, Christchurch, New Zealand
| | - Graeme Elliott
- New Zealand Department of Conservation, Nelson, New Zealand
| |
Collapse
|
5
|
Marciniak-Musial N, Hromada M, Sikora B. Taxonomic Diversity of the Quill Mites of the Family Syringophilidae (Acariformes: Prostigmata) Associated With Old World Parrots (Psittaciformes: Psittaculidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:213-232. [PMID: 34543429 DOI: 10.1093/jme/tjab144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The quill mite fauna of the family Syringophilidae Lavoipierre, 1953 (Acariformes: Prostigmata) associated with parrots (Aves: Psittaciformes) are reviewed. Seven new species are described: Pipicobia cyclopsitta Marciniak-Musial, Hromada & Sikora sp. nov. from the Double-Eyed Fig-Parrot Cyclopsitta diophthalma in Papua New Guinea; P. fuscata Marciniak-Musial, Hromada & Sikora sp. nov. from the Dusky Lory Pseudeos fuscata in Papua New Guinea; P. tahitiana Marciniak-Musial, Hromada & Sikora sp. nov. from the Blue Lorikeet Vini peruviana in Tahiti (French Polynesia); P. malherbi Marciniak-Musial, Hromada & Sikora sp. nov. from the Malherbe's Parakeet Cyanoramphus malherbi in New Zealand; Lawrencipicobia eclectus Marciniak-Musial, Hromada & Sikora sp. nov. from the Eclectus Parrot Eclectus roratus in Papua New Guinea; Neoaulobia pseudeos Marciniak-Musial, Hromada & Sikora sp. nov. from the Dusky Lory Pseudeos fuscata in Papua New Guinea; and N. Skorackii Marciniak-Musial, Hromada & Sikora sp. nov. from the Eastern Rosella Platycercus eximius in Australia.
Collapse
Affiliation(s)
- Natalia Marciniak-Musial
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Martin Hromada
- Laboratory and Museum of Evolutionary Ecology, Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, Prešov, Slovakia
- Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | - Bozena Sikora
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
6
|
Li D, Guo J, Jia R. Histone code reader SPIN1 is a promising target of cancer therapy. Biochimie 2021; 191:78-86. [PMID: 34492335 DOI: 10.1016/j.biochi.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
SPIN1 is a histone methylation reader, which can epigenetically control multiple tumorigenesis-associated signaling pathways, including the Wnt, PI3K/AKT, and RET pathways. Considerable evidence has shown that SPIN1 is overexpressed in many cancers, which can promote cell proliferation, transformation, metastasis, and chemical or radiation resistance. With the growing understanding of the SPIN1 protein structure, some inhibitors have been developed to interfere with the recognition between SPIN1 and histone H3K4me3 and H3R8me2a methylation and block the oncogenic functions of SPIN1. Therefore, SPIN1 is a potential target of cancer therapy. However, the mechanism by which SPIN1-transformed cells overcome the significant mitotic spindle defects and the factors promoting SPIN1 overexpression in cancers remain unclear. In this review, we described the current understanding of the SPIN1 protein structure and its expression, functions, and regulatory mechanisms in carcinogenesis, and discussed the challenges faced in the mechanisms of SPIN1 overexpression and oncogenic functions, and the potential application of anti-SPIN1 treatment in human cancers.
Collapse
Affiliation(s)
- Di Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Gelabert P, Sandoval-Velasco M, Serres A, de Manuel M, Renom P, Margaryan A, Stiller J, de-Dios T, Fang Q, Feng S, Mañosa S, Pacheco G, Ferrando-Bernal M, Shi G, Hao F, Chen X, Petersen B, Olsen RA, Navarro A, Deng Y, Dalén L, Marquès-Bonet T, Zhang G, Antunes A, Gilbert MTP, Lalueza-Fox C. Evolutionary History, Genomic Adaptation to Toxic Diet, and Extinction of the Carolina Parakeet. Curr Biol 2019; 30:108-114.e5. [PMID: 31839456 DOI: 10.1016/j.cub.2019.10.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
As the only endemic neotropical parrot to have recently lived in the northern hemisphere, the Carolina parakeet (Conuropsis carolinensis) was an iconic North American bird. The last surviving specimen died in the Cincinnati Zoo in 1918 [1]. The cause of its extinction remains contentious: besides excessive mortality associated to habitat destruction and active hunting, their survival could have been negatively affected by its range having become increasingly patchy [2] or by the exposure to poultry pathogens [3, 4]. In addition, the Carolina parakeet showed a predilection for cockleburs, an herbaceous plant that contains a powerful toxin, carboxyatractyloside, or CAT [5], which did not seem to affect them but made the birds notoriously toxic to most predators [3]. To explore the demographic history of this bird, we generated the complete genomic sequence of a preserved specimen held in a private collection in Espinelves (Girona, Spain), as well as of a close extant relative, Aratinga solstitialis. We identified two non-synonymous genetic changes in two highly conserved proteins known to interact with CAT that could underlie a specific dietary adaptation to this toxin. Our genomic analyses did not reveal evidence of a dramatic past demographic decline in the Carolina parakeet; also, its genome did not exhibit the long runs of homozygosity that are signals of recent inbreeding and are typically found in endangered species. As such, our results suggest its extinction was an abrupt process and thus likely solely attributable to human causes.
Collapse
Affiliation(s)
- Pere Gelabert
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain; Department of Evolutionary Anthropology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Aitor Serres
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Marc de Manuel
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Pere Renom
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ashot Margaryan
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Josefin Stiller
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Toni de-Dios
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Qi Fang
- BGI-Shenzhen, Beishan Industrial Zone, Building 11, Shenzhen 518083, China
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Building 11, Shenzhen 518083, China
| | - Santi Mañosa
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Facultat de Biologia, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - George Pacheco
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Manuel Ferrando-Bernal
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Guolin Shi
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Fei Hao
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xianqing Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bent Petersen
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Semeling Road, 08100 Kedah, Malaysia
| | - Remi-André Olsen
- ScieLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Frescativägen 40, SE-17121 Solna, Sweden
| | - Arcadi Navarro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain; CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08036 Barcelona, Spain
| | - Yuan Deng
- BGI-Shenzhen, Beishan Industrial Zone, Building 11, Shenzhen 518083, China
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Frescativägen 40, 10405 Stockholm, Sweden
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain; CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08036 Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c. de les Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; NTNU University Museum, Erling Skakkes gate 47c, 7012 Trondheim, Norway.
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
8
|
Chromosome Painting in Neotropical Long- and Short-Tailed Parrots (Aves, Psittaciformes): Phylogeny and Proposal for a Putative Ancestral Karyotype for Tribe Arini. Genes (Basel) 2018; 9:genes9100491. [PMID: 30309041 PMCID: PMC6210594 DOI: 10.3390/genes9100491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022] Open
Abstract
Most Neotropical Psittacidae have a diploid number of 2n = 70, and a dichotomy in chromosome patterns. Long-tailed species have biarmed macrochromosomes, while short-tailed species have telo/acrocentric macrochromosomes. However, the use of chromosome painting has demonstrated that karyotype evolution in Psittacidae includes a high number of inter/intrachromosomal rearrangements. To determine the phylogeny of long- and short-tailed species, and to propose a putative ancestral karyotype for this group, we constructed homology maps of Pyrrhura frontalis (PFR) and Amazona aestiva (AAE), belonging to the long- and short-tailed groups, respectively. Chromosomes were analyzed by conventional staining and fluorescent in situ hybridization using whole chromosome paints of Gallusgallus and Leucopternis albicollis. Conventional staining showed a karyotype with 2n = 70 in both species, with biarmed macrochromosomes in PFR and telo/acrocentric chromosomes in AAE. Comparison of the results with the putative avian ancestral karyotype (PAK) showed fusions in PFR of PAK1p/PAK4q (PFR1) and PAK6/PAK7 (PFR6) with a paracentric inversion in PFR6. However, in AAE, there was only the fusion between PAK6/7 (AAE7) with a paracentric inversion. Our results indicate that PFR retained a more basal karyotype than long-tailed species previously studied, and AAE a more basal karyotype for Neotropical Psittacidae analyzed so far.
Collapse
|
9
|
Urantowka AD, Kroczak A, Mackiewicz P. The influence of molecular markers and methods on inferring the phylogenetic relationships between the representatives of the Arini (parrots, Psittaciformes), determined on the basis of their complete mitochondrial genomes. BMC Evol Biol 2017; 17:166. [PMID: 28705202 PMCID: PMC5513162 DOI: 10.1186/s12862-017-1012-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 07/04/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Conures are a morphologically diverse group of Neotropical parrots classified as members of the tribe Arini, which has recently been subjected to a taxonomic revision. The previously broadly defined Aratinga genus of this tribe has been split into the 'true' Aratinga and three additional genera, Eupsittula, Psittacara and Thectocercus. Popular markers used in the reconstruction of the parrots' phylogenies derive from mitochondrial DNA. However, current phylogenetic analyses seem to indicate conflicting relationships between Aratinga and other conures, and also among other Arini members. Therefore, it is not clear if the mtDNA phylogenies can reliably define the species tree. The inconsistencies may result from the variable evolution rate of the markers used or their weak phylogenetic signal. To resolve these controversies and to assess to what extent the phylogenetic relationships in the tribe Arini can be inferred from mitochondrial genomes, we compared representative Arini mitogenomes as well as examined the usefulness of the individual mitochondrial markers and the efficiency of various phylogenetic methods. RESULTS Single molecular markers produced inconsistent tree topologies, while different methods offered various topologies even for the same marker. A significant disagreement in these tree topologies occurred for cytb, nd2 and nd6 genes, which are commonly used in parrot phylogenies. The strongest phylogenetic signal was found in the control region and RNA genes. However, these markers cannot be used alone in inferring Arini phylogenies because they do not provide fully resolved trees. The most reliable phylogeny of the parrots under study is obtained only on the concatenated set of all mitochondrial markers. The analyses established significantly resolved relationships within the former Aratinga representatives and the main genera of the tribe Arini. Such mtDNA phylogeny can be in agreement with the species tree, owing to its match with synapomorphic features in plumage colouration. CONCLUSIONS Phylogenetic relationships inferred from single mitochondrial markers can be incorrect and contradictory. Therefore, such phylogenies should be considered with caution. Reliable results can be produced by concatenated sets of all or at least the majority of mitochondrial genes and the control region. The results advance a new view on the relationships among the main genera of Arini and resolve the inconsistencies between the taxa that were previously classified as the broadly defined genus Aratinga. Although gene and species trees do not always have to be consistent, the mtDNA phylogenies for Arini can reflect the species tree.
Collapse
Affiliation(s)
- Adam Dawid Urantowka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, ul. Kożuchowska7, 51-631, Wroclaw, Poland
| | - Aleksandra Kroczak
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Fryderyka Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Fryderyka Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
10
|
Seibold-Torres C, Owens E, Chowdhary R, Ferguson-Smith MA, Tizard I, Raudsepp T. Comparative Cytogenetics of the Congo African Grey Parrot (Psittacus erithacus). Cytogenet Genome Res 2016; 147:144-53. [PMID: 26894300 DOI: 10.1159/000444136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 11/19/2022] Open
Abstract
The Congo African grey parrot (Psittacus erithacus, PER) is an endemic species of Central Africa, valued for its intelligence and listed as vulnerable due to poaching and habitat destruction. Improved knowledge about the P. erithacus genome is needed to address key biological questions and conservation of this species. The P. erithacus genome was studied using conventional and molecular cytogenetic approaches including Zoo-FISH. P. erithacus has a 'typical' parrot karyotype with 2n = 62-64 and 8 pairs of macrochromosomes. A distinct feature was a sharp macro-microchromosome boundary. Telomeric sequences were present at all chromosome ends and interstitially in PER2q, the latter coinciding with a C-band. NORs mapped to 4 pairs of microchromosomes which is in contrast to a single NOR in ancestral type avian karyotypes. Zoo-FISH with chicken macrochromosomes GGA1-9 and Z revealed patterns of conserved synteny similar to many other avian groups, though neighboring synteny combinations of GGA6/7, 8/9, and 1/4 were distinctive only to parrots. Overall, P. erithacus shared more Zoo-FISH patterns with neotropical macaws than Australian species such as cockatiel and budgerigar. The observations suggest that Psittaciformes karyotypes have undergone more extensive evolutionary rearrangements compared to the majority of other avian genomes.
Collapse
Affiliation(s)
- Cassandra Seibold-Torres
- Department of Veterinary Integrative Biosciences, Schubot Exotic Bird Health Center, CVM, Texas A&M University, College Station, Tex., USA
| | | | | | | | | | | |
Collapse
|
11
|
Carril J, Tambussi CP, Degrange FJ, Benitez Saldivar MJ, Picasso MBJ. Comparative brain morphology of Neotropical parrots (Aves, Psittaciformes) inferred from virtual 3D endocasts. J Anat 2015; 229:239-51. [PMID: 26053196 DOI: 10.1111/joa.12325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 01/11/2023] Open
Abstract
Psittaciformes are a very diverse group of non-passerine birds, with advanced cognitive abilities and highly developed locomotor and feeding behaviours. Using computed tomography and three-dimensional (3D) visualization software, the endocasts of 14 extant Neotropical parrots were reconstructed, with the aim of analysing, comparing and exploring the morphology of the brain within the clade. A 3D geomorphometric analysis was performed, and the encephalization quotient (EQ) was calculated. Brain morphology character states were traced onto a Psittaciformes tree in order to facilitate interpretation of morphological traits in a phylogenetic context. Our results indicate that: (i) there are two conspicuously distinct brain morphologies, one considered walnut type (quadrangular and wider than long) and the other rounded (narrower and rostrally tapered); (ii) Psittaciformes possess a noticeable notch between hemisphaeria that divides the bulbus olfactorius; (iii) the plesiomorphic and most frequently observed characteristics of Neotropical parrots are a rostrally tapered telencephalon in dorsal view, distinctly enlarged dorsal expansion of the eminentia sagittalis and conspicuous fissura mediana; (iv) there is a positive correlation between body mass and brain volume; (v) psittacids are characterized by high EQ values that suggest high brain volumes in relation to their body masses; and (vi) the endocranial morphology of the Psittaciformes as a whole is distinctive relative to other birds. This new knowledge of brain morphology offers much potential for further insight in paleoneurological, phylogenetic and evolutionary studies.
Collapse
Affiliation(s)
- Julieta Carril
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Claudia Patricia Tambussi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET-UNC, Córdoba, Argentina
| | - Federico Javier Degrange
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET-UNC, Córdoba, Argentina.,Centro de Investigaciones Paleobiológicas (CIPAL), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Juliana Benitez Saldivar
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Beatriz Julieta Picasso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
12
|
Grosset C, Bougerol C, Sanchez-Migallon Guzman D. Plasma butyrylcholinesterase concentrations in psittacine birds: reference values, factors of variation, and association with feather-damaging behavior. J Avian Med Surg 2014; 28:6-15. [PMID: 24881148 DOI: 10.1647/1082-6742-28.1.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Butyrylcholinesterase is a glycoprotein enzyme used in the diagnosis of toxicosis by cholinesterase-inhibitor agents like organophosphates and carbamates. In animals, butyrylcholinesterase concentrations have been shown to vary depending on numerous factors such as age, sex, diet, and season of sampling. To establish reference values of plasma butyrylcholinesterase concentrations in common psittacine species, plasma butyrylcholinesterase concentrations were measured in 1942 companion psittacine birds. The birds were classified by age, sex, season, health status, and the presence of feather-damaging behavior. A significant difference was observed among species, with eclectus parrots (Eclectus roratus) having the lowest and African grey parrots (Psittacus erithacus) having the highest reference values. Plasma butyrylcholinesterase concentrations varied by age, health status, and season but not by sex. Concentrations were significantly higher during autumn and spring than during winter and summer, and significantly lower in healthy birds than in sick birds. No significant association between butyrylcholinesterase concentrations and feather-damaging behavior could be established except in lovebirds (Agapornis species). Further research is needed to better understand the effect of nutritional and hormonal factors on butyrylcholinesterase concentrations in psittacine birds and its possible effect on bird cognition.
Collapse
|
13
|
Gibb GC, Kennedy M, Penny D. Beyond phylogeny: pelecaniform and ciconiiform birds, and long-term niche stability. Mol Phylogenet Evol 2013; 68:229-38. [PMID: 23562800 DOI: 10.1016/j.ympev.2013.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 01/14/2023]
Abstract
Phylogenetic trees are a starting point for the study of further evolutionary and ecological questions. We show that for avian evolutionary relationships, improved taxon sampling, longer sequences and additional data sets are giving stability to the prediction of the grouping of pelecaniforms and ciconiiforms, thus allowing inferences to be made about long-term niche occupancy. Here we report the phylogeny of the pelecaniform birds and their water-carnivore allies using complete mitochondrial genomes, and show that the basic groupings agree with nuclear sequence phylogenies, even though many short branches are not yet fully resolved. In detail, we show that the Pelecaniformes (minus the tropicbird) and the Ciconiiformes (storks, herons and ibises) form a natural group within a seabird water-carnivore clade. We find pelicans are the closest relatives of the shoebill (in a clade with the hammerkop), and we confirm that tropicbirds are not pelecaniforms. In general, the group appears to be an adaptive radiation into an 'aquatic carnivore' niche that it has occupied for 60-70 million years. From an ecological and life history perspective, the combined pelecaniform-ciconiform group is more informative than focusing on differences in morphology. These findings allow a start to integrating molecular evolution and macroecology.
Collapse
Affiliation(s)
- Gillian C Gibb
- Institute of Agriculture & Environment, and Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
14
|
Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre PH, Graham CH, Graves GR, Jønsson KA, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C. An Update of Wallace’s Zoogeographic Regions of the World. Science 2012; 339:74-8. [PMID: 23258408 DOI: 10.1126/science.1228282] [Citation(s) in RCA: 567] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modern attempts to produce biogeographic maps focus on the distribution of species, and the maps are typically drawn without phylogenetic considerations. Here, we generate a global map of zoogeographic regions by combining data on the distributions and phylogenetic relationships of 21,037 species of amphibians, birds, and mammals. We identify 20 distinct zoogeographic regions, which are grouped into 11 larger realms. We document the lack of support for several regions previously defined based on distributional data and show that spatial turnover in the phylogenetic composition of vertebrate assemblages is higher in the Southern than in the Northern Hemisphere. We further show that the integration of phylogenetic information provides valuable insight on historical relationships among regions, permitting the identification of evolutionarily unique regions of the world.
Collapse
Affiliation(s)
- Ben G Holt
- Center for Macroecology, Evolution, and Climate, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
SCHWEIZER MANUEL, GÜNTERT MARCEL, HERTWIG STEFANT. Out of the Bassian province: historical biogeography of the Australasian platycercine parrots (Aves, Psittaciformes). ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00561.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Schirtzinger EE, Tavares ES, Gonzales LA, Eberhard JR, Miyaki CY, Sanchez JJ, Hernandez A, Müeller H, Graves GR, Fleischer RC, Wright TF. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes. Mol Phylogenet Evol 2012; 64:342-56. [PMID: 22543055 DOI: 10.1016/j.ympev.2012.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 04/08/2012] [Accepted: 04/10/2012] [Indexed: 01/06/2023]
Abstract
Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome.
Collapse
Affiliation(s)
- Erin E Schirtzinger
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schweizer M, Güntert M, Hertwig ST. Phylogeny and biogeography of the parrot genus
Prioniturus
(Aves: Psittaciformes). J ZOOL SYST EVOL RES 2012. [DOI: 10.1111/j.1439-0469.2012.00654.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Schweizer
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse, Bern, Switzerland
| | - Marcel Güntert
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse, Bern, Switzerland
| | - Stefan T. Hertwig
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse, Bern, Switzerland
| |
Collapse
|
18
|
Kundu S, Jones CG, Prys-Jones RP, Groombridge JJ. The evolution of the Indian Ocean parrots (Psittaciformes): extinction, adaptive radiation and eustacy. Mol Phylogenet Evol 2011; 62:296-305. [PMID: 22019932 DOI: 10.1016/j.ympev.2011.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 09/12/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
Parrots are among the most recognisable and widely distributed of all bird groups occupying major parts of the tropics. The evolution of the genera that are found in and around the Indian Ocean region is particularly interesting as they show a high degree of heterogeneity in distribution and levels of speciation. Here we present a molecular phylogenetic analysis of Indian Ocean parrots, identifying the possible geological and geographical factors that influenced their evolution. We hypothesise that the Indian Ocean islands acted as stepping stones in the radiation of the Old-World parrots, and that sea-level changes may have been an important determinant of current distributions and differences in speciation. A multi-locus phylogeny showing the evolutionary relationships among genera highlights the interesting position of the monotypic Psittrichas, which shares a common ancestor with the geographically distant Coracopsis. An extensive species-level molecular phylogeny indicates a complex pattern of radiation including evidence for colonisation of Africa, Asia and the Indian Ocean islands from Australasia via multiple routes, and of island populations 'seeding' continents. Moreover, comparison of estimated divergence dates and sea-level changes points to the latter as a factor in parrot speciation. This is the first study to include the extinct parrot taxa, Mascarinus mascarinus and Psittacula wardi which, respectively, appear closely related to Coracopsis nigra and Psittacula eupatria.
Collapse
Affiliation(s)
- S Kundu
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NR, UK.
| | | | | | | |
Collapse
|
19
|
Paśko Ł, Ericson PGP, Elzanowski A. Phylogenetic utility and evolution of indels: a study in neognathous birds. Mol Phylogenet Evol 2011; 61:760-71. [PMID: 21843647 DOI: 10.1016/j.ympev.2011.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 07/28/2011] [Accepted: 07/30/2011] [Indexed: 11/25/2022]
Abstract
Indels are increasingly used in phylogenetics and play a major role in genome size evolution, and yet both the phylogenetic information content of indels and their evolutionary significance remain to be better assessed. Using three presumably independently evolving nuclear gene fragments (28S rDNA, β-fibrinogen, ornithine decarboxylase) from 29 families of neognathous birds, we have obtained a topology that is in general agreement with the current molecular consensus tree, supports the monophyly of Metaves, and provides evidence for the unresolved relationships within the Charadriiformes. Based on the retrieved topology, we assess the relative impact of indels and nucleotide substitutions and demonstrate that the superposition of the two kinds of data yields a topology that could not be obtained from either data set alone. Although only two out of three gene fragments reveal the deletion bias, the combined nucleotide insertion-to-deletion ratio is 0.22, indicating a rapid decrease of intron length. The average indel fixation rate in the neognaths is 2.5 times faster than that in therian (placental) mammals of similar geologic age. As in mammals, there is a considerable variation of indel fixation rate that is 1.5 times higher in Galloanseres compared to Neoaves, and 2.4 times higher in the Rallidae compared to the average for Neoaves (8.2 times higher compared to the related Gruidae). Our results add to the evidence that indel fixation rates correlate with lineage-specific evolutionary rates.
Collapse
Affiliation(s)
- Łukasz Paśko
- Institute of Zoology, University of Wrocław, 21 Sienkiewicz Street, PL-50-335 Wrocław, Poland
| | | | | |
Collapse
|
20
|
Joseph L, Toon A, Schirtzinger EE, Wright TF. Molecular systematics of two enigmatic genera Psittacella and Pezoporus illuminate the ecological radiation of Australo-Papuan parrots (Aves: Psittaciformes). Mol Phylogenet Evol 2011; 59:675-84. [DOI: 10.1016/j.ympev.2011.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
21
|
White NE, Phillips MJ, Gilbert MTP, Alfaro-Núñez A, Willerslev E, Mawson PR, Spencer PBS, Bunce M. The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae). Mol Phylogenet Evol 2011; 59:615-22. [PMID: 21419232 DOI: 10.1016/j.ympev.2011.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/30/2022]
Abstract
Cockatoos are the distinctive family Cacatuidae, a major lineage of the order of parrots (Psittaciformes) and distributed throughout the Australasian region of the world. However, the evolutionary history of cockatoos is not well understood. We investigated the phylogeny of cockatoos based on three mitochondrial and three nuclear DNA genes obtained from 16 of 21 species of Cacatuidae. In addition, five novel mitochondrial genomes were used to estimate time of divergence and our estimates indicate Cacatuidae diverged from Psittacidae approximately 40.7 million years ago (95% CI 51.6-30.3 Ma) during the Eocene. Our data shows Cacatuidae began to diversify approximately 27.9 Ma (95% CI 38.1-18.3 Ma) during the Oligocene. The early to middle Miocene (20-10 Ma) was a significant period in the evolution of modern Australian environments and vegetation, in which a transformation from mainly mesic to xeric habitats (e.g., fire-adapted sclerophyll vegetation and grasslands) occurred. We hypothesize that this environmental transformation was a driving force behind the diversification of cockatoos. A detailed multi-locus molecular phylogeny enabled us to resolve the phylogenetic placements of the Palm Cockatoo (Probosciger aterrimus), Galah (Eolophus roseicapillus), Gang-gang Cockatoo (Callocephalon fimbriatum) and Cockatiel (Nymphicus hollandicus), which have historically been difficult to place within Cacatuidae. When the molecular evidence is analysed in concert with morphology, it is clear that many of the cockatoo species' diagnostic phenotypic traits such as plumage colour, body size, wing shape and bill morphology have evolved in parallel or convergently across lineages.
Collapse
Affiliation(s)
- Nicole E White
- School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pacheco MA, Battistuzzi FU, Lentino M, Aguilar RF, Kumar S, Escalante AA. Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Mol Biol Evol 2011; 28:1927-42. [PMID: 21242529 DOI: 10.1093/molbev/msr014] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, AZ, USA
| | | | | | | | | | | |
Collapse
|
23
|
Pepperberg IM. Vocal learning in Grey parrots: A brief review of perception, production, and cross-species comparisons. BRAIN AND LANGUAGE 2010; 115:81-91. [PMID: 20199805 DOI: 10.1016/j.bandl.2009.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 05/28/2023]
Abstract
This chapter briefly reviews what is known-and what remains to be understood-about Grey parrot vocal learning. I review Greys' physical capacities-issues of auditory perception and production-then discuss how these capacities are used in vocal learning and can be recruited for referential communication with humans. I discuss cross-species comparisons where applicable and conclude with a description of recent research that integrates issues of reference, production and perception.
Collapse
|
24
|
Schweizer M, Seehausen O, Güntert M, Hertwig ST. The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. Mol Phylogenet Evol 2010; 54:984-94. [DOI: 10.1016/j.ympev.2009.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
25
|
CONG B, ZHANG P, WANG JX, ZENG Q, CHEN L, YUE W, PEI XT. Ser84 is The Key Point of Spindlin1 Nuclear Localization and Function*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Steiger SS, Fidler AE, Kempenaers B. Evidence for increased olfactory receptor gene repertoire size in two nocturnal bird species with well-developed olfactory ability. BMC Evol Biol 2009; 9:117. [PMID: 19467156 PMCID: PMC2701422 DOI: 10.1186/1471-2148-9-117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 05/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vertebrates, the molecular basis of the sense of smell is encoded by members of a large gene family, namely olfactory receptor (OR) genes. Both the total number of OR genes and the proportion of intact OR genes in a genome may indicate the importance of the sense of smell for an animal. There is behavioral, physiological, and anatomical evidence that some bird species, in particular nocturnal birds, have a well developed sense of smell. Therefore, we hypothesized that nocturnal birds with good olfactory abilities have evolved (i) more OR genes and (ii) more intact OR genes than closely related and presumably less 'olfaction-dependent' day-active avian taxa. RESULTS We used both non-radioactive Southern hybridization and PCR with degenerate primers to investigate whether two nocturnal bird species that are known to rely on olfactory cues, the brown kiwi (Apteryx australis) and the kakapo (Strigops habroptilus), have evolved a larger OR gene repertoire than their day-active, closest living relatives (for kiwi the emu Dromaius novaehollandiae, rhea Rhea americana, and ostrich Struthio camelus and for kakapo the kaka Nestor meridionalis and kea Nestor notabilis). We show that the nocturnal birds did not have a significantly higher proportion of intact OR genes. However, the estimated total number of OR genes was larger in the two nocturnal birds than in their relatives. CONCLUSION Our results suggest that ecological niche adaptations such as daily activity patterns may have shaped avian OR gene repertoires.
Collapse
Affiliation(s)
- Silke S Steiger
- Department of Behavioural Ecology and Evolutionary Genetics, Max-Planck Institute for Ornithology, Eberhard-Gwinner Strasse, 82319 Seewiesen, Germany
| | - Andrew E Fidler
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max-Planck Institute for Ornithology, Eberhard-Gwinner Strasse, 82319 Seewiesen, Germany
| |
Collapse
|
27
|
HEADS MICHAEL. Globally basal centres of endemism: the Tasman-Coral Sea region (south-west Pacific), Latin America and Madagascar/South Africa. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.01118.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Pratt RC, Gibb GC, Morgan-Richards M, Phillips MJ, Hendy MD, Penny D. Toward resolving deep neoaves phylogeny: data, signal enhancement, and priors. Mol Biol Evol 2008; 26:313-26. [PMID: 18981298 DOI: 10.1093/molbev/msn248] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report three developments toward resolving the challenge of the apparent basal polytomy of neoavian birds. First, we describe improved conditional down-weighting techniques to reduce noise relative to signal for deeper divergences and find increased agreement between data sets. Second, we present formulae for calculating the probabilities of finding predefined groupings in the optimal tree. Finally, we report a significant increase in data: nine new mitochondrial (mt) genomes (the dollarbird, New Zealand kingfisher, great potoo, Australian owlet-nightjar, white-tailed trogon, barn owl, a roadrunner [a ground cuckoo], New Zealand long-tailed cuckoo, and the peach-faced lovebird) and together they provide data for each of the six main groups of Neoaves proposed by Cracraft J (2001). We use his six main groups of modern birds as priors for evaluation of results. These include passerines, cuckoos, parrots, and three other groups termed "WoodKing" (woodpeckers/rollers/kingfishers), "SCA" (owls/potoos/owlet-nightjars/hummingbirds/swifts), and "Conglomerati." In general, the support is highly significant with just two exceptions, the owls move from the "SCA" group to the raptors, particularly accipitrids (buzzards/eagles) and the osprey, and the shorebirds may be an independent group from the rest of the "Conglomerati". Molecular dating mt genomes support a major diversification of at least 12 neoavian lineages in the Late Cretaceous. Our results form a basis for further testing with both nuclear-coding sequences and rare genomic changes.
Collapse
Affiliation(s)
- Renae C Pratt
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | | | | | | | | | |
Collapse
|
29
|
Wright TF, Schirtzinger EE, Matsumoto T, Eberhard JR, Graves GR, Sanchez JJ, Capelli S, Müller H, Scharpegge J, Chambers GK, Fleischer RC. A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the cretaceous. Mol Biol Evol 2008; 25:2141-56. [PMID: 18653733 PMCID: PMC2727385 DOI: 10.1093/molbev/msn160] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2008] [Indexed: 11/13/2022] Open
Abstract
The question of when modern birds (Neornithes) first diversified has generated much debate among avian systematists. Fossil evidence generally supports a Tertiary diversification, whereas estimates based on molecular dating favor an earlier diversification in the Cretaceous period. In this study, we used an alternate approach, the inference of historical biogeographic patterns, to test the hypothesis that the initial radiation of the Order Psittaciformes (the parrots and cockatoos) originated on the Gondwana supercontinent during the Cretaceous. We utilized broad taxonomic sampling (representatives of 69 of the 82 extant genera and 8 outgroup taxa) and multilocus molecular character sampling (3,941 bp from mitochondrial DNA (mtDNA) genes cytochrome oxidase I and NADH dehydrogenase 2 and nuclear introns of rhodopsin intron 1, tropomyosin alpha-subunit intron 5, and transforming growth factor ss-2) to generate phylogenetic hypotheses for the Psittaciformes. Analyses of the combined character partitions using maximum parsimony, maximum likelihood, and Bayesian criteria produced well-resolved and topologically similar trees in which the New Zealand taxa Strigops and Nestor (Psittacidae) were sister to all other psittaciforms and the cockatoo clade (Cacatuidae) was sister to a clade containing all remaining parrots (Psittacidae). Within this large clade of Psittacidae, some traditionally recognized tribes and subfamilies were monophyletic (e.g., Arini, Psittacini, and Loriinae), whereas several others were polyphyletic (e.g., Cyclopsittacini, Platycercini, Psittaculini, and Psittacinae). Ancestral area reconstructions using our Bayesian phylogenetic hypothesis and current distributions of genera supported the hypothesis of an Australasian origin for the Psittaciformes. Separate analyses of the timing of parrot diversification constructed with both Bayesian relaxed-clock and penalized likelihood approaches showed better agreement between geologic and diversification events in the chronograms based on a Cretaceous dating of the basal split within parrots than the chronograms based on a Tertiary dating of this split, although these data are more equivocal. Taken together, our results support a Cretaceous origin of Psittaciformes in Gondwana after the separation of Africa and the India/Madagascar block with subsequent diversification through both vicariance and dispersal. These well-resolved molecular phylogenies will be of value for comparative studies of behavior, ecology, and life history in parrots.
Collapse
Affiliation(s)
- Timothy F Wright
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Evans SR, Sheldon BC. Interspecific patterns of genetic diversity in birds: correlations with extinction risk. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2008; 22:1016-1025. [PMID: 18616741 DOI: 10.1111/j.1523-1739.2008.00972.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Birds are frequently used as indicators of ecosystem health and are the most comprehensively studied class in the animal kingdom. Nevertheless, a comprehensive, interspecific assessment of the correlates of avian genetic diversity is lacking, even though indices of genetic diversity are of considerable interest in the conservation of threatened species. We used published data on variation at microsatellite loci from 194 bird species to examine correlates of diversity, particularly with respect to conservation status and population size. We found a significant decline in mean heterozygosity with increasing extinction risk, and showed, by excluding species whose heterozygosity values were calculated with heterospecific primers, that this relationship was not dependent on ascertainment bias. Results of subsequent regression analyses suggested that smaller population sizes of threatened species were largely responsible for this relationship. Thus, bird species at risk of extinction are relatively depauperate in terms of neutral genetic diversity, which is expected to make population recovery more difficult if it reflects adaptive genetic variation. Conservation policy will need to minimize further loss of diversity if the chances of saving threatened species are to be maximized.
Collapse
Affiliation(s)
- Simon R Evans
- Edward Grey Institute, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom.
| | | |
Collapse
|
31
|
Russello MA, Avery ML, Wright TF. Genetic evidence links invasive monk parakeet populations in the United States to the international pet trade. BMC Evol Biol 2008; 8:217. [PMID: 18652686 PMCID: PMC2517076 DOI: 10.1186/1471-2148-8-217] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 07/24/2008] [Indexed: 11/10/2022] Open
Abstract
Background Severe ecological and economic impacts caused by some invasive species make it imperative to understand the attributes that permit them to spread. A notorious crop pest across its native range in South America, the monk parakeet (Myiopsitta monachus) has become established on four other continents, including growing populations in the United States. As a critical first step to studying mechanisms of invasion success in this species, here we elucidated the geographical and taxonomic history of the North American invasions of the monk parakeet. Specifically, we conducted a genetic assessment of current monk parakeet taxonomy based on mitochondrial DNA control region sequences from 73 museum specimens. These data supported comparative analyses of mtDNA lineage diversity in the native and naturalized ranges of the monk parakeet and allowed for identification of putative source populations. Results There was no molecular character support for the M. m. calita, M. m. cotorra, and M. m. monachus subspecies, while the Bolivian M. m. luchsi was monophyletic and diagnosably distinct. Three haplotypes sampled in the native range were detected within invasive populations in Florida, Connecticut, New Jersey and Rhode Island, the two most common of which were unique to M. m. monachus samples from eastern Argentina and bordering areas in Brazil and Uruguay. Conclusion The lack of discrete morphological character differences in tandem with the results presented here suggest that M. m. calita, M. m. cotorra and M. m. monachus are in need of formal taxonomic revision. The genetic distinctiveness of M. m. luchsi is consistent with previous recommendations of allospecies status for this taxon. The geographic origins of haplotypes sampled in the four U.S. populations are concordant with trapping records from the mid-20th century and suggest that propagule pressure exerted by the international pet bird trade contributed to the establishment of invasive populations in the United States.
Collapse
Affiliation(s)
- Michael A Russello
- Department of Biology and Physical Geography, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7, Canada.
| | | | | |
Collapse
|
32
|
Morgan-Richards M, Trewick SA, Bartosch-Härlid A, Kardailsky O, Phillips MJ, McLenachan PA, Penny D. Bird evolution: testing the Metaves clade with six new mitochondrial genomes. BMC Evol Biol 2008; 8:20. [PMID: 18215323 PMCID: PMC2259304 DOI: 10.1186/1471-2148-8-20] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 01/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. RESULTS Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the beta-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. CONCLUSION Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves.
Collapse
Affiliation(s)
- Mary Morgan-Richards
- Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
33
|
Fidler AE, Lawrence SB, McNatty KP. VIEWPOINT. An hypothesis to explain the linkage between kakapo (Strigops habroptilus) breeding and the mast fruiting of their food trees. WILDLIFE RESEARCH 2008. [DOI: 10.1071/wr07148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An important goal in the intensive conservation management of New Zealand’s critically endangered nocturnal parrot, kakapo (Strigops habroptilus), is to increase the frequency of breeding attempts. Kakapo breeding does not occur annually but rather correlates with 3–5-year cycles in ‘mast’ seeding/fruiting of kakapo food plants, most notably podocarps such as rimu (Dacrydium cupressinum). Here we advance a hypothetical mechanism for the linking of kakapo breeding with such ‘mast’ seeding/fruiting. The essence of the hypothesis is that exposure to low levels of dietary phytochemicals may, in combination with hepatic gene ‘memory’, sensitise egg yolk protein genes, expressed in female kakapo livers, to oestrogens derived from developing ovarian follicles. Only in those years when the egg yolk protein genes have been sufficiently ‘pre-sensitised’ by dietary chemicals do kakapo ovarian follicles develop to ovulation and egg-laying occurs. While speculative, this hypothesis is both physiologically and evolutionarily plausible and suggests both future research directions and relatively simple interventions that may afford conservation workers some influence over kakapo breeding frequency.
Collapse
|
34
|
Ribas CC, Moyle RG, Miyaki CY, Cracraft J. The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc Biol Sci 2007; 274:2399-408. [PMID: 17686731 PMCID: PMC2274971 DOI: 10.1098/rspb.2007.0613] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 11/12/2022] Open
Abstract
The mechanisms underlying the taxonomic assembly of montane biotas are still poorly understood. Most hypotheses have assumed that the diversification of montane biotas is loosely coupled to Earth history and have emphasized instead the importance of multiple long-distance dispersal events and biotic interactions, particularly competition, for structuring the taxonomic composition and distribution of montane biotic elements. Here we use phylogenetic and biogeographic analyses of species in the parrot genus Pionus to demonstrate that standing diversity within montane lineages is directly attributable to events of Earth history. Phylogenetic relationships confirm three independent biogeographic disjunctions between montane lineages, on one hand, and lowland dry-forest/wet-forest lineages on the other. Temporal estimates of lineage diversification are consistent with the interpretation that the three lineages were transported passively to high elevations by mountain building, and that subsequent diversification within the Andes was driven primarily by Pleistocene climatic oscillations and their large-scale effects on habitat change. These results support a mechanistic link between diversification and Earth history and have general implications for explaining high altitudinal disjuncts and the origin of montane biotas.
Collapse
Affiliation(s)
- Camila C Ribas
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA.
| | | | | | | |
Collapse
|
35
|
LIVEZEY BRADLEYC, ZUSI RICHARDL. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc 2007; 149:1-95. [PMID: 18784798 PMCID: PMC2517308 DOI: 10.1111/j.1096-3642.2006.00293.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In recent years, avian systematics has been characterized by a diminished reliance on morphological cladistics of modern taxa, intensive palaeornithogical research stimulated by new discoveries and an inundation by analyses based on DNA sequences. Unfortunately, in contrast to significant insights into basal origins, the broad picture of neornithine phylogeny remains largely unresolved. Morphological studies have emphasized characters of use in palaeontological contexts. Molecular studies, following disillusionment with the pioneering, but non-cladistic, work of Sibley and Ahlquist, have differed markedly from each other and from morphological works in both methods and findings. Consequently, at the turn of the millennium, points of robust agreement among schools concerning higher-order neornithine phylogeny have been limited to the two basalmost and several mid-level, primary groups. This paper describes a phylogenetic (cladistic) analysis of 150 taxa of Neornithes, including exemplars from all non-passeriform families, and subordinal representatives of Passeriformes. Thirty-five outgroup taxa encompassing Crocodylia, predominately theropod Dinosauria, and selected Mesozoic birds were used to root the trees. Based on study of specimens and the literature, 2954 morphological characters were defined; these characters have been described in a companion work, approximately one-third of which were multistate (i.e. comprised at least three states), and states within more than one-half of these multistate characters were ordered for analysis. Complete heuristic searches using 10 000 random-addition replicates recovered a total solution set of 97 well-resolved, most-parsimonious trees (MPTs). The set of MPTs was confirmed by an expanded heuristic search based on 10 000 random-addition replicates and a full ratchet-augmented exploration to ascertain global optima. A strict consensus tree of MPTs included only six trichotomies, i.e. nodes differing topologically among MPTs. Bootstrapping (based on 10 000 replicates) percentages and ratchet-minimized support (Bremer) indices indicated most nodes to be robust. Several fossil Neornithes (e.g. Dinornithiformes, Aepyornithiformes) were placed within the ingroup a posteriori either through unconstrained, heursitic searches based on the complete matrix augmented by these taxa separately or using backbone-constraints. Analysis confirmed the topology among outgroup Theropoda and achieved robust resolution at virtually all levels of the Neornithes. Findings included monophyly of the palaeognathous birds, comprising the sister taxa Tinamiformes and ratites, respectively, and the Anseriformes and Galliformes as monophyletic sister-groups, together forming the sister-group to other Neornithes exclusive of the Palaeognathae (Neoaves). Noteworthy inferences include: (i) the sister-group to remaining Neoaves comprises a diversity of marine and wading birds; (ii) Podicipedidae are the sister-group of Gaviidae, and not closely related to the Phoenicopteridae, as recently suggested; (iii) the traditional Pelecaniformes, including the shoebill (Balaeniceps rex) as sister-taxon to other members, are monophyletic; (iv) traditional Ciconiiformes are monophyletic; (v) Strigiformes and Falconiformes are sister-groups; (vi) Cathartidae is the sister-group of the remaining Falconiformes; (vii) Ralliformes (Rallidae and Heliornithidae) are the sister-group to the monophyletic Charadriiformes, with the traditionally composed Gruiformes and Turniciformes (Turnicidae and Mesitornithidae) sequentially paraphyletic to the entire foregoing clade; (viii) Opisthocomus hoazin is the sister-taxon to the Cuculiformes (including the Musophagidae); (ix) traditional Caprimulgiformes are monophyletic and the sister-group of the Apodiformes; (x) Trogoniformes are the sister-group of Coliiformes; (xi) Coraciiformes, Piciformes and Passeriformes are mutually monophyletic and closely related; and (xii) the Galbulae are retained within the Piciformes. Unresolved portions of the Neornithes (nodes having more than one most-parsimonious solution) comprised three parts of the tree: (a) several interfamilial nodes within the Charadriiformes; (b) a trichotomy comprising the (i) Psittaciformes, (ii) Columbiformes and (iii) Trogonomorphae (Trogoniformes, Coliiformes) + Passerimorphae (Coraciiformes, Piciformes, Passeriformes); and (c) a trichotomy comprising the Coraciiformes, Piciformes and Passeriformes. The remaining polytomies were among outgroups, although several of the highest-order nodes were only marginally supported; however, the majority of nodes were resolved and met or surpassed conventional standards of support. Quantitative comparisons with alternative hypotheses, examination of highly supportive and diagnostic characters for higher taxa, correspondences with prior studies, complementarity and philosophical differences with palaeontological phylogenetics, promises and challenges of palaeogeography and calibration of evolutionary rates of birds, and classes of promising evidence and future directions of study are reviewed. Homology, as applied to avian examples of apparent homologues, is considered in terms of recent theory, and a revised annotated classification of higher-order taxa of Neornithes and other closely related Theropoda is proposed. (c) 2007 The Linnean Society of London, Zoological Journal of the Linnean Society, 2007, 149, 1-95.
Collapse
Affiliation(s)
- BRADLEY C LIVEZEY
- Section of Birds, Carnegie Museum of Natural History4400 Forbes Avenue, Pittsburgh, PA 15213-4080, USA
| | - RICHARD L ZUSI
- Division of Birds, National Museum of Natural HistoryWashington, DC 20013-7012, USA
| |
Collapse
|
36
|
Nanda I, Karl E, Griffin DK, Schartl M, Schmid M. Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res 2007; 117:43-53. [PMID: 17675844 DOI: 10.1159/000103164] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/16/2007] [Indexed: 11/19/2022] Open
Abstract
Parrots (order: Psittaciformes) are the most common captive birds and have attracted human fascination since ancient times because of their remarkable intelligence and ability to imitate human speech. However, their genome organization, evolution and genomic relation with other birds are poorly understood. Chromosome painting with DNA probes derived from the flow-sorted macrochromosomes (1-10) of chicken (Gallus gallus, GGA) has been used to identify and distinguish the homoeologous chromosomal segments in three species of parrots, i.e., Agapornis roseicollis (peach-faced lovebird); Nymphicus hollandicus (cockatiel) and Melopsittacus undulatus (budgerigar). The ten GGA macrochromosome paints unequivocally recognize 14 to 16 hybridizing regions delineating the conserved chromosomal segments for the respective chicken macrochromosomes in these representative parrot species. The cross-species chromosome painting results show that, unlike in many other avian karyotypes with high homology to chicken chromosomes, dramatic rearrangements of the macrochromosomes have occurred in parrot lineages. Among the larger GGA macrochromosomes (1-5), chromosomes 1 and 4 are conserved on two chromosomes in all three species. However, the hybridization pattern for GGA 4 in A. roseicollis and M. undulatus is in sharp contrast to the most common pattern known from hybridization of chicken macrochromosome 4 in other avian karyotypes. With the exception of A. roseicollis, chicken chromosomes 2, 3 and 5 hybridized either completely or partially to a single chromosome. In contrast, the smaller GGA macrochromosomes 6, 7 and 8 displayed a complex hybridization pattern: two or three of these macrochromosomes were found to be contiguously arranged on a single chromosome in all three parrot species. Overall, the study shows that translocations and fusions in conjunction with intragenomic rearrangements have played a major role in the karyotype evolution of parrots. Our inter-species chromosome painting results unequivocally illustrate the dynamic reshuffling of ancestral chromosomes among the karyotypes of Psittaciformes.
Collapse
Affiliation(s)
- I Nanda
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
37
|
Driskell A, Christidis L, Gill BJ, Boles WE, Barker FK, Longmore NW. A new endemic family of New Zealand passerine birds: adding heat to a biodiversity hotspot. AUST J ZOOL 2007. [DOI: 10.1071/zo07007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The results of phylogenetic analysis of two molecular datasets sampling all three endemic New Zealand ‘honeyeaters’ (Prosthemadera novaeseelandiae, Anthornis melanura and Notiomystis cincta) are reported. The undisputed relatedness of the first two species to other honeyeaters (Meliphagidae), and a close relationship between them, are demonstrated. However, our results confirm that Notiomystis is not a honeyeater, but is instead most closely related to the Callaeidae (New Zealand wattlebirds) represented by Philesturnus carunculatus in our study. An estimated divergence time for Notiomystis and Philesturnus of 33.8 mya (Oligocene) suggests a very long evolutionary history of this clade in New Zealand. As a taxonomic interpretation of these data we place Notiomystis in a new family of its own which takes the name Notiomystidae. We expect this new phylogenetic and taxonomic information to assist policy decisions for the conservation of this rare bird.
Collapse
|
38
|
Complex biogeographic history of the cuckoo-shrikes and allies (Passeriformes: Campephagidae) revealed by mitochondrial and nuclear sequence data. Mol Phylogenet Evol 2006; 44:138-53. [PMID: 17123839 DOI: 10.1016/j.ympev.2006.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/12/2006] [Accepted: 10/13/2006] [Indexed: 10/24/2022]
Abstract
The Campephagidae (minivets, cuckoo-shrikes and trillers, seven genera and 81 species) represents an Old World corvid clade of tropical birds with a mixed diet that forage in different manners, i.e., flycatching, foliage-gleaning or shriking. This family has never been the focus of any phylogenetic survey, so their phylogenetic relationships and biogeographic history remain largely unknown. To address these questions, we sequenced four loci (ND2, myoglobin intron-2, GAPDH intron-11 and c-mos) for 27 species of Campephagidae. Our analyses suggest that Coracina consists of five unrelated lineages and that Lalage is paraphyletic. Our dating analyses, using a Bayesian relaxed-clock method, indicate that the split between the Indo-Malayan genus Pericrocotus and the remaining Campephagidae occurred synchronously with other splits involving Indo-Malayan corvid lineages, suggesting that several lineages of Indo-Malayan birds were isolated at the same time from their closest relatives. The African stock of cuckoo-shrikes is likely the result of three independent trans-oceanic dispersals from Australasia.
Collapse
|
39
|
Tavares ES, Baker AJ, Pereira SL, Miyaki CY. Phylogenetic relationships and historical biogeography of neotropical parrots (Psittaciformes: Psittacidae: Arini) inferred from mitochondrial and nuclear DNA sequences. Syst Biol 2006; 55:454-70. [PMID: 16861209 DOI: 10.1080/10635150600697390] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Previous hypotheses of phylogenetic relationships among Neotropical parrots were based on limited taxon sampling and lacked support for most internal nodes. In this study we increased the number of taxa (29 species belonging to 25 of the 30 genera) and gene sequences (6388 base pairs of RAG-1, cyt b, NADH2, ATPase 6, ATPase 8, COIII, 12S rDNA, and 16S rDNA) to obtain a stronger molecular phylogenetic hypothesis for this group of birds. Analyses of the combined gene sequences using maximum likelihood and Bayesian methods resulted in a well-supported phylogeny and indicated that amazons and allies are a sister clade to macaws, conures, and relatives, and these two clades are in turn a sister group to parrotlets. Key morphological and behavioral characters used in previous classifications were mapped on the molecular tree and were phylogenetically uninformative. We estimated divergence times of taxa using the molecular tree and Bayesian and penalized likelihood methods that allow for rate variation in DNA substitutions among sites and taxa. Our estimates suggest that the Neotropical parrots shared a common ancestor with Australian parrots 59 Mya (million of years ago; 95% credibility interval (CrI) 66, 51 Mya), well before Australia separated from Antarctica and South America, implying that ancestral parrots were widespread in Gondwanaland. Thus, the divergence of Australian and Neotropical parrots could be attributed to vicariance. The three major clades of Neotropical parrots originated about 50 Mya (95% CrI 57, 41 Mya), coinciding with periods of higher sea level when both Antarctica and South America were fragmented with transcontinental seaways, and likely isolated the ancestors of modern Neotropical parrots in different regions in these continents. The correspondence between major paleoenvironmental changes in South America and the diversification of genera in the clade of amazons and allies between 46 and 16 Mya suggests they diversified exclusively in South America. Conversely, ancestors of parrotlets and of macaws, conures, and allies may have been isolated in Antarctica and/or the southern cone of South America, and only dispersed out of these southern regions when climate cooled and Antarctica became ice-encrusted about 35 Mya. The subsequent radiation of macaws and their allies in South America beginning about 28 Mya (95% CrI 22, 35 Mya) coincides with the uplift of the Andes and the subsequent formation of dry, open grassland habitats that would have facilitated ecological speciation via niche expansion from forested habitats.
Collapse
Affiliation(s)
- Erika Sendra Tavares
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, R. do Matão 277, (C.Y.M.), 05508-090, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|