1
|
Roitberg ES, Recknagel H, Elmer KR, Braña F, Rodríguez Díaz T, Žagar A, Kuranova VN, Epova LA, Bauwens D, Giovine G, Orlova VF, Bulakhova NA, Eplanova GV, Arribas OJ. Viviparity is associated with larger female size and higher sexual size dimorphism in a reproductively bimodal lizard. J Anim Ecol 2025; 94:244-258. [PMID: 39225034 DOI: 10.1111/1365-2656.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Squamate reptiles are central for studying phenotypic correlates of evolutionary transitions from oviparity to viviparity because these transitions are numerous, with many of them being recent. Several models of life-history theory predict that viviparity is associated with increased female size, and thus more female-biased sexual size dimorphism (SSD). Yet, the corresponding empirical evidence is overall weak and inconsistent. The lizard Zootoca vivipara, which occupies a major part of Northern Eurasia and includes four viviparous and two non-sister oviparous lineages, represents an excellent model for testing these predictions. We analysed how sex-specific body size and SSD is associated with parity mode, using body length data for nearly 14,000 adult individuals from 97 geographically distinct populations, which cover almost the entire species' range and represent all six lineages. Our analyses controlled for lineage identity, climatic seasonality (the strongest predictor of geographic body size variation in previous studies of this species) and several aspects of data heterogeneity. Parity mode, lineage and seasonality are significantly associated with female size and SSD; the first two predictors accounted for 14%-26% of the total variation each, while seasonality explained 5%-7%. Viviparous populations exhibited a larger female size than oviparous populations, with no concomitant differences in male size. The variation of male size was overall low and poorly explained by our predictors. Albeit fully expected from theory, the strong female bias of the body size differences between oviparous and viviparous populations found in Z. vivipara is not evident from available data on three other lizard systems of closely related lineages differing in parity mode. We confront this pattern with the data on female reproductive traits in the considered systems and the frequencies of evolutionary changes of parity mode in the corresponding lizard families and speculate why the life-history correlates of live-bearing in Z. vivipara are distinct. Comparing conspecific populations, our study provides the most direct evidence for the predicted effect of parity mode on adult body size but also demonstrates that the revealed pattern may not be general. This might explain why across squamates, viviparity is only weakly associated with larger size.
Collapse
Affiliation(s)
- Evgeny S Roitberg
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Florentino Braña
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | - Tania Rodríguez Díaz
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | - Anamarija Žagar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | | | | | - Dirk Bauwens
- Department of Biology, Laboratory of Functional Morphology, University of Antwerp, Wilrijk, Belgium
| | - Giovanni Giovine
- Stazione Sperimentale Regionale per Lo Studio e la Conservazione Degli Anfibi in Lombardia-Lago di Endine, Lovere, Italy
| | | | | | | | | |
Collapse
|
2
|
X M. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2025; 100:362-406. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- Maggs X
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Elmer KR, Clobert J. Dollo's law of irreversibility in the post-genomic age. Trends Ecol Evol 2025; 40:136-146. [PMID: 39443236 DOI: 10.1016/j.tree.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Dollo's law of irreversibility argues that evolution cannot revert to earlier states. It has remained controversial ever since its inception in the 19th century. Enabled by advances in phylogenomics and functional genomics, recent studies show that there are very likely some cases of 'breaking Dollo's law'. As post-genomic research grows from showing patterns to revealing processes, new emphasis is needed on the molecular mechanisms by which Dollo's law might be broken. Shifting the argument from 'if it happened' to 'how it happened' will provide richer understanding of organismal and evolutionary biology. Motivated by case studies and novel avenues to test trait loss and regain, we outline a set of alternative hypotheses to be evaluated and what the outcomes tell us about evolution.
Collapse
Affiliation(s)
- Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; Station d'Ecologie Théorique et Expérimentale - CNRS, Moulis, 09200, France.
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale - CNRS, Moulis, 09200, France
| |
Collapse
|
4
|
Recknagel H, Zakšek V, Delić T, Gorički Š, Trontelj P. Multiple transitions between realms shape relict lineages of Proteus cave salamanders. Mol Ecol 2024; 33:e16868. [PMID: 36715250 DOI: 10.1111/mec.16868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023]
Abstract
In comparison to biodiversity on Earth's surface, subterranean biodiversity has largely remained concealed. The olm (Proteus anguinus) is one of the most enigmatic extant cave inhabitants, and until now little was known regarding its genetic structure and evolutionary history. Olms inhabit subterranean waters throughout the Dinaric Karst of the western Balkans, with a seemingly uniform phenotypic appearance of cave-specialized traits: an elongate body, snout and limbs, degenerated eyes and loss of pigmentation ("white olm"). Only a single small region in southeastern Slovenia harbours olms with a phenotype typical of surface animals: pigmented skin, eyes, a blunt snout and short limbs ("black olm"). We used a combination of mitochondrial DNA and genome-wide single nucleotide polymorphism data to investigate the molecular diversity, evolutionary history and biogeography of olms along the Dinaric Karst. We found nine deeply divergent species-level lineages that separated between 17 and 4 million years ago, while molecular diversity within lineages was low. We detected no signal of recent admixture between lineages and only limited historical gene flow. Biogeographically, the contemporaneous distribution of lineages mostly mirrors hydrologically separated subterranean environments, while the historical separation of olm lineages follows microtectonic and climatic changes in the area. The reconstructed phylogeny suggests at least four independent transitions to the cave phenotype. Two of the species-level lineages have miniscule ranges and may represent Europe's rarest amphibians. Their rarity and the decline in other lineages call for protection of their subterranean habitats.
Collapse
Affiliation(s)
- H Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - V Zakšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - T Delić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Š Gorički
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Scriptorium biologorum, Murska Sobota, Slovenia
| | - P Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Sánchez KI, Recknagel H, Elmer KR, Avila LJ, Morando M. Tracing evolutionary trajectories in the presence of gene flow in South American temperate lizards (Squamata: Liolaemus kingii group). Evolution 2024; 78:716-733. [PMID: 38262697 DOI: 10.1093/evolut/qpae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Evolutionary processes behind lineage divergence often involve multidimensional differentiation. However, in the context of recent divergences, the signals exhibited by each dimension may not converge. In such scenarios, incomplete lineage sorting, gene flow, and scarce phenotypic differentiation are pervasive. Here, we integrated genomic (RAD loci of 90 individuals), phenotypic (linear and geometric traits of 823 and 411 individuals, respectively), spatial, and climatic data to reconstruct the evolutionary history of a speciation continuum of liolaemid lizards (Liolaemus kingii group). Specifically, we (a) inferred the population structure of the group and contrasted it with the phenotypic variability; (b) assessed the role of postdivergence gene flow in shaping phylogeographic and phenotypic patterns; and (c) explored ecogeographic drivers of diversification across time and space. We inferred eight genomic clusters exhibiting leaky genetic borders coincident with geographic transitions. We also found evidence of postdivergence gene flow resulting in transgressive phenotypic evolution in one species. Predicted ancestral niches unveiled suitable areas in southern and eastern Patagonia during glacial and interglacial periods. Our study underscores integrating different data and model-based approaches to determine the underlying causes of diversification, a challenge faced in the study of recently diverged groups. We also highlight Liolaemus as a model system for phylogeographic and broader evolutionary studies.
Collapse
Affiliation(s)
- Kevin I Sánchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Hans Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
- Departamento de Biología y Ambiente, Universidad Nacional de la Patagonia San Juan Bosco, Sede Puerto Madryn, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
6
|
Recknagel H, Leitão HG, Elmer KR. Genetic basis and expression of ventral colour in polymorphic common lizards. Mol Ecol 2024; 33:e17278. [PMID: 38268086 DOI: 10.1111/mec.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
Colour is an important visual cue that can correlate with sex, behaviour, life history or ecological strategies, and has evolved divergently and convergently across animal lineages. Its genetic basis in non-model organisms is rarely known, but such information is vital for determining the drivers and mechanisms of colour evolution. Leveraging genetic admixture in a rare contact zone between oviparous and viviparous common lizards (Zootoca vivipara), we show that females (N = 558) of the two otherwise morphologically indistinguishable reproductive modes differ in their ventral colouration (from pale to vibrant yellow) and intensity of melanic patterning. We find no association between female colouration and reproductive investment, and no evidence for selection on colour. Using a combination of genetic mapping and transcriptomic evidence, we identified two candidate genes associated with ventral colour differentiation, DGAT2 and PMEL. These are genes known to be involved in carotenoid metabolism and melanin synthesis respectively. Ventral melanic spots were associated with two genomic regions, including a SNP close to protein tyrosine phosphatase (PTP) genes. Using genome re-sequencing data, our results show that fixed coding mutations in the candidate genes cannot account for differences in colouration. Taken together, our findings show that the evolution of ventral colouration and its associations across common lizard lineages is variable. A potential genetic mechanism explaining the flexibility of ventral colouration may be that colouration in common lizards, but also across squamates, is predominantly driven by regulatory genetic variation.
Collapse
Affiliation(s)
- Hans Recknagel
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Henrique G Leitão
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Kohlsdorf T. Reversibility of digit loss revisited: Limb diversification in Bachia lizards (gymnophthalmidae). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:496-508. [PMID: 33544406 DOI: 10.1002/jez.b.23024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/07/2023]
Abstract
Strict interpretations of the Dollo's Law lead to postulation that trait loss is irreversible and organisms never recover ancestral phenotypes. Dollo, however, admitted the possibility of reversals in trait loss when predicted differences between reversed (derived) and ancestral forms. Phenotypic signatures from reversals are expected, as the historical context of a reversal in trait loss differs from the initial setting where the trait originally evolved. This article combines morphological and molecular information for Bachia scolecoides to discuss phenotypic and genetic patterns established during processes that reversed digit loss in Gymnophthalmidae (also termed microteiid lizards). Results suggest that pathways leading to the derived tetradactyl state of B. scolecoides comprise particularities in their origin and associated processes. Autopodial bones of B. scolecoides lack digit identity, and muscle anatomy is very similar between manus and pes. Gymnophthalmidae sequence patterns in the limb-specific sonic hedgehog enhancer (ZRS) suggest that regulation of shh expression did not degenerate in Bachia, given the prediction of similar motifs despite mutations specific to Bachia. Persistence of developmental mechanisms might explain intermittent character expression leading to reversals of digit loss, as ZRS signaling pathways remain active during the development of at least one pair of appendices in Bachia, especially if some precursors persisted at early stages. Patterns of ZRS sequences suggest that irreversibility of trait loss might be lineage-specific (restricted to Gymnophthalmini) and contingent to the type of signature established. These results provide insights regarding possible mechanisms that may allow reactivation of developmental programs in specific regions of the embryo.
Collapse
Affiliation(s)
- Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Yusuf LH, Saldívar Lemus Y, Thorpe P, Macías Garcia C, Ritchie MG. Genomic Signatures Associated with Transitions to Viviparity in Cyprinodontiformes. Mol Biol Evol 2023; 40:msad208. [PMID: 37789509 PMCID: PMC10568250 DOI: 10.1093/molbev/msad208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
The transition from oviparity to viviparity has occurred independently over 150 times across vertebrates, presenting one of the most compelling cases of phenotypic convergence. However, whether the repeated, independent evolution of viviparity is driven by redeployment of similar genetic mechanisms and whether these leave a common signature in genomic divergence remains largely unknown. Although recent investigations into the evolution of viviparity have demonstrated striking similarity among the genes and molecular pathways involved across disparate vertebrate groups, quantitative tests for genome-wide convergent have provided ambivalent answers. Here, we investigate the potential role of molecular convergence during independent transitions to viviparity across an order of ray-finned freshwater fish (Cyprinodontiformes). We assembled de novo genomes and utilized publicly available genomes of viviparous and oviparous species to test for molecular convergence across both coding and noncoding regions. We found no evidence for an excess of molecular convergence in amino acid substitutions and in rates of sequence divergence, implying independent genetic changes are associated with these transitions. However, both statistical power and biological confounds could constrain our ability to detect significant correlated evolution. We therefore identified candidate genes with potential signatures of molecular convergence in viviparous Cyprinodontiformes lineages. Motif enrichment and gene ontology analyses suggest transcriptional changes associated with early morphogenesis, brain development, and immunity occurred alongside the evolution of viviparity. Overall, however, our findings indicate that independent transitions to viviparity in these fish are not strongly associated with an excess of molecular convergence, but a few genes show convincing evidence of convergent evolution.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Yolitzi Saldívar Lemus
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Peter Thorpe
- The Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
- School of Medicine, University of North Haugh, St Andrews KY16 9TF, UK
| | - Constantino Macías Garcia
- Instituto de Ecologia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City CdMx, Mexico
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
9
|
Recknagel H, Harvey WT, Layton M, Elmer KR. Common lizard microhabitat selection varies by sex, parity mode, and colouration. BMC Ecol Evol 2023; 23:47. [PMID: 37667183 PMCID: PMC10478496 DOI: 10.1186/s12862-023-02158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Animals select and interact with their environment in various ways, including to ensure their physiology is at its optimal capacity, access to prey is possible, and predators can be avoided. Often conflicting, the balance of choices made may vary depending on an individual's life-history and condition. The common lizard (Zootoca vivipara) has egg-laying and live-bearing lineages and displays a variety of dorsal patterns and colouration. How colouration and reproductive mode affect habitat selection decisions on the landscape is not known. In this study, we first tested if co-occurring male and female viviparous and oviparous common lizards differ in their microhabitat selection. Second, we tested if the dorsal colouration of an individual lizard matched its basking site choice within the microhabitat where it was encountered, which could be related to camouflage and crypsis. RESULTS We found that site use differed from the habitat otherwise available, suggesting lizards actively choose the composition and structure of their microhabitat. Females were found in areas with more wood and less bare ground compared to males; we speculate that this may be for better camouflage and reducing predation risk during pregnancy, when females are less mobile. Microhabitat use also differed by parity mode: viviparous lizards were found in areas with more density of flowering plants, while oviparous lizards were found in areas that were wetter and had more moss. This may relate to differing habitat preferences of viviparous vs. oviparous for clutch lay sites. We found that an individual's dorsal colouration matched that of the substrate of its basking site. This could indicate that individuals may choose their basking site to optimise camouflage within microhabitat. Further, all individuals were found basking in areas close to cover, which we expect could be used to escape predation. CONCLUSIONS Our study suggests that common lizards may actively choose their microhabitat and basking site, balancing physiological requirements, escape response and camouflage as a tactic for predator avoidance. This varies for parity modes, sexes, and dorsal colourations, suggesting that individual optimisation strategies are influenced by inter-individual variation within populations as well as determined by evolutionary differences associated with life history.
Collapse
Affiliation(s)
- Hans Recknagel
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Biotechnical Faculty, Department of Biology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - William T Harvey
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Megan Layton
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
10
|
Jiang B, He Y, Elsler A, Wang S, Keating JN, Song J, Kearns SL, Benton MJ. Extended embryo retention and viviparity in the first amniotes. Nat Ecol Evol 2023; 7:1131-1140. [PMID: 37308704 PMCID: PMC10333127 DOI: 10.1038/s41559-023-02074-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/17/2023] [Indexed: 06/14/2023]
Abstract
The amniotic egg with its complex fetal membranes was a key innovation in vertebrate evolution that enabled the great diversification of reptiles, birds and mammals. It is debated whether these fetal membranes evolved in eggs on land as an adaptation to the terrestrial environment or to control antagonistic fetal-maternal interaction in association with extended embryo retention (EER). Here we report an oviparous choristodere from the Lower Cretaceous period of northeast China. The ossification sequence of the embryo confirms that choristoderes are basal archosauromorphs. The discovery of oviparity in this assumed viviparous extinct clade, together with existing evidence, suggests that EER was the primitive reproductive mode in basal archosauromorphs. Phylogenetic comparative analyses on extant and extinct amniotes suggest that the first amniote displayed EER (including viviparity).
Collapse
Affiliation(s)
- Baoyu Jiang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.
| | - Yiming He
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Armin Elsler
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, UK
| | - Shengyu Wang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Joseph N Keating
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Junyi Song
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Stuart L Kearns
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, UK
| | - Michael J Benton
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Chabaud C, Berroneau M, Berroneau M, Dupoué A, Guillon M, Viton R, Gavira RSB, Clobert J, Lourdais O, Le Galliard JF. Climate aridity and habitat drive geographical variation in morphology and thermo-hydroregulation strategies of a widespread lizard species. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Thermo-hydroregulation strategies involve concurrent changes in functional traits related to energy, water balance and thermoregulation and play a key role in determining life-history traits and population demography of terrestrial ectotherms. Local thermal and hydric conditions should be important drivers of the geographical variation of thermo-hydroregulation strategies, but we lack studies that examine these changes across climatic gradients in different habitat types. Here, we investigated intraspecific variation of morphology and thermo-hydroregulation traits in the widespread European common lizard (Zootoca vivipara louislantzi) across a multidimensional environmental gradient involving independent variation in air temperature and rainfall and differences in habitat features (access to free-standing water and forest cover). We sampled adult males for morphology, resting metabolic rate, total and cutaneous evaporative water loss and thermal preferences in 15 populations from the rear to the leading edge of the distribution across an elevational gradient ranging from sea level to 1750 m. Besides a decrease in adult body size with increasing environmental temperatures, we found little effect of thermal conditions on thermo-hydroregulation strategies. In particular, relict lowland populations from the warm rear edge showed no specific ecophysiological adaptations. Instead, body mass, body condition and resting metabolic rate were positively associated with a rainfall gradient, while forest cover and water access in the habitat throughout the season also influenced cutaneous evaporative water loss. Our study emphasizes the importance of rainfall and habitat features rather than thermal conditions for geographical variation in lizard morphology and physiology.
Collapse
Affiliation(s)
- Chloé Chabaud
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Faculté Sciences et Ingénierie , 4 place Jussieu, 75005 Paris , France
| | | | - Maud Berroneau
- Cistude Nature, Chemin du Moulinat , 33185 Le Haillan , France
| | - Andréaz Dupoué
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Faculté Sciences et Ingénierie , 4 place Jussieu, 75005 Paris , France
| | - Michaël Guillon
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
- Cistude Nature, Chemin du Moulinat , 33185 Le Haillan , France
| | - Robin Viton
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
| | - Rodrigo S B Gavira
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale, CNRS , UMR 5321, Route du CNRS, Moulis , France
| | - Olivier Lourdais
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
| | - Jean-François Le Galliard
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Faculté Sciences et Ingénierie , 4 place Jussieu, 75005 Paris , France
- École normale supérieure, PSL Research University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance) , 78 rue du château, 77140 Saint-Pierre-lès-Nemours , France
| |
Collapse
|
12
|
Forni G, Martelossi J, Valero P, Hennemann FH, Conle O, Luchetti A, Mantovani B. Macroevolutionary Analyses Provide New Evidence of Phasmid Wings Evolution as a Reversible Process. Syst Biol 2022; 71:1471-1486. [PMID: 35689634 DOI: 10.1093/sysbio/syac038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The concept that complex ancestral traits can never be recovered after their loss is still widely accepted, despite phylogenetic and molecular approaches suggest instances where phenotypes may have been lost throughout the evolutionary history of a clade and subsequently reverted back in derived lineages. One of the first and most notable examples of such a process is wing evolution in phasmids; this polyneopteran order of insects, which comprises stick and leaf insects, has played a central role in initiating a long-standing debate on the topic. In this study, a novel and comprehensive time tree including over 300 Phasmatodea species is used as a framework for investigating wing evolutionary patterns in the clade. Despite accounting for several possible biases and sources of uncertainty, macroevolutionary analyses consistently revealed multiple reversals to winged states taking place after their loss, and reversibility is coupled with higher species diversification rates. Our findings support a loss of or reduction in wings that occurred in the lineage leading to the extant phasmid most recent common ancestor, and brachyptery is inferred to be an unstable state unless co-opted for nonaerodynamic adaptations. We also explored how different assumptions of wing reversals probability could impact their inference: we found that until reversals are assumed to be over 30 times more unlikely than losses, they are consistently inferred despite uncertainty in tree and model parameters. Our findings demonstrate that wing evolution is a reversible and dynamic process in phasmids and contribute to our understanding of complex trait evolution.
Collapse
Affiliation(s)
- Giobbe Forni
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Italy
| | - Jacopo Martelossi
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Italy
| | | | | | | | - Andrea Luchetti
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Italy
| | - Barbara Mantovani
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Italy
| |
Collapse
|
13
|
Whittington CM, Van Dyke JU, Liang SQT, Edwards SV, Shine R, Thompson MB, Grueber CE. Understanding the evolution of viviparity using intraspecific variation in reproductive mode and transitional forms of pregnancy. Biol Rev Camb Philos Soc 2022; 97:1179-1192. [PMID: 35098647 PMCID: PMC9064913 DOI: 10.1111/brv.12836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
How innovations such as vision, flight and pregnancy evolve is a central question in evolutionary biology. Examination of transitional (intermediate) forms of these traits can help address this question, but these intermediate phenotypes are very rare in extant species. Here we explore the biology and evolution of transitional forms of pregnancy that are midway between the ancestral state of oviparity (egg-laying) and the derived state, viviparity (live birth). Transitional forms of pregnancy occur in only three vertebrates, all of which are lizard species that also display intraspecific variation in reproductive phenotype. In these lizards (Lerista bougainvillii, Saiphos equalis, and Zootoca vivipara), geographic variation of three reproductive forms occurs within a single species: oviparity, viviparity, and a transitional form of pregnancy. This phenomenon offers the valuable prospect of watching 'evolution in action'. In these species, it is possible to conduct comparative research using different reproductive forms that are not confounded by speciation, and are of relatively recent origin. We identify major proximate and ultimate questions that can be addressed in these species, and the genetic and genomic tools that can help us understand how transitional forms of pregnancy are produced, despite predicted fitness costs. We argue that these taxa represent an excellent prospect for understanding the major evolutionary shift between egg-laying and live birth, which is a fundamental innovation in the history of animals.
Collapse
Affiliation(s)
- Camilla M. Whittington
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - James U. Van Dyke
- Department of Pharmacy and Biomedical Sciences, School of Molecular SciencesLa Trobe UniversityBuilding 4WodongaVIC3689Australia
| | - Stephanie Q. T. Liang
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - Scott V. Edwards
- Department of Organismic and Evolutionary BiologyHarvard University, and Museum of Comparative ZoologyCambridgeMA02138U.S.A.
| | - Richard Shine
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | - Michael B. Thompson
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - Catherine E. Grueber
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| |
Collapse
|
14
|
Quijada L, Matočec N, Kušan I, Tanney JB, Johnston PR, Mešić A, Pfister DH. Apothecial Ancestry, Evolution, and Re-Evolution in Thelebolales (Leotiomycetes, Fungi). BIOLOGY 2022; 11:biology11040583. [PMID: 35453781 PMCID: PMC9026407 DOI: 10.3390/biology11040583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary Leotiomycetes is one of the most speciose classes of the phylum Ascomycota (Fungi). Its species are mainly apothecioid, paraphysate, and possess active ascospore discharge. Thelebolales are a distinctive order of the Leotiomycetes class whose members have mostly closed ascomata, evanescent asci, and thus passively dispersed ascospores. Within the order, a great diversity of peridia have evolved as adaptations to different dispersal strategies. The genus Thelebolus is an exceptional case of ascomatal evolution within the order. Its species are the most diverse in functional traits, encompassing species with closed ascomata and evanescent asci, and species with open ascomata, active ascospore discharge, and paraphyses. Open ascomata were previously suggested as the ancestral state in the genus, these ascomata depend on mammals and birds as dispersal agents. In our work, we used morphological and phylogenetic methods, as well as the reconstruction of ancestral traits for ascomatal type, asci dehiscence, the presence or absence of paraphyses, and ascospore features to explore evolution within Thelebolales. We demonstrate the apothecial ancestry in Thelebolales and propose a new hypothesis about the evolution of the open ascomata in Thelebolus involving a process of re-evolution where the active dispersal of ascospores appears independently twice within the order. A new family, Holwayaceae, is proposed within Thelebolales, comprising three genera: Holwaya, Patinella, and Ramgea. Abstract Closed cleistothecia-like ascomata have repeatedly evolved in non-related perithecioid and apothecioid lineages of lichenized and non-lichenized Ascomycota. The evolution of a closed, darkly pigmented ascoma that protects asci and ascospores is conceived as either an adaptation to harsh environmental conditions or a specialized dispersal strategy. Species with closed ascomata have mostly lost sterile hymenial elements (paraphyses) and the capacity to actively discharge ascospores. The class Leotiomycetes, one of the most speciose classes of Ascomycota, is mainly apothecioid, paraphysate, and possesses active ascospore discharge. Lineages with closed ascomata, and their morphological variants, have evolved independently in several families, such as Erysiphaceae, Myxotrichaceae, Rutstroemiaceae, etc. Thelebolales is a distinctive order in the Leotiomycetes class. It has two widespread families (Thelebolaceae, Pseudeurotiaceae) with mostly closed ascomata, evanescent asci, and thus passively dispersed ascospores. Within the order, closed ascomata dominate and a great diversity of peridia have evolved as adaptations to different dispersal strategies. The type genus, Thelebolus, is an exceptional case of ascomatal evolution within the order. Its species are the most diverse in functional traits, encompassing species with closed ascomata and evanescent asci, and species with open ascomata, active ascospore discharge, and paraphyses. Open ascomata were previously suggested as the ancestral state in the genus, these ascomata depend on mammals and birds as dispersal agents. In this scheme, species with closed ascomata, a lack of paraphyses, and passive ascospore discharge exhibit derived traits that evolved in adaptation to cold ecosystems. Here, we used morphological and phylogenetic methods, as well as the reconstruction of ancestral traits for ascomatal type, asci dehiscence, the presence or absence of paraphyses, and ascospore features to explore evolution within Thelebolales. We demonstrate the apothecial ancestry in Thelebolales and propose a new hypothesis about the evolution of the open ascomata in Thelebolus, involving a process of re-evolution where the active dispersal of ascospores appears independently twice within the order. We propose a new family, Holwayaceae, within Thelebolales, that retains the phenotypic features exhibited by species of Thelebolus, i.e., pigmented capitate paraphyses and active asci discharge with an opening limitation ring.
Collapse
Affiliation(s)
- Luis Quijada
- Department of Organismic and Evolutionary Biology, The Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA;
- Correspondence: (L.Q.); (I.K.)
| | - Neven Matočec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia; (N.M.); (A.M.)
| | - Ivana Kušan
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia; (N.M.); (A.M.)
- Correspondence: (L.Q.); (I.K.)
| | - Joey B. Tanney
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 Burnside Road, Victoria, BC V8Z 1M5, Canada;
| | - Peter R. Johnston
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland 1072, New Zealand;
| | - Armin Mešić
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia; (N.M.); (A.M.)
| | - Donald H. Pfister
- Department of Organismic and Evolutionary Biology, The Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA;
| |
Collapse
|
15
|
Recknagel H, Premate E, Zakšek V, Aljančič G, Kostanjšek R, Trontelj P. Oviparity, viviparity or plasticity in reproductive mode of the olm Proteus anguinus: an epic misunderstanding caused by prey regurgitation? CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Cave animals are biological models of fast evolutionary change induced by transition to extreme subterranean environments. But their concealed lifestyle makes it inherently difficult to study life-history changes. Therefore, currently very little is known on the reproduction of cave species, and even less is known on general patterns and potentially shared reproductive strategies. Theory predicts that the cave environment favours the production of a few well-developed offspring and live birth. For one of the most enigmatic cave animals, the olm (Proteus anguinus), it has been debated fiercely whether they reproduce by live birth (viviparity), egg-laying (oviparity) or facultatively. While successes in captive breeding after the 1950s report oviparity as the single parity mode, some historically older observations claimed viviparity. The controversial neo-Lamarckist Paul Kammerer even claimed to have induced changes in parity mode by altering environmental conditions. Here, we report on the feeding and regurgitation of fire salamander (Salamandra salamandra) larvae by olms. The salamander larvae showed clear teeth marks and other injuries on the head caused by the olm, yet one larva was still alive after regurgitation. We suggest that historical reports of olm viviparity could have been misled by regurgitated salamander larvae. Our data bring additional indications that at least some of Kammerer’s experiments were fraudulent.
Collapse
Affiliation(s)
- Hans Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia,
| | - Ester Premate
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia,
| | - Valerija Zakšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia,
| | - Gregor Aljančič
- Society for Cave Biology, Tular Cave Laboratory, Oldhamska cesta 8a, 4000, Kranj, Slovenia,
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia,
| | - Peter Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia,
| |
Collapse
|
16
|
Recknagel H, Carruthers M, Yurchenko AA, Nokhbatolfoghahai M, Kamenos NA, Bain MM, Elmer KR. The functional genetic architecture of egg-laying and live-bearing reproduction in common lizards. Nat Ecol Evol 2021; 5:1546-1556. [PMID: 34621056 DOI: 10.1038/s41559-021-01555-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
All amniotes reproduce either by egg-laying (oviparity), which is ancestral to vertebrates or by live-bearing (viviparity), which has evolved many times independently. However, the genetic basis of these parity modes has never been resolved and, consequently, its convergence across evolutionary scales is currently unknown. Here, we leveraged natural hybridizations between oviparous and viviparous common lizards (Zootoca vivipara) to describe the functional genes and genetic architecture of parity mode and its key traits, eggshell and gestation length, and compared our findings across vertebrates. In these lizards, parity trait genes were associated with progesterone-binding functions and enriched for tissue remodelling and immune system pathways. Viviparity involved more genes and complex gene networks than did oviparity. Angiogenesis, vascular endothelial growth and adrenoreceptor pathways were enriched in the viviparous female reproductive tissue, while pathways for transforming growth factor were enriched in the oviparous. Natural selection on these parity mode genes was evident genome-wide. Our comparison to seven independent origins of viviparity in mammals, squamates and fish showed that genes active in pregnancy were related to immunity, tissue remodelling and blood vessel generation. Therefore, our results suggest that pre-established regulatory networks are repeatedly recruited for viviparity and that these are shared at deep evolutionary scales.
Collapse
Affiliation(s)
- Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.,Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Madeleine Carruthers
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.,School of Biological Sciences, University of Bristol, Bristol, UK
| | - Andrey A Yurchenko
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.,Inserm U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Mohsen Nokhbatolfoghahai
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Nicholas A Kamenos
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
| | - Maureen M Bain
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
17
|
Haase MAB, Kominek J, Opulente DA, Shen XX, LaBella AL, Zhou X, DeVirgilio J, Hulfachor AB, Kurtzman CP, Rokas A, Hittinger CT. Repeated horizontal gene transfer of GALactose metabolism genes violates Dollo's law of irreversible loss. Genetics 2021; 217:6007471. [PMID: 33724406 DOI: 10.1093/genetics/iyaa012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Dollo's law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.
Collapse
Affiliation(s)
- Max A B Haase
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Dana A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Jeremy DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
18
|
Beltrán I, Perry C, Degottex F, Whiting MJ. Behavioral Thermoregulation by Mothers Protects Offspring from Global Warming but at a Cost. Physiol Biochem Zool 2021; 94:302-318. [PMID: 34260339 DOI: 10.1086/715976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThermal conditions during embryonic development affect offspring phenotype in ectotherms. Therefore, rising environmental temperatures can have important consequences for an individual's fitness. Nonetheless, females have some capacity to compensate for potential negative consequences that adverse developmental environments may have on their offspring. Recent studies show that oviparous reptiles exhibit behavioral plasticity in nest site selection, which can buffer their embryos against high incubation temperatures; however, much less is known about these responses in viviparous reptiles. We subjected pregnant viviparous skinks, Saiphos equalis, to current or projected midcentury (2050) temperatures to test (i) how elevated temperatures affect female thermoregulatory and foraging behavior; (ii) whether temperatures experienced by females during pregnancy negatively affect the morphology, performance, and behavior of hatchlings; and (iii) whether behavioral thermoregulation during pregnancy is costly to females. Females from the elevated temperature treatment compensated by going deeper belowground to seek cooler temperatures and eating less, and they consequently had a lower body mass relative to snout-to-vent length (condition estimator) compared with females from the current thermal treatment. The temperatures experienced by females in the elevated temperature treatment were high enough to affect foraging and locomotor performance but not the morphology and growth rate of hatchlings. By seeking cooler temperatures, mothers can mitigate some of the effects of high temperatures on their offspring (e.g., reduced body size and growth). However, this protective behavior of females may come at an energetic cost to them. This study adds to growing evidence of lizards' vulnerability to global warming, particularly during reproduction when females are already paying a substantial cost.
Collapse
|
19
|
Recknagel H, Kamenos NA, Elmer KR. Evolutionary origins of viviparity consistent with palaeoclimate and lineage diversification. J Evol Biol 2021; 34:1167-1176. [PMID: 34107111 DOI: 10.1111/jeb.13886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022]
Abstract
It is of fundamental importance for the field of evolutionary biology to understand when and why major evolutionary transitions occur. Live-bearing young (viviparity) is a major evolutionary change and has evolved from egg-laying (oviparity) independently in many vertebrate lineages and most abundantly in lizards and snakes. Although contemporary viviparous squamate species generally occupy cold climatic regions across the globe, it is not known whether viviparity evolved as a response to cold climate in the first place. Here, we used available published time-calibrated squamate phylogenies and parity data on 3,498 taxa. We compared the accumulation of transitions from oviparity to viviparity relative to background diversification and a simulated binary trait. Extracting the date of each transition in the phylogenies and informed by 65 my of global palaeoclimatic data, we tested the nonexclusive hypotheses that viviparity evolved under the following: (a) cold, (b) long-term stable climatic conditions and (c) with background diversification rate. We show that stable and long-lasting cold climatic conditions are correlated with transitions to viviparity across squamates. This correlation of parity mode and palaeoclimate is mirrored by background diversification in squamates, and simulations of a binary trait also showed a similar association with palaeoclimate, meaning that trait evolution cannot be separated from squamate lineage diversification. We suggest that parity mode transitions depend on environmental and intrinsic effects and that background diversification rate may be a factor in trait diversification more generally.
Collapse
Affiliation(s)
- Hans Recknagel
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Nicholas A Kamenos
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Araya-Donoso R, San Juan E, Tamburrino Í, Lamborot M, Veloso C, Véliz D. Integrating genetics, physiology and morphology to study desert adaptation in a lizard species. J Anim Ecol 2021; 91:1148-1162. [PMID: 34048024 DOI: 10.1111/1365-2656.13546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Integration of multiple approaches is key to understand the evolutionary processes of local adaptation and speciation. Reptiles have successfully colonized desert environments, that is, extreme and arid conditions that constitute a strong selective pressure on organisms. Here, we studied genomic, physiological and morphological variations of the lizard Liolaemus fuscus to detect adaptations to the Atacama Desert. By comparing populations of L. fuscus inhabiting the Atacama Desert with populations from the Mediterranean forests from central Chile, we aimed at characterizing features related to desert adaptation. We combined ddRAD sequencing with physiological (evaporative water loss, metabolic rate and selected temperature) and morphological (linear and geometric morphometrics) measurements. We integrated the genomic and phenotypic data using redundancy analyses. Results showed strong genetic divergence, along with a high number of fixed loci between desert and forest populations. Analyses detected 110 fixed and 30 outlier loci located within genes, from which 43 were in coding regions, and 12 presented non-synonymous mutations. The candidate genes were associated with cellular membrane and development. Desert lizards presented lower evaporative water loss than those from the forest. Morphological data showed that desert lizards had smaller body size, different allometry, larger eyeballs and more dorsoventrally compressed heads. Our results suggest incipient speciation between desert and forest populations. The adaptive signal must be cautiously interpreted since genetic drift could also contribute to the divergence pattern. Nonetheless, we propose water and resource availability, and changes in habitat structure, as the most relevant challenges for desert reptiles. This study provides insights of the mechanisms that allow speciation as well as desert adaptation in reptiles at multiple levels, and highlights the benefit of integrating independent evidence.
Collapse
Affiliation(s)
- Raúl Araya-Donoso
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Esteban San Juan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ítalo Tamburrino
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Madeleine Lamborot
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Claudio Veloso
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - David Véliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
21
|
Murphy MK, Moon JT, Skolaris AT, Mikulin JA, Wilson TJ. Evidence for the loss and recovery of SLAMF9 during human evolution: implications on Dollo's law. Immunogenetics 2021; 73:243-251. [PMID: 33616677 PMCID: PMC7898023 DOI: 10.1007/s00251-021-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 11/04/2022]
Abstract
Signaling lymphocyte activation molecule family member 9 (SLAMF9) is a cell surface protein of the CD2/SLAM family of leukocyte surface receptors. It is conserved throughout mammals and has roles in the initiation of inflammatory responses and regulation of plasmacytoid dendritic cell function. Through comparison of reference sequences encoding SLAMF9 in human, mouse, and primate sequences, we have determined that the SLAMF9 gene underwent successive mutation events, resulting in the loss of the protein and subsequent recovery of a less stable version. The mutations included a single base pair deletion in the second exon and a change in the splice acceptor site of that same exon. These changes would have had the effect of creating and later repairing a frameshift in the coding sequence. These events took place since the divergence of the human lineage from the chimpanzee-human last common ancestor and represent the first known case of the functional loss and recovery of a gene within the human lineage.
Collapse
Affiliation(s)
- Maegan K Murphy
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH, 45056, USA
| | - Justin T Moon
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH, 45056, USA
| | - Alexis T Skolaris
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH, 45056, USA
| | - Joseph A Mikulin
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH, 45056, USA
| | - Timothy J Wilson
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH, 45056, USA.
| |
Collapse
|
22
|
Burgon JD, Vences M, Steinfartz S, Bogaerts S, Bonato L, Donaire-Barroso D, Martínez-Solano I, Velo-Antón G, Vieites DR, Mable BK, Elmer KR. Phylogenomic inference of species and subspecies diversity in the Palearctic salamander genus Salamandra. Mol Phylogenet Evol 2020; 157:107063. [PMID: 33387650 DOI: 10.1016/j.ympev.2020.107063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/09/2023]
Abstract
The salamander genus Salamandra is widespread across Europe, North Africa, and the Near East and is renowned for its conspicuous and polymorphic colouration and diversity of reproductive modes. The phylogenetic relationships within the genus, and especially in the highly polymorphic species S. salamandra, have been very challenging to elucidate, leaving its real evolutionary history and classification at species and subspecies levels a topic of debate and contention. However, the distribution of diversity and species delimitation within the genus are critically important for identifying evolutionarily significant units for conservation and management, especially in light of threats posed by the pathogenic chytrid fungus Batrachochytrium salamandrivorans that is causing massive declines of S. salamandra populations in central Europe. Here, we conducted a phylogenomic analysis from across the taxonomic and geographic breadth of the genus Salamandra in its entire range. Bayesian, maximum likelihood and network-based phylogenetic analyses of up to 4905 ddRADseq-loci (294,300 nucleotides of sequence) supported the distinctiveness of all currently recognised species (Salamandra algira, S. atra, S. corsica, S. infraimmaculata, S. lanzai, and S. salamandra), and all five species for which we have multiple exemplars were confirmed as monophyletic. Within S. salamandra, two main clades can be distinguished: one clade with the Apenninic subspecies S. s. gigliolii nested within the Iberian S. s. bernardezi/fastuosa; and a second clade comprising all other Iberian, Central and East European subspecies. Our analyses revealed that some of the currently recognized subspecies of S. salamandra are paraphyletic and may require taxonomic revision, with the Central- and Eastern-European subspecies all being poorly differentiated at the analysed genomic markers. Salamandra s. longirostris - sometimes considered a separate species - was nested within S. salamandra, consistent with its subspecies status. The relationships identified within and between Salamandra species provide valuable context for future systematic and biogeographic studies, and help elucidate critical evolutionary units for conservation and taxonomy.
Collapse
Affiliation(s)
- James D Burgon
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Miguel Vences
- Division of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| | - Sebastian Steinfartz
- Institute of Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | | | - Lucio Bonato
- Department of Biology, University of Padova, Via Bassi 58B, 35131 Padova, Italy
| | - David Donaire-Barroso
- Asociación Herpetológica Fretum Gaditanum, Calle Mar Egeo 7, 11407 Jerez de la Frontera, Spain
| | - Iñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), C./ José Gutiérrez Abascal n°2, 28006 Madrid, Spain
| | - Guillermo Velo-Antón
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão, R. Padre Armando Quintas n° 7, 4485-661 Vairão, Portugal; Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, 36310 Vigo, Spain
| | - David R Vieites
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), C./ José Gutiérrez Abascal n°2, 28006 Madrid, Spain
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
23
|
Mamos T, Uit de Weerd D, von Oheimb PV, Sulikowska-Drozd A. Evolution of reproductive strategies in the species-rich land snail subfamily Phaedusinae (Stylommatophora: Clausiliidae). Mol Phylogenet Evol 2020; 158:107060. [PMID: 33383174 DOI: 10.1016/j.ympev.2020.107060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Most of the present knowledge on animal reproductive mode evolution, and possible factors driving transitions between oviparity and viviparity is based on studies on vertebrates. The species rich door snail (Clausiliidae) subfamily Phaedusinae represents a suitable and unique model for further examining parity evolution, as three different strategies, oviparity, viviparity, and the intermediate mode of embryo-retention, occur in this group. The present study reconstructs the evolution of reproductive strategies in Phaedusinae based on time-calibrated molecular phylogenetics, reproductive mode examinations and ancestral state reconstruction. Our phylogenetic analysis employing multiple mitochondrial and nuclear markers identified a well-supported clade (including the tribes Phaedusini and Serrulinini) that contains species exhibiting various reproductive strategies. This clade evolved from an oviparous most recent common ancestor according to our reconstruction. All non-oviparous taxa are confined to a highly supported subclade, coinciding with the tribe Phaedusini. Both oviparity and viviparity occur frequently in different lineages of this subclade that are not closely related. During Phaedusini diversification, multiple transitions in reproductive strategy must have taken place, which could have been promoted by a high fitness of embryo-retaining species. The evolutionary success of this group might result from the maintenance of various strategies.
Collapse
Affiliation(s)
- Tomasz Mamos
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Lodz, Poland; University of Basel, Zoological Institute, Vesalgasse 1, 4051 Basel, Switzerland
| | - Dennis Uit de Weerd
- Faculty of Science, Department of Environmental Sciences, Open Universiteit, P.O. Box 2960, NL-6401 DL Heerlen, the Netherlands; Naturalis Biodiversity Center, P.O. Box 9517, NL-2300 RA Leiden, the Netherlands
| | - Parm Viktor von Oheimb
- Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom; Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | - Anna Sulikowska-Drozd
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
24
|
Stewart JR. Developmental morphology and evolution of extraembryonic membranes of lizards and snakes (Reptilia, Squamata). J Morphol 2020; 282:973-994. [PMID: 32936974 DOI: 10.1002/jmor.21266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Amniote embryos are supported and nourished by a suite of tissues, the extraembryonic membranes, that provide vascular connections to the egg contents. Oviparous reptiles share a basic pattern of development inherited from a common ancestor; a vascular chorioallantoic membrane, functioning as a respiratory organ, contacts the eggshell and a vascular yolk sac membrane conveys nutrients to the embryo. Squamates (lizards, snakes) have evolved a novel variation in morphogenesis of the yolk sac that results in a unique structure, the yolk cleft/isolated yolk mass complex. This structure is a source of phylogenetic variation in architecture of the extraembryonic membranes among oviparous squamates. The yolk cleft/isolated yolk mass complex is retained in viviparous species and influences placental architecture. The aim of this paper is to review extraembryonic membrane development and morphology in oviparous and related viviparous squamates to explore patterns of variation. The survey includes all oviparous species for which data are available (11 species; 4 families). Comparisons with viviparous species encompass six independent origins of viviparity. The comparisons reveal that both phylogeny and reproductive mode influence variation in extraembryonic membrane development and that phylogenetic variation influences placental evolution. Models of the evolution of squamate placentation have relied primarily on comparisons between independently derived viviparous species. The inclusion of oviparous species in comparative analyses largely supports these models, yet exposes convergent patterns of evolution that become apparent when phylogenetic variation is recognized.
Collapse
Affiliation(s)
- James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
25
|
Yurchenko AA, Recknagel H, Elmer KR. Chromosome-Level Assembly of the Common Lizard (Zootoca vivipara) Genome. Genome Biol Evol 2020; 12:1953-1960. [PMID: 32835354 PMCID: PMC7643610 DOI: 10.1093/gbe/evaa161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
Squamate reptiles exhibit high variation in their phenotypic traits and geographical distributions and are therefore fascinating taxa for evolutionary and ecological research. However, genomic resources are very limited for this group of species, consequently inhibiting research efforts. To address this gap, we assembled a high-quality genome of the common lizard, Zootoca vivipara (Lacertidae), using a combination of high coverage Illumina (shotgun and mate-pair) and PacBio sequencing data, coupled with RNAseq data and genetic linkage map generation. The 1.46-Gb genome assembly has a scaffold N50 of 11.52 Mb with N50 contig size of 220.4 kb and only 2.96% gaps. A BUSCO analysis indicates that 97.7% of the single-copy Tetrapoda orthologs were recovered in the assembly. In total, 19,829 gene models were annotated to the genome using a combination of ab initio and homology-based methods. To improve the chromosome-level assembly, we generated a high-density linkage map from wild-caught families and developed a novel analytical pipeline to accommodate multiple paternity and unknown father genotypes. We successfully anchored and oriented almost 90% of the genome on 19 linkage groups. This annotated and oriented chromosome-level reference genome represents a valuable resource to facilitate evolutionary studies in squamate reptiles.
Collapse
Affiliation(s)
- Andrey A Yurchenko
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
26
|
Dupoué A, Sorlin M, Richard M, Le Galliard JF, Lourdais O, Clobert J, Aubret F. Mother-offspring conflict for water and its mitigation in the oviparous form of the reproductively bimodal lizard, Zootoca vivipara. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractParent-offspring conflicts are widespread given that resources are often limited. Recent evidence has shown that availability of water can trigger such conflict during pregnancy in viviparous squamate species (lizards and snakes) and thus questions the role of water in the evolution of reproductive modes. Here, we examined the impact of water restriction during gravidity in the oviparous form of the bimodal common lizard (Zootoca vivipara), using a protocol previously used on the viviparous form. Females were captured in early gravidity from six populations along a 600 m altitudinal gradient to investigate whether environmental conditions (altitude, water access and temperature) exacerbate responses to water restriction. Females were significantly dehydrated after water restriction, irrespective of their reproductive status (gravid vs. non-reproductive), relative reproductive effort (relative clutch mass), and treatment timing (embryonic development stage). Female dehydration, together with reproductive performance, varied with altitude, probably due to long term acclimation or local adaptation. This moderate water-based intergenerational conflict in gravid females contrasts sharply with previous findings for the viviparous form, with implications to the evolutionary reversion from viviparity to oviparity. It is likely that oviparity constitutes a water-saving reproductive mode which might help mitigate intensive temperature-driven population extinctions at low altitudes.
Collapse
Affiliation(s)
- Andréaz Dupoué
- Station d’Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321, Saint Girons, France
- School of Biological Sciences, Monash University, Clayton campus, VIC, Melbourne, Australia
| | - Mahaut Sorlin
- Station d’Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321, Saint Girons, France
| | - Murielle Richard
- Station d’Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321, Saint Girons, France
| | - Jean François Le Galliard
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Tours 44–45, Paris, France
- Ecole normale supérieure, Département de biologie, PSL Research University, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France
| | - Olivier Lourdais
- Centre d’Etudes Biologiques de Chizé, La Rochelle Université, CNRS, UMR, Beauvoir sur Niort, France
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321, Saint Girons, France
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321, Saint Girons, France
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
27
|
Laird MK, Thompson MB, Whittington CM. Facultative oviparity in a viviparous skink ( Saiphos equalis). Biol Lett 2019; 15:20180827. [PMID: 30940025 DOI: 10.1098/rsbl.2018.0827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Facultative changes in parity mode (oviparity to viviparity and vice versa) are rare in vertebrates, yet offer fascinating opportunities to investigate the role of reproductive lability in parity mode evolution. Here, we report apparent facultative oviparity by a viviparous female of the bimodally reproductive skink Saiphos equalis-the first report of different parity modes within a vertebrate clutch. Eggs oviposited facultatively possess shell characteristics of both viviparous and oviparous S. equalis, demonstrating that egg coverings for viviparous embryos are produced by the same machinery as those for oviparous individuals. Since selection may act in either direction when viviparity has evolved recently, squamate reproductive lability may confer a selective advantage. We suggest that facultative oviparity is a viable reproductive strategy for S. equalis and that squamate reproductive lability is more evolutionarily significant than previously acknowledged.
Collapse
Affiliation(s)
- Melanie K Laird
- 1 Department of Anatomy, University of Otago , Dunedin , New Zealand.,2 School of Life and Environmental Sciences, The University of Sydney , Sydney , Australia
| | - Michael B Thompson
- 2 School of Life and Environmental Sciences, The University of Sydney , Sydney , Australia
| | - Camilla M Whittington
- 2 School of Life and Environmental Sciences, The University of Sydney , Sydney , Australia.,3 Sydney School of Veterinary Science, The University of Sydney , Sydney , Australia
| |
Collapse
|
28
|
Horreo JL, Suarez T, Fitze PS. Reversals in complex traits uncovered as reticulation events: Lessons from the evolution of parity-mode, chromosome morphology, and maternal resource transfer. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:5-13. [PMID: 31650690 DOI: 10.1002/jez.b.22912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/18/2019] [Accepted: 10/02/2019] [Indexed: 11/08/2022]
Abstract
Complex traits include, among many others, the evolution of eyes, wings, body forms, reproductive modes, human intelligence, social behavior, diseases, and chromosome morphology. Dollo's law states that the evolution of complex traits is irreversible. However, potential exceptions have been proposed. Here, we investigated whether reticulation, a simple and elegant means by which complex characters may be reacquired, could account for suggested reversals in the evolution of complex characters using two datasets with sufficient genetic coverage and a total of five potential reversals. Our analyses uncovered a potential reversal in the evolution of parity mode and a potential reversal in the evolution of placentotrophy of fish (Cyprinodontiformes) as reticulation events. Moreover, in a reptile that exhibits a potential reversal from viviparity to oviparity (Zootoca vivipara), reticulation provided the most parsimonious explanation for sex chromosome evolution. Therefore, three of the five studied potential reversals were unraveled as reticulation events. This constitutes the first evidence that accounting for reticulation can fundamentally influence the interpretation of the evolution of complex traits, that testing for reticulation is crucial for obtaining robust phylogenies, and that complex ancestral characters may be reacquired through hybridization with a lineage that still exhibits the trait. Hybridization, rather than reappearance of ancestral traits by means of small evolutionary steps, may thus account for suggested exceptions to Dollo's law. Consequently, ruling out reticulation is required to claim the evolutionary reversal of complex characters and potential exceptions to Dollo's rule.
Collapse
Affiliation(s)
- Jose L Horreo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,UMIB Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University-Campus Mieres, Spain
| | - Teresa Suarez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Patrick S Fitze
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
McLennan D, Recknagel H, Elmer KR, Monaghan P. Distinct telomere differences within a reproductively bimodal common lizard population. Funct Ecol 2019; 33:1917-1927. [PMID: 31762528 PMCID: PMC6853248 DOI: 10.1111/1365-2435.13408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Different strategies of reproductive mode, either oviparity (egg-laying) or viviparity (live-bearing), will be associated with a range of other life-history differences that are expected to affect patterns of ageing and longevity. It is usually difficult to compare the effects of alternative reproductive modes because of evolutionary and ecological divergence. However, the very rare exemplars of reproductive bimodality, in which different modes exist within a single species, offer an opportunity for robust and controlled comparisons.One trait of interest that could be associated with life history, ageing and longevity is the length of the telomeres, which form protective caps at the chromosome ends and are generally considered a good indicator of cellular health. The shortening of these telomeres has been linked to stressful conditions; therefore, it is possible that differing reproductive costs will influence patterns of telomere loss. This is important because a number of studies have linked a shorter telomere length to reduced survival.Here, we have studied maternal and offspring telomere dynamics in the common lizard (Zootoca vivipara). Our study has focused on a population where oviparous and viviparous individuals co-occur in the same habitat and occasionally interbreed to form admixed individuals.While viviparity confers many advantages for offspring, it might also incur substantial costs for the mother, for example require more energy. Therefore, we predicted that viviparous mothers would have relatively shorter telomeres than oviparous mothers, with admixed mothers having intermediate telomere lengths. There is thought to be a heritable component to telomere length; therefore, we also hypothesized that offspring would follow the same pattern as the mothers.Contrary to our predictions, the viviparous mothers and offspring had the longest telomeres, and the oviparous mothers and offspring had the shortest telomeres. The differing telomere lengths may have evolved as an effect of the life-history divergence between the reproductive modes, for example due to the increased growth rate that viviparous individuals may undergo to reach a similar size at reproduction. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13408/suppinfo can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Department of Fish Ecology and EvolutionEAWAGKastanienbaumSwitzerland
| | - Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
30
|
Hughes DF, Blackburn DG. Evolutionary origins of viviparity in Chamaeleonidae. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel F. Hughes
- Department of Animal Sciences University of Illinois Urbana IL USA
| | - Daniel G. Blackburn
- Department of Biology, Electron Microscopy Center Trinity College Hartford CT USA
| |
Collapse
|
31
|
|
32
|
Recknagel H, Elmer KR. Differential reproductive investment in co-occurring oviparous and viviparous common lizards (Zootoca vivipara) and implications for life-history trade-offs with viviparity. Oecologia 2019; 190:85-98. [PMID: 31062164 PMCID: PMC6535419 DOI: 10.1007/s00442-019-04398-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/02/2019] [Indexed: 01/31/2023]
Abstract
Live-bearing reproduction (viviparity) has evolved from egg-laying (oviparity) independently many times and most abundantly in squamate reptiles. Studying life-history trade-offs between the two reproductive modes is an inherently difficult task, as most transitions to viviparity are evolutionarily old and/or are confounded by environmental effects. The common lizard (Zootoca vivipara) is one of very few known reproductively bimodal species, in which some populations are oviparous and others viviparous. Oviparous and viviparous populations can occur in sympatry in the same environment, making this a unique system for investigating alternative life-history trade-offs between oviparous and viviparous reproduction. We find that viviparous females exhibit larger body size, smaller clutch sizes, a larger reproductive investment, and a higher hatching success rate than oviparous females. We find that offspring size and weight from viviparous females was lower compared to offspring from oviparous females, which may reflect space constraints during pregnancy. We suggest that viviparity in common lizards is associated with increased reproductive burden for viviparous females and speculate that this promoted the evolution of larger body size to create more physical space for developing embryos. In the context of life-history trade-offs in the evolution of viviparity, we suggest that the extent of correlation between reproductive traits, or differences between reproductive modes, may also depend on the time since the transition occurred.
Collapse
Affiliation(s)
- Hans Recknagel
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
33
|
Horreo JL, Peláez ML, Breedveld MC, Suárez T, Urieta M, Fitze PS. Population structure of the oviparous South-West European common lizard. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-018-1242-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Esquerré D, Brennan IG, Catullo RA, Torres‐Pérez F, Keogh JS. How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America's most species‐rich lizard radiation (Squamata: Liolaemidae). Evolution 2018; 73:214-230. [DOI: 10.1111/evo.13657] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/04/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Damien Esquerré
- Division of Ecology and Evolution, Research School of BiologyThe Australian National University 0200 Canberra Australian Capital Territory Australia
| | - Ian G. Brennan
- Division of Ecology and Evolution, Research School of BiologyThe Australian National University 0200 Canberra Australian Capital Territory Australia
| | - Renee A. Catullo
- Division of Ecology and Evolution, Research School of BiologyThe Australian National University 0200 Canberra Australian Capital Territory Australia
- School of Science & Health and Hawkesbury Institute for the EnvironmentWestern Sydney University 2751 Perth New South Wales Australia
| | - Fernando Torres‐Pérez
- Instituto de BiologíaPontificia Universidad Católica de Valparaíso 2950 Valparaíso Chile
| | - J. Scott Keogh
- Division of Ecology and Evolution, Research School of BiologyThe Australian National University 0200 Canberra Australian Capital Territory Australia
| |
Collapse
|