1
|
Petroll R, West JA, Ogden M, McGinley O, Craig RJ, Coelho SM, Borg M. The expanded Bostrychia moritziana genome unveils evolution in the most diverse and complex order of red algae. Curr Biol 2025:S0960-9822(25)00508-1. [PMID: 40345196 DOI: 10.1016/j.cub.2025.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Red algae are an ancient eukaryotic lineage that were among the first to evolve multicellularity. Although they share a common origin with modern-day plants and display complex multicellular development, comprehensive genome data from the most highly evolved red algal groups remain scarce. Here, we present a chromosome-level genome assembly of Bostrychia moritziana, a complex red seaweed in the Rhodomelaceae family of the Ceramiales-the largest and most diverse order of red algae. Contrary to the view that red algal genomes are typically small, we report significant genome size expansion in Bostrychia and other Ceramiales, which represents one of at least three independent expansion events in red algal evolution. Our analyses suggest that these expansions do not involve polyploidy or ancient whole-genome duplications, but in Bostrychia rather stem from the proliferation of a single lineage of giant Plavaka DNA transposons. Consistent with its enlarged genome, Bostrychia has an increased gene content shaped by de novo gene emergence and amplified gene families in common with other Ceramiales, providing insight into the genetic adaptations underpinning this successful and species-rich order. Finally, our sex-specific assemblies resolve the UV sex chromosomes in Bostrychia, which feature expanded gene-rich sex-linked regions. Notably, each sex chromosome harbors a three amino acid loop extension homeodomain (TALE-HD) transcription factor orthologous to ancient regulators of haploid-diploid transitions in other multicellular lineages. Together, our findings offer a unique perspective of the genomic adaptations driving red algal diversity and demonstrate how this red seaweed lineage can provide insight into the evolutionary origins and universal principles underpinning complex multicellularity.
Collapse
Affiliation(s)
- Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - John A West
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Ogden
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Owen McGinley
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rory J Craig
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany.
| |
Collapse
|
2
|
Ali Z, Tan QW, Lim PK, Chen H, Pfeifer L, Julca I, Lee JM, Classen B, de Vries S, de Vries J, Vinter F, Alvarado C, Layens A, Mizrachi E, Motawie MS, Joergensen B, Ulvskov P, Van de Peer Y, Ho BC, Sibout R, Mutwil M. Comparative transcriptomics in ferns reveals key innovations and divergent evolution of the secondary cell walls. NATURE PLANTS 2025; 11:1028-1048. [PMID: 40269175 DOI: 10.1038/s41477-025-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
Ferns are essential for understanding plant evolution; however, their large and intricate genomes have kept their genetic landscape largely unexplored, with only a few genomes sequenced and limited transcriptomic data available. To bridge this gap, we generated extensive RNA-sequencing data across various organs from 22 representative fern species, resulting in high-quality transcriptome assemblies. These data enabled us to construct a time-calibrated phylogeny for ferns, encompassing all major clades, which revealed numerous instances of whole-genome duplication. We highlighted the distinctiveness of fern genetics, discovering that half of the identified gene families are unique to ferns. Our exploration of fern cell walls through biochemical and immunological analyses uncovered the presence of the lignin syringyl unit, along with evidence of its independent evolution in ferns. Additionally, the identification of an unusual sugar in fern cell walls suggests a divergent evolutionary trajectory in cell wall biochemistry, probably influenced by gene duplication and sub-functionalization. To facilitate further research, we have developed an online database that includes preloaded genomic and transcriptomic data for ferns and other land plants. We used this database to demonstrate the independent evolution of lignocellulosic gene modules in ferns. Our findings provide a comprehensive framework illustrating the unique evolutionary journey ferns have undertaken since diverging from the last common ancestor of euphyllophytes more than 360 million years ago.
Collapse
Affiliation(s)
- Zahin Ali
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences, Campus Institute Data Science, University of Goettingen, Göttingen, Germany
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Jia Min Lee
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences, Campus Institute Data Science, University of Goettingen, Göttingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences, Campus Institute Data Science, University of Goettingen, Göttingen, Germany
| | | | | | | | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Mohammed Saddik Motawie
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bodil Joergensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Boon Chuan Ho
- Singapore Botanic Gardens, National Parks Board, Singapore, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | | | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
3
|
Shen C, Li H, Shu L, Huang WZ, Zhu RL. Ancient large-scale gene duplications and diversification in bryophytes illuminate the plant terrestrialization. THE NEW PHYTOLOGIST 2025; 245:2292-2308. [PMID: 39449253 DOI: 10.1111/nph.20221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Large-scale gene duplications (LSGDs) are crucial for evolutionary adaptation and recurrent in vascular plants. However, the role of ancient LSGDs in the terrestrialization and diversification of bryophytes, the second most species-rich group of land plants, remains largely elusive due to limited sampling in bryophytes. Employing the most extensive nuclear gene dataset in bryophytes to date, we reconstructed a time-calibrated phylogenetic tree from 209 species, covering virtually all key bryophyte lineages, for phylogenomic analyses of LSGDs and diversification. We newly identified two ancient LSGDs: one in the most recent common ancestor (MRCA) of extant bryophytes and another in the MRCA of the majority of Jungermanniales s. lato. Duplicated genes from these two LSGDs show significant enrichment in photosynthesis-related processes and structures. Rhizoid-responsive ROOTHAIR DEFECTIVE SIX-LIKE (RSL) genes from ancient LSGDs are present in rhizoidless bryophytes, challenging assumptions about rhizoid absence mechanisms. We highlighted four major diversification rate upshifts, two of which slightly postdated LSGDs, potentially linked to the flourishing of gymnosperms and angiosperms and explaining over 80% of bryophyte diversity. Our findings, supported by extensive bryophyte sampling, highlight the significance of LSGDs in the early terrestrialization and diversification of bryophytes, offering new insights into land plant evolution.
Collapse
Affiliation(s)
- Chao Shen
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Li
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Lei Shu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Wen-Zhuan Huang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| |
Collapse
|
4
|
Zhao J, Liang ZL, Fang SL, Li RJ, Huang CJ, Zhang LB, Robison T, Zhu ZM, Cai WJ, Yu H, He ZR, Zhou XM. Phylogenomics of Paragymnopteris (Cheilanthoideae, Pteridaceae): Insights from plastome, mitochondrial, and nuclear datasets. Mol Phylogenet Evol 2025; 204:108253. [PMID: 39617091 DOI: 10.1016/j.ympev.2024.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Previous studies have shown that at least six genera of the Cheilanthoideae, a subfamily of the fern family Pteridaceae, may not be monophyletic. In these non-monophyletic genera, the Old-World genus Paragymnopteris including approximately five species have long been controversial. In this study, with an extensive taxon sampling of Paragymnopteris, we assembled 19 complete plastomes of all recognized Paragymnopteris species, plastomes of Pellaea (3 species) and Argyrochosma (1 species), as well as transcriptomes from Paragymnopteris (6 species) and Argyrochosma (1 species). We conducted a comprehensive and systematic phylogenomic analysis focusing on the contentious relationships among the genus of Paragymnopteris through 9 plastid makers, the plastomes, mitochondria, nuclear ribosomal cistron genomes, and single-copy nuclear genes. Moreover, we further combined distribution, ploidy, and morphological features to investigate the evolution of Paragymnopteris. The backbone of Paragymnopteris was resolved consistently in the nuclear and plastid phylogenies. Our major results include: (1) Paragymnopteris is not monophyletic including two fully supported clades; (2) confirming that Paragymnopteris delavayi var. intermedia is a close relative of P. delavayi instead of P. marantae var. marantae; (3) the chromosome base number may not be a stable trait which has previously been used as an important character to divide Paragymnopteris into two groups; and (4) gene flow or introgression might be the main reason for the gene trees conflict of Paragymnopteris, but both gene flow and ILS might simultaneously and/or cumulatively act on the conflict of core pellaeids. The robust phylogeny of Paragymnopteris presented here will help us for the future studies of the arid to semi-arid ferns of Cheilanthoideae at the evolutionary, physiological, developmental, and omics-based levels.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Zhen-Long Liang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Rong-Juan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Li-Bing Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA
| | - Tanner Robison
- Department of Biology, Utah State University, Logan, UT, USA
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Wen-Jing Cai
- Yunnan Institute of Forest Inventory and Planning, Kunming, Yunnan 650500, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
5
|
Zhao J, Wang JG, Hu YP, Huang CJ, Fang SL, Wan ZY, Li RJ, Yu H, He ZR, Zhou XM. Phylogenetic Inferences and Historical Biogeography of Onocleaceae. PLANTS (BASEL, SWITZERLAND) 2025; 14:510. [PMID: 40006769 PMCID: PMC11858849 DOI: 10.3390/plants14040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
The family Onocleaceae represents a small family of terrestrial ferns, with four genera and around five species. It has a circumboreal to north temperate distribution, and exhibits a disjunct distribution between Eurasia and North America, including Mexico. Historically, the taxonomy and classification of this family has been subject to debate and contention among scholars, leading to contradictory classifications and disagreements on the number of genera and species within the family. Furthermore, due to this disjunct intercontinental distribution and the lack of detailed study across its wide range, this family merits further study to clarify its distributional pattern. Maximum likelihood and Bayesian phylogenetic reconstructions were based on a concatenated sequence dataset for 17 plastid loci and one nuclear locus, which were generated from 106 ingroup and six outgroup taxa from three families. Phylogenetic analyses support that Onocleaceae is composed of four main clades, and Pentarhizidium was recovered as the first branching lineages in Onocleaceae. Molecular dating and ancestral area reconstruction analyses suggest that the stem group of Onocleaceae originated in Late Cretaceous, with subsequent diversification and establishment of the genera Matteuccia, Onoclea, Onocleopsis, and Pentarhizidium during the Paleogene and Neogene. The ancestors of Matteuccia, Onoclea, and Onocleopsis could have migrated to North America via the Beringian land bridge or North Atlantic land bridge which suggests that the diversification of Matteuccia + Onoclea + Onocleopsis closely aligns with the Paleocene-Eocene Thermal Maximum (PETM). In addition, these results suggest that Onocleaceae species diversity peaks during the late Neogene to Quaternary. Studies such as this enhance our understanding of the mechanisms and climatic conditions shaping disjunct distribution in ferns and lycophytes of eastern Asia, North America, and Mexico and contribute to a growing body of evidence from other taxa, to advance our understanding of the origins and migration of plants across continents.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Jia-Guan Wang
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China;
| | - Yu-Ping Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Zi-Yue Wan
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Rong-Juan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China;
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| |
Collapse
|
6
|
Jiang LJ, Zhao J, Wang JG, Landrein S, Shi JP, Huang CJ, Luo M, Zhou XM, Niu HB, He ZR. Deciphering the evolution and biogeography of ant-ferns Lecanopteris s.s. Mol Phylogenet Evol 2024; 201:108199. [PMID: 39278383 DOI: 10.1016/j.ympev.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Southeast Asia is a biodiversity hotspot characterized by a complex paleogeography, and its Polypodiopsida flora is particularly diverse. While hybridization is recognized as common in ferns, further research is needed to investigate the relationship between hybridization events and fern diversity. Lecanopteris s.s., an ant-associated fern, has been subject to debate regarding species delimitations primarily due to limited DNA markers and species sampling. Our study integrates 22 newly generated plastomes, 22 transcriptomes, and flow cytometry of all native species along with two cultivated hybrids. Our objective is to elucidate the reticulate evolutionary history within Lecanopteris s.s. through the integration of phylobiogeographic reconstruction, gene flow inference, and genome size estimation. Key findings of our study include: (1) An enlarged plastome size (178-187 Kb) in Lecanopteris s.s., attributed to extreme expansion of the Inverted Repeat (IR) regions; (2) The traditional 'pumila' and 'crustacea' groups are paraphyletic; (3) Significant cytonuclear discordance attributed to gene flow; (4) Natural hybridization and introgression in the 'pumila' and 'darnaedii' groups; (5) L. luzonensis is the maternal parent of L. 'Yellow Tip', with L. pumila suggested as a possible paternal parent; (6) L. 'Tatsuta' is a hybrid between L. luzonensis and L. crustacea; (7) Lecanopteris s.s. first diverged during the Neogene and then during the middle Miocene climatic optimum in the Indochina and Sundaic regions. In conclusion, the biogeographic history and speciation of Lecanopteris have been profoundly shaped by past climate changes and geodynamics of Southeast Asia. Dispersals, hybridization and introgression between species act as pivotal factors in the evolutionary trajectory of Lecanopteris s.s.. This research provides a robust framework for further exploration and understanding of the complex dynamics driving the diversification and distribution patterns within Polypodiaceae subfamily Microsoroideae.
Collapse
Affiliation(s)
- Li-Ju Jiang
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Sven Landrein
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong Special Administrative Region of China
| | - Ji-Pu Shi
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Miao Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Hong-Bin Niu
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China.
| |
Collapse
|
7
|
Zhao J, Huang CJ, Jiang LJ, He ZR, Yang S, Zhu ZM, Zhang L, Yu H, Zhou XM, Wang JG. Phylogenomic analyses of the pantropical Platycerium Desv. (Platycerioideae) reveal their complex evolution and historical biogeography. Mol Phylogenet Evol 2024; 201:108213. [PMID: 39393764 DOI: 10.1016/j.ympev.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Platycerium is a genus of pantropical epiphytic ferns consisting of ca. 18 species and are highly sought after by horticultural enthusiasts. Although the monophyly of this genus has been well supported in previous molecular studies, as an intercontinentally disjunct genus, the origin and distribution pattern of Platycerium were elusive and controversial. This is mainly due to limited taxon sampling, a plastid representing only a single coalescent history, the lack of fossil evidence, and so on. Here, by utilizing genome-skimming sequencing, transcriptome sequencing, and flow cytometry, we integrated chloroplast genomes, data of single-copy nuclear genes, ploidy levels, morphology, and geographic distribution to understand the species phylogeny and the evolutionary and biogeographic history of Platycerium. Our major results include: (1) based on both plastid and nuclear datasets, Platycerium is consistently resolved into three fully supported clades: the Afro-American (AA) clade, the Javan-Australian (JA) clade, and the Malayan-Asian (MA) clade. The AA clade and MA clade are further divided into three and two subclades, respectively; (2) a large amount of gene tree conflict, as well as cytonuclear discordance, was found and can be explained by hybridization and incomplete lineage sorting, and most of the hybridization hypotheses represented ancient hybridization events; (3) through molecular dating, the crown age of Platycerium is determined to be at approximately 32.79 Ma based on the plastid dataset or 29.08 Ma based on the nuclear dataset in the Middle Oligocene; (4) ancestral area reconstruction analysis from different datasets showed that Platycerium most likely originated from Indochina; (5) current distribution patterns are resultant from long-distance dispersals, ancient orogeny, and an ancient climate event; and (6) species diversification was driven by polyploidization, dispersal, and hybridization. This study presented here will help understand the evolution of tropical plant flora and provide a reference for the cultivation and breeding of staghorn ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Li-Ju Jiang
- Gardening and Horticulture Center, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Shuai Yang
- Plant Fairyland, Boda Road, Chenggong District, Kunming 650503, Yunnan, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| |
Collapse
|
8
|
Lin J, Dai H, Yuan J, Tang C, Ma B, Xu J. Arsenic-induced enhancement of diazotrophic recruitment and nitrogen fixation in Pteris vittata rhizosphere. Nat Commun 2024; 15:10003. [PMID: 39562570 PMCID: PMC11577039 DOI: 10.1038/s41467-024-54392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Heavy metal contamination poses an escalating global challenge to soil ecosystems, with hyperaccumulators playing a crucial role in environmental remediation and resource recovery. The enrichment of diazotrophs and resulting nitrogen accumulation promoted hyperaccumulator growth and facilitated phytoremediation. Nonetheless, the regulatory mechanism of hyperaccumulator biological nitrogen fixation has remained elusive. Here, we report the mechanism by which arsenic regulates biological nitrogen fixation in the arsenic-hyperaccumulator Pteris vittata. Field investigations and greenhouse experiments, based on multi-omics approaches, reveal that elevated arsenic stress induces an enrichment of key diazotrophs, enhances plant nitrogen acquisition, and thus improves plant growth. Metabolomic analysis and microfluidic experiments further demonstrate that the upregulation of specific root metabolites plays a crucial role in recruiting key diazotrophic bacteria. These findings highlight the pivotal role of nitrogen-acquisition mechanisms in the arsenic hyperaccumulation of Pteris vittata, and provide valuable insights into the plant stress resistance.
Collapse
Affiliation(s)
- Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Hengyi Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Jing Yuan
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Caixian Tang
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant & Soil Sciences, Bundoora, VIC, Australia
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Pelosi JA, Davenport R, Barbazuk WB, Sessa EB, Kuo L. An efficient and effective RNA extraction protocol for ferns. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11617. [PMID: 39628544 PMCID: PMC11610414 DOI: 10.1002/aps3.11617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/01/2024] [Accepted: 06/07/2024] [Indexed: 12/06/2024]
Abstract
Premise The extraction of high-quality RNA is the critical first step for the analysis of gene expression and gene space. This remains particularly challenging in plants, and especially in ferns, where the disruption of the cell wall and separation of organic compounds from nucleic acids is not trivial. Methods We developed a cetyltrimethylammonium bromide (CTAB)-based RNA extraction protocol that consistently performs well across a large phylogenetic breadth of ferns-a lineage of plants high in secondary compounds-and in an array of tissue types. Two alternative options (precipitation vs. clean-up without intermediate precipitation) are presented, both of which yield high-quality RNA extracts with optical density (OD) ratios of OD 260/280 = 1.9-2.1 and OD 260/230 > 1.6, and RNA integrity numbers >7. Conclusions This study presents an efficient protocol for the extraction of high-quality RNA from multiple tissues and across the fern phylogeny, a clade of plants that still lags behind other major lineages in the development of genomic resources. We hope that this method can be used to help facilitate the closing of this gap.
Collapse
Affiliation(s)
- Jessie A. Pelosi
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - Ruth Davenport
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - W. Brad Barbazuk
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
- Genetics InstituteUniversity of FloridaGainesville32611FloridaUSA
| | - Emily B. Sessa
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
- William and Lynda Steere HerbariumNew York Botanical Garden, BronxNew York10458USA
| | - Li‐Yaung Kuo
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
10
|
Sun N, Han F, Wang S, Shen F, Liu W, Fan W, Bi C. Comprehensive analysis of the Lycopodium japonicum mitogenome reveals abundant tRNA genes and cis-spliced introns in Lycopodiaceae species. FRONTIERS IN PLANT SCIENCE 2024; 15:1446015. [PMID: 39228832 PMCID: PMC11368720 DOI: 10.3389/fpls.2024.1446015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Lycophytes and ferns represent one of the earliest-diverging lineages of vascular plants, with the Lycopodiaceae family constituting the basal clade among lycophytes. In this research, we successfully assembled and annotated the complete Lycopodium japonicum Thunb. (L. japonicum) mitochondrial genome (mitogenome) utilizing PacBio HiFi sequencing data, resulting in a single circular molecule with a size of 454,458 bp. 64 unique genes were annotated altogether, including 34 protein-coding genes, 27 tRNAs and 3 rRNAs. It also contains 32 group II introns, all of which undergo cis-splicing. We identified 195 simple sequence repeats, 1,948 dispersed repeats, and 92 tandem repeats in the L. japonicum mitogenome. Collinear analysis indicated that the mitogenomes of Lycopodiaceae are remarkably conserved compared to those of other vascular plants. We totally identified 326 RNA editing sites in 31 unique protein-coding genes with 299 sites converting cytosine to uracil and 27 sites the reverse. Notably, the L. japonicum mitogenome has small amounts foreign DNA from plastid or nuclear origin, accounting for only 2.81% of the mitogenome. The maximum likelihood phylogenetic analysis based on 23 diverse land plant mitogenomes and plastid genomes supports the basal position of lycophytes within vascular plants and they form a sister clade to all other vascular lineages, which is consistent with the PPG I classification system. As the first reported mitogenome of Lycopodioideae subfamily, this study enriches our understanding of Lycopodium mitogenomes, and sets the stage for future research on mitochondrial diversity and evolution within the lycophytes and ferns.
Collapse
Affiliation(s)
- Ning Sun
- College of Information Science and Technology and Artificial Intelligence, Nanjing Forestry University, Nanjing, China
| | - Fuchuan Han
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Suyan Wang
- College of Information Science and Technology and Artificial Intelligence, Nanjing Forestry University, Nanjing, China
| | - Fei Shen
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- New Cornerstone Science Laboratory, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Changwei Bi
- College of Information Science and Technology and Artificial Intelligence, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Kang JS, Yu JG, Xiang QP, Zhang XC. The Possible Earliest Allopolyploidization in Tracheophytes Revealed by Phylotranscriptomics and Morphology of Selaginellaceae. Mol Biol Evol 2024; 41:msae153. [PMID: 39101470 PMCID: PMC11299036 DOI: 10.1093/molbev/msae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Selaginellaceae, originated in the Carboniferous and survived the Permian-Triassic mass extinction, is the largest family of lycophyte, which is sister to other tracheophytes. It stands out from tracheophytes by exhibiting extraordinary habitat diversity and lacking polyploidization. The organelle genome-based phylogenies confirmed the monophyly of Selaginella, with six or seven subgenera grouped into two superclades, but the phylogenetic positions of the enigmatic Selaginella sanguinolenta clade remained problematic. Here, we conducted a phylogenomic study on Selaginellaceae utilizing large-scale nuclear gene data from RNA-seq to elucidate the phylogeny and explore the causes of the phylogenetic incongruence of the S. sanguinolenta clade. Our phylogenetic analyses resolved three different positions of the S. sanguinolenta clade, which were supported by the sorted three nuclear gene sets, respectively. The results from the gene flow test, species network inference, and plastome-based phylogeny congruently suggested a probable hybrid origin of the S. sanguinolenta clade involving each common ancestor of the two superclades in Selaginellaceae. The hybrid hypothesis is corroborated by the evidence from rhizophore morphology and spore micromorphology. The chromosome observation and Ks distributions further suggested hybridization accompanied by polyploidization. Divergence time estimation based on independent datasets from nuclear gene sets and plastid genome data congruently inferred that allopolyploidization occurred in the Early Triassic. To our best knowledge, the allopolyploidization in the Mesozoic reported here represents the earliest record of tracheophytes. Our study revealed a unique triad of phylogenetic positions for a hybrid-originated group with comprehensive evidence and proposed a hypothesis for retaining both parental alleles through gene conversion.
Collapse
Affiliation(s)
- Jong-Soo Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ji-Gao Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Qiao-Ping Xiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xian-Chun Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
12
|
Xu P, Zhang L, Lu L, Zhu Y, Gao D, Liu S. Patterns in Genome-Wide Codon Usage Bias in Representative Species of Lycophytes and Ferns. Genes (Basel) 2024; 15:887. [PMID: 39062666 PMCID: PMC11276031 DOI: 10.3390/genes15070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The latest research shows that ferns and lycophytes have distinct evolutionary lineages. The codon usage patterns of lycophytes and ferns have not yet been documented. To investigate the gene expression profiles across various plant lineages with respect to codon usage, analyze the disparities and determinants of gene evolution in primitive plant species, and identify appropriate exogenous gene expression platforms, the whole-genome sequences of four distinct species were retrieved from the NCBI database. The findings indicated that Ceratopteris richardii, Adiantum capillus-veneris, and Selaginella moellendorffii exhibited an elevated A/U content in their codon base composition and a tendency to end with A/U. Additionally, S. capillus-veneris had more C/G in its codons and a tendency to end with C/G. The ENC values derived from both ENC-plot and ENC-ratio analyses deviated significantly from the standard curves, suggesting that the codon usage preferences of these four species were primarily influenced by genetic mutations and natural selection, with natural selection exerting a more prominent influence. This finding was further supported by PR2-Plot, neutrality plot analysis, and COA. A combination of RSCU and ENC values was used as a reference criterion to rank the codons and further identify the optimal codons. The study identified 24 high-frequency codons in C. richardii, A. capillus-veneris, and Diphasiastrum complanatum, with no shared optimal codons among the four species. Arabidopsis thaliana and Ginkgo biloba exhibited similar codon preferences to the three species, except for S. moellendorffii. This research offers a theoretical framework at the genomic codon level for investigating the phylogenetic relationships between lycophytes and ferns, shedding light on gene codon optimization and its implications for genetic engineering in breeding.
Collapse
Affiliation(s)
- Piaoran Xu
- China-Malaysia National Joint Laboratory, Biomedical Reserch Center, Northwest Minzu University, Lanzhou 730030, China; (P.X.); (L.L.); (Y.Z.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| | - Lijuan Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| | - Liping Lu
- China-Malaysia National Joint Laboratory, Biomedical Reserch Center, Northwest Minzu University, Lanzhou 730030, China; (P.X.); (L.L.); (Y.Z.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| | - Yanli Zhu
- China-Malaysia National Joint Laboratory, Biomedical Reserch Center, Northwest Minzu University, Lanzhou 730030, China; (P.X.); (L.L.); (Y.Z.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| | - Dandan Gao
- China-Malaysia National Joint Laboratory, Biomedical Reserch Center, Northwest Minzu University, Lanzhou 730030, China; (P.X.); (L.L.); (Y.Z.)
| | - Shanshan Liu
- China-Malaysia National Joint Laboratory, Biomedical Reserch Center, Northwest Minzu University, Lanzhou 730030, China; (P.X.); (L.L.); (Y.Z.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| |
Collapse
|
13
|
Sidharthan VK, Reddy V, Kiran G, Rajeswari V, Baranwal VK, Kumar MK, Kumar KS. Probing of plant transcriptomes reveals the hidden genetic diversity of the family Secoviridae. Arch Virol 2024; 169:150. [PMID: 38898334 DOI: 10.1007/s00705-024-06076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Secoviruses are single-stranded RNA viruses that infect plants. In the present study, we identified 61 putative novel secoviral genomes in various plant species by mining publicly available plant transcriptome data. These viral sequences represent the genomes of 13 monopartite and 48 bipartite secovirids. The genome sequences of 52 secovirids were coding-complete, and nine were partial. Except for small open reading frames (ORFs) determined in waikaviral genomes and RNA2 of torradoviruses, all of the recovered genomes/genome segments contained a large ORF encoding a polyprotein. Based on genome organization and phylogeny, all but three of the novel secoviruses were assigned to different genera. The genome organization of two identified waika-like viruses resembled that of the recently identified waika-like virus Triticum aestivum secovirus. Phylogenetic analysis revealed a pattern of host-virus co-evolution in a few waika- and waika-like viruses and increased phylogenetic diversity of nepoviruses. The study provides a basis for further investigation of the biological properties of these novel secoviruses.
Collapse
Affiliation(s)
- V Kavi Sidharthan
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India.
| | - Vijayprakash Reddy
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - G Kiran
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - V Rajeswari
- School of Agricultural Sciences, Malla Reddy University, Hyderabad, India
| | - V K Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - M Kiran Kumar
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| | - K Sudheer Kumar
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India
| |
Collapse
|
14
|
Xue B, Huang E, Zhao G, Wei R, Song Z, Zhang X, Yao G. 'Out of Africa' origin of the pantropical staghorn fern genus Platycerium (Polypodiaceae) supported by plastid phylogenomics and biogeographical analysis. ANNALS OF BOTANY 2024; 133:697-710. [PMID: 38230804 PMCID: PMC11082476 DOI: 10.1093/aob/mcae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND AND AIMS The staghorn fern genus Platycerium is one of the most commonly grown ornamental ferns, and it evolved to occupy a typical pantropical intercontinental disjunction. However, species-level relationships in the genus have not been well resolved, and the spatiotemporal evolutionary history of the genus also needs to be explored. METHODS Plastomes of all the 18 Platycerium species were newly sequenced. Using plastome data, we reconstructed the phylogenetic relationships among Polypodiaceae members with a focus on Platycerium species, and further conducted molecular dating and biogeographical analyses of the genus. KEY RESULTS The present analyses yielded a robustly supported phylogenetic hypothesis of Platycerium. Molecular dating results showed that Platycerium split from its sister genus Hovenkampia ~35.2 million years ago (Ma) near the Eocene-Oligocene boundary and began to diverge ~26.3 Ma during the late Oligocene, while multiple speciation events within Platycerium occurred during the middle to late Miocene. Biogeographical analysis suggested that Platycerium originated in tropical Africa and then dispersed eastward to southeast Asia-Australasia and westward to neotropical areas. CONCLUSIONS Our analyses using a plastid phylogenomic approach improved our understanding of the species-level relationships within Platycerium. The global climate changes of both the Late Oligocene Warming and the cooling following the mid-Miocene Climate Optimum may have promoted the speciation of Platycerium, and transoceanic long-distance dispersal is the most plausible explanation for the pantropical distribution of the genus today. Our study investigating the biogeographical history of Platycerium provides a case study not only for the formation of the pantropical intercontinental disjunction of this fern genus but also the 'out of Africa' origin of plant lineages.
Collapse
Affiliation(s)
- Bine Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Erfeng Huang
- Guangxi Nanning Roy Garden Co., Ltd, Nanning 530227, China
| | - Guohua Zhao
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhuqiu Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xianchun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Lindsey CR, Knoll AH, Herron MD, Rosenzweig F. Fossil-calibrated molecular clock data enable reconstruction of steps leading to differentiated multicellularity and anisogamy in the Volvocine algae. BMC Biol 2024; 22:79. [PMID: 38600528 PMCID: PMC11007952 DOI: 10.1186/s12915-024-01878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Throughout its nearly four-billion-year history, life has undergone evolutionary transitions in which simpler subunits have become integrated to form a more complex whole. Many of these transitions opened the door to innovations that resulted in increased biodiversity and/or organismal efficiency. The evolution of multicellularity from unicellular forms represents one such transition, one that paved the way for cellular differentiation, including differentiation of male and female gametes. A useful model for studying the evolution of multicellularity and cellular differentiation is the volvocine algae, a clade of freshwater green algae whose members range from unicellular to colonial, from undifferentiated to completely differentiated, and whose gamete types can be isogamous, anisogamous, or oogamous. To better understand how multicellularity, differentiation, and gametes evolved in this group, we used comparative genomics and fossil data to establish a geologically calibrated roadmap of when these innovations occurred. RESULTS Our ancestral-state reconstructions, show that multicellularity arose independently twice in the volvocine algae. Our chronograms indicate multicellularity evolved during the Carboniferous-Triassic periods in Goniaceae + Volvocaceae, and possibly as early as the Cretaceous in Tetrabaenaceae. Using divergence time estimates we inferred when, and in what order, specific developmental changes occurred that led to differentiated multicellularity and oogamy. We find that in the volvocine algae the temporal sequence of developmental changes leading to differentiated multicellularity is much as proposed by David Kirk, and that multicellularity is correlated with the acquisition of anisogamy and oogamy. Lastly, morphological, molecular, and divergence time data suggest the possibility of cryptic species in Tetrabaenaceae. CONCLUSIONS Large molecular datasets and robust phylogenetic methods are bringing the evolutionary history of the volvocine algae more sharply into focus. Mounting evidence suggests that extant species in this group are the result of two independent origins of multicellularity and multiple independent origins of cell differentiation. Also, the origin of the Tetrabaenaceae-Goniaceae-Volvocaceae clade may be much older than previously thought. Finally, the possibility of cryptic species in the Tetrabaenaceae provides an exciting opportunity to study the recent divergence of lineages adapted to live in very different thermal environments.
Collapse
Affiliation(s)
- Charles Ross Lindsey
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
| | - Matthew D Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, 30332, USA.
| |
Collapse
|
16
|
Zhu XG, Hutang GR, Gao LZ. Ancient Duplication and Lineage-Specific Transposition Determine Evolutionary Trajectory of ERF Subfamily across Angiosperms. Int J Mol Sci 2024; 25:3941. [PMID: 38612750 PMCID: PMC11011629 DOI: 10.3390/ijms25073941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
AP2/ERF transcription factor family plays an important role in plant development and stress responses. Previous studies have shed light on the evolutionary trajectory of the AP2 and DREB subfamilies. However, knowledge about the evolutionary history of the ERF subfamily in angiosperms still remains limited. In this study, we performed a comprehensive analysis of the ERF subfamily from 107 representative angiosperm species by combining phylogenomic and synteny network approaches. We observed that the expansion of the ERF subfamily was driven not only by whole-genome duplication (WGD) but also by tandem duplication (TD) and transposition duplication events. We also found multiple transposition events in Poaceae, Brassicaceae, Poales, Brassicales, and Commelinids. These events may have had notable impacts on copy number variation and subsequent functional divergence of the ERF subfamily. Moreover, we observed a number of ancient tandem duplications occurred in the ERF subfamily across angiosperms, e.g., in Subgroup IX, IXb originated from ancient tandem duplication events within IXa. These findings together provide novel insights into the evolution of this important transcription factor family.
Collapse
Affiliation(s)
- Xun-Ge Zhu
- Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge-Ran Hutang
- Institute of Forest Industry, Yunnan Academy of Forestry and Grassland Science, Kunming 650201, China;
| | - Li-Zhi Gao
- Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650201, China;
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Wang M, Zhang R, Shu JP, Zheng XL, Wu XY, Chen JB, Wang MN, Shen H, Yan YH. Whole Genome Duplication Events Likely Contributed to the Aquatic Adaptive Evolution of Parkerioideae. PLANTS (BASEL, SWITZERLAND) 2024; 13:521. [PMID: 38498522 PMCID: PMC10893450 DOI: 10.3390/plants13040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
As the only aquatic lineage of Pteridaceae, Parkerioideae is distinct from many xeric-adapted species of the family and consists of the freshwater Ceratopteris species and the only mangrove ferns from the genus Acrostichum. Previous studies have shown that whole genome duplication (WGD) has occurred in Parkerioideae at least once and may have played a role in their adaptive evolution; however, more in-depth research regarding this is still required. In this study, comparative and evolutionary transcriptomics analyses were carried out to identify WGDs and explore their roles in the environmental adaptation of Parkerioideae. Three putative WGD events were identified within Parkerioideae, two of which were specific to Ceratopteris and Acrostichum, respectively. The functional enrichment analysis indicated that the lineage-specific WGD events have played a role in the adaptation of Parkerioideae to the low oxygen concentrations of aquatic habitats, as well as different aquatic environments of Ceratopteris and Acrostichum, such as the adaptation of Ceratopteris to reduced light levels and the adaptation of Acrostichum to high salinity. Positive selection analysis further provided evidence that the putative WGD events may have facilitated the adaptation of Parkerioideae to changes in habitat. Moreover, the gene family analysis indicated that the plasma membrane H+-ATPase (AHA), vacuolar H+-ATPase (VHA), and suppressor of K+ transport growth defect 1 (SKD1) may have been involved in the high salinity adaptation of Acrostichum. Our study provides new insights into the evolution and adaptations of Parkerioideae in different aquatic environments.
Collapse
Affiliation(s)
- Meng Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Rui Zhang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (R.Z.); (H.S.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jiang-Ping Shu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xi-Long Zheng
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527322, China;
| | - Xin-Yi Wu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Jian-Bing Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Mei-Na Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| | - Hui Shen
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (R.Z.); (H.S.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yue-Hong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (M.W.); (J.-P.S.); (X.-Y.W.); (J.-B.C.); (M.-N.W.)
| |
Collapse
|
18
|
Su Y, Feng T, Liu CB, Huang H, Wang YL, Fu X, Han ML, Zhang X, Huang X, Wu JC, Song T, Shen H, Yang X, Xu L, Lü S, Chao DY. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. NATURE PLANTS 2023; 9:1968-1977. [PMID: 37932483 DOI: 10.1038/s41477-023-01555-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer1,2. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties.
Collapse
Affiliation(s)
- Yu Su
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Chu-Bin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ya-Ling Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojuan Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Mei-Ling Han
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Chen Wu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shen
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
| | - Xianpeng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
19
|
Li Y, Ebihara A, Nosova N, Tan ZZ, Cui YM. First Fossil Record of Trichomanes sensu lato (Hymenophyllaceae) from the Mid-Cretaceous Kachin Amber, Myanmar. Life (Basel) 2023; 13:1709. [PMID: 37629566 PMCID: PMC10455793 DOI: 10.3390/life13081709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Hymenophyllaceae (filmy ferns), with ca. 430 species, are the most species-rich family of early diverging leptosporangiate ferns but have a poor fossil record dating back to the Late Triassic period. Traditionally, Hymenophyllaceae comprise two species-rich genera or clades: Hymenophyllum (hymenophylloids) and Trichomanes sensu lato (s.l.) (trichomanoids). Unequivocal fossils of Hymenophyllum have been reported from the Early Cretaceous of central Mongolia and the early Eocene of Okanogan Highlands, Washington, USA. However, despite being a highly diversified lineage with an estimated 184 extant species, Trichomanes s.l. lack a definitive fossil record, which severely affects the reliability of the molecular dating of this group. Here, we report the first unequivocal fossil record of Trichomanes s.l. as T. angustum comb. nov. on the basis of fertile material with tubular involucres and long exserted receptacles from the mid-Cretaceous Kachin amber, Myanmar. This species was previously tentatively assigned to Hymenophyllites due to a lack of fertile evidence. Inferred to be an epiphytic fern, T. angustum further enriches the species diversity of the epiphytic palaeocommunities in the mid-Cretaceous Kachin amber, which are mainly composed of Porellalean leafy liverworts and Dicranalean and Hypnodendralean mosses. Fossil records indicate that Hymenophyllaceae probably originated in the tropical Pangea at the latest in the Triassic when all continents were coalesced into a single landmass and had already accumulated some notable diversity in low-middle latitude areas of Laurasia by the mid-Cretaceous period.
Collapse
Affiliation(s)
- Ya Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Atsushi Ebihara
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan;
| | - Natalya Nosova
- Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popova Str. 2, Saint Petersburg 197376, Russia;
| | - Zhen-Zhen Tan
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yi-Ming Cui
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| |
Collapse
|
20
|
Wang S, Gao J, Li Z, Chen K, Pu W, Feng C. Phylotranscriptomics supports numerous polyploidization events and phylogenetic relationships in Nicotiana. FRONTIERS IN PLANT SCIENCE 2023; 14:1205683. [PMID: 37575947 PMCID: PMC10421670 DOI: 10.3389/fpls.2023.1205683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
Introduction Nicotiana L. (Solanaceae) is of great scientific and economic importance, and polyploidization has been pivotal in shaping this genus. Despite many previous studies on the Nicotiana phylogenetic relationship and hybridization, evidence from whole genome data is still lacking. Methods In this study, we obtained 995 low-copy genes and plastid transcript fragments from the transcriptome datasets of 26 Nicotiana species, including all sections. We reconstructed the phylogenetic relationship and phylogenetic network of diploid species. Results The incongruence among gene trees showed that the formation of N. sylvestris involved incomplete lineage sorting. The nuclear-plastid discordance and nuclear introgression absence indicated that organelle capture from section Trigonophyllae was involved in forming section Petunioides. Furthermore, we analyzed the evolutionary origin of polyploid species and dated the time of hybridization events based on the analysis of PhyloNet, sequence similarity search, and phylogeny of subgenome approaches. Our results highly evidenced the hybrid origins of five polyploid sections, including sections Nicotiana, Repandae, Rusticae, Polydicliae, and Suaveolentes. Notably, we provide novel insights into the hybridization event of section Polydicliae and Suaveolentes. The section Polydicliae formed from a single hybridization event between maternal progenitor N. attenuata and paternal progenitor N. undulata; the N. sylvestris (paternal progenitor) and the N. glauca (maternal progenitor) were involved in the formation of section Suaveolentes. Discussion This study represents the first exploration of Nicotiana polyploidization events and phylogenetic relationships using the high-throughput RNA-seq approach. It will provide guidance for further studies in molecular systematics, population genetics, and ecological adaption studies in Nicotiana and other related species.
Collapse
Affiliation(s)
- Shuaibin Wang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Junping Gao
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Zhaowu Li
- Puai Medical College, Shaoyang University, Shaoyang, China
| | - Kai Chen
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of ex-situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| |
Collapse
|
21
|
Sessa EB, Masalia RR, Arrigo N, Barker MS, Pelosi JA. GOgetter: A pipeline for summarizing and visualizing GO slim annotations for plant genetic data. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11536. [PMID: 37601315 PMCID: PMC10439822 DOI: 10.1002/aps3.11536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Premise The functional annotation of genes is a crucial component of genomic analyses. A common way to summarize functional annotations is with hierarchical gene ontologies, such as the Gene Ontology (GO) Resource. GO includes information about the cellular location, molecular function(s), and products/processes that genes produce or are involved in. For a set of genes, summarizing GO annotations using pre-defined, higher-order terms (GO slims) is often desirable in order to characterize the overall function of the data set, and it is impractical to do this manually. Methods and Results The GOgetter pipeline consists of bash and Python scripts. From an input FASTA file of nucleotide gene sequences, it outputs text and image files that list (1) the best hit for each input gene in a set of reference gene models, (2) all GO terms and annotations associated with those hits, and (3) a summary and visualization of GO slim categories for the data set. These output files can be queried further and analyzed statistically, depending on the downstream need(s). Conclusions GO annotations are a widely used "universal language" for describing gene functions and products. GOgetter is a fast and easy-to-implement pipeline for obtaining, summarizing, and visualizing GO slim categories associated with a set of genes.
Collapse
Affiliation(s)
| | - Rishi R. Masalia
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | | | - Michael S. Barker
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | | |
Collapse
|
22
|
Yañez A, Escapa IH, Choo TYS. Fertile Goeppertella from the Jurassic of Patagonia: mosaic evolution in the Dipteridaceae-Matoniaceae lineage. AOB PLANTS 2023; 15:plad007. [PMID: 37426174 PMCID: PMC10324646 DOI: 10.1093/aobpla/plad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/20/2023] [Indexed: 07/11/2023]
Abstract
Goeppertella has been postulated as a monophyletic group, whose precise position within the Gleichenoid families Dipteriaceae and Matoniaceae, remains poorly understood. Previously described Goeppertella specimens are based on frond fragments and its fertile morphology is represented by a few, poorly preserved specimens. We describe a new species based on the largest collection of fertile specimens known to date and discuss the evolutionary history of the genus based on the additional reproductive characters provided by the fossils described. Plant impressions were collected in Early Jurassic sediments of Patagonia, Argentina. The specimens were described, and silicone rubber casts were developed to examine in detail vegetative and reproductive features. The new species was compared with other Goeppertella species. Finally, a backbone analysis was performed in the context of a previously published combined matrix of Dipteridaceae, using the maximum parsimony criterion. The new species is described based on a combination of features that have not been previously reported. The vegetative morphology shows affinities with most fossil and extant Dipteriaceae, contrasting with the reproductive morphology which is more comparable with the scarce number of fossil dipteridaceous forms and it is more spread in the sister family, Matoniaceae. The backbone analysis indicates that the position of the new species vary among different positions among Dipteridaceae and Matoniaceae. Additional analyses, discriminating the signal of reproductive and vegetative character, are provided to discuss the base of this uncertainty. We consider Goeppertella as a member of the family Dipteridaceae since we interpret most shared features with Matoniaceae as plesiomorphic conditions for the family. In contrast, most shared features with Dipteridaceae represent apomorphies for the group. Thus, Goeppertella would represent an early diverging genus in Dipteridaceae, considering the venation characters as the most important in order to define the family.
Collapse
Affiliation(s)
| | - Ignacio H Escapa
- Consejo Nacional de Investigaciones Científicas y Técnicas, Museo Paleontológico Egidio Feruglio, Trelew, Chubut 9100, Argentina
| | | |
Collapse
|
23
|
Zhao J, Zhou X, Fang S, Zhu Z, Li Y, Yu H, He Z. Transcriptome-Based Study on the Phylogeny and Hybridization of Marattialean Ferns (Marattiaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:2237. [PMID: 37375862 DOI: 10.3390/plants12122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Marattiaceae is a phylogenetically isolated family of tropical eusporangiate ferns including six genera with more than one-hundred species. In Marattiaceae, monophyly of genera has been well-supported phylogenetically. However, the phylogenetic relationships among them were elusive and controversial. Here, a dataset of 26 transcriptomes (including 11 newly generated) were used to assess single-copy nuclear genes and to obtain the organelle gene sequences. Through phylotranscriptomic analysis, the phylogeny and hybridization events of Marattiaceae were explored and a robust phylogenomic framework for the evolution of Marattiaceae was provided. Using both concatenation- and coalescent-based phylogenies, the gene-tree discordance, incomplete lineage sorting (ILS) simulations, and network inference were examined. Except the low support with mitochondrial genes of Marattiaceae, nuclear genes and chloroplast genes strongly supported a sister relationship between Marattiaceae and leptosporangiate ferns. At the genus level, all phylogenetic analysis based on nuclear genes datasets recovered five genera in Marattiaceae as monophyletic with strong support. Danaea and Ptisana were the first two diverged clades in turn. Christensenia was a sister clade to the clade Marattia + Angiopteris s.l. In Angiopteris s.l., three clades (Angiopteris s.s., the Archangiopteris group, and An. sparsisora) were well identified with maximum support. The Archangiopteris group was derived from Angiopteris s.s. at ca. 18 Ma. The putative hybrid species An. sparsisora between Angiopteris s.s. and the Archangiopteris group was verified by the species network analyses and the maternal plastid genes. This study will improve our understanding for using the phylotranscriptomic method to explore phylogeny and investigate hybridization events for difficult taxa in ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| | - Xinmao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shaoli Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhangming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuxin Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhaorong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
24
|
Sidharthan VK, Rajeswari V, Baranwal VK. Broadening the host range and genetic diversity of waikaviruses. Virology 2023; 582:106-113. [PMID: 37043910 DOI: 10.1016/j.virol.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Waikaviruses are monopartite, positive sense, single-stranded RNA viruses that cause economically important plant diseases. Despite their importance, waikaviruses are poorly understood and only ten members are currently recognized. The present study on Sequence Read Archive (SRA)-based data-driven virus discovery (DDVD) identified 22 putative new waikaviruses, nearly doubling the number of known waikaviruses, in SRA libraries of diverse plant species, from ferns to trees. Besides, a highly divergent secoviral sequence with distinct genome features was identified in a wheat transcriptome. Other significant findings of the study include identification of a new waikavirus in a library derived from diseased water chestnut sample wherein a caulimovirus was reported, prediction of coiled-coils in hypothetical protein region of waikaviral polyprotein alignment and phylogenetic clustering of tree-infecting waikaviruses. The study not only reiterates the importance of DDVD in unveiling hitherto hidden viral sequences in plant SRA libraries but also deepens our understanding of waikaviral diversity.
Collapse
Affiliation(s)
- V Kavi Sidharthan
- Division of Genetics and Tree Improvement, ICFRE-Institute of Forest Biodiversity, Hyderabad, India.
| | - V Rajeswari
- School of Agricultural Sciences, Malla Reddy University, Hyderabad, India
| | - V K Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
25
|
Huang J, Xu W, Zhai J, Hu Y, Guo J, Zhang C, Zhao Y, Zhang L, Martine C, Ma H, Huang CH. Nuclear phylogeny and insights into whole-genome duplications and reproductive development of Solanaceae plants. PLANT COMMUNICATIONS 2023:100595. [PMID: 36966360 PMCID: PMC10363554 DOI: 10.1016/j.xplc.2023.100595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Solanaceae, the nightshade family, have ∼2700 species, including the important crops potato and tomato, ornamentals, and medicinal plants. Several sequenced Solanaceae genomes show evidence for whole-genome duplication (WGD), providing an excellent opportunity to investigate WGD and its impacts. Here, we generated 93 transcriptomes/genomes and combined them with 87 public datasets, for a total of 180 Solanaceae species representing all four subfamilies and 14 of 15 tribes. Nearly 1700 nuclear genes from these transcriptomic/genomic datasets were used to reconstruct a highly resolved Solanaceae phylogenetic tree with six major clades. The Solanaceae tree supports four previously recognized subfamilies (Goetzeioideae, Cestroideae, Nicotianoideae, and Solanoideae) and the designation of three other subfamilies (Schizanthoideae, Schwenckioideae, and Petunioideae), with the placement of several previously unassigned genera. We placed a Solanaceae-specific whole-genome triplication (WGT1) at ∼81 million years ago (mya), before the divergence of Schizanthoideae from other Solanaceae subfamilies at ∼73 mya. In addition, we detected two gene duplication bursts (GDBs) supporting proposed WGD events and four other GDBs. An investigation of the evolutionary histories of homologs of carpel and fruit developmental genes in 14 gene (sub)families revealed that 21 gene clades have retained gene duplicates. These were likely generated by the Solanaceae WGT1 and may have promoted fleshy fruit development. This study presents a well-resolved Solanaceae phylogeny and a new perspective on retained gene duplicates and carpel/fruit development, providing an improved understanding of Solanaceae evolution.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Weibin Xu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Caifei Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | | | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, State College, PA 16802, USA.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
26
|
Salino A, Rouhan G, Kuo LY, Almeida TE. Editorial: Biology, systematics, and evolution of ferns and lycophytes in the omics era. FRONTIERS IN PLANT SCIENCE 2023; 14:1146829. [PMID: 36909387 PMCID: PMC9996449 DOI: 10.3389/fpls.2023.1146829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Alexandre Salino
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Germinal Rouhan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, Sorbonne Université, EPHE, UA, CNRS, Paris, France
| | - Li-Yaung Kuo
- Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Thaís Elias Almeida
- Universidade Federal de Pernambuco, Departamento de Botânica, Centro de Biociências, Recife, Brazil
| |
Collapse
|
27
|
Cheng L, Li M, Wang Y, Han Q, Hao Y, Qiao Z, Zhang W, Qiu L, Gong A, Zhang Z, Li T, Luo S, Tang L, Liu D, Yin H, Lu S, Balbuena TS, Zhao Y. Transcriptome-based variations effectively untangling the intraspecific relationships and selection signals in Xinyang Maojian tea population. FRONTIERS IN PLANT SCIENCE 2023; 14:1114284. [PMID: 36890899 PMCID: PMC9986275 DOI: 10.3389/fpls.2023.1114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
As one of the world's top three popular non-alcoholic beverages, tea is economically and culturally valuable. Xinyang Maojian, this elegant green tea, is one of the top ten famous tea in China and has gained prominence for thousands of years. However, the cultivation history of Xinyang Maojian tea population and selection signals of differentiation from the other major variety Camellia sinensis var. assamica (CSA) remain unclear. We newly generated 94 Camellia sinensis (C. sinensis) transcriptomes including 59 samples in the Xinyang area and 35 samples collected from 13 other major tea planting provinces in China. Comparing the very low resolution of phylogeny inferred from 1785 low-copy nuclear genes with 94 C. sinensis samples, we successfully resolved the phylogeny of C. sinensis samples by 99,115 high-quality SNPs from the coding region. The sources of tea planted in the Xinyang area were extensive and complex. Specifically, Shihe District and Gushi County were the two earliest tea planting areas in Xinyang, reflecting a long history of tea planting. Furthermore, we identified numerous selection sweeps during the differentiation of CSA and CSS and these positive selection genes are involved in many aspects such as regulation of secondary metabolites synthesis, amino acid metabolism, photosynthesis, etc. Numerous specific selective sweeps of modern cultivars were annotated with functions in various different aspects, indicating the CSS and CSA populations possibly underwent independent specific domestication processes. Our study indicated that transcriptome-based SNP-calling is an efficient and cost-effective method in untangling intraspecific phylogenetic relationships. This study provides a significant understanding of the cultivation history of the famous Chinese tea Xinyang Maojian and unravels the genetic basis of physiological and ecological differences between the two major tea subspecies.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Yachao Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Zhen Qiao
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Lin Qiu
- Institute of Forestry Science, Xinyang Forestry Bureau, Xinyang, Henan, China
| | - Andong Gong
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Zhihan Zhang
- College of Engineering and Technology, Northeast Forestry University, Harbin, China
| | - Tao Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shanshan Luo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Linshuang Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Daliang Liu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Hao Yin
- College of Agriculture, Guizhou University, Guiyang, China
| | - Song Lu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, Sao Paulo State University, Jaboticabal, Brazil
| | - Yiyong Zhao
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
28
|
Wang T, Li TZ, Chen SS, Yang T, Shu JP, Mu YN, Wang KL, Chen JB, Xiang JY, Yan YH. Untying the Gordian knot of plastid phylogenomic conflict: A case from ferns. FRONTIERS IN PLANT SCIENCE 2022; 13:918155. [PMID: 36507421 PMCID: PMC9730426 DOI: 10.3389/fpls.2022.918155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Phylogenomic studies based on plastid genome have resolved recalcitrant relationships among various plants, yet the phylogeny of Dennstaedtiaceae at the level of family and genera remains unresolved due to conflicting plastid genes, limited molecular data and incomplete taxon sampling of previous studies. The present study generated 30 new plastid genomes of Dennstaedtiaceae (9 genera, 29 species), which were combined with 42 publicly available plastid genomes (including 24 families, 27 genera, 42 species) to explore the evolution of Dennstaedtiaceae. In order to minimize the impact of systematic errors on the resolution of phylogenetic inference, we applied six strategies to generate 30 datasets based on CDS, intergenic spacers, and whole plastome, and two tree inference methods (maximum-likelihood, ML; and multispecies coalescent, MSC) to comprehensively analyze the plastome-scale data. Besides, the phylogenetic signal among all loci was quantified for controversial nodes using ML framework, and different topologies hypotheses among all datasets were tested. The species trees based on different datasets and methods revealed obvious conflicts at the base of the polypody ferns. The topology of the "CDS-codon-align-rm3" (CDS with the removal of the third codon) matrix was selected as the primary reference or summary tree. The final phylogenetic tree supported Dennstaedtiaceae as the sister group to eupolypods, and Dennstaedtioideae was divided into four clades with full support. This robust reconstructed phylogenetic backbone establishes a framework for future studies on Dennstaedtiaceae classification, evolution and diversification. The present study suggests considering plastid phylogenomic conflict when using plastid genomes. From our results, reducing saturated genes or sites can effectively mitigate tree conflicts for distantly related taxa. Moreover, phylogenetic trees based on amino acid sequences can be used as a comparison to verify the confidence of nucleotide-based trees.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ting-Zhang Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Si-Si Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Tuo Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Jiang-Ping Shu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Yu-Nong Mu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Kang-Lin Wang
- Green Development Institute, Southwest Forestry University, Kunming, China
| | - Jian-Bing Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Jian-Ying Xiang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Yue-Hong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
29
|
Cheng L, Han Q, Chen F, Li M, Balbuena TS, Zhao Y. Phylogenomics as an effective approach to untangle cross-species hybridization event: A case study in the family Nymphaeaceae. Front Genet 2022; 13:1031705. [PMID: 36406110 PMCID: PMC9670182 DOI: 10.3389/fgene.2022.1031705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Hybridization is common and considered as an important evolutionary force to increase intraspecific genetic diversity. Detecting hybridization events is crucial for understanding the evolutionary history of species and further improving molecular breeding. The studies on identifying hybridization events through the phylogenomic approach are still limited. We proposed the conception and method of identifying allopolyploidy events by phylogenomics. The reconciliation and summary of nuclear multi-labeled gene family trees were adopted to untangle hybridization events from next-generation data in our novel phylogenomic approach. Given horticulturalists’ relatively clear cultivated crossbreeding history, the water lily family is a suitable case for examining recent allopolyploidy events. Here, we reconstructed and confirmed the well-resolved nuclear phylogeny for the Nymphaeales family in the context of geological time as a framework for identifying hybridization signals. We successfully identified two possible allopolyploidy events with the parental lineages for the hybrids in the family Nymphaeaceae based on summarization from multi-labeled gene family trees of Nymphaeales. The lineages where species Nymphaea colorata and Nymphaea caerulea are located may be the progenitors of horticultural cultivated species Nymphaea ‘midnight’ and Nymphaea ‘Woods blue goddess’. The proposed hybridization hypothesis is also supported by horticultural breeding records. Our methodology can be widely applied to identify hybridization events and theoretically facilitate the genome breeding design of hybrid plants.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Fei Chen
- College of Tropical Crops, Hainan University, Haikou, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, Xinyang Normal University, Xinyang, Henan, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, UNESP, São Paulo, Brazil
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Yiyong Zhao, ,
| |
Collapse
|
30
|
Lu JM, Du XY, Kuo LY, Ebihara A, Perrie LR, Zuo ZY, Shang H, Chang YH, Li DZ. Plastome phylogenomic analysis reveals evolutionary divergences of Polypodiales suborder Dennstaedtiineae. BMC PLANT BIOLOGY 2022; 22:511. [PMID: 36319964 PMCID: PMC9628275 DOI: 10.1186/s12870-022-03886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Polypodiales suborder Dennstaedtiineae contain a single family Dennstaedtiaceae, eleven genera, and about 270 species, and include some groups that were previously placed in Dennstaedtiaceae, Hypolepidaceae, Monachosoraceae, and Pteridaceae. The classification and phylogenetic relationships among these eleven genera have been poorly understood. To explore the deep relationships within suborder Dennstaedtiineae and estimate the early diversification of this morphologically heterogeneous group, we analyzed complete plastomes of 57 samples representing all eleven genera of suborder Dennstaedtiineae using maximum likelihood and Bayesian inference. RESULTS The phylogenetic relationships of all the lineages in the bracken fern family Dennstaedtiaceae were well resolved with strong support values. All six genera of Hypolepidoideae were recovered as forming a monophyletic group with full support, and Pteridium was fully supported as sister to all the other genera in Hypolepidoideae. Dennstaedtioideae (Dennstaedtia s.l.) fell into four clades with full support: the Microlepia clade, the northern Dennstaedtia clade, the Dennstaedtia globulifera clade, and the Dennstaedtia s.s. clade. Monachosorum was strongly resolved as sister to all the remaining genera of suborder Dennstaedtiineae. Based on the well resolved relationships among genera, the divergence between Monachosorum and other groups of suborder Dennstaedtiineae was estimated to have occurred in the Early Cretaceous, and all extant genera (and clades) in Dennstaedtiineae, were inferred to have diversified since the Late Oligocene. CONCLUSION This study supports reinstating a previously published family Monachosoraceae as a segregate from Dennstaedtiaceae, based on unique morphological evidence, the shady habitat, and the deep evolutionary divergence from its closest relatives.
Collapse
Affiliation(s)
- Jin-Mei Lu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Atsushi Ebihara
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Leon R Perrie
- Museum of New Zealand Te Papa Tongarewa, Cable Street, Wellington, 6011, New Zealand
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Hui Shang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yi-Han Chang
- Taiwan Forestry Research Institute, Taipei, 10066, Taiwan
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.
| |
Collapse
|
31
|
Wang X, Xu KW, Lee SY, Wu J, Li Q, Chen BJ. Characterization of the chloroplast genome and phylogenetic analysis of Ceratopteris pteridoides (Pteridaceae). GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Han J, Xie X, Zhang Y, Yu X, He G, Li Y, Yang G. Evolution of the DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN subfamily in green plants. PLANT PHYSIOLOGY 2022; 190:421-440. [PMID: 35695786 PMCID: PMC9434268 DOI: 10.1093/plphys/kiac286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/26/2022] [Indexed: 06/13/2023]
Abstract
Adapting to unfavorable environments is a necessary step in plant terrestrialization and radiation. The dehydration-responsive element-binding (DREB) protein subfamily plays a pivotal role in plant abiotic stress regulation. However, relationships between the origin and expansion of the DREB subfamily and adaptive evolution of land plants are still being elucidated. Here, we constructed the evolutionary history of the DREB subfamily by compiling APETALA2/ethylene-responsive element-binding protein superfamily genes from 169 representative species of green plants. Through extensive phylogenetic analyses and comparative genomic analysis, our results revealed that the DREB subfamily diverged from the ethylene-responsive factor (ERF) subfamily in the common ancestor of Zygnemophyceae and Embryophyta during the colonization of land by plants, followed by expansions to form three different ancient archetypal genes in Zygnemophyceae species, designated as groups archetype-I, archetype-II/III, and archetype-IV. Four large-scale expansions paralleling the evolution of land plants led to the nine-subgroup divergence of group archetype-II/III in angiosperms, and five whole-genome duplications during Brassicaceae and Poaceae radiation shaped the diversity of subgroup IIb-1. We identified a Poaceae-specific gene in subgroup IIb-1, ERF014, remaining in a Poaceae-specific microsynteny block and co-evolving with a small heat shock protein cluster. Expression analyses demonstrated that heat acclimation may have driven the neofunctionalization of ERF014s in Pooideae by engaging in the conserved heat-responsive module in Poaceae. This study provides insights into lineage-specific expansion and neofunctionalization in the DREB subfamily, together with evolutionary information valuable for future functional studies of plant stress biology.
Collapse
Affiliation(s)
- Jiapeng Han
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoxue Xie
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
33
|
Nitta JH, Schuettpelz E, Ramírez-Barahona S, Iwasaki W. An open and continuously updated fern tree of life. FRONTIERS IN PLANT SCIENCE 2022; 13:909768. [PMID: 36092417 PMCID: PMC9449725 DOI: 10.3389/fpls.2022.909768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 05/31/2023]
Abstract
Ferns, with about 12,000 species, are the second most diverse lineage of vascular plants after angiosperms. They have been the subject of numerous molecular phylogenetic studies, resulting in the publication of trees for every major clade and DNA sequences from nearly half of all species. Global fern phylogenies have been published periodically, but as molecular systematics research continues at a rapid pace, these become quickly outdated. Here, we develop a mostly automated, reproducible, open pipeline to generate a continuously updated fern tree of life (FTOL) from DNA sequence data available in GenBank. Our tailored sampling strategy combines whole plastomes (few taxa, many loci) with commonly sequenced plastid regions (many taxa, few loci) to obtain a global, species-level fern phylogeny with high resolution along the backbone and maximal sampling across the tips. We use a curated reference taxonomy to resolve synonyms in general compliance with the community-driven Pteridophyte Phylogeny Group I classification. The current FTOL includes 5,582 species, an increase of ca. 40% relative to the most recently published global fern phylogeny. Using an updated and expanded list of 51 fern fossil constraints, we find estimated ages for most families and deeper clades to be considerably older than earlier studies. FTOL and its accompanying datasets, including the fossil list and taxonomic database, will be updated on a regular basis and are available via a web portal (https://fernphy.github.io) and R packages, enabling immediate access to the most up-to-date, comprehensively sampled fern phylogeny. FTOL will be useful for anyone studying this important group of plants over a wide range of taxonomic scales, from smaller clades to the entire tree. We anticipate FTOL will be particularly relevant for macroecological studies at regional to global scales and will inform future taxonomic systems with the most recent hypothesis of fern phylogeny.
Collapse
Affiliation(s)
- Joel H. Nitta
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Eric Schuettpelz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
de Vries S, de Vries J. Evolutionary genomic insights into cyanobacterial symbioses in plants. QUANTITATIVE PLANT BIOLOGY 2022; 3:e16. [PMID: 37077989 PMCID: PMC10095879 DOI: 10.1017/qpb.2022.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 05/03/2023]
Abstract
Photosynthesis, the ability to fix atmospheric carbon dioxide, was acquired by eukaryotes through symbiosis: the plastids of plants and algae resulted from a cyanobacterial symbiosis that commenced more than 1.5 billion years ago and has chartered a unique evolutionary path. This resulted in the evolutionary origin of plants and algae. Some extant land plants have recruited additional biochemical aid from symbiotic cyanobacteria; these plants associate with filamentous cyanobacteria that fix atmospheric nitrogen. Examples of such interactions can be found in select species from across all major lineages of land plants. The recent rise in genomic and transcriptomic data has provided new insights into the molecular foundation of these interactions. Furthermore, the hornwort Anthoceros has emerged as a model system for the molecular biology of cyanobacteria-plant interactions. Here, we review these developments driven by high-throughput data and pinpoint their power to yield general patterns across these diverse symbioses.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
| |
Collapse
|
35
|
Pelosi JA, Kim EH, Barbazuk WB, Sessa EB. Phylotranscriptomics Illuminates the Placement of Whole Genome Duplications and Gene Retention in Ferns. FRONTIERS IN PLANT SCIENCE 2022; 13:882441. [PMID: 35909764 PMCID: PMC9330400 DOI: 10.3389/fpls.2022.882441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/16/2022] [Indexed: 05/31/2023]
Abstract
Ferns are the second largest clade of vascular plants with over 10,000 species, yet the generation of genomic resources for the group has lagged behind other major clades of plants. Transcriptomic data have proven to be a powerful tool to assess phylogenetic relationships, using thousands of markers that are largely conserved across the genome, and without the need to sequence entire genomes. We assembled the largest nuclear phylogenetic dataset for ferns to date, including 2884 single-copy nuclear loci from 247 transcriptomes (242 ferns, five outgroups), and investigated phylogenetic relationships across the fern tree, the placement of whole genome duplications (WGDs), and gene retention patterns following WGDs. We generated a well-supported phylogeny of ferns and identified several regions of the fern phylogeny that demonstrate high levels of gene tree-species tree conflict, which largely correspond to areas of the phylogeny that have been difficult to resolve. Using a combination of approaches, we identified 27 WGDs across the phylogeny, including 18 large-scale events (involving more than one sampled taxon) and nine small-scale events (involving only one sampled taxon). Most inferred WGDs occur within single lineages (e.g., orders, families) rather than on the backbone of the phylogeny, although two inferred events are shared by leptosporangiate ferns (excluding Osmundales) and Polypodiales (excluding Lindsaeineae and Saccolomatineae), clades which correspond to the majority of fern diversity. We further examined how retained duplicates following WGDs compared across independent events and found that functions of retained genes were largely convergent, with processes involved in binding, responses to stimuli, and certain organelles over-represented in paralogs while processes involved in transport, organelles derived from endosymbiotic events, and signaling were under-represented. To date, our study is the most comprehensive investigation of the nuclear fern phylogeny, though several avenues for future research remain unexplored.
Collapse
Affiliation(s)
- Jessie A. Pelosi
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Emily H. Kim
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - W. Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Emily B. Sessa
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
36
|
Ke BF, Wang GJ, Labiak PH, Rouhan G, Chen CW, Shepherd LD, Ohlsen DJ, Renner MAM, Karol KG, Li FW, Kuo LY. Systematics and Plastome Evolution in Schizaeaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:885501. [PMID: 35909781 PMCID: PMC9328107 DOI: 10.3389/fpls.2022.885501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
While the family Schizaeaceae (Schizaeales) represents only about 0.4% of the extant fern species diversity, it differs from other ferns greatly in gross morphologies, niche preferences, and life histories. One of the most notable features in this family is its mycoheterotrophic life style in the gametophytic stage, which appears to be associated with extensive losses of plastid genes. However, the limited number of sequenced plastomes, and the lack of a well-resolved phylogenetic framework of Schizaeaceae, makes it difficult to gain any further insight. Here, with a comprehensive sampling of ~77% of the species diversity of this family, we first inferred a plastid phylogeny of Schizaeaceae using three DNA regions. To resolve the deep relationships within this family, we then reconstructed a plastome-based phylogeny focusing on a selection of representatives that covered all the major clades. From this phylogenomic backbone, we traced the evolutionary histories of plastid genes and examined whether gene losses were associated with the evolution of gametophytic mycoheterotrophy. Our results reveal that extant Schizaeaceae is comprised of four major clades-Microschizaea, Actinostachys, Schizaea, and Schizaea pusilla. The loss of all plastid NADH-like dehydrogenase (ndh) genes was confirmed to have occurred in the ancestor of extant Schizaeaceae, which coincides with the evolution of mycoheterotrophy in this family. For chlorophyll biosynthesis genes (chl), the losses were interpreted as convergent in Schizaeaceae, and found not only in Actinostachys, a clade producing achlorophyllous gametophytes, but also in S. pusilla with chlorophyllous gametophytes. In addition, we discovered a previously undescribed but phylogenetically distinct species hidden in the Schizaea dichotoma complex and provided a taxonomic treatment and morphological diagnostics for this new species-Schizaea medusa. Finally, our phylogenetic results suggest that the current PPG I circumscription of Schizaea is non-monophyletic, and we therefore proposed a three-genus classification moving a subset of Schizaea species sensu PPG I to a third genus-Microschizaea.
Collapse
Affiliation(s)
- Bing-Feng Ke
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Paulo H. Labiak
- Depto. de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Germinal Rouhan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, EPHE, UA, CNRS, Sorbonne Université, Paris, France
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Cheng-Wei Chen
- Department of Life Science, Biodiversity Program, Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Lara D. Shepherd
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | | | | | - Kenneth G. Karol
- The Lewis B. and Dorothy Cullman Program for Molecular Systematics, New York Botanical Garden, Bronx, NY, United States
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Biology Section, Cornell University, Ithaca, NY, United States
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
37
|
Cheng L, Li M, Han Q, Qiao Z, Hao Y, Balbuena TS, Zhao Y. Phylogenomics Resolves the Phylogeny of Theaceae by Using Low-Copy and Multi-Copy Nuclear Gene Makers and Uncovers a Fast Radiation Event Contributing to Tea Plants Diversity. BIOLOGY 2022; 11:biology11071007. [PMID: 36101388 PMCID: PMC9311850 DOI: 10.3390/biology11071007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The Theaceae includes more than 300 species of great morphological diversity and has immense economic, cultural, and ornamental values. However, the evolutionary history of this family remains elusive. We integrated 91 genomes and transcriptome datasets of Theaceae and successfully resolved the phylogeny of Theaceae including relatives of cultivated tea plants from both extensive low-copy and multi-copy nuclear gene markers. Bayes-based molecular dating revealed that the ancestor of the tea family originated slightly earlier than the K-Pg boundary (Mass extinction events including the extinction of dinosaurs) with early diversification of three tribes associated with the Early Eocene Climatic Optimum. Further speciation analysis suggested a sole significant diversification shift rate in the common ancestor of Camellia associated with the Mid-Miocene Climatic Optimum. Collectively, polyploidy events, and key morphological innovation characters, such as pericarp with seed coat hardening, could possibly contribute to the Theaceae species diversity. Abstract Tea is one of the three most popular nonalcoholic beverages globally and has extremely high economic and cultural value. Currently, the classification, taxonomy, and evolutionary history of the tea family are largely elusive, including phylogeny, divergence, speciation, and diversity. For understanding the evolutionary history and dynamics of species diversity in Theaceae, a robust phylogenetic framework based on 1785 low-copy and 79,103 multi-copy nuclear genes from 91 tea plant genomes and transcriptome datasets had been reconstructed. Our results maximumly supported that the tribes Stewartieae and Gordonieae are successive sister groups to the tribe Theeae from both coalescent and super matrix ML tree analyses. Moreover, in the most evolved tribe, Theeae, the monophyletic genera Pyrenaria, Apterosperma, and Polyspora are the successive sister groups of Camellia. We also yield a well-resolved relationship of Camellia, which contains the vast majority of Theaceae species richness. Molecular dating suggests that Theaceae originated in the late L-Cretaceous, with subsequent early radiation under the Early Eocene Climatic Optimal (EECO) for the three tribes. A diversification rate shift was detected in the common ancestors of Camellia with subsequent acceleration in speciation rate under the climate optimum in the early Miocene. These results provide a phylogenetic framework and new insights into factors that likely have contributed to the survival of Theaceae, especially a successful radiation event of genus Camellia members to subtropic/tropic regions. These novel findings will facilitate the efficient conservation and utilization of germplasm resources for breeding cultivated tea and oil-tea. Collectively, these results provide a foundation for further morphological and functional evolutionary analyses across Theaceae.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Mengge Li
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Zhen Qiao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High Value Utilization, Xinyang Normal University, Xinyang 464000, China; (L.C.); (M.L.); (Q.H.); (Z.Q.); (Y.H.)
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, Sao Paulo State University, Jaboticabal 14884-900, Brazil;
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
38
|
Zuo S, Yadala R, Yang F, Talbert P, Fuchs J, Schubert V, Ahmadli U, Rutten T, Pecinka A, Lysak MA, Lermontova I. Recurrent Plant-Specific Duplications of KNL2 and Its Conserved Function as a Kinetochore Assembly Factor. Mol Biol Evol 2022; 39:msac123. [PMID: 35671323 PMCID: PMC9210943 DOI: 10.1093/molbev/msac123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
KINETOCHORE NULL2 (KNL2) plays key role in the recognition of centromeres and new CENH3 deposition. To gain insight into the origin and diversification of the KNL2 gene, we reconstructed its evolutionary history in the plant kingdom. Our results indicate that the KNL2 gene in plants underwent three independent ancient duplications in ferns, grasses and eudicots. Additionally, we demonstrated that previously unclassified KNL2 genes could be divided into two clades αKNL2 and βKNL2 in eudicots and γKNL2 and δKNL2 in grasses, respectively. KNL2s of all clades encode the conserved SANTA domain, but only the αKNL2 and γKNL2 groups additionally encode the CENPC-k motif. In the more numerous eudicot sequences, signatures of positive selection were found in both αKNL2 and βKNL2 clades, suggesting recent or ongoing adaptation. The confirmed centromeric localization of βKNL2 and mutant analysis suggests that it participates in loading of new CENH3, similarly to αKNL2. A high rate of seed abortion was found in heterozygous βKNL2 plants and the germinated homozygous mutants did not develop beyond the seedling stage. Taken together, our study provides a new understanding of the evolutionary diversification of the plant kinetochore assembly gene KNL2, and suggests that the plant-specific duplicated KNL2 genes are involved in centromere and/or kinetochore assembly for preserving genome stability.
Collapse
Affiliation(s)
- Sheng Zuo
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Ramakrishna Yadala
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Fen Yang
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Paul Talbert
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Ulkar Ahmadli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Inna Lermontova
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| |
Collapse
|
39
|
Shu JP, Wang H, Shen H, Wang RJ, Fu Q, Wang YD, Jiao YN, Yan YH. Phylogenomic Analysis Reconstructed the Order Matoniales from Paleopolyploidy Veil. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121529. [PMID: 35736680 PMCID: PMC9228301 DOI: 10.3390/plants11121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 06/02/2023]
Abstract
Phylogenetic conflicts limit our understanding of the evolution of terrestrial life under multiple whole genome duplication events, and the phylogeny of early terrestrial plants remains full of controversy. Although much incongruence has been solved with so-called robust topology based on single or lower copy genes, the evolutionary mechanisms behind phylogenetic conflicts such as polyploidization remain poorly understood. Here, through decreasing the effects of polyploidization and increasing the samples of species, which represent all four orders and eight families that comprise early leptosporangiate ferns, we have reconstructed a robust phylogenetic tree and network with 1125 1-to-1 orthologs based on both coalescent and concatenation methods. Our data consistently suggest that Matoniales, as a monophyletic lineage including Matoniaceae and Dipteridaceae, should be redefined as an ordinal rank. Furthermore, we have identified and located at least 11 whole-genome duplication events within the evolutionary history of four leptosporangiates lineages, and associated polyploidization with higher speciation rates and mass extinction events. We hypothesize that paleopolyploidization may have enabled leptosporangiate ferns to survive during mass extinction events at the end Permian period and then flourish throughout the Mesozoic era, which is supported by extensive fossil records. Our results highlight how ancient polyploidy can result in rapid species radiation, thus causing phylogenetic conflicts yet allowing plants to survive and thrive during mass extinction events.
Collapse
Affiliation(s)
- Jiang-Ping Shu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, and Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Hao Wang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China; (H.W.); (H.S.)
| | - Hui Shen
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China; (H.W.); (H.S.)
| | - Rui-Jiang Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Qiang Fu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; (Q.F.); (Y.-D.W.)
| | - Yong-Dong Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; (Q.F.); (Y.-D.W.)
| | - Yuan-Nian Jiao
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100039, China;
| | - Yue-Hong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, and Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| |
Collapse
|
40
|
Du XY, Kuo LY, Zuo ZY, Li DZ, Lu JM. Structural Variation of Plastomes Provides Key Insight Into the Deep Phylogeny of Ferns. FRONTIERS IN PLANT SCIENCE 2022; 13:862772. [PMID: 35645990 PMCID: PMC9134734 DOI: 10.3389/fpls.2022.862772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 06/02/2023]
Abstract
Structural variation of plastid genomes (plastomes), particularly large inversions and gene losses, can provide key evidence for the deep phylogeny of plants. In this study, we investigated the structural variation of fern plastomes in a phylogenetic context. A total of 127 plastomes representing all 50 recognized families and 11 orders of ferns were sampled, making it the most comprehensive plastomic analysis of fern lineages to date. The samples included 42 novel plastomes of 15 families with a focus on Hymenophyllales and Gleicheniales. We reconstructed a well-supported phylogeny of all extant fern families, detected significant structural synapomorphies, including 9 large inversions, 7 invert repeat region (IR) boundary shifts, 10 protein-coding gene losses, 7 tRNA gene losses or anticodon changes, and 19 codon indels (insertions or deletions) across the deep phylogeny of ferns, particularly on the backbone nodes. The newly identified inversion V5, together with the newly inferred expansion of the IR boundary R5, can be identified as a synapomorphy of a clade composed of Dipteridaceae, Matoniaceae, Schizaeales, and the core leptosporangiates, while a unique inversion V4, together with an expansion of the IR boundary R4, was verified as a synapomorphy of Gleicheniaceae. This structural evidence is in support of our phylogenetic inference, thus providing key insight into the paraphyly of Gleicheniales. The inversions of V5 and V7 together filled the crucial gap regarding how the "reversed" gene orientation in the IR region characterized by most extant ferns (Schizaeales and the core leptosporangiates) evolved from the inferred ancestral type as retained in Equisetales and Osmundales. The tRNA genes trnR-ACG and trnM-CAU were assumed to be relicts of the early-divergent fern lineages but intact in most Polypodiales, particularly in eupolypods; and the loss of the tRNA genes trnR-CCG, trnV-UAC, and trnR-UCU in fern plastomes was much more prevalent than previously thought. We also identified several codon indels in protein-coding genes within the core leptosporangiates, which may be identified as synapomorphies of specific families or higher ranks. This study provides an empirical case of integrating structural and sequence information of plastomes to resolve deep phylogeny of plants.
Collapse
Affiliation(s)
- Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin-Mei Lu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
41
|
Huang X, Wang W, Gong T, Wickell D, Kuo LY, Zhang X, Wen J, Kim H, Lu F, Zhao H, Chen S, Li H, Wu W, Yu C, Chen S, Fan W, Chen S, Bao X, Li L, Zhang D, Jiang L, Khadka D, Yan X, Liao Z, Zhou G, Guo Y, Ralph J, Sederoff RR, Wei H, Zhu P, Li FW, Ming R, Li Q. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. NATURE PLANTS 2022; 8:500-512. [PMID: 35534720 PMCID: PMC9122828 DOI: 10.1038/s41477-022-01146-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
To date, little is known about the evolution of fern genomes, with only two small genomes published from the heterosporous Salviniales. Here we assembled the genome of Alsophila spinulosa, known as the flying spider-monkey tree fern, onto 69 pseudochromosomes. The remarkable preservation of synteny, despite resulting from an ancient whole-genome duplication over 100 million years ago, is unprecedented in plants and probably speaks to the uniqueness of tree ferns. Our detailed investigations into stem anatomy and lignin biosynthesis shed new light on the evolution of stem formation in tree ferns. We identified a phenolic compound, alsophilin, that is abundant in xylem, and we provided the molecular basis for its biosynthesis. Finally, analysis of demographic history revealed two genetic bottlenecks, resulting in rapid demographic declines of A. spinulosa. The A. spinulosa genome fills a crucial gap in the plant genomic landscape and helps elucidate many unique aspects of tree fern biology.
Collapse
Affiliation(s)
- Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenling Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - David Wickell
- Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Li-Yaung Kuo
- Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Hoon Kim
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Fachuang Lu
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Changjiang Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Shuai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Longyu Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dipak Khadka
- GoldenGate International College, Tribhuvan University, Battisputali, Kathmandu, Nepal
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, China
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Fay-Wei Li
- Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
42
|
Liang S, Zhang X, Wei R. Ecological adaptation shaped the genetic structure of homoploid ferns against strong dispersal capacity. Mol Ecol 2022; 31:2679-2697. [DOI: 10.1111/mec.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Si‐Qi Liang
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany The Chinese Academy of Sciences Beijing 100093 China
- University of Chinese Academy of Sciences College of Life Sciences Beijing 100049 China
| | - Xian‐Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany The Chinese Academy of Sciences Beijing 100093 China
| | - Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany The Chinese Academy of Sciences Beijing 100093 China
| |
Collapse
|
43
|
Zhang L, Zhu X, Zhao Y, Guo J, Zhang T, Huang W, Huang J, Hu Y, Huang CH, Ma H. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution. Mol Biol Evol 2022; 39:6521033. [PMID: 35134207 PMCID: PMC8844509 DOI: 10.1093/molbev/msac026] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adaptation to cool climates has occurred several times in different angiosperm groups. Among them, Pooideae, the largest grass subfamily with ∼3,900 species including wheat and barley, have successfully occupied many temperate regions and play a prominent role in temperate ecosystems. To investigate possible factors contributing to Pooideae adaptive evolution to cooling climates, we performed phylogenetic reconstruction using five gene sets (with 1,234 nuclear genes and their subsets) from 157 transcriptomes/genomes representing all 15 tribes and 24 of 26 subtribes. Our phylogeny supports the monophyly of all tribes (except Diarrheneae) and all subtribes with at least two species, with strongly supported resolution of their relationships. Molecular dating suggests that Pooideae originated in the late Cretaceous, with subsequent divergences under cooling conditions first among many tribes from the early middle to late Eocene and again among genera in the middle Miocene and later periods. We identified a cluster of gene duplications (CGD5) shared by the core Pooideae (with 80% Pooideae species) near the Eocene–Oligocene transition, coinciding with the transition from closed to open habitat and an upshift of diversification rate. Molecular evolutionary analyses homologs of CBF for cold resistance uncovered tandem duplications during the core Pooideae history, dramatically increasing their copy number and possibly promoting adaptation to cold habitats. Moreover, duplication of AP1/FUL-like genes before the Pooideae origin might have facilitated the regulation of the vernalization pathway under cold environments. These and other results provide new insights into factors that likely have contributed to the successful adaptation of Pooideae members to temperate regions.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xinxin Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Weichen Huang
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
44
|
Wei R, Yang J, He LJ, Liu HM, Hu JY, Liang SQ, Wei XP, Zhao CF, Zhang XC. Plastid phylogenomics provides novel insights into the infrafamilial relationship of Polypodiaceae. Cladistics 2021; 37:717-727. [PMID: 34841589 DOI: 10.1111/cla.12461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
The polygrammoids (Polypodiaceae) are the most species-rich and diversified epiphytic fern lineages, and hold an important role to understand the deep diverging events and rapid adaptation to changing environments in the plant tree of life. Despite progress in the phylogeny of this group of ferns in previous multilocus phylogenetic studies, uncertainty remains especially in backbone relationships among closely related clades, and the phylogenetic placement of recalcitrant species or lineages. Here, we investigated the deep phylogenetic relationships within Polypodiaceae by sampling all major lineages and using 81 plastid genomes (plastomes), of which 70 plastomes were newly sequenced with high-throughput sequencing technology. Based on parsimony, maximum-likelihood, Bayesian and multispecies coalescent analyses of genome skimming data, we achieved a better resolution of the backbone phylogeny of Polypodiaceae. Using simulated data matrices, we detected that potential phylogenetic artefacts, such as long-branch attraction and insufficient taxonomic sampling, may have a confounding impact on the incongruence of phylogenetic inferences. Furthermore, our phylogenetic analyses offer greater resolution than previous multilocus studies, providing a robust framework for future phylogenetic implications on the subfamilial taxonomy of Polypodiaceae. Our phylogenomic study not only demonstrates the advantage of a character-rich plastome dataset for resolving the recalcitrant lineages that have undergone rapid radiation, but also sheds new light on integrative explorations understanding the evolutionary history of large fern groups in the genomic era.
Collapse
Affiliation(s)
- Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Juan He
- Xiamen Overseas Chinese Subtropical Plant Introduction Garden/Plant Introduction & Quarantine and Plant Product Key Laboratory of Xiamen, Xiamen, Fujian, 361002, China
| | - Hong-Mei Liu
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Jia-Yu Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si-Qi Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Cun-Feng Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
45
|
Wickell D, Kuo LY, Yang HP, Dhabalia Ashok A, Irisarri I, Dadras A, de Vries S, de Vries J, Huang YM, Li Z, Barker MS, Hartwick NT, Michael TP, Li FW. Underwater CAM photosynthesis elucidated by Isoetes genome. Nat Commun 2021; 12:6348. [PMID: 34732722 PMCID: PMC8566536 DOI: 10.1038/s41467-021-26644-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
To conserve water in arid environments, numerous plant lineages have independently evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte, can also perform CAM as an adaptation to low CO2 availability underwater. However, little is known about the evolution of CAM in aquatic plants and the lack of genomic data has hindered comparison between aquatic and terrestrial CAM. Here, we investigate underwater CAM in Isoetes taiwanensis by generating a high-quality genome assembly and RNA-seq time course. Despite broad similarities between CAM in Isoetes and terrestrial angiosperms, we identify several key differences. Notably, Isoetes may have recruited the lesser-known 'bacterial-type' PEPC, along with the 'plant-type' exclusively used in other CAM and C4 plants for carboxylation of PEP. Furthermore, we find that circadian control of key CAM pathway genes has diverged considerably in Isoetes relative to flowering plants. This suggests the existence of more evolutionary paths to CAM than previously recognized.
Collapse
Affiliation(s)
- David Wickell
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Li-Yaung Kuo
- Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Amra Dhabalia Ashok
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
| | - Armin Dadras
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences, University of Goettingen, Goettingen, Germany
| | | | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Nolan T Hartwick
- The Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Todd P Michael
- The Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Fay-Wei Li
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
- Boyce Thompson Institute, Ithaca, NY, USA.
| |
Collapse
|
46
|
Fan XP, Thi Lu N, Li CX, Knapp R, He H, Zhou XM, Wan X, Zhang L, Gao XF, Zhang LB. Phylogeny, biogeography, and character evolution in the fern family Hypodematiaceae. Mol Phylogenet Evol 2021; 166:107340. [PMID: 34737000 DOI: 10.1016/j.ympev.2021.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 10/20/2022]
Abstract
The Old World fern genera Hypodematium and Leucostegia had long been placed in the families Dryopteridaceae and Davalliaceae, respectively, before the advent of molecular phylogenetics. Recent molecular studies confirmed the recognition of the family Hypodematiaceae composed of these two genera, but the relationships within each of these two genera have been unclear. In the present study we performed phylogenetic analyses (MP, ML, BI) based on DNA data from six plastid markers (atpB, atpB-rbcL, matK, rbcL, rps4 & rps4-trnS, and trnL & trnL-F) of 165 accessions representing 31 species in two genera of Hypodematiaceae as the ingroup and 26 accessions representing Cystopteridaceae, Didymochlaenaceae, Dryopteridaceae, Davalliaceae, Oleandraceae, and Woodsiaceae as the outgroups. Our analyses supported the monophyly of the currently defined Hypodematiaceae only including Hypodematium and Leucostegia and found that the family to be sister to the remaining eupolypods I. Our data resolved three taxa of Leucostegia into two clades. In Hypodematium, 28 taxa are resolved into seven strongly supported clades or single-accession clades. The evolution of important morphological characters are inferred in the phylogenetic context. Our dated phylogeny suggested a latest Jurassic-earliest Cretaceous origin of the family and Upper Cretaceous origin of two genera, with Hypodematiaceae originated from East Asia; extant lineages of Hypodematium originated from East Asia and subsequently into Africa, the Indian region, the Madagascar region, and Southeast Asia; and Leucostegia originated from East Asia and/or Southeast Asia.
Collapse
Affiliation(s)
- Xue-Ping Fan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ngan Thi Lu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China; Department of Biology, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18th Hoang Quoc Viet Road, Ha Noi, Viet Nam
| | - Chun-Xiang Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ralf Knapp
- Correspondent of the Muséum National d'Histoire naturelle (MNHN, Paris, France), Steigestrasse 78, 69412 Eberbach, Germany
| | - Hai He
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Xia Wan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China.
| | - Li-Bing Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
May MR, Contreras DL, Sundue MA, Nagalingum NS, Looy CV, Rothfels CJ. Inferring the Total-Evidence Timescale of Marattialean Fern Evolution in the Face of Model Sensitivity. Syst Biol 2021; 70:1232-1255. [PMID: 33760075 PMCID: PMC8513765 DOI: 10.1093/sysbio/syab020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022] Open
Abstract
Phylogenetic divergence-time estimation has been revolutionized by two recent developments: 1) total-evidence dating (or "tip-dating") approaches that allow for the incorporation of fossils as tips in the analysis, with their phylogenetic and temporal relationships to the extant taxa inferred from the data and 2) the fossilized birth-death (FBD) class of tree models that capture the processes that produce the tree (speciation, extinction, and fossilization) and thus provide a coherent and biologically interpretable tree prior. To explore the behavior of these methods, we apply them to marattialean ferns, a group that was dominant in Carboniferous landscapes prior to declining to its modest extant diversity of slightly over 100 species. We show that tree models have a dramatic influence on estimates of both divergence times and topological relationships. This influence is driven by the strong, counter-intuitive informativeness of the uniform tree prior, and the inherent nonidentifiability of divergence-time models. In contrast to the strong influence of the tree models, we find minor effects of differing the morphological transition model or the morphological clock model. We compare the performance of a large pool of candidate models using a combination of posterior-predictive simulation and Bayes factors. Notably, an FBD model with epoch-specific speciation and extinction rates was strongly favored by Bayes factors. Our best-fitting model infers stem and crown divergences for the Marattiales in the mid-Devonian and Late Cretaceous, respectively, with elevated speciation rates in the Mississippian and elevated extinction rates in the Cisuralian leading to a peak diversity of ${\sim}$2800 species at the end of the Carboniferous, representing the heyday of the Psaroniaceae. This peak is followed by the rapid decline and ultimate extinction of the Psaroniaceae, with their descendants, the Marattiaceae, persisting at approximately stable levels of diversity until the present. This general diversification pattern appears to be insensitive to potential biases in the fossil record; despite the preponderance of available fossils being from Pennsylvanian coal balls, incorporating fossilization-rate variation does not improve model fit. In addition, by incorporating temporal data directly within the model and allowing for the inference of the phylogenetic position of the fossils, our study makes the surprising inference that the clade of extant Marattiales is relatively young, younger than any of the fossils historically thought to be congeneric with extant species. This result is a dramatic demonstration of the dangers of node-based approaches to divergence-time estimation, where the assignment of fossils to particular clades is made a priori (earlier node-based studies that constrained the minimum ages of extant genera based on these fossils resulted in much older age estimates than in our study) and of the utility of explicit models of morphological evolution and lineage diversification. [Bayesian model comparison; Carboniferous; divergence-time estimation; fossil record; fossilized birth-death; lineage diversification; Marattiales; models of morphological evolution; Psaronius; RevBayes.].
Collapse
Affiliation(s)
- Michael R May
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
- University Herbarium, University of California, Berkeley, 1001 Valley Life Sciences Building #2465, Berkeley, CA 94720, USA
| | - Dori L Contreras
- Department of Paleontology, Perot Museum of Nature and Science, 2201 N. Field Street, Dallas TX 75201, USA
| | - Michael A Sundue
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
- The Pringle Herbarium, University of Vermont, 305 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Nathalie S Nagalingum
- Department of Botany, California Academy of Sciences, Golden Gate Park, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Cindy V Looy
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
- University Herbarium, University of California, Berkeley, 1001 Valley Life Sciences Building #2465, Berkeley, CA 94720, USA
- Museum of Paleontology, University of California, 1101 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Carl J Rothfels
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
- University Herbarium, University of California, Berkeley, 1001 Valley Life Sciences Building #2465, Berkeley, CA 94720, USA
| |
Collapse
|
48
|
Du XY, Lu JM, Zhang LB, Wen J, Kuo LY, Mynssen CM, Schneider H, Li DZ. Simultaneous diversification of Polypodiales and angiosperms in the Mesozoic. Cladistics 2021; 37:518-539. [PMID: 34570931 DOI: 10.1111/cla.12457] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Comprising about 82% of the extant fern species diversity, Polypodiales are generally believed to have diversified in the Late Cretaceous. We estimated the divergence times of Polypodiales using both penalized likelihood and Bayesian methods, based on a dataset consisting of 208 plastomes representing all 28 families and 14 fossil constraints reflecting current interpretations of fossil record. Our plastome phylogeny recovered the same six major lineages as a recent nuclear phylogeny, but the position of Dennstaedtiineae was different. The present phylogeny showed high resolution of relationships among the families of Polypodiales, especially among those forming the Aspleniineae. The divergence time estimates supported the most recent common ancestor of Polypodiales and its closest relative dating back to the Triassic, establishment of the major lineages in the Jurassic, and a likely accelerated radiation during the late Jurassic and the Early Cretaceous. The estimated divergence patterns of Polypodiales and angiosperms converge to a scenario in which their main lineages were established simultaneously shortly before the onset of the Cretaceous Terrestrial Revolution, and further suggest a pre-Cretaceous hidden history for both lineages. The pattern of simultaneous diversifications shown here elucidate an important gap in our understanding of the Terrestrial Revolution that shaped today's ecosystems.
Collapse
Affiliation(s)
- Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Kunming, Yunnan, 650201, China
| | - Jin-Mei Lu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
| | - Li-Bing Zhang
- Missouri Botanical Garden, 4344 Shaw Blvd, St Louis, MO, 63110, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Claudine M Mynssen
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Pacheco Leão 915, Rio de Janeiro, RJ, 22460-030, Brazil
| | - Harald Schneider
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666000, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Kunming, Yunnan, 650201, China
| |
Collapse
|
49
|
Mossion V, Dauphin B, Grant J, Kessler M, Zemp N, Croll D. Transcriptome-wide SNPs for Botrychium lunaria ferns enable fine-grained analysis of ploidy and population structure. Mol Ecol Resour 2021; 22:254-271. [PMID: 34310066 PMCID: PMC9291227 DOI: 10.1111/1755-0998.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
Ferns are the second most diverse group of land plants after angiosperms. Extant species occupy a wide range of habitats and contribute significantly to ecosystem functioning. Despite the importance of ferns, most taxa are poorly covered by genomic resources and within‐species studies based on high‐resolution markers are entirely lacking. The genus Botrychium belongs to the family Ophioglossaceae, which includes species with very large genomes and chromosome numbers (e.g., Ophioglossum reticulatum 2n = 1520). The genus has a cosmopolitan distribution with 35 species, half of which are polyploids. Here, we establish a transcriptome for Botrychium lunaria (L.) Sw., a diploid species with an extremely large genome of about ~19.0–23.7 Gb. We assembled 25,677 high‐quality transcripts with an average length of 1,333 bp based on deep RNA‐sequencing of a single individual. We sequenced 11 additional transcriptomes of individuals from two populations in Switzerland, including the population of the reference individual. Based on read mapping to reference transcript sequences, we identified 374,463 single nucleotide polymorphisms (SNPs) segregating among individuals for an average density of 14 SNPs per kilobase. We found that all 12 transcriptomes were most likely from diploid individuals. The transcriptome‐wide markers provided unprecedented resolution of the population genetic structure, revealing substantial variation in heterozygosity among individuals. We also constructed a phylogenomic tree of 92 taxa representing all fern orders to ascertain the placement of the genus Botrychium. High‐quality transcriptomic resources and SNP sets constitute powerful population genomic resources to investigate the ecology, and evolution of fern populations.
Collapse
Affiliation(s)
- Vinciane Mossion
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland
| | - Benjamin Dauphin
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland.,Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Jason Grant
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zürich, Zurich, Switzerland
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
50
|
De Novo Sporophyte Transcriptome Assembly and Functional Annotation in the Endangered Fern Species Vandenboschia speciosa (Willd.) G. Kunkel. Genes (Basel) 2021; 12:genes12071017. [PMID: 34208974 PMCID: PMC8304985 DOI: 10.3390/genes12071017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
We sequenced the sporophyte transcriptome of Killarney fern (Vandenboschia speciosa (Willd.) G. Kunkel). In addition to being a rare endangered Macaronesian-European endemism, this species has a huge genome (10.52 Gb) as well as particular biological features and extreme ecological requirements. These characteristics, together with the systematic position of ferns among vascular plants, make it of high interest for evolutionary, conservation and functional genomics studies. The transcriptome was constructed de novo and contained 36,430 transcripts, of which 17,706 had valid BLAST hits. A total of 19,539 transcripts showed at least one of the 7362 GO terms assigned to the transcriptome, whereas 6547 transcripts showed at least one of the 1359 KEGG assigned terms. A prospective analysis of functional annotation results provided relevant insights on genes involved in important functions such as growth and development as well as physiological adaptations. In this context, a catalogue of genes involved in the genetic control of plant development, during the vegetative to reproductive transition, in stress response as well as genes coding for transcription factors is given. Altogether, this study provides a first step towards understanding the gene expression of a significant fern species and the in silico functional and comparative analyses reported here provide important data and insights for further comparative evolutionary studies in ferns and land plants in general.
Collapse
|