1
|
Chawla V, Roy S, Raju J, Bundel P, Pal D, Singh Y. Proangiogenic Cyclic Peptide Nanotubes for Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:2787-2799. [PMID: 40107871 DOI: 10.1021/acsabm.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
An intricate biochemical system of coordinated cellular reactions is involved in restoring damaged tissue after wounds. In chronic wounds, such as diabetic foot ulcers, poor angiogenesis is a common stumbling block due to elevated glucose levels, increased proteolytic enzyme activity, and decreased production of growth factors. While various strategies, including modulation of inflammatory cells, administration of growth factors, and therapies involving stem cells or genes, have been explored to promote angiogenesis, they often suffer from limitations such as poor biodistribution, immunological rejection, administration/dosing, and proteolytic instability. Glycosaminoglycans, such as heparan sulfate, facilitate growth factor interactions with their receptors to induce angiogenic signaling, but their exogenous administration is hindered by poor stability, low serum half-life, and immunogenicity. Cyclic peptides, known for their structural stability and specificity, offer a promising alternative for inducing angiogenesis upon functional modifications. In this work, we developed heparan sulfate (HS)-mimetic cyclic peptide nanotubes (CPNTs) grafted with bioactive groups to enhance angiogenesis without using exogenous growth factors, drugs, or supplements. These CPNTs incorporate glutamic acid, serine, and sulfonated lysine to mimic the functional groups in heparin. The sulfonated cyclic hexapeptide nanotubes developed from DPro-LTrp-DLeu-LSer-DGlu-LLys demonstrated significant proangiogenic activity in HUVECs under hyperglycemic conditions; enhanced endothelial cell motility, invasion, and tube formation; and upregulation of proangiogenic genes and proteins. These HS-mimicking nanotubes have shown a strong potential for promoting impaired angiogenesis, without incorporating exogenous growth factors, and show strong potential in treating diabetic wounds. To the best of our knowledge, this is the first report on the use of HS-mimetic proangiogenic cyclic peptide nanotubes for diabetic wound healing.
Collapse
Affiliation(s)
- Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Soumyajit Roy
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - John Raju
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Pruthviraj Bundel
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab India
| |
Collapse
|
2
|
Verma SS, Sen CK, Srivastava R, Gnyawali SC, Katiyar P, Sahi AK, Kumar M, Rustagi Y, Liu S, Pandey D, Abouhashem AS, Fehme LNW, Kacar S, Mohanty SK, Faden-McCormack J, Murphy MP, Roy S, Wan J, Yoder MC, Singh K. Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing rescues perfusion and diabetic ischemic wound healing. Mol Ther 2025; 33:950-969. [PMID: 39863930 PMCID: PMC11897775 DOI: 10.1016/j.ymthe.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb. In this work, guided by single-cell RNA sequencing of human wound edge, we test the efficacy of gene-targeted therapeutic demethylation intending to improve VEGF-mediated neovascularization. PLCγ2 expression was diminished in all five identified diabetic wound-edge endothelial subclusters encompassing arterial, venous, and capillary cells. Such low expression was associated with hypermethylated PLCγ2 promoter. PLCγ2 promoter was also hypermethylated at murine diabetic ischemic wound edge. To specifically demethylate endothelial PLCγ2 promoter during VEGF therapy, a CRISPR-dCas9-based demethylation cocktail was delivered to the ischemic wound edge using tissue nanotransfection (TNT) technology. Demethylation-based upregulation of PLCγ2 during VEGF therapy improved wound tissue blood flow with an increased abundance of von Willebrand factor (vWF)+/PLCγ2+ vascular tissue elements by activating p44/p42-mitogen-activated protein kinase (MAPK) → hypoxia-inducible factor [HIF]-1α pathway. Taken together, TNT-based delivery of plasmids to demethylate the PLCγ2 gene promoter activity led to significant improvements in VEGF therapy for cutaneous diabetic wounds, resulting in better perfusion and accelerated wound closure.
Collapse
Affiliation(s)
- Sumit S Verma
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K Sen
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rajneesh Srivastava
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Surya C Gnyawali
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Parul Katiyar
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ajay K Sahi
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Manishekhar Kumar
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yashika Rustagi
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Diksha Pandey
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ahmed S Abouhashem
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Leila N W Fehme
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sedat Kacar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sujit K Mohanty
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Julie Faden-McCormack
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael P Murphy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mervin C Yoder
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Balukoff NC, Houk G, Gonzalez T, Berton Y, Ronfard V, Pastar I, Tomic-Canic M. Out of this World: Wound Healing on Earth and in Space. J Invest Dermatol 2025:S0022-202X(25)00027-2. [PMID: 39955658 DOI: 10.1016/j.jid.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/17/2025]
Abstract
Impaired wound healing is a significant concern for humans in space, where the unique microgravity environment poses challenges to the natural healing processes of the body. Similar to chronic wounds on earth, such as diabetic foot ulcers and venous leg ulcers, wounds inflicted in space exhibit delayed or impaired healing responses. These wounds share common features, including dysregulated cellular signaling, altered cytokine profiles, and impaired tissue regeneration. Little is known about the mechanisms underlying wound healing under microgravity. In this review, we focused on exploring the parallels between wound healing in space and chronic wounds on earth as a fundamental approach for developing effective countermeasures to promote healing and mitigate associated health risks during long-space missions.
Collapse
Affiliation(s)
- Nathan C Balukoff
- Wound Healing and Regenerative Medicine Research Program, Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Garrett Houk
- Wound Healing and Regenerative Medicine Research Program, Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tammy Gonzalez
- Wound Healing and Regenerative Medicine Research Program, Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
4
|
Singh K, Verma P, Srivastava R, Rustagi Y, Kumar M, Verma SS, Mohanty S, Beheshti A, Warren L, Sen CK. Mission SpaceX CRS-19 RRRM-1 space flight induced skin genomic plasticity via an epigenetic trigger. iScience 2024; 27:111382. [PMID: 39687026 PMCID: PMC11647166 DOI: 10.1016/j.isci.2024.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Genomic plasticity helps adapt to extreme environmental conditions. We tested the hypothesis that exposure to space environment (ESE) impacts the epigenome inducing genomic plasticity. Murine skin samples from the Rodent Research Reference Mission-1 were procured from the International Space Station (ISS) National Laboratory. Targeted RNA sequencing to test differential gene expression between the skin of ESE versus ground controls revealed upregulation of VEGF-mediated angiogenesis pathways secondary to promoter hypomethylation in responders. Methylome sequencing identified ESE-sensitive hypomethylated genes including developmental angiogenic genes Araf, Vegfb, and Vegfr1. Based on differentially expressed genes, the angiogenesis biofunction was enriched in responders. The induction of genomic plasticity in response to ESE, as reported herein, may be viewed as a mark of biological resilience that is evident in a minority of organisms, responders but not in non-responders, exposed to the same stressor. Inducible genomic plasticity may be implicated in natural resilience to ESE.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajneesh Srivastava
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Manishekhar Kumar
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sumit S. Verma
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujit Mohanty
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Afshin Beheshti
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liz Warren
- Center for the Advancement of Science in Space, Houston, TX, USA
| | - Chandan K. Sen
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
6
|
Hajj J, Sizemore B, Singh K. Impact of Epigenetics, Diet, and Nutrition-Related Pathologies on Wound Healing. Int J Mol Sci 2024; 25:10474. [PMID: 39408801 PMCID: PMC11476922 DOI: 10.3390/ijms251910474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic wounds pose a significant challenge to healthcare. Stemming from impaired wound healing, the consequences can be severe, ranging from amputation to mortality. This comprehensive review explores the multifaceted impact of chronic wounds in medicine and the roles that diet and nutritional pathologies play in the wound-healing process. It has been well established that an adequate diet is crucial to proper wound healing. Nutrients such as vitamin D, zinc, and amino acids play significant roles in cellular regeneration, immune functioning, and collagen synthesis and processing. Additionally, this review discusses how patients with chronic conditions like diabetes, obesity, and nutritional deficiencies result in the formation of chronic wounds. By integrating current research findings, this review highlights the significant impact of the genetic make-up of an individual on the risk of developing chronic wounds and the necessity for adequate personalized dietary interventions. Addressing the nutritional needs of individuals, especially those with chronic conditions, is essential for improving wound outcomes and overall patient care. With new developments in the field of genomics, there are unprecedented opportunities to develop targeted interventions that can precisely address the unique metabolic needs of individuals suffering from chronic wounds, thereby enhancing treatment effectiveness and patient outcomes.
Collapse
Affiliation(s)
- John Hajj
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Brandon Sizemore
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
7
|
Ju CC, Liu XX, Liu LH, Guo N, Guan LW, Wu JX, Liu DW. Epigenetic modification: A novel insight into diabetic wound healing. Heliyon 2024; 10:e28086. [PMID: 38533007 PMCID: PMC10963386 DOI: 10.1016/j.heliyon.2024.e28086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Wound healing is an intricate and fine regulatory process. In diabetic patients, advanced glycation end products (AGEs), excessive reactive oxygen species (ROS), biofilm formation, persistent inflammation, and angiogenesis regression contribute to delayed wound healing. Epigenetics, the fast-moving science in the 21st century, has been up to date and associated with diabetic wound repair. In this review, we go over the functions of epigenetics in diabetic wound repair in retrospect, covering transcriptional and posttranscriptional regulation. Among these, we found that histone modification is widely involved in inflammation and angiogenesis by affecting macrophages and endothelial cells. DNA methylation is involved in factors regulation in wound repair but also affects the differentiation phenotype of cells in hyperglycemia. In addition, noncodingRNA regulation and RNA modification in diabetic wound repair were also generalized. The future prospects for epigenetic applications are discussed in the end. In conclusion, the study suggests that epigenetics is an integral regulatory mechanism in diabetic wound healing.
Collapse
Affiliation(s)
- Cong-Cong Ju
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xiao-Xiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Li-hua Liu
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Nan Guo
- Nanchang University, Nanchang, Jiangxi, PR China
| | - Le-wei Guan
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jun-xian Wu
- Nanchang University, Nanchang, Jiangxi, PR China
| | - De-Wu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| |
Collapse
|
8
|
Kumar M, Banerjee P, Das A, Singh K, Guith T, Kacar S, Gourishetti K, Sen CK, Roy S, Khanna S. Hydrolyzed Collagen Powder Dressing Improves Wound Inflammation, Perfusion, and Breaking Strength of Repaired Tissue. Adv Wound Care (New Rochelle) 2024; 13:70-82. [PMID: 37534840 DOI: 10.1089/wound.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Objective: Hydrolyzed collagen-based matrices are widely used as wound care dressings. Information on the mechanism of action of such dressings is scanty. The objective of this study was to test the effect of a specific hydrolyzed collagen powder (HCP), which is extensively used for wound care management in the United States. Approach: The effects of HCP on resolution of wound inflammation, perfusion, closure, and breaking strength of the repaired skin were studied in an experimental murine model. Results: In early (day 7) inflammatory phase of wound macrophages, HCP treatment boosted phagocytosis and efferocytosis of wound-site macrophages. In these cells, inducible reactive oxygen species were also higher on day (d) 7. HCP treatment potentiated the expression of anti-inflammatory interleukin (IL)-10 cytokine and proangiogenic vascular endothelial growth factor (VEGF) production. Excisional wounds dressed with HCP showed complete closure on day 21, while the control wounds remained open. HCP treatment also demonstrated improved quality of wound healing as marked by the improved breaking strength of the closed wound tissue/repaired skin. Innovation: These data represent first evidence on the mechanism of action of clinically used HCP. Conclusion: HCP dressing favorably influenced both wound inflammation and vascularization. Improved breaking strength of HCP-treated repaired skin lays the rationale for future studies testing the hypothesis that HCP-treated closed wounds would show fewer recurrences.
Collapse
Affiliation(s)
- Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pradipta Banerjee
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amitava Das
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tanner Guith
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sedat Kacar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Karthik Gourishetti
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sashwati Roy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Savita Khanna
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Yadav SS, Nair RR, Singh K. Editorial: Cause or effect: role of inflammation in metabolic disorder. Front Endocrinol (Lausanne) 2024; 15:1359605. [PMID: 38344663 PMCID: PMC10853463 DOI: 10.3389/fendo.2024.1359605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Affiliation(s)
- Suresh Singh Yadav
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Rohini R. Nair
- Department of Medical Biotechnology Gujarat Biotechnology University, Gandhinagar, India
| | - Kanahiya Singh
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Gondaliya P, Jash K, Srivastava A, Kalia K. MiR-29b modulates DNA methylation in promoter region of miR-130b in mouse model of Diabetic nephropathy. J Diabetes Metab Disord 2023; 22:1105-1115. [PMID: 37975134 PMCID: PMC10638230 DOI: 10.1007/s40200-023-01208-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 11/19/2023]
Abstract
Epigenetic modifications play a role in Diabetic Nephropathy (DN). Downregulation of miR-29b leads to modulation of DNA methylation via DNA methyl transferases (DNMTs) and hence exaggerated renal fibrosis in DN. Therefore, the main aim of the study was to evaluate effect of miR-29b expression in vivo on DNMTs, renal fibrosis, glomerular and tubular damage as well as renal morphology in DN. In order to explore the role of miR-29b in DNA methylation of other miRNAs, methylation profiling study was performed. It revealed that miR-29b was involved in methylation on of miR-130b on the cytosine guanine dinucleotides rich DNA (CpG) island 1 located on promoter region. In conclusion, miR-29b expression was found to modulate DNA methylation via DNMTs and regulate methylation of miR-130b. The result of this study provides a future direction to unveil role of miRNA expression in DNA methylation and its consequent effect on other miRNAs in DN. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01208-2.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Kavya Jash
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| |
Collapse
|
11
|
Pandey D, Perumal P. O. Improved meta-analysis pipeline ameliorates distinctive gene regulators of diabetic vasculopathy in human endothelial cell (hECs) RNA-Seq data. PLoS One 2023; 18:e0293939. [PMID: 37943808 PMCID: PMC10635490 DOI: 10.1371/journal.pone.0293939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
Enormous gene expression data generated through next-generation sequencing (NGS) technologies are accessible to the scientific community via public repositories. The data harboured in these repositories are foundational for data integrative studies enabling large-scale data analysis whose potential is yet to be fully realized. Prudent integration of individual gene expression data i.e. RNA-Seq datasets is remarkably challenging as it encompasses an assortment and series of data analysis steps that requires to be accomplished before arriving at meaningful insights on biological interrogations. These insights are at all times latent within the data and are not usually revealed from the modest individual data analysis owing to the limited number of biological samples in individual studies. Nevertheless, a sensibly designed meta-analysis of select individual studies would not only maximize the sample size of the analysis but also significantly improves the statistical power of analysis thereby revealing the latent insights. In the present study, a custom-built meta-analysis pipeline is presented for the integration of multiple datasets from different origins. As a case study, we have tested with the integration of two relevant datasets pertaining to diabetic vasculopathy retrieved from the open source domain. We report the meta-analysis ameliorated distinctive and latent gene regulators of diabetic vasculopathy and uncovered a total of 975 i.e. 930 up-regulated and 45 down-regulated gene signatures. Further investigation revealed a subset of 14 DEGs including CTLA4, CALR, G0S2, CALCR, OMA1, and DNAJC3 as latent i.e. novel as these signatures have not been reported earlier. Moreover, downstream investigations including enrichment analysis, and protein-protein interaction (PPI) network analysis of DEGs revealed durable disease association signifying their potential as novel transcriptomic biomarkers of diabetic vasculopathy. While the meta-analysis of individual whole transcriptomic datasets for diabetic vasculopathy is exclusive to our comprehension, however, the novel meta-analysis pipeline could very well be extended to study the mechanistic links of DEGs in other disease conditions.
Collapse
Affiliation(s)
- Diksha Pandey
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Onkara Perumal P.
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
12
|
Wang E, Chen S, Wang H, Chen T, Chakrabarti S. Non-coding RNA-mediated endothelial-to-mesenchymal transition in human diabetic cardiomyopathy, potential regulation by DNA methylation. Cardiovasc Diabetol 2023; 22:303. [PMID: 37924123 PMCID: PMC10625293 DOI: 10.1186/s12933-023-02039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
AIMS Diabetic cardiomyopathy (DCM) is a major complication of diabetes and a risk factor for cardiovascular disease. Endothelial dysfunction is central to DCM, and endothelial-to-mesenchymal transition (EndMT) is a key form of endothelial dysfunction in diabetes. EndMT in DCM has been well-studied in model systems and has been found to be epigenetically regulated by non-coding RNAs (ncRNAs). However, EndMT in DCM and its associated epigenetic changes need further characterization in human patients. It is also not known if ncRNAs are affected by changes in DNA methylation in DCM. This study aims to confirm in human hearts, the findings from animal and cell studies, and potentially provide novel insight into interactions between DNA methylation and ncRNAs in EndMT in DCM. METHODS AND RESULTS Heart tissues were collected from autopsy patients, fixed in formalin, and embedded in paraffin. Thin sections from paraffin-embedded tissues were used for histology and immunofluorescence analyses, where we confirmed that diabetic patients showed increased cardiac fibrosis that EndMT had occurred. Tissue curls from the paraffin-embedded tissues were used for RT-qPCR and methylation analyses. RT-qPCR quantitatively showed that EndMT occurs in the hearts of diabetics, and that EndMT in human hearts corresponded to changes in key ncRNAs. Methylation analysis showed that some of the EndMT-related ncRNAs were regulated by DNA promoter methylation, while others may be regulated through different epigenetic mechanisms. CONCLUSIONS We show that EndMT is a relevant pathological process in human hearts during DCM, and that its occurrence coincides with changes in relevant ncRNAs. We further find that interplay between DNA methylation and certain ncRNAs involved in the regulation of EndMT may contribute to the observed changes in ncRNA expression. These findings reinforce the role of EndMT in patients afflicted with DCM and underscore the complexities and importance of the interactions between different facets of epigenetic regulation.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Shali Chen
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Honglin Wang
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Tori Chen
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| |
Collapse
|
13
|
Xiong Y, Chu X, Yu T, Knoedler S, Schroeter A, Lu L, Zha K, Lin Z, Jiang D, Rinkevich Y, Panayi AC, Mi B, Liu G, Zhao Y. Reactive Oxygen Species-Scavenging Nanosystems in the Treatment of Diabetic Wounds. Adv Healthc Mater 2023; 12:e2300779. [PMID: 37051860 DOI: 10.1002/adhm.202300779] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Diabetic wounds are characterized by drug-resistant bacterial infections, biofilm formation, impaired angiogenesis and perfusion, and oxidative damage to the microenvironment. Given their complex nature, diabetic wounds remain a major challenge in clinical practice. Reactive oxygen species (ROS), which have been shown to trigger hyperinflammation and excessive cellular apoptosis, play a pivotal role in the pathogenesis of diabetic wounds. ROS-scavenging nanosystems have recently emerged as smart and multifunctional nanomedicines with broad synergistic applicability. The documented anti-inflammatory and pro-angiogenic ability of ROS-scavenging treatments predestines these nanosystems as promising options for the treatment of diabetic wounds. Yet, in this context, the therapeutic applicability and efficacy of ROS-scavenging nanosystems remain to be elucidated. Herein, the role of ROS in diabetic wounds is deciphered, and the properties and strengths of nanosystems with ROS-scavenging capacity for the treatment of diabetic wounds are summarized. In addition, the current challenges of such nanosystems and their potential future directions are discussed through a clinical-translational lens.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Tao Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625, Hanover, Lower Saxony, Germany
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
14
|
Ghatak S, Hemann C, Boslett J, Singh K, Sharma A, El Masry MS, Abouhashem AS, Ghosh N, Mathew-Steiner SS, Roy S, Zweier JL, Sen CK. Bacterial Pyocyanin Inducible Keratin 6A Accelerates Closure of Epithelial Defect under Conditions of Mitochondrial Dysfunction. J Invest Dermatol 2023; 143:2052-2064.e5. [PMID: 37044260 PMCID: PMC10529774 DOI: 10.1016/j.jid.2023.03.1671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023]
Abstract
Repair of epithelial defect is complicated by infection and related metabolites. Pyocyanin (PYO) is one such metabolite that is secreted during Pseudomonas aeruginosa infection. Keratinocyte (KC) migration is required for the closure of skin epithelial defects. This work sought to understand PYO-KC interaction and its significance in tissue repair. Stable Isotope Labeling by Amino acids in Cell culture proteomics identified mitochondrial dysfunction as the top pathway responsive to PYO exposure in human KCs. Consistently, functional studies showed mitochondrial stress, depletion of reducing equivalents, and adenosine triphosphate. Strikingly, despite all stated earlier, PYO markedly accelerated KC migration. Investigation of underlying mechanisms revealed, to our knowledge, a previously unreported function of keratin 6A in KCs. Keratin 6A was PYO inducible and accelerated closure of epithelial defect. Acceleration of closure was associated with poor quality healing, including compromised expression of apical junction proteins. This work recognizes keratin 6A for its role in enhancing KC migration under conditions of threat posed by PYO. Qualitatively deficient junctional proteins under conditions of defensive acceleration of KC migration explain why an infected wound close with deficient skin barrier function as previously reported.
Collapse
Affiliation(s)
- Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Craig Hemann
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - James Boslett
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Anu Sharma
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Mohamed S El Masry
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Ahmed Safwat Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Nandini Ghosh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Shomita S Mathew-Steiner
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA.
| |
Collapse
|
15
|
Srivastava R, Singh K, Abouhashem AS, Kumar M, Kacar S, Verma SS, Mohanty SK, Sinha M, Ghatak S, Xuan Y, Sen CK. Human fetal dermal fibroblast-myeloid cell diversity is characterized by dominance of pro-healing Annexin1-FPR1 signaling. iScience 2023; 26:107533. [PMID: 37636079 PMCID: PMC10450526 DOI: 10.1016/j.isci.2023.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/06/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Fetal skin achieves scarless wound repair. Dermal fibroblasts play a central role in extracellular matrix deposition and scarring outcomes. Both fetal and gingival wound repair share minimal scarring outcomes. We tested the hypothesis that compared to adult skin fibroblasts, human fetal skin fibroblast diversity is unique and partly overlaps with gingival skin fibroblasts. Human fetal skin (FS, n = 3), gingiva (HGG, n = 13), and mature skin (MS, n = 13) were compared at single-cell resolution. Dermal fibroblasts, the most abundant cluster, were examined to establish a connectome with other skin cells. Annexin1-FPR1 signaling pathway was dominant in both FS as well as HGG fibroblasts and related myeloid cells while scanty in MS fibroblasts. Myeloid-specific FPR1-ORF delivered in murine wound edge using tissue nanotransfection (TNT) technology significantly enhanced the quality of healing. Pseudotime analyses identified the co-existence of an HGG fibroblast subset with FPR1high myeloid cells of fetal origin indicating common underlying biological processes.
Collapse
Affiliation(s)
- Rajneesh Srivastava
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ahmed S. Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Sharkia Clinical Research Department, Ministry of Health, Zagazig, Egypt
| | - Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sumit S. Verma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujit K. Mohanty
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mithun Sinha
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yi Xuan
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandan K. Sen
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Abouhashem AS, Singh K, Srivastava R, Liu S, Mathew-Steiner SS, Gu X, Kacar S, Hagar A, Sandusky GE, Roy S, Wan J, Sen CK. The Prolonged Terminal Phase of Human Life Induces Survival Response in the Skin Transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540715. [PMID: 37292819 PMCID: PMC10245562 DOI: 10.1101/2023.05.15.540715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human death marks the end of organismal life under conditions such that the components of the human body continue to be alive. Such postmortem cellular survival depends on the nature (Hardy scale of slow-fast death) of human death. Slow and expected death typically results from terminal illnesses and includes a prolonged terminal phase of life. As such organismal death process unfolds, do cells of the human body adapt for postmortem cellular survival? Organs with low energy cost-of-living, such as the skin, are better suited for postmortem cellular survival. In this work, the effect of different durations of terminal phase of human life on postmortem changes in cellular gene expression was investigated using RNA sequencing data of 701 human skin samples from the Genotype-Tissue Expression (GTEx) database. Longer terminal phase (slow-death) was associated with a more robust induction of survival pathways (PI3K-Akt signaling) in postmortem skin. Such cellular survival response was associated with the upregulation of embryonic developmental transcription factors such as FOXO1 , FOXO3 , ATF4 and CEBPD . Upregulation of PI3K-Akt signaling was independent of sex or duration of death-related tissue ischemia. Analysis of single nucleus RNA-seq of post-mortem skin tissue specifically identified the dermal fibroblast compartment to be most resilient as marked by adaptive induction of PI3K-Akt signaling. In addition, slow death also induced angiogenic pathways in the dermal endothelial cell compartment of postmortem human skin. In contrast, specific pathways supporting functional properties of the skin as an organ were downregulated following slow death. Such pathways included melanogenesis and those representing the skin extracellular matrix (collagen expression and metabolism). Efforts to understand the significance of death as a biological variable (DABV) in influencing the transcriptomic composition of surviving component tissues has far-reaching implications including rigorous interpretation of experimental data collected from the dead and mechanisms involved in transplant-tissue obtained from dead donors.
Collapse
|
17
|
Gordillo GM, Guda PR, Singh K, Biswas A, Abouhashem AS, Rustagi Y, Sen A, Kumar M, Das A, Ghatak S, Khanna S, Sen CK, Roy S. Tissue nanotransfection causes tumor regression by its effect on nanovesicle cargo that alters microenvironmental macrophage state. Mol Ther 2023; 31:1402-1417. [PMID: 36380587 PMCID: PMC10188642 DOI: 10.1016/j.ymthe.2022.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles released by all eukaryotic cells. This work reports the first nanoscale fluorescent visualization of tumor-originating vesicles bearing an angiogenic microRNA (miR)-126 cargo. In a validated experimental model of lethal murine vascular neoplasm, tumor-originating EV delivered its miR-126 cargo to tumor-associated macrophages (TAMs). Such delivery resulted in an angiogenic (LYVE+) change of state in TAM that supported tumor formation. Study of the trafficking of tumor-originating fluorescently tagged EV revealed colocalization with TAM demonstrating uptake by these cells. Ex vivo treatment of macrophages with tumor-derived EVs led to gain of tumorigenicity in these isolated cells. Single-cell RNA sequencing of macrophages revealed that EV-borne miR-126 characterized the angiogenic change of state. Unique gene expression signatures of specific macrophage clusters responsive to miR-126-enriched tumor-derived EVs were revealed. Topical tissue nanotransfection (TNT) delivery of an oligonucleotide comprising an anti-miR against miR-126 resulted in significant knockdown of miR-126 in the tumor tissue. miR-126 knockdown resulted in complete involution of the tumor and improved survival rate of tumor-affected mice. This work identifies a novel tumorigenic mechanism that relies on tumorigenic state change of TAM caused by tumor-originating EV-borne angiomiR. This disease process can be effectively targeted by topical TNT of superficial tumors.
Collapse
Affiliation(s)
- Gayle M Gordillo
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA.
| | - Poornachander Reddy Guda
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Ayan Biswas
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Ahmed S Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Abhishek Sen
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Manishekhar Kumar
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Amitava Das
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, 975 W Walnut Street, Suite 444, Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Pastar I, Balukoff NC, Marjanovic J, Chen VY, Stone RC, Tomic-Canic M. Molecular Pathophysiology of Chronic Wounds: Current State and Future Directions. Cold Spring Harb Perspect Biol 2023; 15:a041243. [PMID: 36123031 PMCID: PMC10024648 DOI: 10.1101/cshperspect.a041243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Venous leg ulcers, diabetic foot ulcers, and pressure ulcers are complex chronic wounds with multifactorial etiologies that are associated with high patient morbidity and mortality. Despite considerable progress in deciphering the pathologies of chronic wounds using "omics" approaches, considerable gaps in knowledge remain, and current therapies are often not efficacious. We provide a comprehensive overview of current understanding of the molecular mechanisms that impair healing and current knowledge on cell-specific dysregulation including keratinocytes, fibroblasts, immune cells, endothelial cells and their contributions to impaired reepithelialization, inflammation, angiogenesis, and tissue remodeling that characterize chronic wounds. We also provide a rationale for further elucidation of ulcer-specific pathologic processes that can be therapeutically targeted to shift chronic nonhealing to acute healing wounds.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Nathan C Balukoff
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Jelena Marjanovic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Vivien Y Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida 33136, USA
| |
Collapse
|
19
|
Kumar V, Pandey A, Arora A, Gautam P, Bisht D, Gupta S, Chaurasia A, Sachan M. Diagnostics and Therapeutic Potential of miR-205 and miR-34a in Ovarian Cancer Management: A miRNA-Target-Based Analysis. DNA Cell Biol 2023; 42:151-162. [PMID: 36779980 DOI: 10.1089/dna.2022.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Epithelial ovarian cancer (EOC) treatment strategies mainly focused on surgery combined with chemotherapy. Recent targeted therapy techniques emerge as milestone and could be used for management of ovarian cancer (OC) progression with more efficacy. The aim is to evaluate the therapeutic and diagnostic potential of microRNA (miRNA) in management of EOC using in silico and quantitative real-time PCR (qRT-PCR) expression analysis. We performed functional enrichment and miRNA-Target genes expression analysis in 48 EOC and 22 normal tissue samples using qRT-PCR and correlated with miRNA expression data in matched samples to evaluate the diagnostic and therapeutic potential of miRNA in OC management. In silico functional enrichment analysis revealed miRNA association with disease. Target genes of miRNAs participate in several biologically important pathways leading to cancer progression. Targets of miRNA-205 and miRNA-34a were significantly downregulated, and upregulated, respectively, in EOC. Moreover, significant negative correlation between relative expression of miRNA-205 and target genes (BCL2, ZEB1, E2F1, and TP53) was observed with r = -0.813; r = -0.755; r = -0.559; and r = -0.767, respectively. Similarly, miRNA-34a also showed higher negative correlation with target genes (MDM4, MAPK3, BRCA1, AREG) with r = -0.840; r = -0.870; r = -0.622; and r = -0.623, respectively. In addition, receiver operating characteristics analysis of combined miRNA panel, miRNA-205-Target gene panel, and miRNA-34a-Target gene panel exhibited higher diagnostics value with area under the curve (AUC) of 92.7 (p < 0.0001), 94.8 (p < 0.0001), and 98.3 (p < 0.0001), respectively. Negative Correlation between miRNA and target genes expression data in matched samples highlights therapeutic potential of miRNA in EOC management. Moreover, combined diagnostic potential of miRNA-target gene panel could predict risk of EOC with higher AUC, sensitivity, and specificity.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Archana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Priyanka Gautam
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Deepa Bisht
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Amrita Chaurasia
- Department of Gynaecology and Obstetrics, Motilal Nehru Medical College Allahabad, Allahabad, Prayagraj, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| |
Collapse
|
20
|
Abstract
OBJECTIVE This work addressing complexities in wound infection, seeks to test the reliance of bacterial pathogen Pseudomonas aeruginosa (PA) on host skin lipids to form biofilm with pathological consequences. BACKGROUND PA biofilm causes wound chronicity. Both CDC as well as NIH recognizes biofilm infection as a threat leading to wound chronicity. Chronic wounds on lower extremities often lead to surgical limb amputation. METHODS An established preclinical porcine chronic wound biofilm model, infected with PA or Pseudomonas aeruginosa ceramidase mutant (PA ∆Cer ), was used. RESULTS We observed that bacteria drew resource from host lipids to induce PA ceramidase expression by three orders of magnitude. PA utilized product of host ceramide catabolism to augment transcription of PA ceramidase. Biofilm formation was more robust in PA compared to PA ∆Cer . Downstream products of such metabolism such as sphingosine and sphingosine-1-phosphate were both directly implicated in the induction of ceramidase and inhibition of peroxisome proliferator-activated receptor (PPAR)δ, respectively. PA biofilm, in a ceram-idastin-sensitive manner, also silenced PPARδ via induction of miR-106b. Low PPARδ limited ABCA12 expression resulting in disruption of skin lipid homeostasis. Barrier function of the wound-site was thus compromised. CONCLUSIONS This work demonstrates that microbial pathogens must co-opt host skin lipids to unleash biofilm pathogenicity. Anti-biofilm strategies must not necessarily always target the microbe and targeting host lipids at risk of infection could be productive. This work may be viewed as a first step, laying fundamental mechanistic groundwork, toward a paradigm change in biofilm management.
Collapse
|
21
|
Pal D, Ghatak S, Singh K, Abouhashem AS, Kumar M, El Masry MS, Mohanty SK, Palakurti R, Rustagi Y, Tabasum S, Khona DK, Khanna S, Kacar S, Srivastava R, Bhasme P, Verma SS, Hernandez E, Sharma A, Reese D, Verma P, Ghosh N, Gorain M, Wan J, Liu S, Liu Y, Castro NH, Gnyawali SC, Lawrence W, Moore J, Perez DG, Roy S, Yoder MC, Sen CK. Identification of a physiologic vasculogenic fibroblast state to achieve tissue repair. Nat Commun 2023; 14:1129. [PMID: 36854749 PMCID: PMC9975176 DOI: 10.1038/s41467-023-36665-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Tissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.
Collapse
Affiliation(s)
- Durba Pal
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed Safwat Abouhashem
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Manishekhar Kumar
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mohamed S El Masry
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Sujit K Mohanty
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ravichand Palakurti
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Saba Tabasum
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dolly K Khona
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pramod Bhasme
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sumit S Verma
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anu Sharma
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Diamond Reese
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nandini Ghosh
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Mahadeo Gorain
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Natalia Higuita Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Surya C Gnyawali
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - William Lawrence
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Jordan Moore
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Gallego Perez
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
22
|
Li XL, Xie JF, Ye XY, Li YG, Liu DW. [Research advances on the mechanism of non-coding RNA regulated diabetic wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:184-189. [PMID: 36878528 DOI: 10.3760/cma.j.cn501225-20221101-00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Diabetic wounds are a common complication of diabetic patients, and the incidence has been increasing in recent years. In addition, its poor clinical prognosis seriously affects the quality of life of patients, which has become the focus and difficulty of diabetes treatment. As the RNA regulating gene expression, non-coding RNA can regulate the pathophysiological process of diseases, and play an important role in the healing process of diabetic wounds. In this paper, we reviewed the regulatory role, diagnostic value, and therapeutic potential of three common non-coding RNA in diabetic wounds, in order to provide a new solution for the diagnosis and treatment of diabetic wounds at the genetic and molecular level.
Collapse
Affiliation(s)
- X L Li
- Department of Burns, Zhengzhou First People's Hospital, Zhengzhou 450004, China
| | - J F Xie
- Department of Burns, Zhengzhou First People's Hospital, Zhengzhou 450004, China
| | - X Y Ye
- Department of Burns, Zhengzhou First People's Hospital, Zhengzhou 450004, China
| | - Y G Li
- Department of Burns, Zhengzhou First People's Hospital, Zhengzhou 450004, China
| | - D W Liu
- Medical Center of Burn Plastic and Wound Repair, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
23
|
Ghatak S, Khanna S, Roy S, Thirunavukkarasu M, Pradeep SR, Wulff BC, El Masry MS, Sharma A, Palakurti R, Ghosh N, Xuan Y, Wilgus TA, Maulik N, Yoder MC, Sen CK. Driving adult tissue repair via re-engagement of a pathway required for fetal healing. Mol Ther 2023; 31:454-470. [PMID: 36114673 PMCID: PMC9931555 DOI: 10.1016/j.ymthe.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
Fetal cutaneous wound closure and repair differ from that in adulthood. In this work, we identify an oxidant stress sensor protein, nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), that is abundantly expressed in normal fetal epidermis (and required for fetal wound closure), though not in adult epidermis, but is variably re-induced upon adult tissue wounding. NPGPx is a direct target of the miR-29 family. Following injury, abundance of miR-29 is lowered, permitting a prompt increase in NPGPx transcripts and protein expression in adult wound-edge tissue. NPGPx expression was required to mediate increased keratinocyte migration induced by miR-29 inhibition in vitro and in vivo. Increased NPGPx expression induced increased SOX2 expression and β-catenin nuclear localization in keratinocytes. Augmenting physiologic NPGPx expression via experimentally induced miR-29 suppression, using cutaneous tissue nanotransfection or targeted lipid nanoparticle delivery of anti-sense oligonucleotides, proved to be sufficient to overcome the deleterious effects of diabetes on this specific pathway to enhance tissue repair.
Collapse
Affiliation(s)
- Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mahesh Thirunavukkarasu
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Seetur R Pradeep
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Brian C Wulff
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mohamed S El Masry
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Plastic Surgery, Zagazig University, Zagazig 44519, Egypt
| | - Anu Sharma
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ravichand Palakurti
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nandini Ghosh
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Xuan
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Traci A Wilgus
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nilanjana Maulik
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Gharbia FZ, Abouhashem AS, Moqidem YA, Elbaz AA, Abdellatif A, Singh K, Sen CK, Azzazy HME. Adult skin fibroblast state change in murine wound healing. Sci Rep 2023; 13:886. [PMID: 36650180 PMCID: PMC9845335 DOI: 10.1038/s41598-022-27152-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Wound healing is a well-organized dynamic process involving coordinated consecutive phases: homeostasis, inflammation, proliferation and resolution. Fibroblasts play major roles in skin wound healing such as in wound contraction and release of growth factors which are of importance in angiogenesis and tissue remodeling. Abnormal fibroblast phenotypes have been identified in patients with chronic wounds. In this work, we analyzed scRNA-seq datasets of normal and wounded skin from mice at day 4 post-wound to investigate fibroblast heterogeneity during the proliferative phase of wound healing. Compositional analysis revealed a specific subset of fibroblast (cluster 3) that primarily increased in wounded skin (14%) compared to normal skin (3.9%). This subset was characterized by a gene signature marked by the plasma membrane proteins Sfrp2 + Sfrp4 + Sfrp1 + and the transcription factors Ebf1 + Prrx1 + Maged1 + . Differential gene expression and enrichment analysis identified epithelial to mesenchymal transition (EMT) and angiogenesis to be upregulated in the emerging subset of fibroblasts of the wounded skin. Using two other datasets for murine wounded skin confirmed the increase in cluster 3-like fibroblasts at days 2, 7 and 14 post-wounding with a peak at day 7. By performing a similarity check between the differential gene expression profile between wounded and normal skin for this emerging fibroblast subset with drug signature from the ConnectivityMap database, we identified drugs capable of mimicking the observed gene expression change in fibroblasts during wound healing. TTNPB, verteprofin and nicotinic acid were identified as candidate drugs capable of inducing fibroblast gene expression profile necessary for wound healing. On the other hand, methocarbamol, ifosfamide and penbutolol were recognized to antagonize the identified fibroblast differential expression profile during wound healing which might cause delay in wound healing. Taken together, analysis of murine transcriptomic skin wound healing datasets suggested a subset of fibroblasts capable of inducing EMT and further inferred drugs that might be tested as potential candidates to induce wound closure.
Collapse
Affiliation(s)
- Fatma Z Gharbia
- Graduate Nanotechnology Program, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Ahmed S Abouhashem
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
- Sharkia Clinical Research Department, Ministry of Health & Population, Zagazig, 44511, Sharkia, Egypt
- CytoTalk LLC, Cheyenne, WY, 82001, USA
| | - Yomna A Moqidem
- Department of Biology, School of Sciences & Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
| | - Ahmed A Elbaz
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
- CytoTalk LLC, Cheyenne, WY, 82001, USA
| | - Ahmed Abdellatif
- Department of Biology, School of Sciences & Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt.
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology, Albert Einstein Str. 9, 07745, Jena, Germany.
| |
Collapse
|
25
|
Palakurti R, Biswas N, Roy S, Gnyawali SC, Sinha M, Singh K, Ghatak S, Sen CK, Khanna S. Inducible miR-1224 silences cerebrovascular Serpine1 and restores blood flow to the stroke-affected site of the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:276-292. [PMID: 36726407 PMCID: PMC9868883 DOI: 10.1016/j.omtn.2022.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
The α-tocotrienol (TCT) form of natural vitamin E is more potent than the better known α-tocopherol against stroke. Angiographic studies of canine stroke have revealed beneficial cerebrovascular effects of TCT. This work seeks to understand the molecular basis of such effect. In mice, TCT supplementation improved perfusion at the stroke-affected site by inducing miR-1224. miRNA profiling of a laser-capture-microdissected stroke-affected brain site identified miR-1224 as the only vascular miR induced. Lentiviral knockdown of miR-1224 significantly blunted the otherwise beneficial effects of TCT on stroke outcomes. Studies on primary brain microvascular endothelial cells revealed direct angiogenic properties of miR-1224. In mice not treated with TCT, advance stereotaxic delivery of an miR-1224 mimic to the stroke site markedly improved stroke outcomes. Mechanistic studies identified Serpine1 as a target of miR-1224. Downregulation of Serpine1 augmented the angiogenic response of the miR-1224 mimic in the brain endothelial cells. The inhibition of Serpine1, by dietary TCT and pharmacologically, increased cerebrovascular blood flow at the stroke-affected site and protected against stroke. This work assigns Serpine1, otherwise known to be of critical significance in stroke, a cerebrovascular function that worsens stroke outcomes. miR-1224-dependent inhibition of Serpine1 can be achieved by dietary TCT as well as by the small-molecule inhibitor TM5441.
Collapse
Affiliation(s)
- Ravichand Palakurti
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nirupam Biswas
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Surya C. Gnyawali
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mithun Sinha
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Subhadip Ghatak
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Savita Khanna
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author: Savita Khanna, PhD, Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
26
|
Pandey A, Ajgaonkar S, Jadhav N, Saha P, Gurav P, Panda S, Mehta D, Nair S. Current Insights into miRNA and lncRNA Dysregulation in Diabetes: Signal Transduction, Clinical Trials and Biomarker Discovery. Pharmaceuticals (Basel) 2022; 15:1269. [PMID: 36297381 PMCID: PMC9610703 DOI: 10.3390/ph15101269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 01/24/2023] Open
Abstract
Diabetes is one of the most frequently occurring metabolic disorders, affecting almost one tenth of the global population. Despite advances in antihyperglycemic therapeutics, the management of diabetes is limited due to its complexity and associated comorbidities, including diabetic neuropathy, diabetic nephropathy and diabetic retinopathy. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are involved in the regulation of gene expression as well as various disease pathways in humans. Several ncRNAs are dysregulated in diabetes and are responsible for modulating the expression of various genes that contribute to the 'symptom complex' in diabetes. We review various miRNAs and lncRNAs implicated in diabetes and delineate ncRNA biological networks as well as key ncRNA targets in diabetes. Further, we discuss the spatial regulation of ncRNAs and their role(s) as prognostic markers in diabetes. We also shed light on the molecular mechanisms of signal transduction with diabetes-associated ncRNAs and ncRNA-mediated epigenetic events. Lastly, we summarize clinical trials on diabetes-associated ncRNAs and discuss the functional relevance of the dysregulated ncRNA interactome in diabetes. This knowledge will facilitate the identification of putative biomarkers for the therapeutic management of diabetes and its comorbidities. Taken together, the elucidation of the architecture of signature ncRNA regulatory networks in diabetes may enable the identification of novel biomarkers in the discovery pipeline for diabetes, which may lead to better management of this metabolic disorder.
Collapse
Affiliation(s)
| | | | | | - Praful Saha
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Pranay Gurav
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | | | - Dilip Mehta
- Synergia Life Sciences Pvt. Ltd., Mumbai 400 022, India
| | - Sujit Nair
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| |
Collapse
|
27
|
Abstract
Angiogenesis, or the growth of new blood vessels from the preexisting vasculature, is a visible and important component of wound repair. When tissue damage occurs, disruption of the vasculature structure leads to hypoxia. The restoration of normoxia is essential for appropriate and durable tissue repair. Angiogenesis in wounds is regulated by endogenous proangiogenic mediators, which cause rapid growth of a new vascular bed that is much denser than that of normal tissue. Such rapid growth of the capillary bed results in capillaries that are abnormal, and the newly formed vessels are tortuous, dilated, and immature. During wound resolution, this substantial neocapillary bed is pruned back to normal density with attendant maturation. Many poorly healing wounds, including nonhealing ulcers and scars, exhibit an aberrant angiogenic response. The fine-tuning of capillary regrowth in wounds is an area of significant therapeutic potential.
Collapse
Affiliation(s)
- Chen Han
- Center for Wound Healing and Tissue Regeneration, Colleges of Dentistry and Medicine, University of Illinois Chicago, Chicago, Illinois 60612, USA
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, Colleges of Dentistry and Medicine, University of Illinois Chicago, Chicago, Illinois 60612, USA
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, Colleges of Dentistry and Medicine, University of Illinois Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
28
|
Zhao T, Liu S, Ding X, Johnson EM, Hanna NH, Singh K, Sen CK, Wan J, Du H, Yan C. Lysosomal acid lipase, CSF1R, and PD-L1 determine functions of CD11c+ myeloid-derived suppressor cells. JCI Insight 2022; 7:e156623. [PMID: 35917184 PMCID: PMC9536279 DOI: 10.1172/jci.insight.156623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosomal acid lipase (LAL) is a key enzyme in the metabolic pathway of neutral lipids. In the blood of LAL-deficient (Lal-/-) mice, increased CD11c+ cells were accompanied by upregulated programmed cell death ligand 1 (PD-L1) expression. Single-cell RNA sequencing of Lal-/- CD11c+ cells identified 2 distinctive clusters with a major metabolic shift toward glucose utilization and reactive oxygen species overproduction. Pharmacologically blocking pyruvate dehydrogenase in glycolysis not only reduced CD11c+ cells and their PD-L1 expression but also reversed their capabilities of T cell suppression and tumor growth stimulation. Colony-stimulating factor 1 receptor (CSF1R) played an essential role in controlling Lal-/- CD11c+ cell homeostasis and function and PD-L1 expression. Pharmacological inhibition of LAL activity increased CD11c, PD-L1, and CSF1R levels in both normal murine myeloid cells and human blood cells. Tumor-bearing mice and human patients with non-small cell lung cancer also showed CD11c+ cell expansion with PD-L1 and CSF1R upregulation and immunosuppression. There were positive correlations among CD11c, PD-L1, and CSF1R expression and negative correlations with LAL expression in patients with lung cancer or melanoma using The Cancer Genome Atlas database and patient samples. Therefore, CD11c+ cells switched their functions to immune suppression and tumor growth stimulation through CSF1R/PD-L1 upregulation and metabolic reprogramming.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pathology and Laboratory Medicine
| | - Sheng Liu
- IU Simon Comprehensive Cancer Center
- Department of Medical and Molecular Genetics, and
| | | | | | | | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jun Wan
- IU Simon Comprehensive Cancer Center
- Department of Medical and Molecular Genetics, and
| | - Hong Du
- Department of Pathology and Laboratory Medicine
- IU Simon Comprehensive Cancer Center
| | - Cong Yan
- Department of Pathology and Laboratory Medicine
- IU Simon Comprehensive Cancer Center
| |
Collapse
|
29
|
Hu Q, Zhang X, Sun M, jiang B, Zhang Z, Sun D. Potential epigenetic molecular regulatory networks in ocular neovascularization. Front Genet 2022; 13:970224. [PMID: 36118885 PMCID: PMC9478661 DOI: 10.3389/fgene.2022.970224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Neovascularization is one of the many manifestations of ocular diseases, including corneal injury and vascular diseases of the retina and choroid. Although anti-VEGF drugs have been used to effectively treat neovascularization, long-term use of anti-angiogenic factors can cause a variety of neurological and developmental side effects. As a result, better drugs to treat ocular neovascularization are urgently required. There is mounting evidence that epigenetic regulation is important in ocular neovascularization. DNA methylation and histone modification, non-coding RNA, and mRNA modification are all examples of epigenetic mechanisms. In order to shed new light on epigenetic therapeutics in ocular neovascularization, this review focuses on recent advances in the epigenetic control of ocular neovascularization as well as discusses these new mechanisms.
Collapse
|
30
|
Singh K, Rustagi Y, Abouhashem AS, Tabasum S, Verma P, Hernandez E, Pal D, Khona DK, Mohanty SK, Kumar M, Srivastava R, Guda PR, Verma SS, Mahajan S, Killian JA, Walker LA, Ghatak S, Mathew-Steiner SS, Wanczyk K, Liu S, Wan J, Yan P, Bundschuh R, Khanna S, Gordillo GM, Murphy MP, Roy S, Sen CK. Genome-wide DNA hypermethylation opposes healing in chronic wound patients by impairing epithelial-to-mesenchymal transition. J Clin Invest 2022; 132:157279. [PMID: 35819852 PMCID: PMC9433101 DOI: 10.1172/jci157279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
An extreme chronic wound tissue microenvironment causes epigenetic gene silencing. An unbiased whole-genome methylome was studied in the wound-edge tissue of patients with chronic wounds. A total of 4,689 differentially methylated regions (DMRs) were identified in chronic wound-edge skin compared with unwounded human skin. Hypermethylation was more frequently observed (3,661 DMRs) in the chronic wound-edge tissue compared with hypomethylation (1,028 DMRs). Twenty-six hypermethylated DMRs were involved in epithelial-mesenchymal transition (EMT). Bisulfite sequencing validated hypermethylation of a predicted specific upstream regulator TP53. RNA-Seq analysis was performed to qualify findings from methylome analysis. Analysis of the downregulated genes identified the TP53 signaling pathway as being significantly silenced. Direct comparison of hypermethylation and downregulated genes identified 4 genes, ADAM17, NOTCH, TWIST1, and SMURF1, that functionally represent the EMT pathway. Single-cell RNA-Seq studies revealed that these effects on gene expression were limited to the keratinocyte cell compartment. Experimental murine studies established that tissue ischemia potently induces wound-edge gene methylation and that 5′-azacytidine, inhibitor of methylation, improved wound closure. To specifically address the significance of TP53 methylation, keratinocyte-specific editing of TP53 methylation at the wound edge was achieved by a tissue nanotransfection-based CRISPR/dCas9 approach. This work identified that reversal of methylation-dependent keratinocyte gene silencing represents a productive therapeutic strategy to improve wound closure.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Yashika Rustagi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Ahmed S Abouhashem
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Saba Tabasum
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Priyanka Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Edward Hernandez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, India
| | - Dolly K Khona
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sujit K Mohanty
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Manishekhar Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Rajneesh Srivastava
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Poornachander R Guda
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sumit S Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sanskruti Mahajan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jackson A Killian
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Logan A Walker
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Subhadip Ghatak
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Shomita S Mathew-Steiner
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Kristen Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Pearlly Yan
- Comprehensive Cancer Center, Ohio State University, Columbus, United States of America
| | - Ralf Bundschuh
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Savita Khanna
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Gayle M Gordillo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Michael P Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sashwati Roy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Chandan K Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| |
Collapse
|
31
|
Wisler JR, Singh K, McCarty A, Harkless R, Karpurapu M, Hernandez E, Mukherjee D, Abouhashem AS, Christman JW, Sen CK. Exosomal Transfer of DNA Methyl-Transferase mRNA Induces an Immunosuppressive Phenotype in Human Monocytes. Shock 2022; 57:218-227. [PMID: 35759303 PMCID: PMC9420543 DOI: 10.1097/shk.0000000000001928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Survivors of sepsis exhibit persistent immunosuppression. Epigenetic events may be responsible for some of these immunosuppressive changes. During sepsis circulating exosomes contain large quantities of DNA methyltransferase (DNMT) mRNAs. We hypothesized that exosomes directly transfer DNMT mRNAs to recipient monocytes with resultant methylation events and immunosuppression. METHODS Exosomes containing DNMT mRNA were generated by stimulating monocytes with LPS. Confocal microscopy was used to determine uptake kinetics in the presence of pharmacologic inhibition. Expression and packaging of specific DNMT mRNA was controlled using DNMT siRNAs. Whole genome and gene specific methylation was assessed using bisulfite sequencing. Ingenuity pathway analysis was performed to determine the biological function of significance of differentially methylated regions. RESULTS Exosomes effectively transferred DNMT mRNA to recipient monocytes. Pharmacologic inhibition of exosome uptake prevented this increase in DNMT mRNA expression. Recipient monocytes exhibited hypermethylation changes and gene suppression. siRNAs decreased the packaging of DNMT mRNAs and prevented TNFα gene suppression, restoring immunocompetence. CONCLUSION These data support a role for exosome-mediated transfer of DNMT mRNA with resultant methylation and gene silencing. Pharmacologic uptake inhibition or targeted siRNA mediated DNMT gene silencing prevented DNMT mRNA transfer and maintained the cell's ability to express TNFα in response to LPS. This highlights the potential therapeutic value of targeting these exosome-mediated epigenetic events to maintain the host immune response during sepsis.
Collapse
Affiliation(s)
- Jon R. Wisler
- Division of Trauma and Critical Care, Department of Surgery, Ohio State University, Columbus, Ohio
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adara McCarty
- Division of Trauma and Critical Care, Department of Surgery, Ohio State University, Columbus, Ohio
| | - Ryan Harkless
- Division of Trauma and Critical Care, Department of Surgery, Ohio State University, Columbus, Ohio
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Ohio State University, Columbus, Ohio
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Ahmed S. Abouhashem
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - John W. Christman
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Ohio State University, Columbus, Ohio
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
32
|
Rustagi Y, Abouhashem AS, Verma P, Verma SS, Hernandez E, Liu S, Kumar M, Guda PR, Srivastava R, Mohanty SK, Kacar S, Mahajan S, Wanczyk KE, Khanna S, Murphy MP, Gordillo GM, Roy S, Wan J, Sen CK, Singh K. Endothelial Phospholipase Cγ2 Improves Outcomes of Diabetic Ischemic Limb Rescue Following VEGF Therapy. Diabetes 2022; 71:1149-1165. [PMID: 35192691 PMCID: PMC9044136 DOI: 10.2337/db21-0830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Therapeutic vascular endothelial growth factor (VEGF) replenishment has met with limited success for the management of critical limb-threatening ischemia. To improve outcomes of VEGF therapy, we applied single-cell RNA sequencing (scRNA-seq) technology to study the endothelial cells of the human diabetic skin. Single-cell suspensions were generated from the human skin followed by cDNA preparation using the Chromium Next GEM Single-cell 3' Kit v3.1. Using appropriate quality control measures, 36,487 cells were chosen for downstream analysis. scRNA-seq studies identified that although VEGF signaling was not significantly altered in diabetic versus nondiabetic skin, phospholipase Cγ2 (PLCγ2) was downregulated. The significance of PLCγ2 in VEGF-mediated increase in endothelial cell metabolism and function was assessed in cultured human microvascular endothelial cells. In these cells, VEGF enhanced mitochondrial function, as indicated by elevation in oxygen consumption rate and extracellular acidification rate. The VEGF-dependent increase in cell metabolism was blunted in response to PLCγ2 inhibition. Follow-up rescue studies therefore focused on understanding the significance of VEGF therapy in presence or absence of endothelial PLCγ2 in type 1 (streptozotocin-injected) and type 2 (db/db) diabetic ischemic tissue. Nonviral topical tissue nanotransfection technology (TNT) delivery of CDH5 promoter-driven PLCγ2 open reading frame promoted the rescue of hindlimb ischemia in diabetic mice. Improvement of blood flow was also associated with higher abundance of VWF+/CD31+ and VWF+/SMA+ immunohistochemical staining. TNT-based gene delivery was not associated with tissue edema, a commonly noted complication associated with proangiogenic gene therapies. Taken together, our study demonstrates that TNT-mediated delivery of endothelial PLCγ2, as part of combination gene therapy, is effective in diabetic ischemic limb rescue.
Collapse
Affiliation(s)
- Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Ahmed S. Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Sharkia Clinical Research Department, Ministry of Health and Population, Cairo, Egypt
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sumit S. Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Manishekhar Kumar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Poornachander R. Guda
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Rajneesh Srivastava
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sujit K. Mohanty
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sanskruti Mahajan
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Kristen E. Wanczyk
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Michael P. Murphy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Gayle M. Gordillo
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
33
|
Dhawan P, Vasishta S, Balakrishnan A, Joshi MB. Mechanistic insights into glucose induced vascular epigenetic reprogramming in type 2 diabetes. Life Sci 2022; 298:120490. [DOI: 10.1016/j.lfs.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
|
34
|
Scott SR, March KL, Wang IW, Singh K, Liu J, Turrentine M, Sen CK, Wang M. Bone marrow- or adipose-mesenchymal stromal cell secretome preserves myocardial transcriptome profile and ameliorates cardiac damage following ex vivo cold storage. J Mol Cell Cardiol 2022; 164:1-12. [PMID: 34774548 PMCID: PMC8860861 DOI: 10.1016/j.yjmcc.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart transplantation, a life-saving approach for patients with end-stage heart disease, is limited by shortage of donor organs. While prolonged storage provides more organs, it increases the extent of ischemia. Therefore, we seek to understand molecular mechanisms underlying pathophysiological changes of donor hearts during prolonged storage. Additionally, considering mesenchymal stromal cell (MSC)-derived paracrine protection, we aim to test if MSC secretome preserves myocardial transcriptome profile and whether MSC secretome from a certain source provides the optimal protection in donor hearts during cold storage. METHODS AND RESULTS Isolated mouse hearts were divided into: no cold storage (control), 6 h cold storage (6 h-I), 6 h-I + conditioned media from bone marrow MSCs (BM-MSC CM), and 6 h-I + adipose-MSC CM (Ad-MSC CM). Deep RNA sequencing analysis revealed that compared to control, 6 h-I led to 266 differentially expressed genes, many of which were implicated in modulating mitochondrial performance, oxidative stress response, myocardial function, and apoptosis. BM-MSC CM and Ad-MSC CM restored these gene expression towards control. They also improved 6 h-I-induced myocardial functional depression, reduced inflammatory cytokine production, decreased apoptosis, and reduced myocardial H2O2. However, neither MSC-exosomes nor exosome-depleted CM recapitulated MSC CM-ameliorated apoptosis and CM-improved mitochondrial preservation during cold ischemia. Knockdown of Per2 by specific siRNA abolished MSC CM-mediated these protective effects in cardiomyocytes following 6 h cold storage. CONCLUSIONS Our results demonstrated that using MSC secretome (BM-MSCs and Ad-MSCs) during prolonged cold storage confers preservation of the normal transcriptional "fingerprint", and reduces donor heart damage. MSC-released soluble factors and exosomes may synergistically act for donor heart protection.
Collapse
Affiliation(s)
- Susan R Scott
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Keith L March
- Division of Cardiovascular Medicine, Department of Medicine, IU School of Medicine, Indianapolis, IN, U.S.A,Division of Cardiovascular Medicine, Center for Regenerative Medicine, University of Florida, Gainesville, FL, U.S.A
| | - I-wen Wang
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A,Methodist Hospital, IU Health, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Kanhaiya Singh
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, U.S.A
| | - Jianyun Liu
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Mark Turrentine
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A
| | - Chandan K Sen
- Department of Surgery, IU School of Medicine, Indianapolis, IN, U.S.A,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, U.S.A
| | - Meijing Wang
- Department of Surgery, IU School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
35
|
Laser Capture Microdissection in the Spatial Analysis of Epigenetic Modifications in Skin: A Comprehensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4127238. [PMID: 35186184 PMCID: PMC8850045 DOI: 10.1155/2022/4127238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/29/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Each cell in the body contains an intricate regulation for the expression of its relevant DNA. While every cell in a multicellular organism contains identical DNA, each tissue-specific cell expresses a different set of active genes. This organizational property exists in a paradigm that is largely controlled by forces external to the DNA sequence via epigenetic regulation. DNA methylation and chromatin modifications represent some of the classical epigenetic modifications that control gene expression. Complex tissues like skin consist of heterogeneous cell types that are spatially distributed and mixed. Furthermore, each individual skin cell has a unique response to physiological and pathological cues. As such, it is difficult to classify skin tissue as homogenous across all cell types and across different environmental exposures. Therefore, it would be prudent to isolate targeted tissue elements prior to any molecular analysis to avoid a possibility of confounding the sample with unwanted cell types. Laser capture microdissection (LCM) is a powerful technique used to isolate a targeted cell group with extreme microscopic precision. LCM presents itself as a solution to tackling the problem of tissue heterogeneity in molecular analysis. This review will cover an overview of LCM technology, the principals surrounding its application, and benefits of its application to the newly defined field of epigenomics, in particular of cutaneous pathology. This presents a comprehensive review about LCM and its use in the spatial analysis of skin epigenetics. Within the realm of skin pathology, this ability to isolate tissues under specific environmental stresses, such as oxidative stress, allows a far more focused investigation.
Collapse
|
36
|
Bhamidipati T, Kumar M, Verma SS, Mohanty SK, Kacar S, Reese D, Martinez MM, Kamocka MM, Dunn KW, Sen CK, Singh K. Epigenetic basis of diabetic vasculopathy. Front Endocrinol (Lausanne) 2022; 13:989844. [PMID: 36568089 PMCID: PMC9780391 DOI: 10.3389/fendo.2022.989844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) causes peripheral vascular disease because of which several blood-borne factors, including vital nutrients fail to reach the affected tissue. Tissue epigenome is sensitive to chronic hyperglycemia and is known to cause pathogenesis of micro- and macrovascular complications. These vascular complications of T2DM may perpetuate the onset of organ dysfunction. The burden of diabetes is primarily because of a wide range of complications of which nonhealing diabetic ulcers represent a major component. Thus, it is imperative that current research help recognize more effective methods for the diagnosis and management of early vascular injuries. This review addresses the significance of epigenetic processes such as DNA methylation and histone modifications in the evolution of macrovascular and microvascular complications of T2DM.
Collapse
Affiliation(s)
- Theja Bhamidipati
- Department of Vascular Surgery, Jefferson-Einstein Medical Center, Philadelphia, PA, United States
| | - Manishekhar Kumar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sumit S. Verma
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sujit K. Mohanty
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sedat Kacar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Diamond Reese
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michelle M. Martinez
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Malgorzata M. Kamocka
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kenneth W. Dunn
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Kanhaiya Singh, ; Chandan K. Sen,
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Kanhaiya Singh, ; Chandan K. Sen,
| |
Collapse
|
37
|
Kuai L, Jiang JS, Li W, Li B, Yin SY. Long non-coding RNAs in diabetic wound healing: Current research and clinical relevance. Int Wound J 2021; 19:583-600. [PMID: 34337861 PMCID: PMC8874090 DOI: 10.1111/iwj.13655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 06/21/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetic wounds are a protracted complication of diabetes mainly characterised by chronic inflammation, obstruction of epithelialization, damaged blood vessels and collagen production (maturation), as well as neuropathy. As a non‐coding RNA (ncRNA) that lack coding potential, long non‐coding RNAs (lncRNAs) have recently been reported to play a salient role in diabetic wound healing. Here, this review summarises the roles of lncRNAs in the pathology and treatments of diabetic wounds, providing references for its potential clinical diagnostic criteria or therapeutic targets in the future.
Collapse
Affiliation(s)
- Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Si Jiang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
38
|
Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Adv Wound Care (New Rochelle) 2021; 10:436-460. [PMID: 33050829 PMCID: PMC8236303 DOI: 10.1089/wound.2020.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Significance: Millions of people worldwide suffer from diabetes mellitus and its complications, including chronic diabetic wounds. To date, there are few widely successful clinical therapies specific to diabetic wounds beyond general wound care, despite the vast number of scientific discoveries in the pathogenesis of defective healing in diabetes. Recent Advances: In recent years, murine animal models of diabetes have enabled the investigation of many possible therapeutics for diabetic wound care. These include specific cell types, growth factors, cytokines, peptides, small molecules, plant extracts, microRNAs, extracellular vesicles, novel wound dressings, mechanical interventions, bioengineered materials, and more. Critical Issues: Despite many research discoveries, few have been translated from their success in murine models to clinical use in humans. This massive gap between bench discovery and bedside application begs the simple and critical question: what is still missing? The complexity and multiplicity of the diabetic wound makes it an immensely challenging therapeutic target, and this lopsided progress highlights the need for new methods to overcome the bench-to-bedside barrier. How can laboratory discoveries in animal models be effectively translated to novel clinical therapies for human patients? Future Directions: As research continues to decipher deficient healing in diabetes, new approaches and considerations are required to ensure that these discoveries can become translational, clinically usable therapies. Clinical progress requires the development of new, more accurate models of the human disease state, multifaceted investigations that address multiple critical components in wound repair, and more innovative research strategies that harness both the existing knowledge and the potential of new advances across disciplines.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luisa A. DiPietro
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
39
|
Masi S, Ambrosini S, Mohammed SA, Sciarretta S, Lüscher TF, Paneni F, Costantino S. Epigenetic Remodeling in Obesity-Related Vascular Disease. Antioxid Redox Signal 2021; 34:1165-1199. [PMID: 32808539 DOI: 10.1089/ars.2020.8040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The prevalence of obesity and cardiometabolic phenotypes is alarmingly increasing across the globe and is associated with atherosclerotic vascular complications and high mortality. In spite of multifactorial interventions, vascular residual risk remains high in this patient population, suggesting the need for breakthrough therapies. The mechanisms underpinning obesity-related vascular disease remain elusive and represent an intense area of investigation. Recent Advances: Epigenetic modifications-defined as environmentally induced chemical changes of DNA and histones that do not affect DNA sequence-are emerging as a potent modulator of gene transcription in the vasculature and might significantly contribute to the development of obesity-induced endothelial dysfunction. DNA methylation and histone post-translational modifications cooperate to build complex epigenetic signals, altering transcriptional networks that are implicated in redox homeostasis, mitochondrial function, vascular inflammation, and perivascular fat homeostasis in patients with cardiometabolic disturbances. Critical Issues: Deciphering the epigenetic landscape in the vasculature is extremely challenging due to the complexity of epigenetic signals and their function in regulating transcription. An overview of the most important epigenetic pathways is required to identify potential molecular targets to treat or prevent obesity-related endothelial dysfunction and atherosclerotic disease. This would enable the employment of precision medicine approaches in this setting. Future Directions: Current and future research efforts in this field entail a better definition of the vascular epigenome in obese patients as well as the unveiling of novel, cell-specific chromatin-modifying drugs that are able to erase specific epigenetic signals that are responsible for maladaptive transcriptional alterations and vascular dysfunction in obese patients. Antioxid. Redox Signal. 34, 1165-1199.
Collapse
Affiliation(s)
- Stefano Masi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland.,Heart Division, Royal Brompton and Harefield Hospital Trust, National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
40
|
Pastar I, Marjanovic J, Stone RC, Chen V, Burgess JL, Mervis JS, Tomic-Canic M. Epigenetic regulation of cellular functions in wound healing. Exp Dermatol 2021; 30:1073-1089. [PMID: 33690920 DOI: 10.1111/exd.14325] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Stringent spatiotemporal regulation of the wound healing process involving multiple cell types is associated with epigenetic mechanisms of gene regulation, such as DNA methylation, histone modification and chromatin remodelling, as well as non-coding RNAs. Here, we discuss the epigenetic changes that occur during wound healing and the rapidly expanding understanding of how these mechanisms affect healing resolution in both acute and chronic wound milieu. We provide a focussed overview of current research into epigenetic regulators that contribute to wound healing by specific cell type. We highlight the role of epigenetic regulators in the molecular pathophysiology of chronic wound conditions. The understanding of how epigenetic regulators can affect cellular functions during normal and impaired wound healing could lead to novel therapeutic approaches, and we outline questions that can provide guidance for future research on epigenetic-based interventions to promote healing. Dissecting the dynamic interplay between cellular subtypes involved in wound healing and epigenetic parameters during barrier repair will deepen our understanding of how to improve healing outcomes in patients affected by chronic non-healing wounds.
Collapse
Affiliation(s)
- Irena Pastar
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jelena Marjanovic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rivka C Stone
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vivien Chen
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jamie L Burgess
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua S Mervis
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
41
|
Li J, Wei M, Liu X, Xiao S, Cai Y, Li F, Tian J, Qi F, Xu G, Deng C. The progress, prospects, and challenges of the use of non-coding RNA for diabetic wounds. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:554-578. [PMID: 33981479 PMCID: PMC8063712 DOI: 10.1016/j.omtn.2021.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic diabetic wounds affect the quality of life of patients, resulting in significant social and economic burdens on both individuals and the health care system. Although treatment methods for chronic diabetic wounds have been explored, there remains a lack of effective treatment strategies; therefore, alternative strategies must be explored. Recently, the abnormal expression of non-coding RNA in diabetic wounds has received widespread attention since it is an important factor in the development of diabetic wounds. This article reviews the regulatory role of three common non-coding RNAs (microRNA [miRNA], long non-coding RNA [lncRNA], and circular RNA [circRNA]) in diabetic wounds and discusses the diagnosis, treatment potential, and challenges of non-coding RNA in diabetic wounds. This article provides insights into new strategies for diabetic wound diagnosis and treatment at the genetic and molecular levels.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Miaomiao Wei
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Xin Liu
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Shune Xiao
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Yuan Cai
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Fang Li
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Jiao Tian
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Fang Qi
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Guangchao Xu
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Chengliang Deng
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| |
Collapse
|
42
|
Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol Res 2021; 170:105520. [PMID: 33639232 DOI: 10.1016/j.phrs.2021.105520] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Diabetes is a metabolic disorder and its incidence is still increasing. Diabetic vascular complications cause major diabetic mobility and include accelerated atherosclerosis, nephropathy, retinopathy, and neuropathy. Hyperglycemia contributes to the pathogenesis of diabetic vascular complications via numerous mechanisms including the induction of oxidative stress, inflammation, metabolic alterations, and abnormal proliferation of EC and angiogenesis. In the past decade, epigenetic modifications have attracted more attention as they participate in the progression of diabetic vascular complications despite controlled glucose levels and regulate gene expression without altering the genomic sequence. DNA methylation and histone methylation, and acetylation are vital epigenetic modifications and their underlying mechanisms in diabetic vascular complication are still urgently needed to be investigated. Non-coding RNAs (nc RNAs) such as micro RNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circ RNAs) were found to exert transcriptional regulation in diabetic vascular complication. Although nc RNAs are not considered as epigenetic components, they are involved in epigenetic modifications. In this review, we summarized the investigations of non-coding RNAs involved in DNA methylation and histone methylation and acetylation. Their cross-talks might offer novel insights into the pathology of diabetic vascular complications.
Collapse
|
43
|
Gordillo GM, Biswas A, Singh K, Sen A, Guda PR, Miller C, Pan X, Khanna S, Cadenas E, Sen CK. Mitochondria as Target for Tumor Management of Hemangioendothelioma. Antioxid Redox Signal 2021; 34:137-153. [PMID: 32597200 PMCID: PMC7757590 DOI: 10.1089/ars.2020.8059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022]
Abstract
Aims: Hemangioendothelioma (HE) may be benign or malignant. Mouse hemangioendothelioma endothelial (EOMA) cells are validated to study mechanisms in HE. This work demonstrates that EOMA cells heavily rely on mitochondria to thrive. Thus, a combination therapy, including weak X-ray therapy (XRT, 0.5 Gy) and a standardized natural berry extract (NBE) was tested. This NBE is known to be effective in managing experimental HE and has been awarded with the Food and Drug Administration Investigational New Drug (FDA-IND) number 140318 for clinical studies on infantile hemangioma. Results: NBE treatment alone selectively attenuated basal oxygen consumption rate of EOMA cells. NBE specifically sensitized EOMA, but not murine aortic endothelial cells to XRT-dependent attenuation of mitochondrial respiration and adenosine triphosphate (ATP) production. Combination treatment, selectively and potently, influenced mitochondrial dynamics in EOMA cells such that fission was augmented. This was achieved by lowering of mitochondrial sirtuin 3 (SIRT3) causing increased phosphorylation of AMP-activated protein kinase (AMPK). A key role of SIRT3 in loss of EOMA cell viability caused by the combination therapy was evident when pyrroloquinoline quinone, an inducer of SIRT3, pretreatment rescued these cells. Innovation and Conclusion: Mitochondria-targeting NBE significantly extended survival of HE-affected mice. The beneficial effect of NBE in combination with weak X-ray therapy was, however, far more potent with threefold increase in murine survival. The observation that safe natural products may target tumor cell mitochondria and sharply lower radiation dosage required for tumor management warrants clinical testing.
Collapse
Affiliation(s)
- Gayle M. Gordillo
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ayan Biswas
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abhishek Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Poornachander R. Guda
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Caroline Miller
- Electron Microscopy Core, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xueliang Pan
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Savita Khanna
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
44
|
Xiao M, Tang Y, Wang S, Wang J, Wang J, Guo Y, Zhang J, Gu J. The Role of Fibroblast Growth Factor 21 in Diabetic Cardiovascular Complications and Related Epigenetic Mechanisms. Front Endocrinol (Lausanne) 2021; 12:598008. [PMID: 34349728 PMCID: PMC8326758 DOI: 10.3389/fendo.2021.598008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21), is an emerging metabolic regulator mediates multiple beneficial effects in the treatment of metabolic disorders and related complications. Recent studies showed that FGF21 acts as an important inhibitor in the onset and progression of cardiovascular complications of diabetes mellitus (DM). Furthermore, evidences discussed so far demonstrate that epigenetic modifications exert a crucial role in the initiation and development of DM-related cardiovascular complications. Thus, epigenetic modifications may involve in the function of FGF21 on DM-induced cardiovascular complications. Therefore, this review mainly interprets and delineates the recent advances of role of FGF21 in DM cardiovascular complications. Then, the possible changes of epigenetics related to the role of FGF21 on DM-induced cardiovascular complications are discussed. Thus, this article not only implies deeper understanding of the pathological mechanism of DM-related cardiovascular complications, but also provides the possible novel therapeutic strategy for DM-induced cardiovascular complications by targeting FGF21 and related epigenetic mechanism.
Collapse
Affiliation(s)
- Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People’s Hospital of Liaoning Province, Shenyang, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu,
| |
Collapse
|
45
|
Wang H, Xu Z, Zhao M, Liu G, Wu J. Advances of hydrogel dressings in diabetic wounds. Biomater Sci 2021; 9:1530-1546. [DOI: 10.1039/d0bm01747g] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hydrogel dressings with various functions for diabetic wound treatment.
Collapse
Affiliation(s)
- Heni Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Meng Zhao
- Shenzhen Lansi Institute of Artificial Intelligence in Medicine
- Shenzhen
- China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
46
|
Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD + and SIRT1. Sci Rep 2020; 10:20184. [PMID: 33214614 PMCID: PMC7678835 DOI: 10.1038/s41598-020-76564-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Urolithin A (UA) is a natural compound that is known to improve muscle function. In this work we sought to evaluate the effect of UA on muscle angiogenesis and identify the underlying molecular mechanisms. C57BL/6 mice were administered with UA (10 mg/body weight) for 12–16 weeks. ATP levels and NAD+ levels were measured using in vivo 31P NMR and HPLC, respectively. UA significantly increased ATP and NAD+ levels in mice skeletal muscle. Unbiased transcriptomics analysis followed by Ingenuity Pathway Analysis (IPA) revealed upregulation of angiogenic pathways upon UA supplementation in murine muscle. The expression of the differentially regulated genes were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Angiogenic markers such as VEGFA and CDH5 which were blunted in skeletal muscles of 28 week old mice were found to be upregulated upon UA supplementation. Such augmentation of skeletal muscle vascularization was found to be bolstered via Silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) pathway. Inhibition of SIRT1 by selisistat EX527 blunted UA-induced angiogenic markers in C2C12 cells. Thus this work provides maiden evidence demonstrating that UA supplementation bolsters skeletal muscle ATP and NAD+ levels causing upregulated angiogenic pathways via a SIRT1-PGC-1α pathway.
Collapse
|
47
|
Xin L, Li SH, Liu C, Zeng F, Cao JQ, Zhou LQ, Zhou Q, Yuan YW. Methionine represses the autophagy of gastric cancer stem cells via promoting the methylation and phosphorylation of RAB37. Cell Cycle 2020; 19:2644-2652. [PMID: 32926650 DOI: 10.1080/15384101.2020.1814044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study focused on the role of methionine (MET) in the autophagy of gastric cancer stem cells (GCSCs) and aims to elaborate its regulatory mechanism. In the present study, the GCSCs were isolated from human gastric cancer cell lines using an anti-CD44 antibody, and then cultured in MET+ homocysteine (HCY)- or MET-HCY+ medium. In MET+HCY-treated GCSCs, autophagy was suppressed, the methylation and phosphorylation of RAB37 were elevated, and miR-200b expression was down-regulated. Lentiviral vector (LV-) carrying methionine-γ lyase (an enzyme that could specifically lyse MET; Metase) promoted autophagy, reduced the methylation and phosphorylation of RAB37, and up-regulated miR-200b expression in MET+HCY--treated GCSCs. Then, we found that miR-200b suppressed the expression of protein kinase C α (PKCα), a protein that could inactivate RAB37 through promoting its phosphorylation. LV-Metase down-regulated RAB37 phosphorylation via miR-200b/PKCα, thus promoting the RAB37-mediated autophagy and suppressing cell viability in MET+HCY-treated GCSCs. Finally, the in vivo study proved that LV-Metase treatment inhibited tumor growth through up-regulating RAB37 expression. In conclusion, MET suppressed RAB37 expression via enhancing its methylation and suppressed RAB37 activity via miR-200b/PKCα axis, thus repressing RAB37-mediated autophagy in GCSCs. The supplementation of Metase lysed MET, thus inducing the autophagy of GCSCs and inhibiting tumor growth.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Shi-Hao Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Fei Zeng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Jia-Qing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
48
|
Nie X, Zhao J, Ling H, Deng Y, Li X, He Y. Exploring microRNAs in diabetic chronic cutaneous ulcers: Regulatory mechanisms and therapeutic potential. Br J Pharmacol 2020; 177:4077-4095. [PMID: 32449793 PMCID: PMC7443474 DOI: 10.1111/bph.15139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic chronic cutaneous ulcers (DCU) are one of the serious complications of diabetes mellitus, occurring mainly in diabetic patients with peripheral neuropathy. Recent studies have indicated that microRNAs (miRNAs/miRs) and their target genes are essential regulators of cell physiology and pathology including biological processes that are involved in the regulation of diabetes and diabetes-related microvascular complications. in vivo and in vitro models have revealed that the expression of some miRNAs can be regulated in the inflammatory response, cell proliferation, and wound remodelling of DCU. Nevertheless, the potential application of miRNAs to clinical use is still limited. Here, we provide a contemporary overview of the miRNAs as well as their associated target genes and pathways (including Wnt/β-catenin, NF-κB, TGF-β/Smad, and PI3K/AKT/mTOR) related to DCU healing. We also summarize the current development of drugs for DCU treatment and discuss the therapeutic challenges of DCU treatment and its future research directions.
Collapse
Affiliation(s)
- Xuqiang Nie
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
- College of PharmacyZunyi Medical UniversityZunyiChina
- Institute of Materia Medica, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Jiufeng Zhao
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Hua Ling
- School of PharmacyGeorgia Campus ‐ Philadelphia College of Osteopathic MedicineSuwaneeGAUSA
| | - Youcai Deng
- Institute of Materia Medica, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Xiaohui Li
- Institute of Materia Medica, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Yuqi He
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
- College of PharmacyZunyi Medical UniversityZunyiChina
| |
Collapse
|
49
|
Russell-Hallinan A, Watson CJ, O'Dwyer D, Grieve DJ, O'Neill KM. Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovasc Drugs Ther 2020; 35:1025-1044. [PMID: 32748033 PMCID: PMC8452583 DOI: 10.1007/s10557-020-07019-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathological remodelling of the myocardium, including inflammation, fibrosis and hypertrophy, in response to acute or chronic injury is central in the development and progression of heart failure (HF). While both resident and infiltrating cardiac cells are implicated in these pathophysiological processes, recent evidence has suggested that endothelial cells (ECs) may be the principal cell type responsible for orchestrating pathological changes in the failing heart. Epigenetic modification of nucleic acids, including DNA, and more recently RNA, by methylation is essential for physiological development due to their critical regulation of cellular gene expression. As accumulating evidence has highlighted altered patterns of DNA and RNA methylation in HF at both the global and individual gene levels, much effort has been directed towards defining the precise role of such cell-specific epigenetic changes in the context of HF. Considering the increasingly apparent crucial role that ECs play in cardiac homeostasis and disease, this article will specifically focus on nucleic acid methylation (both DNA and RNA) in the failing heart, emphasising the key influence of these epigenetic mechanisms in governing EC function. This review summarises current understanding of DNA and RNA methylation alterations in HF, along with their specific role in regulating EC function in response to stress (e.g. hyperglycaemia, hypoxia). Improved appreciation of this important research area will aid in further implicating dysfunctional ECs in HF pathogenesis, whilst informing development of EC-targeted strategies and advancing potential translation of epigenetic-based therapies for specific targeting of pathological cardiac remodelling in HF.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Denis O'Dwyer
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Karla M O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
50
|
Abouhashem AS, Singh K, Azzazy HME, Sen CK. Is Low Alveolar Type II Cell SOD3 in the Lungs of Elderly Linked to the Observed Severity of COVID-19? Antioxid Redox Signal 2020; 33:59-65. [PMID: 32323565 PMCID: PMC7307702 DOI: 10.1089/ars.2020.8111] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human lungs single-cell RNA sequencing data from healthy donors (elderly and young; GEO accession no. GSE122960) were analyzed to isolate and specifically study gene expression in alveolar type II cells. Colocalization of angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 enables severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) to enter the cells. Expression levels of these genes in the alveolar type II cells of elderly and young patients were comparable and, therefore, do not seem to be responsible for worse outcomes observed in coronavirus disease 2019 (COVID-19) affected elderly. In cells from the elderly, 263 genes were downregulated and 95 upregulated. Superoxide dismutase 3 (SOD3) was identified as the top-ranked gene that was most downregulated in the elderly. Other redox-active genes that were also downregulated in cells from the elderly included activating transcription factor 4 (ATF4) and metallothionein 2A (M2TA). ATF4 is an endoplasmic reticulum stress sensor that defends lungs via induction of heme oxygenase 1. The study of downstream factors known to be induced by ATF4, according to Ingenuity Pathway Analysis™, identified 24 candidates. Twenty-one of these were significantly downregulated in the cells from the elderly. These downregulated candidates were subjected to enrichment using the Reactome Database identifying that in the elderly, the ability to respond to heme deficiency and the ATF4-dependent ability to respond to endoplasmic reticulum stress is significantly compromised. SOD3-based therapeutic strategies have provided beneficial results in treating lung disorders including fibrosis. The findings of this study propose the hypotheses that lung-specific delivery of SOD3/ATF4-related antioxidants will work in synergy with promising antiviral drugs such as remdesivir to further improve COVID-19 outcomes in the elderly.
Collapse
Affiliation(s)
- Ahmed S Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|