1
|
Sato H, Takekawa M, Yuzawa S, Motohashi M, Matsuda S, Adachi M. Tongue squamous cell carcinoma masked by herpes simplex virus infection: A case report. Oncol Lett 2025; 29:248. [PMID: 40177136 PMCID: PMC11962576 DOI: 10.3892/ol.2025.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Herpes simplex virus (HSV) infection can potentially mask underlying malignancies, complicating clinical diagnosis and potentially delaying the detection of a serious pathology. The present study describes the case of a 37-year-old man with a 20-year smoking history that presented with a tongue ulcer masked by HSV infection, who underwent comprehensive diagnostic investigations. Initial histopathological examination revealed characteristic HSV infection features, including multinucleation and intercellular bridge destruction. Despite symptomatic improvement of the viral infection, persistent leukoplakia and erythroplakia warranted further investigation. Sequential biopsies and clinical monitoring led to a partial glossectomy. Final pathology confirmed squamous cell carcinoma of the tongue with negative tumor margins. The present case emphasizes the critical importance of thorough evaluation of persistent oral lesions, especially in high-risk patients, as viral infections can complicate the diagnosis of underlying malignancies. Furthermore, it highlights the need for continued surveillance when clinical suspicion remains high, even after initial benign findings.
Collapse
Affiliation(s)
- Hideaki Sato
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Masanori Takekawa
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Sayaka Yuzawa
- Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, Hokkaido 078-8510, Japan
| | - Masayuki Motohashi
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
- Department of Oral and Maxillofacial Surgery, Asahikawa City Hospital, Asahikawa, Hokkaido 070-8610, Japan
| | - Shinya Matsuda
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
- Department of Oral and Maxillofacial Surgery, Asahikawa City Hospital, Asahikawa, Hokkaido 070-8610, Japan
| | - Makoto Adachi
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya Tokushukai General Hospital, Kasugai, Aichi 487-0016, Japan
| |
Collapse
|
2
|
Zhang C, Wang T, Yuan J, Wang T, Ma B, Xu B, Bai R, Tang X, Zhang X, Wu M, Lei T, Xu W, Guo Y, Li N. Potential predictive value of CD8A and PGF protein expression in gastric cancer patients treated with neoadjuvant immunotherapy. BMC Cancer 2025; 25:674. [PMID: 40221689 PMCID: PMC11993984 DOI: 10.1186/s12885-025-14046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Immunoneoadjuvant therapy has gained significant attention due to its remarkable advancements in cancer treatment. This study aimed to investigate the molecular mechanisms underlying immunoneoadjuvant therapy through a comprehensive multiomics analysis of samples from a registered clinical trial cohort. METHODS Preoperative samples were collected from 16 patients, and postoperative samples were obtained from 12 among them. RNA sequencing (RNA-seq) and Olink proteomics were employed to identify key genes before and after neoadjuvant treatment. The weighted coexpression network was constructed using Weighted gene co-expression network analysis (WGCNA). Furthermore, the proportion of infiltrated immune cells was calculated using xCell based on normalized expression data derived from RNA-seq. RESULTS Patients were stratified into T1 (good efficacy) and T2 (poor efficacy) groups based on Tumor Regression Grade (TRG) to neoadjuvant immunotherapy. Compared to the T2 group (TRG2 and TRG3), the T1 group (TRG0 and TRG1) showed significant differences in pathways related to inflammatory response and myeloid leukocyte activation. Furthermore, the T1 group exhibited elevated levels of CD8+ T cells and B cells. The top two factors with the highest area under the Receiver Operating Characteristic (ROC) curve were CD8a molecule (CD8A) (1.000) and C-C motif chemokine ligand 20 (CCL20) (0.967). Additionally, the expression of placenta growth factor (PGF) and TNF receptor superfamily member 21 (TNFRSF21) proteins significantly increased in the T1 group compared to the T2 group. High expression of CD8A and PGF were associated with favorable and poor prognosis in gastric cancer patients, respectively. Immunoinfiltration analysis revealed a positive correlation between CD8A and dendritic cell (DC) levels, while a negative correlation was observed with myeloid-derived suppressor cell (MDSC) levels. CONCLUSIONS Through multiomics analysis, we discovered that CD8A is linked to enhanced treatment response and tumor regression. In contrast, PGF appears to exert adverse effects on treatment outcomes, suggesting a complex interplay of factors influencing the efficacy of immunoneoadjuvant therapy in gastric cancer.
Collapse
Affiliation(s)
- Chengjuan Zhang
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, P. R. China
| | - Tingjie Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Yuan
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tao Wang
- The Kids Research Institute Australia, School of Medicine, the University of Western Australia, Nedlands, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ruihua Bai
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiance Tang
- Department of Medical Records, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaojie Zhang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Minqing Wu
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tianqi Lei
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenhao Xu
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, P. R. China.
| | - Ning Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
3
|
Sun L, Zhao Q, Miao L. Combination therapy with oncolytic viruses for lung cancer treatment. Front Oncol 2025; 15:1524079. [PMID: 40248194 PMCID: PMC12003109 DOI: 10.3389/fonc.2025.1524079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related death globally. Despite various treatment options, adverse reactions and treatment resistance limit their clinical application and efficacy, therefore, new effective treatment options are still needed. Oncolytic viruses (OVs) are a new anti-cancer option. With a powerful anti-tumor effect, OVs are gradually being applied to the treatment of solid tumor. In clinical practice, we have found that in patients with NSCLC and SCLC, OVs combined with immune checkpoint inhibitors (ICI) treatment make tumor with poor response to immunotherapy become sensitive. Furthermore, studies have shown that OVs combined with chemotherapy, radiation therapy, and other immune approaches (such as anti-pd1 drugs) have synergistic effects. These studies suggest that OVs combined therapy may bring hope for the treatment of lung cancer patients. This article will review the current status and prospect of OVs combination therapy in the field of lung cancer treatment and summarizes the mechanism of action.
Collapse
Affiliation(s)
- Lei Sun
- Department of Pharmacy, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu, China
| | - Qi Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Liyun Miao
- Department of Pharmacy, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Zhao J, Wang H, Wang C, Li F, Chen J, Zhou F, Zhu Y, Chen J, Liu J, Zheng H, Gong N, Du Y, Zhang Y, Deng L, Du Y, Liu Y, Li Y, Li N, Zhang H, Ding D, Yu S, Zhang C, Yan Y, Wang W, Cao Y, Zhang Y, Zhang H. Single-cell data-driven design of armed oncolytic virus to boost cooperative innate-adaptive immunity against cancer. Mol Ther 2025; 33:703-722. [PMID: 39674886 PMCID: PMC11852947 DOI: 10.1016/j.ymthe.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/25/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
Oncolytic viruses have been considered promising cancer immunotherapies. However, oncovirotherapy agents impart durable responses in only a subset of cancer patients. Thus, exploring the cellular and molecular mechanisms underlying the heterogeneous responses in patients can provide guidance to develop more effective oncolytic virus therapies. Single-cell RNA sequencing (scRNA-seq) analysis of tumors responsive and non-responsive to oncovirotherapy revealed signatures of the tumor immune microenvironment associated with immune response. Thus, we designed and constructed an armed oncolytic virus, OV-5A, that expressed five genes with non-redundant functions. OV-5A treatment exhibits robust immune response against various tumors in multiple mouse models, peripheral blood mononuclear cell -patient-derived xenograft models, organoid-immune cell co-culture systems, and patient tissue sections by activating a cooperative innate-adaptive immune response against tumor cells. scRNA-seq analysis of complete responders and partial responders to OV-5A treatment guided the design of combination therapy of OV-5A. This data-driven approach paves an innovative way to rationalize the design of oncolytic virus and multi-agent combination therapies.
Collapse
Affiliation(s)
- Jiliang Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Han Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Chunlei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Fan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Jingru Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Feilong Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yiping Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Jinhua Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Jinming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Hao Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Nanxin Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yazhuo Du
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yufan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Li Deng
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yuyao Du
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yanqin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Na Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Shouzhi Yu
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Cuizhu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yingbin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin 300041, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Youjia Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China; China National Biotec Group Company Limited, Beijing 100024, China.
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China; Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
5
|
Ye K, Yan Y, Su R, Dai Q, Qiao K, Cao Y, Xu J, Yan L, Huo Z, Liu W, Hu Y, Zhu Y, Xu L, Mi Y. Oncolytic virus encoding 4-1BBL and IL15 enhances the efficacy of tumor-infiltrating lymphocyte adoptive therapy in HCC. Cancer Gene Ther 2025; 32:71-82. [PMID: 39567771 DOI: 10.1038/s41417-024-00853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Previous studies have found that oncolytic virus (OVs) can improve the efficacy of TIL adoptive therapy in oral cancer, colon cancer, and pancreatic cancer. However, the curative effect in hepatocellular carcinoma (HCC) is still unclear. Therefore, this study aims to explore the therapeutic effect and mechanism of OVs encoding 4-1BBL and IL15 (OV-4-1BBL/IL15) combined with TIL adoptive therapy on HCC. In this study, the role and immunological mechanism of armed OVs combined with TILs were evaluated by flow cytometry and ELISA in patient-derived xenograft and syngeneic mouse tumor models. Co-culturing with TILs can up-regulate the expression of antigen-presenting cell (APC) markers on the surface of OV-infected primary HCC cells, and promote the specific activation ability and tumor-killing ability of TILs. OV-4-1BBL/IL15 combined with TIL adoptive therapy could induce tumor volume reduction and anti-tumor immune memory in patient-derived xenograft and syngeneic mouse tumor models. Furthermore, OV combined with TIL adoptive therapy can endow tumor cells with aAPC characteristics, activate T cells at the same time, and reprogram tumor macrophages into anti-tumor phenotype. OV-4-1BBL/IL15 can stimulate the anti-tumor potential of TIL therapy in HCC, and possess broad clinical application prospects.
Collapse
Affiliation(s)
- Kai Ye
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yongfeng Yan
- Department of Laboratory, Tianjin Beichen Hospital, Tianjin, China
| | - Rui Su
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China.
| | - Qinghai Dai
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Kunyan Qiao
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yu Cao
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Jian Xu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Lihua Yan
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Zhixiao Huo
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Wei Liu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yue Hu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yu Zhu
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China.
| | - Liang Xu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
- Department of hepatology & oncology, Tianjin Second People's Hospital, Tianjin, China.
| | - Yuqiang Mi
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
| |
Collapse
|
6
|
Fan G, Na J, Shen Z, Lin F, Zhong L. Heterogeneity of tumor-associated neutrophils in hepatocellular carcinoma. Mol Immunol 2025; 177:1-16. [PMID: 39642781 DOI: 10.1016/j.molimm.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Neutrophils are the most abundant cell type in human blood and play a crucial role in the immune system and development of tumors. This review begins with the generation and development of neutrophils, traces their release from the bone marrow into the bloodstream, and finally discusses their role in the hepatocellular carcinoma (HCC) microenvironment. It elaborates in detail the mechanisms by which tumor-associated neutrophils (TANs) exert antitumor or protumor effects under the influence of various mediators in the tumor microenvironment. Neutrophils can exert antitumor effects through direct cytotoxic action. However, they can also accelerate the formation and progression of HCC by being recruited and infiltrated, promoting tumor angiogenesis, and maintaining an immunosuppressive microenvironment. Therefore, based on the heterogeneity and plasticity of neutrophils in tumor development, this review summarizes the current immunotherapies targeting TANs, discusses potential opportunities and challenges, and provides new insights into exploring more promising strategies for treating HCC.
Collapse
Affiliation(s)
- Guixiang Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
7
|
Liu X, Hyun Kim J, Li X, Liu R. Application of mesenchymal stem cells exosomes as nanovesicles delivery system in the treatment of breast cancer. Int J Pharm 2024; 666:124732. [PMID: 39304093 DOI: 10.1016/j.ijpharm.2024.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
As people's living standards continue to improve and human life span expectancy increases, the incidence and mortality rates of breast cancer are continuously rising. Early detection of breast cancer and targeted therapy for different breast cancer subtypes can significantly reduce the mortality rate and alleviate the suffering of patients. Exosomes are extracellular vesicles secreted by various cells in the body. They participate in physiological and pathological responses by releasing active substances and play an important role in regulating intercellular communication. In recent years, research on exosomes has gradually expanded, and their special membrane structure and targetable characteristics are being increasingly applied in various clinical studies. Mesenchymal stem cells (MSCs)-derived exosomes play an important role in regulating the progression of breast cancer. In this review, we summarize the current treatment methods for breast cancer, the connection between MSCs, exosomes, and breast cancer, as well as the application of exosomes derived from MSCs from different sources in cancer treatment. We highlight how the rational design of modified MSCs-derived exosomes (MSCs-Exos) delivery systems can overcome the uncertainties of stem cell therapy and overcome the clinical translation challenges of nanomaterials. This work aims to promote future research on the application of MSCs-Exos in breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofan Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea; Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| |
Collapse
|
8
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
9
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Thoidingjam S, Bhatnagar AR, Sriramulu S, Siddiqui F, Nyati S. Optimizing Pancreatic Cancer Therapy: The Promise of Immune Stimulatory Oncolytic Viruses. Int J Mol Sci 2024; 25:9912. [PMID: 39337402 PMCID: PMC11432658 DOI: 10.3390/ijms25189912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Pancreatic cancer presents formidable challenges due to rapid progression and resistance to conventional treatments. Oncolytic viruses (OVs) selectively infect cancer cells and cause cancer cells to lyse, releasing molecules that can be identified by the host's immune system. Moreover, OV can carry immune-stimulatory payloads such as interleukin-12, which when delivered locally can enhance immune system-mediated tumor killing. OVs are very well tolerated by cancer patients due to their ability to selectively target tumors without affecting surrounding normal tissues. OVs have recently been combined with other therapies, including chemotherapy and immunotherapy, to improve clinical outcomes. Several OVs including adenovirus, herpes simplex viruses (HSVs), vaccinia virus, parvovirus, reovirus, and measles virus have been evaluated in preclinical and clinical settings for the treatment of pancreatic cancer. We evaluated the safety and tolerability of a replication-competent oncolytic adenoviral vector carrying two suicide genes (thymidine kinase, TK; and cytosine deaminase, CD) and human interleukin-12 (hIL12) in metastatic pancreatic cancer patients in a phase 1 trial. This vector was found to be safe and well-tolerated at the highest doses tested without causing any significant adverse events (SAEs). Moreover, long-term follow-up studies indicated an increase in the overall survival (OS) in subjects receiving the highest dose of the OV. Our encouraging long-term survival data provide hope for patients with advanced pancreatic cancer, a disease that has not seen a meaningful increase in OS in the last five decades. In this review article, we highlight several preclinical and clinical studies and discuss future directions for optimizing OV therapy in pancreatic cancer. We envision OV-based gene therapy to be a game changer in the near future with the advent of newer generation OVs that have higher specificity and selectivity combined with personalized treatment plans developed under AI guidance.
Collapse
Affiliation(s)
| | | | | | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
12
|
Xiang G, Wang M, Wang P, Li R, Gao C, Li Y, Liang X, Liu Y, Xu A, Tang J. Enhanced Anti-Tumor Response Elicited by a Novel Oncolytic Pseudorabies Virus Engineered with a PD-L1 Inhibitor. Viruses 2024; 16:1228. [PMID: 39205202 PMCID: PMC11359363 DOI: 10.3390/v16081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Oncolytic viruses combined with immunotherapy offer significant potential in tumor therapy. In this study, we engineered a further attenuated pseudorabies virus (PRV) vaccine strain that incorporates a PD-L1 inhibitor and demonstrated its promise as an oncolytic virus in tumor therapy. We first showed that the naturally attenuated PRV vaccine strain Bartha can efficiently infect tumor cells from multiple species, including humans, mice, and dogs in vitro. We then evaluated the safety and anti-tumor efficacy of this vaccine strain and its different single-gene deletion mutants using the B16-F10 melanoma mouse model. The TK deletion strain emerged as the optimal vector, and we inserted a PD-L1 inhibitor (iPD-L1) into it using CRISPR/Cas9 technology. Compared with the control, the recombinant PRV (rPRV-iPD-L1) exhibited more dramatic anti-tumor effects in the B16-F10 melanoma mouse model. Our study suggests that PRV can be developed not only as an oncolytic virus but also a powerful vector for expressing foreign genes to modulate the tumor microenvironment.
Collapse
Affiliation(s)
- Guangtao Xiang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengdong Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Pu Wang
- Cytovaxis Biotechnologies Inc., Guangzhou 510760, China
| | - Rifei Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chao Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yue Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinxin Liang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yun Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Aotian Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Zhao J, Wang H, Chen J, Wang C, Gong N, Zhou F, Li X, Cao Y, Zhang H, Wang W, Zheng H, Zhang C. An oncolytic HSV-1 armed with Visfatin enhances antitumor effects by remodeling tumor microenvironment against murine pancreatic cancer. Biochem Biophys Res Commun 2024; 718:149931. [PMID: 38723415 DOI: 10.1016/j.bbrc.2024.149931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024]
Abstract
Oncolytic viruses (OVs) have shown potential in converting a "cold" tumor into a "hot" one and exhibit effectiveness in various cancer types. However, only a subset of patients respond to oncolytic virotherapy. It is important to understand the resistance mechanisms to OV treatment in pancreatic ductal adenocarcinoma (PDAC) to engineer oncolytic viruses. In this study, we used transcriptome RNA sequencing (RNA-seq) to identify Visfatin, which was highly expressed in the responsive tumors following OV treatment. To explore the antitumor efficacy, we modified OV-mVisfatin, which effectively inhibited tumor growth. For the first time, we revealed that Visfatin promoted the antitumor efficacy of OV by remodeling the tumor microenvironment, which involved enhancing CD8+ T cell and DC cell infiltration and activation, repolarizing macrophages towards the M1-like phenotype, and decreasing Treg cells using single-cell RNA sequencing (scRNA-seq) and flow cytometry. Furthermore, PD-1 blockade significantly enhanced OV-mVisfatin antitumor efficacy, offering a promising new therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Jiliang Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Han Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Jinhua Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Chunlei Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Nanxin Gong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Feilong Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Youjia Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China; Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Hao Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China
| | - Cuizhu Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China; Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China.
| |
Collapse
|
14
|
Mei R, Wan Z, Yang C, Shen X, Wang R, Zhang H, Yang R, Li J, Song Y, Su H. Advances and clinical challenges of mesenchymal stem cell therapy. Front Immunol 2024; 15:1421854. [PMID: 39100671 PMCID: PMC11294097 DOI: 10.3389/fimmu.2024.1421854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
In recent years, cell therapy has provided desirable properties for promising new drugs. Mesenchymal stem cells are promising candidates for developing genetic engineering and drug delivery strategies due to their inherent properties, including immune regulation, homing ability and tumor tropism. The therapeutic potential of mesenchymal stem cells is being investigated for cancer therapy, inflammatory and fibrotic diseases, among others. Mesenchymal stem cells are attractive cellular carriers for synthetic nanoparticles for drug delivery due to their inherent homing ability. In this review, we comprehensively discuss the various genetic and non-genetic strategies of mesenchymal stem cells and their derivatives in drug delivery, tumor therapy, immune regulation, tissue regeneration and other fields. In addition, we discuss the current limitations of stem cell therapy and the challenges in clinical translation, aiming to identify important development areas and potential future directions.
Collapse
Affiliation(s)
- Ruiyan Mei
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiangjing Shen
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haihua Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Rui Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
15
|
Yuan Z, Zhang Y, Wang X, Wang X, Ren S, He X, Su J, Zheng A, Guo S, Chen Y, Deng S, Wu X, Li M, Du F, Zhao Y, Shen J, Wang Z, Xiao Z. The investigation of oncolytic viruses in the field of cancer therapy. Front Oncol 2024; 14:1423143. [PMID: 39055561 PMCID: PMC11270537 DOI: 10.3389/fonc.2024.1423143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a potential strategy for tumor treatment due to their ability to selectively replicate in tumor cells, induce apoptosis, and stimulate immune responses. However, the therapeutic efficacy of single OVs is limited by the complexity and immunosuppressive nature of the tumor microenvironment (TME). To overcome these challenges, engineering OVs has become an important research direction. This review focuses on engineering methods and multi-modal combination therapies for OVs aimed at addressing delivery barriers, viral phagocytosis, and antiviral immunity in tumor therapy. The engineering approaches discussed include enhancing in vivo immune response, improving replication efficiency within the tumor cells, enhancing safety profiles, and improving targeting capabilities. In addition, this review describes the potential mechanisms of OVs combined with radiotherapy, chemotherapy, cell therapy and immune checkpoint inhibitors (ICIs), and summarizes the data of ongoing clinical trials. By continuously optimizing engineering strategies and combination therapy programs, we can achieve improved treatment outcomes and quality of life for cancer patients.
Collapse
Affiliation(s)
- Zijun Yuan
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sipeng Guo
- Research And Experiment Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zechen Wang
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
| | - Zhangang Xiao
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
16
|
Shi X, Sun K, Li L, Xian J, Wang P, Jia F, Xu F. Oncolytic Activity of Sindbis Virus with the Help of GM-CSF in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7195. [PMID: 39000311 PMCID: PMC11241666 DOI: 10.3390/ijms25137195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma is a refractory tumor with poor prognosis and high mortality. Many oncolytic viruses are currently being investigated for the treatment of hepatocellular carcinoma. Based on previous studies, we constructed a recombinant GM-CSF-carrying Sindbis virus, named SINV-GM-CSF, which contains a mutation (G to S) at amino acid 285 in the nsp1 protein of the viral vector. The potential of this mutated vector for liver cancer therapy was verified at the cellular level and in vivo, respectively, and the changes in the tumor microenvironment after treatment were also described. The results showed that the Sindbis virus could effectively infect hepatocellular carcinoma cell lines and induce cell death. Furthermore, the addition of GM-CSF enhanced the tumor-killing effect of the Sindbis virus and increased the number of immune cells in the intra-tumor microenvironment during the treatment. In particular, SINV-GM-CSF was able to efficiently kill tumors in a mouse tumor model of hepatocellular carcinoma by regulating the elevation of M1-type macrophages (which have a tumor-resistant ability) and the decrease in M2-type macrophages (which have a tumor-promoting capacity). Overall, SINV-GM-CSF is an attractive vector platform with clinical potential for use as a safe and effective oncolytic virus.
Collapse
Affiliation(s)
- Xiangwei Shi
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangyixin Sun
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Li
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingwen Xian
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Fan Jia
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
17
|
Zarezadeh Mehrabadi A, Tat M, Ghorbani Alvanegh A, Roozbahani F, Esmaeili Gouvarchin Ghaleh H. Revolutionizing cancer treatment: the power of bi- and tri-specific T-cell engagers in oncolytic virotherapy. Front Immunol 2024; 15:1343378. [PMID: 38464532 PMCID: PMC10921556 DOI: 10.3389/fimmu.2024.1343378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Bi- or tri-specific T cell engagers (BiTE or TriTE) are recombinant bispecific proteins designed to stimulate T-cell immunity directly, bypassing antigen presentation by antigen-presenting cells (APCs). However, these molecules suffer from limitations such as short biological half-life and poor residence time in the tumor microenvironment (TME). Fortunately, these challenges can be overcome when combined with OVs. Various strategies have been developed, such as encoding secretory BiTEs within OV vectors, resulting in improved targeting and activation of T cells, secretion of key cytokines, and bystander killing of tumor cells. Additionally, oncolytic viruses armed with BiTEs have shown promising outcomes in enhancing major histocompatibility complex I antigen (MHC-I) presentation, T-cell proliferation, activation, and cytotoxicity against tumor cells. These combined approaches address tumor heterogeneity, drug delivery, and T-cell infiltration, offering a comprehensive and effective solution. This review article aims to provide a comprehensive overview of Bi- or TriTEs and OVs as promising therapeutic approaches in the field of cancer treatment. We summarize the cutting-edge advancements in oncolytic virotherapy immune-related genetic engineering, focusing on the innovative combination of BiTE or TriTE with OVs.
Collapse
Affiliation(s)
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
18
|
Zhang N, Guan Y, Li J, Yu J, Yi T. Inactivation of the DNA-sensing pathway facilitates oncolytic herpes simplex virus inhibition of pancreatic ductal adenocarcinoma growth. Int Immunopharmacol 2023; 124:110969. [PMID: 37774484 DOI: 10.1016/j.intimp.2023.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Oncolytic viruses are a new class of therapeutic agents for the treatment of cancer that have shown promising results in clinical trials. Oncolytic virus-mediated tumor rejection is highly dependent on viral replication in tumor cells to induce cell death. However, the antiviral immune response of tumor cells limits the replication capacity of oncolytic viruses. We hypothesized that inhibition of the antiviral immune response in infected cells would enhance the antitumor effect. Here, we confirmed that ablation of the key adaptor protein of cellular immunity, STING, significantly suppressed the antiviral immune response and promoted oncolytic herpes simplex virus-1 (oHSV1) proliferation in tumor cells. In a murine pancreatic ductal adenocarcinoma (PDAC) model, oHSV1 enhanced tumor suppression and prolonged the survival of mice in the absence of STING. On this basis, we further found that the TBK1 inhibitor can also significantly enhance the tumor-control ability of oHSV1. Our studies provide a novel strategy for oncolytic virus therapy by inhibiting the intrinsic antiviral response in solid tumors to improve antitumor efficacy.
Collapse
Affiliation(s)
- Nianchao Zhang
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yude Guan
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Li
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingxuan Yu
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tailong Yi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
19
|
Liu S, Li F, Deng L, Ma Q, Lu W, Zhao Z, Liu H, Zhou Y, Hu M, Wang H, Yan Y, Zhao M, Zhang H, Du M. Claudin18.2 bispecific T cell engager armed oncolytic virus enhances antitumor effects against pancreatic cancer. Mol Ther Oncolytics 2023; 30:275-285. [PMID: 37701851 PMCID: PMC10493249 DOI: 10.1016/j.omto.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Bispecific T cell engagers (BiTEs) represent a promising immunotherapy, but their efficacy against immunologically cold tumors such as pancreatic ductal adenocarcinoma remains unclear. Oncolytic viruses (OVs) can transform the immunosuppressive tumor microenvironment into the active state and also serve as transgene vectors to selectively express the desired genes in tumor cells. This study aimed to investigate whether the therapeutic benefits of tumor-targeting Claudin18.2 BiTE can be augmented by combining cancer selectively and immune-potentiating effects of OVs. Claudin18.2/CD3 BiTE was inserted into herpes simplex virus type 1 (HSV-1) to construct an OV-BiTE. Its expression and function were assessed using reporter cells and peripheral blood mononuclear cell (PBMC) co-culture assays. Intratumoral application of OV-BiTE restrained tumor growth and prolonged mouse survival compared with the unarmed OV in xenograft models and syngeneic mice bearing CLDN18.2-expressing KPC or Pan02 pancreatic cancer cells. Flow cytometry of tumor-infiltrating immune cells suggested both OV-BiTE and the unarmed OV remodeled the tumor microenvironment by increasing CD4+ T cell infiltration and decreasing regulatory T cells. OV-BiTE further reprogrammed macrophages to a more pro-inflammatory antitumor state, and OV-BiTE-induced macrophages exhibited greater cytotoxicity on the co-cultured tumor cell. This dual cytotoxic and immunomodulatory approach warrants further development for pancreatic cancer before clinical investigation.
Collapse
Affiliation(s)
- Shiyu Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Fan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Li Deng
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Qiongqiong Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Zhuoqian Zhao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Huanzhen Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yixuan Zhou
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin 300041, China
| | - Manli Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Hui Wang
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Yingbin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin 300041, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Hongkai Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
- Beijing Institute of Biological Products Company Limited and CNBG-Nankai University Joint Research and Development Center, Beijing 100176, China
| | - Mingjuan Du
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
20
|
Liu S, Li F, Ma Q, Du M, Wang H, Zhu Y, Deng L, Gao W, Wang C, Liu Y, Zhao Z, Liu H, Wang R, Tian Y, Hu M, Wan Y, Lu W, Zhang M, Zhao M, Cao Y, Zhang H, Wang W, Wang H, Wang Y. OX40L-Armed Oncolytic Virus Boosts T-cell Response and Remodels Tumor Microenvironment for Pancreatic Cancer Treatment. Theranostics 2023; 13:4016-4029. [PMID: 37554264 PMCID: PMC10405835 DOI: 10.7150/thno.83495] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 08/10/2023] Open
Abstract
Rationale: The resistance of pancreatic ductal adenocarcinoma (PDAC) to immunotherapies is caused by the immunosuppressive tumor microenvironment (TME) and dense extracellular matrix. Currently, the efficacy of an isolated strategy targeting stromal desmoplasia or immune cells has been met with limited success in the treatment of pancreatic cancer. Oncolytic virus (OV) therapy can remodel the TME and damage tumor cells either by directly killing them or by enhancing the anti-tumor immune response, which holds promise for the treatment of PDAC. This study aimed to investigate the therapeutic effect of OX40L-armed OV on PDAC and to elucidate the underlying mechanisms. Methods: Murine OX40L was inserted into herpes simplex virus-1 (HSV-1) to construct OV-mOX40L. Its expression and function were assessed using reporter cells, cytopathic effect, and immunogenic cell death assays. The efficacy of OV-mOX40L was then evaluated in a KPC syngeneic mouse model. Tumor-infiltrating immune and stromal cells were analyzed using flow cytometry and single-cell RNA sequencing to gain insight into the mechanisms of oncolytic virotherapy. Results: OV-mOX40L treatment delayed tumor growth in KPC tumor-bearing C57BL/6 mice. It also boosted the tumor-infiltrating CD4+ T cell response, mitigated cytotoxic T lymphocyte (CTL) exhaustion, and reduced the number of regulatory T cells. The treatment of OV-mOX40L reprogrammed macrophages and neutrophils to a more pro-inflammatory anti-tumor state. In addition, the number of myofibroblastic cancer-associated fibroblasts (CAF) was reduced after treatment. Based on single-cell sequencing analysis, OV-mOX40L, in combination with anti-IL6 and anti-PD-1, significantly extended the lifespan of PDAC mice. Conclusion: OV-mOX40L converted the immunosuppressive tumor immune microenvironment to a more activated state, remodeled the stromal matrix, and enhanced T cell response. OV-mOX40L significantly prolonged the survival of PDAC mice, either as a monotherapy or in combination with synergistic antibodies. Thus, this study provides a multimodal therapeutic strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Shiyu Liu
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Fan Li
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Qiongqiong Ma
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Mingjuan Du
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Haoran Wang
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
| | - Yiping Zhu
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Li Deng
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Wenrui Gao
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Chunlei Wang
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Yanqin Liu
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Zhuoqian Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
| | - Huanzhen Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Ruikun Wang
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
| | - Yujie Tian
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Manli Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yajuan Wan
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Meng Zhang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Youjia Cao
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Hui Wang
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| | - Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of life science, Nankai University, Tianjin, China
- CNBG-Nankai University Joint Research and Development Center, Tianjin, China
| |
Collapse
|
21
|
Zhang T, Sheng P, Jiang Y. m6A regulators are differently expressed and correlated with immune response of pancreatic adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:2805-2822. [PMID: 35780396 DOI: 10.1007/s00432-022-04150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND N6 methyladenosine (m6A) RNA methylation regulators play a key role in the occurrence and development of many tumors. However, the function of N6 methyladenosine (m6A) RNA methylation regulators in pancreatic adenocarcinoma (PAAD) has not been fully clarified. METHODS We used data set from GEPIA 2, UALCAN, TIMER, TISIDB, CBioPortal database to analyze the gene expression of 20 major m6A RNA methylation regulators. RESULTS Our study revealed that the irregularity of m6A regulators were associated with poor prognosis in PAAD. Meantime, 13 m6A regulators showed high expression in PAAD samples (ALKBH5, ELAVL1, FTO, HNRNPC, IGF2BP2, METTL14, METTL16 (METT10D), RBM15, VIRMA (KIAA1429), YTHDF1, YTHDF2, YTHDF3 and ZC3H13). In these regulators, we evaluated HNRNPC and IGF2BP2 were significantly correlated with worse outcomes and ALKBH5, IGF2BP2, METTL16 (METT10D), RBM15 were significantly correlated with PAAD in advanced stage. Moreover, we showed m6A regulators is correlated with Immuno-regulators' (Immunoinhibitors, Immunostimulators and MHC molecules) expression and levels of immune infiltration in PAAD. Bioinformatics further demonstrate m6A regulators were participated in revising in RNA processing. CONCLUSIONS Our study investigated that the m6A regulatory factors may serve as a biomarker and a potential target of immunotherapy for PAAD.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ping Sheng
- Department of General Surgery, The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan Province, China
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
22
|
Data mining combines bioinformatics discover immunoinfiltration-related gene SERPINE1 as a biomarker for diagnosis and prognosis of stomach adenocarcinoma. Sci Rep 2023; 13:1373. [PMID: 36697459 PMCID: PMC9876925 DOI: 10.1038/s41598-023-28234-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Stomach adenocarcinoma (STAD) is a type of cancer which often at itsadvanced stage apon diagnosis and mortality in clinical practice. Several factors influencethe prognosis of STAD, including the expression and regulation of immune cells in the tumor microenvironment. We here investigated the biomarkers related to the diagnosis and prognosis of gastric cancer, hoping to provide insights for the diagnosis and treatment of gastric cancer in the future. STAD and normal patient RNA sequencing data sets were accessed from the cancer genome atlas (TCGA database). Differential genes were determined and obtained by using the R package DESeq2. The stromal, immune, and ESTIMATE scores are calculated by the ESTIMATE algorithm, followed by the modular genes screening using the R package WGCNA. Subsequently, the intersection between the modular gene and the differential gene was taken and the STRING database was used for PPI network module analysis. The R packages clusterProfiler, enrichplot, and ggplot2 were used for GO and KEGG enrichment analysis. Cox regression analysis was used to screen survival-related genes, and finally, the R package Venn Diagram was used to take the intersection and obtain 7 hub genes. The time-dependent ROC curve and Kaplan-Meier survival curve were used to find the SERPINE1 gene, which plays a critical role in prognosis. Finally, the expression pattern, clinical characteristics, and regulatory mechanism of SERPINE1 were analyzed in STAD. We revealed that the expression of SERPINE1 was significantly increased in the samples from STAD compared with normal samples. Cox regression, time-dependent ROC, and Kaplan-Meier survival analyses demonstrated that SERPINE1 was significantly related to the adverse prognosis of STAD patients. The expression of SERPINE1 increased with the progression of T, N, and M classification of the tumor. In addition, the results of immune infiltration analysis indicated that the immune cells' expression were higher in high SERPINE1 expression group than that in low SERPINE1 expression group, including CD4+ T cells, B cells, CD8+ T cells, macrophages, neutrophils and other immune cells. SERPINE1 was closely related to immune cells in the STAD immune microenvironment and had a synergistic effect with the immune checkpoints PD1 and PD-L1. In conclusion, we proved that SERPINE1 is a promising prognostic and diagnostic biomarker for STAD and a potential target for immunotherapy.
Collapse
|
23
|
St-Cyr G, Penarroya D, Daniel L, Giguère H, Alkayyal AA, Tai LH. Remodeling the tumor immune microenvironment with oncolytic viruses expressing miRNAs. Front Immunol 2023; 13:1071223. [PMID: 36685574 PMCID: PMC9846254 DOI: 10.3389/fimmu.2022.1071223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
MiRNAs (miRNA, miR) play important functions in the tumor microenvironment (TME) by silencing gene expression through RNA interference. They are involved in regulating both tumor progression and tumor suppression. The pathways involved in miRNA processing and the miRNAs themselves are dysregulated in cancer. Consequently, they have become attractive therapeutic targets as underscored by the plethora of miRNA-based therapies currently in pre-clinical and clinical studies. It has been shown that miRNAs can be used to improve oncolytic viruses (OVs) and enable superior viral oncolysis, tumor suppression and immune modulation. In these cases, miRNAs are empirically selected to improve viral oncolysis, which translates into decreased tumor growth in multiple murine models. While this infectious process is critical to OV therapy, optimal immunomodulation is crucial for the establishment of a targeted and durable effect, resulting in cancer eradication. Through numerous mechanisms, OVs elicit a strong antitumor immune response that can also be further improved by miRNAs. They are known to regulate components of the immune TME and promote effector functions, antigen presentation, phenotypical polarization, and varying levels of immunosuppression. Reciprocally, OVs have the power to overcome the limitations encountered in canonical miRNA-based therapies. They deliver therapeutic payloads directly into the TME and facilitate their amplification through selective tumoral tropism and abundant viral replication. This way, off-target effects can be minimized. This review will explore the ways in which miRNAs can synergistically enhance OV immunotherapy to provide the basis for future therapeutics based on this versatile combination platform.
Collapse
Affiliation(s)
- Guillaume St-Cyr
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphné Penarroya
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauren Daniel
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre of the Centre Hospitalier de l'Universite de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Zhang N, Li J, Yu J, Wan Y, Zhang C, Zhang H, Cao Y. Construction of an IL12 and CXCL11 armed oncolytic herpes simplex virus using the CRISPR/Cas9 system for colon cancer treatment. Virus Res 2023; 323:198979. [PMID: 36283533 PMCID: PMC10194376 DOI: 10.1016/j.virusres.2022.198979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Oncolytic viruses are an emerging cancer treatment modality with promising results in clinical trials. The new generation of oncolytic viruses are genetically modified to enhance virus selectivity for tumor cells and allow local expression of therapeutic genes in tumors. The traditional technique for viral genome engineering based on homologous recombination using a bacterial artificial chromosome (BAC) system is laborious and time-consuming. With the advent of the CRISPR/Cas9 system, the efficiency of gene editing in human cells and other organisms has dramatically increased. In this report, we successfully applied the CRISPR/Cas9 technique to construct an HSV-based oncolytic virus, where the ICP34.5 coding region was replaced with the therapeutic genes murine interleukin 12 (IL12, p40-p35) and C-X-C motif chemokine ligand 11 (CXCL11), and ICP47 gene was deleted. The combination of IL12 and CXCL11 in oncolytic viruses showed considerable promise in colorectal cancer (CRC) treatment. Overall, our study describes genetic modification of the HSV-1 genome using the CRISPR/Cas9 system and provides evidence from principle studies for engineering of the HSV genome to express foreign genes.
Collapse
Affiliation(s)
- Nianchao Zhang
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jie Li
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jingxuan Yu
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yajuan Wan
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Cuizhu Zhang
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Youjia Cao
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China; College of Life Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
25
|
Ye K, Li F, Wang R, Cen T, Liu S, Zhao Z, Li R, Xu L, Zhang G, Xu Z, Deng L, Li L, Wang W, Stepanov A, Wan Y, Guo Y, Li Y, Wang Y, Tian Y, Gabibov AG, Yan Y, Zhang H. An armed oncolytic virus enhances the efficacy of tumor-infiltrating lymphocyte therapy by converting tumors to artificial antigen-presenting cells in situ. Mol Ther 2022; 30:3658-3676. [PMID: 35715953 PMCID: PMC9734027 DOI: 10.1016/j.ymthe.2022.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
The full potential of tumor-infiltrating lymphocyte (TIL) therapy has been hampered by the inadequate activation and low persistence of TILs, as well as inefficient neoantigen presentation by tumors. We transformed tumor cells into artificial antigen-presenting cells (aAPCs) by infecting them with a herpes simplex virus 1 (HSV-1)-based oncolytic virus encoding OX40L and IL12 (OV-OX40L/IL12) to provide local signals for optimum T cell activation. The infected tumor cells displayed increased expression of antigen-presenting cell-related markers and induced enhanced T cell activation and killing in coculture with TILs. Combining OV-OX40L/IL12 and TIL therapy induced complete tumor regression in patient-derived xenograft and syngeneic mouse tumor models and elicited an antitumor immunological memory. In addition, the combination therapy produced aAPC properties in tumor cells, activated T cells, and reprogrammed macrophages to a more M1-like phenotype in the tumor microenvironment. This combination strategy unleashes the full potential of TIL therapy and warrants further evaluation in clinical studies.
Collapse
Affiliation(s)
- Kai Ye
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Fan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Ruikun Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Tianyi Cen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Shiyu Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Zhuoqian Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Ruonan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Lili Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Guanmeng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin 300041, PR China
| | - Zhaoyuan Xu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin 300041, PR China
| | - Li Deng
- CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Beijing Institute of Biological Products, Beijing 100176, PR China
| | - Lili Li
- CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Beijing Institute of Biological Products, Beijing 100176, PR China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, PR China
| | - Alexey Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Yajuan Wan
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Yujie Tian
- CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China
| | - Alexander G Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Yingbin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, Tianjin 300041, PR China.
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; CNBG-Nankai University Joint Research and Development Center, Nankai University, Tianjin 300350, PR China; Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
26
|
Yu H, Liu S, Wu Z, Gao F. GNAI2 Is a Risk Factor for Gastric Cancer: Study of Tumor Microenvironment (TME) and Establishment of Immune Risk Score (IRS). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1254367. [PMID: 36275898 PMCID: PMC9586761 DOI: 10.1155/2022/1254367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Purpose Although the G protein subunit α i2 (GNAI2) is upregulated in multiple cancers, its prognostic value and exact role in the development of gastric cancer (GC) remain largely unknown. Methods This study evaluated the effect of GNAI2 on the tumor microenvironment (TME) in GC, constructed an immune risk score (IRS) model based on differentially-expressed immune genes, and systematically correlated GNAI2 and epigenetic factor expression patterns with TME and IRS. Also, RT-qPCR, flow cytometry, Western blotting (WB), and transwell assays were carried out to explore the regulatory mechanism of GNAI2 in GC. Results High GNAI2 expression was associated with poor prognosis. Cytokine activation, an increase in tumor-infiltrating immune cells (TIIC), and the accumulation of regulatory T cells in the tumor immune cycle were all promoted by the TME, which was significantly associated with GNAI2 expression. Two different differentially expressed mRNA (DER) modification patterns were determined. These two DERs-clusters had significantly different TME cell infiltrations and were classified as either noninflamed or immune-inflamed phenotypes. The IRS model constructed using differentially expressed genes (DEGs) had great potential in predicting GC prognosis. The IRS model was also used in assessing clinicopathological features, such as microsatellite instability (MSI) status, epithelial-mesenchymal transition (EMT) status, clinical stages, tumor mutational burden (TMB), and tumor immune dysfunction and exclusion (TIDE) scores. Low IRS scores were associated with high immune checkpoint gene expression. Cell and animal studies confirmed that GNAI2 activated PI3K/AKT pathway and promoted the growth and migration of GC cells. Conclusion The IRS model can be used for survival prediction and GNAI2 serves as a candidate therapeutic target for GC patients.
Collapse
Affiliation(s)
- Han Yu
- Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou, 514031 Guangdong Province, China
| | - Sha Liu
- Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou, 514031 Guangdong Province, China
| | - ZuGuang Wu
- Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou, 514031 Guangdong Province, China
| | - FenFei Gao
- School of Pharmacology, Shantou University, 22 Xinling Road, Shantou, 515063 Guangdong Province, China
| |
Collapse
|
27
|
Bai X, Li Y, Li Y, Li F, Che N, Ni C, Zhao N, Zhao X, Liu T. GRHL2 Expression Functions in Breast Cancer Aggressiveness and Could Serve as Prognostic and Diagnostic Biomarker for Breast Cancer. Clin Med Insights Oncol 2022; 16:11795549221109511. [PMID: 35898391 PMCID: PMC9310218 DOI: 10.1177/11795549221109511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/06/2022] [Indexed: 01/26/2023] Open
Abstract
Background Breast cancer (BC) is the most frequent malignancy in women worldwide and the leading cause of female cancer-associated death in the world. Grainyhead-like 2 (GRHL2) is an important gene involved in human cancer progression. However, the role of GRHL2 in BC is unknown. Methods In this study, we used in vitro experiments to verify the role of GRHL2 expression in BC progression. We used 14 databases to analyse the expression level of GRHL2 in BC and its prognostic and diagnostic value. In addition, the correlation between GRHL2 expression and immune cell infiltration and DNA methylation was also analysed. Results At the cellular level, overexpression of GRHL2 induced E-cadherin expression in BC cells with a mesenchymal phenotype and resulted in a hybrid epithelial/mesenchymal (E/M) phenotype, which is more strongly correlated with tumour aggressiveness than a pure mesenchymal phenotype. Through analysis of various databases, we found that tumour tissue had a higher expression level of GRHL2. High expression of GRHL2 was associated with worse prognosis of BC patients and indicated that GRHL2 had significant diagnostic value. Grainyhead-like 2 is also related to immune infiltration and regulated by DNA methylation. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that GRHL2-related signalling pathways in BC were related to tumour cell proliferation, invasion, and angiogenesis. Conclusions In summary, evidence indicates that GRHL2 can be used as a prognostic and diagnostic biomarker for BC.
Collapse
Affiliation(s)
- Xiaoyu Bai
- Department of Pathology, Tianjin
Medical University, Tianjin, China
| | - Yue Li
- Department of Pathology, Tianjin
Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin
Medical University, Tianjin, China
| | - Na Che
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Nan Zhao
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China
| | - Tieju Liu
- Department of Pathology, Tianjin
Medical University, Tianjin, China,Department of Pathology, General
Hospital of Tianjin Medical University, Tianjin, China,Tieju Liu, Department of Pathology, Tianjin
Medical University, Qixiangtai Road No. 22, HePing District, Tianjin, 30070,
China.
| |
Collapse
|
28
|
Nisar M, Paracha RZ, Adil S, Qureshi SN, Janjua HA. An Extensive Review on Preclinical and Clinical Trials of Oncolytic Viruses Therapy for Pancreatic Cancer. Front Oncol 2022; 12:875188. [PMID: 35686109 PMCID: PMC9171400 DOI: 10.3389/fonc.2022.875188] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance and peculiar tumor microenvironment, which diminish or mitigate the effects of therapies, make pancreatic cancer one of the deadliest malignancies to manage and treat. Advanced immunotherapies are under consideration intending to ameliorate the overall patient survival rate in pancreatic cancer. Oncolytic viruses therapy is a new type of immunotherapy in which a virus after infecting and lysis the cancer cell induces/activates patients’ immune response by releasing tumor antigen in the blood. The current review covers the pathways and molecular ablation that take place in pancreatic cancer cells. It also unfolds the extensive preclinical and clinical trial studies of oncolytic viruses performed and/or undergoing to design an efficacious therapy against pancreatic cancer.
Collapse
Affiliation(s)
- Maryum Nisar
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Adil
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
29
|
Mealiea D, McCart JA. Cutting both ways: the innate immune response to oncolytic virotherapy. Cancer Gene Ther 2022; 29:629-646. [PMID: 34453122 DOI: 10.1038/s41417-021-00351-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses (OVs), above and beyond infecting and lysing malignant cells, interact with the immune system in complex ways that have important therapeutic significance. While investigation into these interactions is still in its early stages, important insights have been made over the past two decades that will help improve the clinical efficacy of OV-based management strategies in cancer care moving forward. The inherent immunosuppression that defines the tumor microenvironment can be modified by OV infection, and the subsequent recruitment and activation of innate immune cells, in particular, is central to this. Indeed, neutrophils, macrophages, natural killer cells, and dendritic cells, as well as other populations such as myeloid-derived suppressor cells, are key to the immune escape that allows tumors to survive, but their natural response to infection can be exploited by virotherapy. While stimulation of innate immune cells by OVs can initiate antitumor responses, related antiviral activity can limit virus spread and direct cytopathogenic effects. In this review, we highlight how each innate immune cell population influences this balance of antitumor and antiviral forces during virotherapy, some of the important molecular pathways that have been identified, and specific therapeutic targets that have emerged through this work. We discuss the importance of OV-based combination therapies in optimizing antiviral and antitumor innate immune responses stimulated by virotherapy toward tumor eradication, and how these processes vary depending on the tumor and OV in question. Rather than concentrating on a particular OV species in the review, we present the range of effects that have been documented across OV types to emphasize the context-specific nature of these interactions and how this is important in the design of future OV-based treatment approaches.
Collapse
Affiliation(s)
- David Mealiea
- Department of Surgery, University of Toronto, Toronto, ON, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| | - J Andrea McCart
- Department of Surgery, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
30
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
31
|
Lyu Z, Li Y, Zhu D, Wu S, Hu F, Zhang Y, Li Y, Hou T. Fibroblast Activation Protein-Alpha is a Prognostic Biomarker Associated With Ferroptosis in Stomach Adenocarcinoma. Front Cell Dev Biol 2022; 10:859999. [PMID: 35359436 PMCID: PMC8963861 DOI: 10.3389/fcell.2022.859999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The potential role of fibroblast activation protein-alpha (FAP) in modulating the progression and invasion of stomach adenocarcinoma (STAD) has not yet been comprehensively investigated. This study aimed to explore the role of FAP in STAD and the underlying association between FAP and the tumor microenvironment (TME) and ferroptosis.Methods: Overall survival was analyzed to evaluate the prognostic value of FAP based on gene expression data and clinical information on STAD. Associations between FAP expression, clinical parameters, and immune characteristics were comprehensively analyzed. The ferroptosis-related patterns of STAD samples were investigated based on 43 ferroptosis-related genes, and the correlations between these clusters and clinical characteristics were evaluated. The possible biological functions and pathways were explored using gene set enrichment analysis (GSEA).Results: FAP was identified as a novel biomarker that significantly contributed to the poor prognosis of STAD (hazard ratio = 1.270, P = 0.013). The elevated level of FAP expression was related to a more advanced tumor stage in STAD. The close relationship between FAP and the TME was validated. Four distinct ferroptosis-related clusters (A–D) were evident. Evaluating ferroptosis-related clusters could illustrate the stages of STAD and patient prognosis. Cluster C displayed the lowest FAP expression and a better prognosis than the other clusters. The different clusters were linked to different biological mechanisms, including epithelial-mesenchymal transition and immune-relevant pathways.Conclusion: FAP is a promising biomarker to distinguish prognosis and is associated with the TME and ferroptosis in STAD.
Collapse
Affiliation(s)
- Zejian Lyu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yafang Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dandan Zhu
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sifan Wu
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Fei Hu
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yu Zhang
- Medical Department, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yu Zhang, ; Yong Li, ; Tieying Hou,
| | - Yong Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yu Zhang, ; Yong Li, ; Tieying Hou,
| | - Tieying Hou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
- Medical Department, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yu Zhang, ; Yong Li, ; Tieying Hou,
| |
Collapse
|
32
|
Tang S, Shi L, Luker BT, Mickler C, Suresh B, Lesinski GB, Fan D, Liu Y, Luo M. Modulation of the tumor microenvironment by armed vesicular stomatitis virus in a syngeneic pancreatic cancer model. Virol J 2022; 19:32. [PMID: 35197076 PMCID: PMC8867845 DOI: 10.1186/s12985-022-01757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
Background The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma is a major factor that limits the benefits of immunotherapy, especially immune checkpoint blockade. One viable strategy for reverting the immunosuppressive conditions is the use of an oncolytic virus (OV) in combination with other immunotherapy approaches. Infection of PDAC cells with a robust OV can change the tumor microenvironment and increase tumor antigen release by its lytic activities. These changes in the tumor may improve responses to immunotherapy, including immune checkpoint blockade. However, a more potent OV may be required for efficiently infecting pancreatic tumors that may be resistant to OV. Methods Vesicular stomatitis virus, a rapid replicating OV, was armed to express the Smac protein during virus infection (VSV-S). Adaptation by limited dilution largely increased the selective infection of pancreatic cancer cells by VSV-S. The engineered OV was propagated to a large quantity and evaluated for their antitumor activities in an animal model. Results In a syngeneic KPC model, intratumoral injection of VSV-S inhibited tumor growth, and induced increasing tumor infiltration of neutrophils and elimination of myeloid derived suppressor cells and macrophages in the tumor. More importantly, M2-like macrophages were eliminated preferentially over those with an M1 phenotype. Reduced levels of arginase 1, TGF-β and IL-10 in the tumor also provided evidence for reversion of the immunosuppressive conditions by VSV-S infection. In several cases, tumors were completely cleared by VSV-S treatment, especially when combined with anti-PD-1 therapy. A long-term survival of 44% was achieved. Conclusions The improved OV, VSV-S, was shown to drastically alter the immune suppressive tumor microenvironment when intratumorally injected. Our results suggest that the combination of potent OV treatment with immune checkpoint blockade may be a promising strategy to treat pancreatic cancer more effectively.
Collapse
Affiliation(s)
- Sijia Tang
- Institute of Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Lei Shi
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Breona T Luker
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Channen Mickler
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Bhavana Suresh
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Yuan Liu
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA. .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
33
|
Huang Z, Liu X, Wu C, Lu S, Antony S, Zhou W, Zhang J, Wu Z, Tan Y, Fan X, You L, Jing Z, Wu J. A New Strategy to Identify ceRNA-Based CCDC144NL-AS1/SERPINE1 Regulatory Axis as a Novel Prognostic Biomarker for Stomach Adenocarcinoma via High Throughput Transcriptome Data Mining and Computational Verification. Front Oncol 2022; 11:802727. [PMID: 35155200 PMCID: PMC8828946 DOI: 10.3389/fonc.2021.802727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Stomach adenocarcinoma (STAD) is one of the most malignant cancers that endanger human health. There is growing evidence that competitive endogenous RNA (ceRNA) regulatory networks play an important role in various human tumors. However, the complexity and behavioral characteristics of the ceRNA network in STAD are still unclear. In this study, we constructed a ceRNA regulatory network to identify the potential prognostic biomarkers associated with STAD. The expression profile of lncRNA, miRNA, and mRNA was downloaded from The Cancer Genome Atlas (TCGA). After performing bioinformatics analysis, the CCDC144NL-AS1/hsa-miR-145-5p/SERPINE1 ceRNA network associated to STAD prognosis of STAD was obtained. The CCDC144NL-AS1/SERPINE1 axis in the ceRNA network was identified by correlation analysis and considered as a clinical prognosis model by Cox regression analysis. In addition, methylation analysis indicated that the abnormal upregulation of CCDC144NL-AS1/SERPINE1 axis might be related to the aberrant methylation of some sites, and immune infiltration analysis suggested that CCDC144NL-AS1/SERPINE1 axis probably influences the alteration of tumor immune microenvironment and the occurrence and development of STAD. In particular, the CCDC144NL-AS1/SERPINE1 axis based on the ceRNA network constructed in the present study might be an important novel factor correlating with the diagnosis and prognosis of STAD.
Collapse
Affiliation(s)
- Zhihong Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Stalin Antony
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhou
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotian Fan
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Leiming You
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwei Jing
- Institute of Clinical Basic Medicine of Traditional Chinese Medicine, China Academy of Chinese Medicine Science, Beijing, China
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
34
|
Wang R, Chen J, Wang W, Zhao Z, Wang H, Liu S, Li F, Wan Y, Yin J, Wang R, Li Y, Zhang C, Zhang H, Cao Y. CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model. J Immunother Cancer 2022; 10:jitc-2021-003809. [PMID: 35086948 PMCID: PMC8796271 DOI: 10.1136/jitc-2021-003809] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers worldwide. Despite the promising outcome of immune checkpoint inhibitors and agonist antibody therapies in different malignancies, PDAC exhibits high resistance due to its immunosuppressive tumor microenvironment (TME). Ameliorating the TME is thus a rational strategy for PDAC therapy. The intratumoral application of oncolytic herpes simplex virus-1 (oHSV) upregulates pro-inflammatory macrophages and lymphocytes in TME, and enhances the responsiveness of PDAC to immunotherapy. However, the antitumor activity of oHSV remains to be maximized. The aim of this study is to investigate the effect of the CD40L armed oHSV on the tumor immune microenvironment, and ultimately prolong the survival of the PDAC mouse model. Methods The membrane-bound form of murine CD40L was engineered into oHSV by CRISPR/Cas9-based gene editing. oHSV-CD40L induced cytopathic effect and immunogenic cell death were determined by microscopy and flow cytometry. The expression and function of oHSV-CD40L was assessed by reporter cell assay. The oHSV-CD40L was administrated intratumorally to the immune competent syngeneic PDAC mouse model, and the leukocytes in TME and tumor-draining lymph node were analyzed by multicolor flow cytometry. Intratumoral cytokines were determined by ELISA. Results Intratumoral application of oHSV-CD40L efficiently restrained the tumor growth and prolonged the survival of the PDAC mouse model. In TME, oHSV-CD40L-treated tumor accommodated more maturated dendritic cells (DCs), which in turn activated T helper 1 and cytotoxic CD8+ T cells in an interferon-γ-dependent and interleukin-12-dependent manner. In contrast, the regulatory T cells were significantly reduced in TME by oHSV-CD40L treatment. Repeated dosing and combinational therapy extended the lifespan of PDAC mice. Conclusion CD40L-armed oncolytic therapy endues TME with increased DCs maturation and DC-dependent activation of cytotoxic T cells, and significantly prolongs the survival of the model mice. This study may lead to the understanding and development of oHSV-CD40L as a therapy for PDAC in synergy with immune checkpoint blockade.
Collapse
Affiliation(s)
- Ruikun Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingru Chen
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhuoqian Zhao
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Haoran Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shiyu Liu
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Fan Li
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Yajuan Wan
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Yin
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Rui Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Cuizhu Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Hongkai Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China.,CNBG-NKU Joint R&D Center, Beijing Institute of Biological Products Co., Ltd., China National Biotec Group, Beijing, China
| | - Youjia Cao
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| |
Collapse
|
35
|
Abstract
The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, hampered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed according to published data.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
36
|
Appleton E, Hassan J, Chan Wah Hak C, Sivamanoharan N, Wilkins A, Samson A, Ono M, Harrington KJ, Melcher A, Wennerberg E. Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune Checkpoint Blockade. Front Immunol 2021; 12:754436. [PMID: 34733287 PMCID: PMC8558396 DOI: 10.3389/fimmu.2021.754436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer patients with low or absent pre-existing anti-tumour immunity ("cold" tumours) respond poorly to treatment with immune checkpoint inhibitors (ICPI). In order to render these patients susceptible to ICPI, initiation of de novo tumour-targeted immune responses is required. This involves triggering of inflammatory signalling, innate immune activation including recruitment and stimulation of dendritic cells (DCs), and ultimately priming of tumour-specific T cells. The ability of tumour localised therapies to trigger these pathways and act as in situ tumour vaccines is being increasingly explored, with the aspiration of developing combination strategies with ICPI that could generate long-lasting responses. In this effort, it is crucial to consider how therapy-induced changes in the tumour microenvironment (TME) act both as immune stimulants but also, in some cases, exacerbate immune resistance mechanisms. Increasingly refined immune monitoring in pre-clinical studies and analysis of on-treatment biopsies from clinical trials have provided insight into therapy-induced biomarkers of response, as well as actionable targets for optimal synergy between localised therapies and ICB. Here, we review studies on the immunomodulatory effects of novel and experimental localised therapies, as well as the re-evaluation of established therapies, such as radiotherapy, as immune adjuvants with a focus on ICPI combinations.
Collapse
Affiliation(s)
- Elizabeth Appleton
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jehanne Hassan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charleen Chan Wah Hak
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Nanna Sivamanoharan
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Anna Wilkins
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Adel Samson
- Leeds Institute of Medical Research at St. James, University of Leeds, Leeds, United Kingdom
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kevin J. Harrington
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Alan Melcher
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Erik Wennerberg
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| |
Collapse
|
37
|
Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers (Basel) 2021; 13:cancers13164138. [PMID: 34439292 PMCID: PMC8393975 DOI: 10.3390/cancers13164138] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with high mortality. The vast majority of patients present with unresectable, advanced stage disease, for whom standard of care chemo(radio)therapy may improve survival by several months. Immunotherapy has led to a fundamental shift in the treatment of several advanced cancers. However, its efficacy in PDAC in terms of clinical benefit is limited, possibly owing to the immunosuppressive, inaccessible tumor microenvironment. Still, various immunotherapies have demonstrated the capacity to initiate local and systemic immune responses, suggesting an immune potentiating effect. In this review, we address PDAC's immunosuppressive tumor microenvironment and immune evasion methods and discuss a wide range of immunotherapies, including immunomodulators (i.e., immune checkpoint inhibitors, immune stimulatory agonists, cytokines and adjuvants), oncolytic viruses, adoptive cell therapies (i.e., T cells and natural killer cells) and cancer vaccines. We provide a general introduction to their working mechanism as well as evidence of their clinical efficacy and immune potentiating abilities in PDAC. The key to successful implementation of immunotherapy in this disease may rely on exploitation of synergistic effects between treatment combinations. Accordingly, future treatment approaches should aim to incorporate diverse and novel immunotherapeutic strategies coupled with cytotoxic drugs and/or local ablative treatment, targeting a wide array of tumor-induced immune escape mechanisms.
Collapse
|
38
|
Sun G, Li Z, Rong D, Zhang H, Shi X, Yang W, Zheng W, Sun G, Wu F, Cao H, Tang W, Sun Y. Single-cell RNA sequencing in cancer: Applications, advances, and emerging challenges. Mol Ther Oncolytics 2021; 21:183-206. [PMID: 34027052 PMCID: PMC8131398 DOI: 10.1016/j.omto.2021.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer has become one of the greatest threats to human health, and new technologies are urgently needed to further clarify the mechanisms of cancer so that better detection and treatment strategies can be developed. At present, extensive genomic analysis and testing of clinical specimens shape the insights into carcinoma. Nevertheless, carcinoma of humans is a complex ecosystem of cells, including carcinoma cells and immunity-related and stroma-related subsets, with accurate characteristics obscured by extensive genome-related approaches. A growing body of research shows that sequencing of single-cell RNA (scRNA-seq) is emerging to be an effective way for dissecting human tumor tissue at single-cell resolution, presenting one prominent way for explaining carcinoma biology. This review summarizes the research progress of scRNA-seq in the field of tumors, focusing on the application of scRNA-seq in tumor circulating cells, tumor stem cells, tumor drug resistance, the tumor microenvironment, and so on, which provides a new perspective for tumor research.
Collapse
Affiliation(s)
- Guangshun Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig Maximilians University, Munich, Germany
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hao Zhang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuesong Shi
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weijun Yang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Shi Y, Zhang DD, Liu JB, Yang XL, Xin R, Jia CY, Wang HM, Lu GX, Wang PY, Liu Y, Li ZJ, Deng J, Lin QL, Ma L, Feng SS, Chen XQ, Zheng XM, Zhou YF, Hu YJ, Yin HQ, Tian LL, Gu LP, Lv ZW, Yu F, Li W, Ma YS, Da F. Comprehensive analysis to identify DLEU2L/TAOK1 axis as a prognostic biomarker in hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:702-718. [PMID: 33575116 PMCID: PMC7851426 DOI: 10.1016/j.omtn.2020.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignant tumors that are harmful to human health. Increasing evidence has underscored the critical role of the competitive endogenous RNA (ceRNA) regulatory networks among various human cancers. However, the complexity and behavior characteristics of the ceRNA network in HCC were still unclear. In this study, we aimed to clarify a phosphatase and tensin homolog (PTEN)-related ceRNA regulatory network and identify potential prognostic markers associated with HCC. The expression profiles of three RNAs (long non-coding RNAs [lncRNAs], microRNAs [miRNAs], and mRNAs) were extracted from The Cancer Genome Atlas (TCGA) database. The DLEU2L-hsa-miR-100-5p/ hsa-miR-99a-5p-TAOK1 ceRNA network related to the prognosis of HCC was obtained by performing bioinformatics analysis. Importantly, we identified the DLEU2L/TAOK1 axis in the ceRNA by using correlation analysis, and it appeared to become a clinical prognostic model by Cox regression analysis. Furthermore, methylation analyses suggested that the abnormal upregulation of the DLEU2L/TAOK1 axis likely resulted from hypomethylation, and immune infiltration analysis showed that the DLEU2L/TAOK1 axis may have an impact on the changes in the tumor immune microenvironment and the development of HCC. In summary, the current study constructing a ceRNA-based DLEU2L/TAOK1 axis might be a novel important prognostic factor associated with the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Dan-Dan Zhang
- Department of Pathology, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Liu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Zi-Jin Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Liang Ma
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Shan-Shan Feng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Xiao-Qi Chen
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiang-Min Zheng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Ya-Fu Zhou
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Yong-Jun Hu
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Hua-Qun Yin
- School of Resource Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Lin-Lin Tian
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Department of Pancreatic and Hepatobiliary Surgery, Cancer Hospital, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Fu Da
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|