1
|
Yao Z, Liu T, Wang J, Fu Y, Zhao J, Wang X, Li Y, Yang X, He Z. Targeted delivery systems of siRNA based on ionizable lipid nanoparticles and cationic polymer vectors. Biotechnol Adv 2025; 81:108546. [PMID: 40015385 DOI: 10.1016/j.biotechadv.2025.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
As an emerging therapeutic tool, small interfering RNA (siRNA) had the capability to down-regulate nearly all human mRNAs via sequence-specific gene silencing. Numerous studies have demonstrated the substantial potential of siRNA in the treatment of broad classes of diseases. With the discovery and development of various delivery systems and chemical modifications, six siRNA-based drugs have been approved by 2024. The utilization of siRNA-based therapeutics has significantly propelled efforts to combat a wide array of previously incurable diseases and advanced at a rapid pace, particularly with the help of potent targeted delivery systems. Despite encountering several extracellular and intracellular challenges, the efficiency of siRNA delivery has been gradually enhanced. Currently, targeted strategies aimed at improving potency and reducing toxicity played a crucial role in the druggability of siRNA. This review focused on recent advancements on ionizable lipid nanoparticles (LNPs) and cationic polymer (CP) vectors applied for targeted siRNA delivery. Based on various types of targeted modifications, we primarily described delivery systems modified with receptor ligands, peptides, antibodies, aptamers and amino acids. Finally, we discussed the challenges and opportunities associated with siRNA delivery systems based on ionizable LNPs and CPs vectors.
Collapse
Affiliation(s)
- Ziying Yao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingwen Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhai Fu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhua Zhao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaodong Yang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Idris A. Use of a generative AI tool to design RNA-based antiviral therapeutics for undergraduate virology laboratory teaching. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2025:e0022324. [PMID: 40265931 DOI: 10.1128/jmbe.00223-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/01/2025] [Indexed: 04/24/2025]
Abstract
RNA medicines have taken the drug development world by storm since the introduction of mRNA vaccines post-pandemic. As this field is rapidly evolving at an unprecedented speed, it is crucial that higher education institutions keep up with this at all levels of teaching, including at the undergraduate level. In parallel, the necessity of embedding the fast-changing artificial intelligence (AI) landscape in undergraduate teaching and learning is also crucial. Here, I have developed a succinct but informative, in silico-based laboratory activity using a generative AI tool called Biomod AI (https://biomodai.com) for designing RNA-based drugs. This activity was designed for undergraduate level students to equip them with a unique AI-driven RNA drug design methodology. To my knowledge, this is the first use of generative AI for designing RNA drugs in undergraduate teaching.
Collapse
Affiliation(s)
- Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Cheung TH, Shoichet MS. The Interplay of Endosomal Escape and RNA Release from Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7174-7190. [PMID: 40080875 DOI: 10.1021/acs.langmuir.4c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Ribonucleic acid (RNA) nanocarriers, specifically lipid nanoparticles and polymeric nanoparticles, enable RNA transfection both in vitro and in vivo; however, only a small percentage of RNA endocytosed by a cell is delivered to the cytosolic machinery, minimizing its effect. RNA nanocarriers face two major obstacles after endocytosis: endosomal escape and RNA release. Overcoming both obstacles simultaneously is challenging because endosomal escape is usually achieved by using high positive charge to disrupt the endosomal membrane. However, this high positive charge typically also inhibits RNA release because anionic RNA is strongly bound to the nanocarrier by electrostatic interactions. Many nanocarriers address one over the other despite a growing body of evidence demonstrating that both are crucial for RNA transfection. In this review, we survey the various strategies that have been employed to accomplish both endosomal escape and RNA release with a focus on polymeric nanomaterials. We first consider the various requirements a nanocarrier must achieve for RNA delivery including protection from degradation, cellular internalization, endosomal escape, and RNA release. We then discuss current polymers used for RNA delivery and examine the strategies for achieving both endosomal escape and RNA release. Finally, we review various stimuli-responsive strategies for RNA release. While RNA release continues to be a challenge in achieving efficient RNA transfection, many new innovations in polymeric materials have elucidated promising strategies.
Collapse
Affiliation(s)
- Timothy H Cheung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
4
|
Lin MH, Maniam P, Li D, Tang B, Bishop CR, Suhrbier A, Earl LW, Tayyar Y, McMillan NA, Li L, Harrich D. Harnessing defective interfering particles and lipid nanoparticles for effective delivery of an anti-dengue virus RNA therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102424. [PMID: 39817192 PMCID: PMC11733052 DOI: 10.1016/j.omtn.2024.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA. Both DIPs and DI290-loaded LNPs (LNP-290) effectively suppressed DENV infection in human primary monocyte-derived macrophages (MDMs), THP-1 macrophages, and fibroblasts-natural DENV targets. Inhibiting interferon (IFN) signaling with a Janus kinase 1/2 inhibitor or an IFN-α/β receptor 1 (IFNAR1)-binding antibody blocked DIP and LNP-290 antiviral activity. LNP-290 demonstrated a greater than log10 inhibition of DENV viral loads in IFNAR-deficient (Ifnar -/- ) and IFN regulatory factor (IRF) 3 and 7 double knockout (Irf3/7 -/- ) mice. Pathway analysis of RNA sequencing data from LNP-treated C57BL/6J mice, Ifnar -/- mice, and human MDMs treated with LNPs or DENV DIPs indicated DI290 treatment enhanced IFN responses, suggesting IFN-λ and IFN-γ provided antiviral activity when IFN-α/β responses were diminished. While viral interference by DI290 is possible, results did not support RNA replication competition as an inhibition mechanism. These findings suggest that DI290 may be a promising DENV therapeutic by activating the innate immune system.
Collapse
Affiliation(s)
- Min-Hsuan Lin
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Pramila Maniam
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Dongsheng Li
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Bing Tang
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Cameron R. Bishop
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Andreas Suhrbier
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD 4072, Australia
| | - Lucy Wales- Earl
- Menzies Health Institute Queensland and School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Yaman Tayyar
- Menzies Health Institute Queensland and School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
- Prorenata Biotech, Molendinar, QLD 4214, Australia
| | - Nigel A.J. McMillan
- Menzies Health Institute Queensland and School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD 4072, Australia
| | - David Harrich
- Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Idres YM, Idris A, Gao W. Preclinical testing of antiviral siRNA therapeutics delivered in lipid nanoparticles in animal models - a comprehensive review. Drug Deliv Transl Res 2025:10.1007/s13346-025-01815-x. [PMID: 40000558 DOI: 10.1007/s13346-025-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The advent of RNA interference (RNAi) technology through the use of short-interfering RNAs (siRNAs) represents a paradigm shift in the fight against viral infections. siRNAs, with their ability to directly target and silence specific posttranscriptional genes, offer a novel mechanism of action distinct from that of traditional pharmacotherapeutics. This review delves into the growing field of siRNA therapeutics against viral infections, highlighting their critical role in contemporary antiviral strategies. Importantly, this review will solely focus on the use of lipid nanoparticles (LNPs) as the ideal antiviral siRNA delivery agent for use in vivo. We discuss the challenges of siRNA delivery and how LNPs have emerged as a pivotal solution to enhance antiviral efficacy. Specifically, this review focuses on work that have preclinically tested LNP formulated siRNA on virus infection animal models. Since the COVID-19 pandemic, we have witnessed a resurgence in the field of RNA-based therapies, including siRNAs against viruses including, SARS-CoV-2. Notably, the critical importance of LNPs as the ideal carrier for precious 'RNA cargo' can no longer be ignored with the advent of mRNA-LNP based COVID-19 vaccines. siRNA-based therapeutics represents an emerging class of anti-infective drugs with a foreseeable future as suitable antiviral agents.
Collapse
Affiliation(s)
- Yusuf M Idres
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wenqing Gao
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Kainov DE, Ravlo E, Ianevski A. Seeking innovative concepts in development of antiviral drug combinations. Antiviral Res 2025; 234:106079. [PMID: 39798882 DOI: 10.1016/j.antiviral.2025.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Antiviral drugs are crucial for managing viral infections, but current treatment options remain limited, particularly for emerging viruses. These drugs can be classified based on their chemical composition, including neutralizing antibodies (nAbs), recombinant human receptors (rhRs), antiviral CRISPR/Cas systems, interferons, antiviral peptides (APs), antiviral nucleic acid polymers, and small molecules. Some of these agents target viral factors, host factors, or both. A major challenge for virus-targeted treatments is their narrow-spectrum effectiveness and the potential for drug resistance, while host-directed and virus/host-targeted therapies often suffer from significant side effects. The synergistic combination of multiple antiviral drugs holds promise for improving treatment outcomes by targeting different stages of the viral life cycle, reducing resistance, and minimizing side effects. However, developing such drug combinations presents its own set of challenges. Several drug combinations could be optimized, and new combinations developed by using AI, to more effectively treat both emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Denis E Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028, Trondheim, Norway; Institute for Molecular Medicine FIMM, Helsinki Institute for Life Science, University of Helsinki, 00014, Helsinki, Finland.
| | - Erlend Ravlo
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028, Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028, Trondheim, Norway
| |
Collapse
|
7
|
Bowden-Reid E, Moles E, Kelleher A, Ahlenstiel C. Harnessing antiviral RNAi therapeutics for pandemic viruses: SARS-CoV-2 and HIV. Drug Deliv Transl Res 2025:10.1007/s13346-025-01788-x. [PMID: 39833468 DOI: 10.1007/s13346-025-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Using the knowledge from decades of research into RNA-based therapies, the COVID-19 pandemic response saw the rapid design, testing and production of the first ever mRNA vaccines approved for human use in the clinic. This breakthrough has been a significant milestone for RNA therapeutics and vaccines, driving an exponential growth of research into the field. The development of novel RNA therapeutics targeting high-threat pathogens, that pose a substantial risk to global health, could transform the future of health delivery. In this review, we provide a detailed overview of the two RNA interference (RNAi) pathways and how antiviral RNAi therapies can be used to treat acute or chronic diseases caused by the pandemic viruses SARS-CoV-2 and HIV, respectively. We also provide insights into short-interfering RNA (siRNA) delivery systems, with a focus on how lipid nanoparticles can be functionalized to achieve targeted delivery to specific sites of disease. This review will provide the current developments of SARS-CoV-2 and HIV targeted siRNAs, highlighting strategies to advance the progression of antiviral siRNA along the clinical development pathway.
Collapse
Affiliation(s)
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, 2052, Australia.
- Australian Centre for Nanomedicine, Faculty of Engineering, UNSW Sydney, Sydney, 2052, Australia.
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| | - Anthony Kelleher
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| |
Collapse
|
8
|
Askarizadeh A, Vahdat-Lasemi F, Karav S, Kesharwani P, Sahebkar A. Lipid nanoparticle-based delivery of small interfering RNAs: New possibilities in the treatment of diverse diseases. Eur Polym J 2025; 223:113624. [DOI: 10.1016/j.eurpolymj.2024.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Sakai A, Singh G, Khoshbakht M, Bittner S, Löhr CV, Diaz-Tapia R, Warang P, White K, Luo LL, Tolbert B, Blanco M, Chow A, Guttman M, Li C, Bao Y, Ho J, Maurer-Stroh S, Chatterjee A, Chanda S, García-Sastre A, Schotsaert M, Teijaro JR, Moulton HM, Stein DA. Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102331. [PMID: 39376996 PMCID: PMC11456799 DOI: 10.1016/j.omtn.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) named 5'END-2, targeting a highly conserved sequence in the 5' UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth in vitro and in vivo. In HeLa-ACE 2 cells, 5'END-2 produced IC50 values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. In vivo, using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5'END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0-2.0 mg/kg 5'END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5'END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5' UTR leader sequence, in an in-cell system, we observed that 5'END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5'END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.
Collapse
Affiliation(s)
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahsa Khoshbakht
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Scott Bittner
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Randy Diaz-Tapia
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luke Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Blanton Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mario Blanco
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cuiping Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joses Ho
- GISAID @ A∗STAR Bioinformatics Institute, Singapore 138632, Singapore
| | | | | | - Sumit Chanda
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Chokwassanasakulkit T, Oti VB, Idris A, McMillan NA. SiRNAs as antiviral drugs - Current status, therapeutic potential and challenges. Antiviral Res 2024; 232:106024. [PMID: 39454759 DOI: 10.1016/j.antiviral.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Traditionally, antiviral drugs target viral enzymes and or structural proteins, identified through large drug screens or rational drug design. The screening, chemical optimisation, small animal toxicity studies and clinical trials mean time to market is long for a new compound, and in the event of a novel virus or pandemic, weeks, and months matter. Small interfering RNAs (siRNAs) as a gene silencing platform is an alluring alternative. SiRNAs are now approved for use in the clinic to treat a range of diseases, are cost effective, scalable, and can be easily programmed to target any viral target in a matter of days. Despite the large number of preclinical studies that clearly show siRNAs are highly effective antivirals this has not translated into clinical success with no products on the market. This review provides a comprehensive overview of both the clinical and preclinical work in this area and outlines the challenges the field faces going forward that need to be addressed in order to see siRNA antivirals become a clinical reality.
Collapse
Affiliation(s)
- Trairong Chokwassanasakulkit
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Victor Baba Oti
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Nigel Aj McMillan
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
11
|
Jiang M, Laine L, Kolehmainen P, Kakkola L, Avelin V, Väisänen E, Poranen MM, Österlund P, Julkunen I. Virus-specific Dicer-substrate siRNA swarms inhibit SARS-CoV-2 infection in TMPRSS2-expressing Vero E6 cells. Front Microbiol 2024; 15:1432349. [PMID: 39611095 PMCID: PMC11602746 DOI: 10.3389/fmicb.2024.1432349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
After 4 years of the COVID-19 pandemic, SARS-CoV-2 continues to circulate with epidemic waves caused by evolving new variants. Although the rapid development of vaccines and approved antiviral drugs has reduced virus transmission and mitigated the symptoms of infection, the continuous emergence of new variants and the lack of simple-use (non-hospitalized, easy timing, local delivery, direct acting, and host-targeting) treatment modalities have limited the effectiveness of COVID-19 vaccines and drugs. Therefore, novel therapeutic approaches against SARS-CoV-2 infection are still urgently needed. As a positive-sense single-stranded RNA virus, SARS-CoV-2 is highly susceptible to RNA interference (RNAi). Accordingly, small interfering (si)RNAs targeting different regions of SARS-CoV-2 genome can effectively block the expression and replication of the virus. However, the rapid emergence of new SARS-CoV-2 variants with different genomic mutations has led to the problem of viral escape from the targets of RNAi strategy, which has increased the potential of off-target effects by siRNA and decreased the efficacy of long-term use of siRNA treatment. In our study, we enzymatically generated a set of Dicer-substrate (D)siRNA swarms containing DsiRNAs targeting single or multiple conserved sequences of SARS-CoV-2 genome by using in vitro transcription, replication and Dicer digestion system. Pre-transfection of these DsiRNA swarms into Vero E6-TMPRSS2 cells inhibited the replication of several SARS-CoV-2 variants, including the recent Omicron subvariants BQ.1.1 and XBB.1.5. This in vitro investigation of novel DsiRNA swarms provides solid evidence for the feasibility of this new RNAi strategy in the prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Miao Jiang
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Larissa Laine
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Pekka Kolehmainen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura Kakkola
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology Unit, Turku University Central Hospital, Turku, Finland
| | - Veera Avelin
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Elina Väisänen
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pamela Österlund
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology Unit, Turku University Central Hospital, Turku, Finland
| |
Collapse
|
12
|
Ciudad CJ, Valiuska S, Rojas JM, Nogales-Altozano P, Aviñó A, Eritja R, Chillón M, Sevilla N, Noé V. Polypurine reverse hoogsteen hairpins as a therapeutic tool for SARS-CoV-2 infection. J Biol Chem 2024; 300:107884. [PMID: 39395809 PMCID: PMC11570937 DOI: 10.1016/j.jbc.2024.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Although the COVID-19 pandemic was declared no longer a global emergency by the World Health Organization in May 2023, SARS-CoV-2 is still infecting people across the world. Many therapeutic oligonucleotides such as ASOs, siRNAs, or CRISPR-based systems emerged as promising antiviral strategies for the treatment of SARS-CoV-2. In this work, we explored the inhibitory potential on SARS-CoV-2 replication of Polypurine Reverse Hoogsteen Hairpins (PPRHs), CC1-PPRH, and CC3-PPRH, targeting specific polypyrimidine sequences within the replicase and Spike regions, respectively, and previously validated for COVID-19 diagnosis. Both PPRHs are bound to their target sequences in the viral genome with high affinity in the order of nM. In vitro, both PPRHs reduced viral replication by more than 92% when transfected into VERO-E6 cells 24 h prior to infection with SARS-CoV-2. In vivo intranasal administration of CC1-PPRH in K18-hACE2 mice expressing the human ACE receptor protected all the animals from SARS-CoV-2 infection. The properties of PPRHs position them as promising candidates for the development of novel therapeutics against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Carlos J Ciudad
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain.
| | - Simonas Valiuska
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - José Manuel Rojas
- Centro de Investigación en Sanidad Animal-CISA, INIA, CSIC, Madrid, Spain
| | | | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia, CSIC, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia, CSIC, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Chillón
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal-CISA, INIA, CSIC, Madrid, Spain
| | - Verónique Noé
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Hussein M, Liu Y, Vink M, Kroon PZ, Das AT, Berkhout B, Herrera-Carrillo E. Evaluation of the effect of RNA secondary structure on Cas13d-mediated target RNA cleavage. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102278. [PMID: 39220269 PMCID: PMC11364014 DOI: 10.1016/j.omtn.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13d system was adapted as a powerful tool for targeting viral RNA sequences, making it a promising approach for antiviral strategies. Understanding the influence of template RNA structure on Cas13d binding and cleavage efficiency is crucial for optimizing its therapeutic potential. In this study, we investigated the effect of local RNA secondary structure on Cas13d activity. To do so, we varied the stability of a hairpin structure containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target sequence, allowing us to determine the threshold RNA stability at which Cas13d activity is affected. Our results demonstrate that Cas13d possesses the ability to effectively bind and cleave highly stable RNA structures. Notably, we only observed a decrease in Cas13d activity in the case of exceptionally stable RNA hairpins with completely base-paired stems, which are rarely encountered in natural RNA molecules. A comparison of Cas13d and RNA interference (RNAi)-mediated cleavage of the same RNA targets demonstrated that RNAi is more sensitive for local target RNA structures than Cas13d. These results underscore the suitability of the CRISPR-Cas13d system for targeting viruses with highly structured RNA genomes.
Collapse
Affiliation(s)
- Mouraya Hussein
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Ye Liu
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Monique Vink
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Pascal Z. Kroon
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Atze T. Das
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Ben Berkhout
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Tuttolomondo M, Pham STD, Terp MG, Cendán Castillo V, Kalisi N, Vogel S, Langkjær N, Hansen UM, Thisgaard H, Schrøder HD, Palarasah Y, Ditzel HJ. A novel multitargeted self-assembling peptide-siRNA complex for simultaneous inhibition of SARS-CoV-2-host cell interaction and replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102227. [PMID: 38939051 PMCID: PMC11203390 DOI: 10.1016/j.omtn.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Effective therapeutics are necessary for managing severe COVID-19 disease despite the availability of vaccines. Small interfering RNA (siRNA) can silence viral genes and restrict SARS-CoV-2 replication. Cell-penetrating peptides is a robust method for siRNA delivery, enhancing siRNA stability and targeting specific receptors. We developed a peptide HE25 that blocks SARS-CoV-2 replication by various mechanisms, including the binding of multiple receptors involved in the virus's internalization, such as ACE2, integrins and NRP1. HE25 not only acts as a vehicle to deliver the SARS-CoV-2 RNA-dependent RNA polymerase siRNA into cells but also facilitates their internalization through endocytosis. Once inside endosomes, the siRNA is released into the cytoplasm through the Histidine-proton sponge effect and the selective cleavage of HE25 by cathepsin B. These mechanisms effectively inhibited the replication of the ancestral SARS-CoV-2 and the Omicron variant BA.5 in vitro. When HE25 was administered in vivo, either by intravenous injection or inhalation, it accumulated in lungs, veins and arteries, endothelium, or bronchial structure depending on the route. Furthermore, the siRNA/HE25 complex caused gene silencing in lung cells in vitro. The SARS-CoV-2 siRNA/HE25 complex is a promising therapeutic for COVID-19, and a similar strategy can be employed to combat future emerging viral diseases.
Collapse
Affiliation(s)
- Martina Tuttolomondo
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Stephanie Thuy Duong Pham
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mikkel Green Terp
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Virginia Cendán Castillo
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Nazmie Kalisi
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5000 Odense, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5000 Odense, Denmark
| | - Niels Langkjær
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Ulla Melchior Hansen
- Department of Molecular Medicine, Imaging Core Facility, DaMBIC, University of Southern Denmark, 5000 Odense, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Henrik Daa Schrøder
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
| | - Yaseelan Palarasah
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Henrik Jørn Ditzel
- Department of Molecular Medicine, Unit of Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
15
|
Bayraktar C, Kayabolen A, Odabas A, Durgun A, Kok I, Sevinc K, Supramaniam A, Idris A, Bagci-Onder T. ACE2-Decorated Virus-Like Particles Effectively Block SARS-CoV-2 Infection. Int J Nanomedicine 2024; 19:6931-6943. [PMID: 39005960 PMCID: PMC11246629 DOI: 10.2147/ijn.s446093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Over the past three years, extensive research has been dedicated to understanding and combating COVID-19. Targeting the interaction between the SARS-CoV-2 Spike protein and the ACE2 receptor has emerged as a promising therapeutic strategy against SARS-CoV-2. This study aimed to develop ACE2-coated virus-like particles (ACE2-VLPs), which can be utilized to prevent viral entry into host cells and efficiently neutralize the virus. Methods Virus-like particles were generated through the utilization of a packaging plasmid in conjunction with a plasmid containing the ACE2 envelope sequence. Subsequently, ACE2-VLPs and ACE2-EVs were purified via ultracentrifugation. The quantification of VLPs was validated through multiple methods, including Nanosight 3000, TEM imaging, and Western blot analysis. Various packaging systems were explored to optimize the ACE2-VLP configuration for enhanced neutralization capabilities. The evaluation of neutralization effectiveness was conducted using pseudoviruses bearing different spike protein variants. Furthermore, the study assessed the neutralization potential against the Omicron BA.1 variant in Vero E6 cells. Results ACE2-VLPs showed a high neutralization capacity even at low doses and demonstrated superior efficacy in in vitro pseudoviral assays compared to extracellular vesicles carrying ACE2. ACE2-VLPs remained stable under various environmental temperatures and effectively blocked all tested variants of concern in vitro. Notably, they exhibited significant neutralization against Omicron BA.1 variant in Vero E6 cells. Given their superior efficacy compared to extracellular vesicles and proven success against live virus, ACE2-VLPs stand out as crucial candidates for treating SARS-CoV-2 infections. Conclusion This novel therapeutic approach of coating VLPs with receptor particles provides a proof-of-concept for designing effective neutralization strategies for other viral diseases in the future.
Collapse
Affiliation(s)
- Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Arda Odabas
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Aysegul Durgun
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ipek Kok
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Kenan Sevinc
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Aroon Supramaniam
- Menzies Health Institute Queensland, School of Medical Science Griffith University, Gold Coast Campus, Brisbane, QLD, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science Griffith University, Gold Coast Campus, Brisbane, QLD, Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| |
Collapse
|
16
|
Sun J, Lu S, Xiao J, Xu N, Li Y, Xu J, Deng M, Xuanyuan H, Zhang Y, Wu F, Jin W, Liu K. Inhibition of SARS-CoV-2 Replication by Self-Assembled siRNA Nanoparticles Targeting Multiple Highly Conserved Viral Sequences. Viruses 2024; 16:1072. [PMID: 39066234 PMCID: PMC11281333 DOI: 10.3390/v16071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Coronavirus infectious disease 2019 (COVID-19), caused by severe acute respiratory virus type 2 (SARS-CoV-2), has caused a global public health crisis. As an RNA virus, the high gene mutability of SARS-CoV-2 poses significant challenges to the development of broad-spectrum vaccines and antiviral therapeutics. There remains a lack of specific therapeutics directly targeting SARS-CoV-2. With the ability to efficiently inhibit the expression of target genes in a sequence-specific way, small interfering RNA (siRNA) therapy has exhibited significant potential in antiviral and other disease treatments. In this work, we presented a highly effective self-assembled siRNA nanoparticle targeting multiple highly conserved regions of SARS-CoV-2. The siRNA sequences targeting viral conserved regions were first screened and evaluated by their thermodynamic features, off-target effects, and secondary structure toxicities. RNA motifs including siRNA sequences were then designed and self-assembled into siRNA nanoparticles. These siRNA nanoparticles demonstrated remarkable uniformity and stability and efficiently entered cells directly through cellular endocytic pathways. Moreover, these nanoparticles effectively inhibited the replication of SARS-CoV-2, exhibiting a superior inhibitory effect compared to free siRNA. These results demonstrated that these self-assembled siRNA nanoparticles targeting highly conserved regions of SARS-CoV-2 represent highly effective antiviral candidates for the treatment of infections, and are promisingly effective against current and future viral variants.
Collapse
Affiliation(s)
- Jianan Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Siya Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jizhen Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Nuo Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yingbin Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jinfeng Xu
- College of Life Sciences & Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Maohua Deng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hanlu Xuanyuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yushi Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Fangli Wu
- College of Life Sciences & Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weibo Jin
- College of Life Sciences & Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kuancheng Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
17
|
Chan JFW, Yuan S, Chu H, Sridhar S, Yuen KY. COVID-19 drug discovery and treatment options. Nat Rev Microbiol 2024; 22:391-407. [PMID: 38622352 DOI: 10.1038/s41579-024-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused substantial morbidity and mortality, and serious social and economic disruptions worldwide. Unvaccinated or incompletely vaccinated older individuals with underlying diseases are especially prone to severe disease. In patients with non-fatal disease, long COVID affecting multiple body systems may persist for months. Unlike SARS-CoV and Middle East respiratory syndrome coronavirus, which have either been mitigated or remained geographically restricted, SARS-CoV-2 has disseminated globally and is likely to continue circulating in humans with possible emergence of new variants that may render vaccines less effective. Thus, safe, effective and readily available COVID-19 therapeutics are urgently needed. In this Review, we summarize the major drug discovery approaches, preclinical antiviral evaluation models, representative virus-targeting and host-targeting therapeutic options, and key therapeutics currently in clinical use for COVID-19. Preparedness against future coronavirus pandemics relies not only on effective vaccines but also on broad-spectrum antivirals targeting conserved viral components or universal host targets, and new therapeutics that can precisely modulate the immune response during infection.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
18
|
Zhang T, Yin H, Li Y, Yang H, Ge K, Zhang J, Yuan Q, Dai X, Naeem A, Weng Y, Huang Y, Liang XJ. Optimized lipid nanoparticles (LNPs) for organ-selective nucleic acids delivery in vivo. iScience 2024; 27:109804. [PMID: 38770138 PMCID: PMC11103379 DOI: 10.1016/j.isci.2024.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Nucleic acid therapeutics offer tremendous promise for addressing a wide range of common public health conditions. However, the in vivo nucleic acids delivery faces significant biological challenges. Lipid nanoparticles (LNPs) possess several advantages, such as simple preparation, high stability, efficient cellular uptake, endosome escape capabilities, etc., making them suitable for delivery vectors. However, the extensive hepatic accumulation of LNPs poses a challenge for successful development of LNPs-based nucleic acid therapeutics for extrahepatic diseases. To overcome this hurdle, researchers have been focusing on modifying the surface properties of LNPs to achieve precise delivery. The review aims to provide current insights into strategies for LNPs-based organ-selective nucleic acid delivery. In addition, it delves into the general design principles, targeting mechanisms, and clinical development of organ-selective LNPs. In conclusion, this review provides a comprehensive overview to provide guidance and valuable insights for further research and development of organ-selective nucleic acid delivery systems.
Collapse
Affiliation(s)
- Tian Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Han Yin
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyin Yang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002 China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002 China
| | - Qing Yuan
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xuyan Dai
- Apharige Therapeutics Co., Ltd, Beijing 102629, China
| | - Abid Naeem
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
19
|
Tolksdorf B, Heinze J, Niemeyer D, Röhrs V, Berg J, Drosten C, Kurreck J. Development of a highly stable, active small interfering RNA with broad activity against SARS-CoV viruses. Antiviral Res 2024; 226:105879. [PMID: 38599550 DOI: 10.1016/j.antiviral.2024.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Treatment options for COVID-19 remain limited. Here, we report the optimization of an siRNA targeting the highly conserved leader region of SARS-CoV-2. The siRNA was rendered nuclease resistant by the introduction of modified nucleotides without loss of activity. Importantly, the siRNA also retained its inhibitory activity against the emerged omicron sublineage variant BA.2, which occurred after the siRNA was designed and is resistant to other antiviral agents such as antibodies. In addition, we show that a second highly active siRNA designed against the viral 5'-UTR can be applied as a rescue molecule, to minimize the spread of escape mutations. We therefore consider our siRNA-based molecules to be promising broadly active candidates for the treatment of current and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Beatrice Tolksdorf
- Chair of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, 10623, Germany
| | - Julian Heinze
- German Center for Infection Research (DZIF), Charitéplatz 1, 10117, Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Germany
| | - Daniela Niemeyer
- German Center for Infection Research (DZIF), Charitéplatz 1, 10117, Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Germany
| | - Viola Röhrs
- Chair of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, 10623, Germany
| | - Johanna Berg
- Chair of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, 10623, Germany
| | - Christian Drosten
- German Center for Infection Research (DZIF), Charitéplatz 1, 10117, Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Germany
| | - Jens Kurreck
- Chair of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, 10623, Germany.
| |
Collapse
|
20
|
Adams F, Zimmermann CM, Baldassi D, Pehl TM. Pulmonary siRNA Delivery with Sophisticated Amphiphilic Poly(Spermine Acrylamides) for the Treatment of Lung Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308775. [PMID: 38126895 PMCID: PMC7616748 DOI: 10.1002/smll.202308775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Indexed: 12/23/2023]
Abstract
RNA interference (RNAi) is an efficient strategy to post-transcriptionally silence gene expression. While all siRNA drugs on the market target the liver, the lung offers a variety of currently undruggable targets, which can potentially be treated with RNA therapeutics. To achieve this goal, the synthesis of poly(spermine acrylamides) (P(SpAA) is reported herein. Polymers are prepared via polymerization of N-acryloxysuccinimide (NAS) and afterward this active ester is converted into spermine-based pendant groups. Copolymerizations with decylacrylamide are employed to increase the hydrophobicity of the polymers. After deprotection, polymers show excellent siRNA encapsulation to obtain perfectly sized polyplexes at very low polymer/RNA ratios. In vitro 2D and 3D cell culture, ex vivo and in vivo experiments reveal superior properties of amphiphilic spermine-copolymers with respect to delivery of siRNA to lung cells in comparison to commonly used lipid-based transfection agents. In line with the in vitro results, siRNA delivery to human lung explants confirm more efficient gene silencing of protease-activated receptor 2 (PAR2), a G protein-coupled receptor involved in fibrosis. This study reveals the importance of the balance between efficient polyplex formation, cellular uptake, gene knockdown, and toxicity for efficient siRNA delivery in vitro, in vivo, and in fibrotic human lung tissue ex vivo.
Collapse
Affiliation(s)
- Friederike Adams
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
- Institute of Polymer Chemistry Chair of Macromolecular Materials and Fiber Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany
- Center for Ophthalmology University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | | | - Domizia Baldassi
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
| | - Thomas M. Pehl
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University Munich, Lichtenbergstr. 4, 85748Garching bei München, Germany
| |
Collapse
|
21
|
Nogueira SS, Samaridou E, Simon J, Frank S, Beck-Broichsitter M, Mehta A. Analytical techniques for the characterization of nanoparticles for mRNA delivery. Eur J Pharm Biopharm 2024; 198:114235. [PMID: 38401742 DOI: 10.1016/j.ejpb.2024.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanotechnology-assisted RNA delivery has gotten a tremendous boost over the last decade and made a significant impact in the development of life-changing vaccines and therapeutics. With increasing numbers of emerging lipid- and polymer-based RNA nanoparticles progressing towards the clinic, it has become apparent that the safety and efficacy of these medications depend on the comprehensive understanding of their critical quality attributes (CQAs). However, despite the rapid advancements in the field, the identification and reliable quantification of CQAs remain a significant challenge. To support these efforts, this review aims to summarize the present knowledge on CQAs based on the regulatory guidelines and to provide insights into the available analytical characterization techniques for RNA-loaded nanoparticles. In this context, routine and emerging analytical techniques are categorized and discussed, focusing on the operation principle, strengths, and potential limitations. Furthermore, the importance of complementary and orthogonal techniques for the measurement of CQAs is discussed in order to ensure the quality and consistency of analytical methods used, and address potential technique-based differences.
Collapse
|
22
|
Zhang M, Zhang C. Preferential cleavage of upstream targets in concatenated miRNA/siRNA target sites support a 5'-3' scanning model for RISC target recognition. Biochem Biophys Res Commun 2024; 703:149662. [PMID: 38359613 DOI: 10.1016/j.bbrc.2024.149662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
RNA interference (RNAi) is becoming medicine for curing human diseases. Still, we lack a thorough understanding of some fundamental aspects of RNAi that affect its efficiency and accuracy. One such question is how RNA-induced silencing complex (RISC) can efficiently find its targets. To address this question, we developed a strategy that involves the expression of mRNAs containing concatenations of identical miRNA/siRNA target sites. These mRNAs were cleaved by co-expressed miRNAs in plant cells or by co-transfected siRNAs in mammalian cells. The mRNA cleavage events were then detected using the 5'RACE assay. Using this strategy, we found that RISCs preferentially cleave the upstream ones of concatenated target sites, consistent with a model that RISC scans mRNA in 5'→3' direction to approach its target sites. The stability of the cleaved mRNA fragments correlates with the complementarity between siRNA and its target sequence. When siRNA perfectly complements its target sequence, the cleaved mRNA fragment becomes stable and may be cleaved in a second round. Our findings have practical implications for designing siRNAs with increased efficiency and reduced off-target effects.
Collapse
Affiliation(s)
- Mancang Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Changqing Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
23
|
Idris A, Shrivastava S, Supramaniam A, Ray RM, Shevchenko G, Acharya D, McMillan NA, Morris KV. Extracellular Vesicles Loaded with Long Antisense RNAs Repress Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Nucleic Acid Ther 2024; 34:101-108. [PMID: 38530082 PMCID: PMC11296208 DOI: 10.1089/nat.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Long antisense RNAs (asRNAs) have been observed to repress HIV and other virus expression in a manner that is refractory to viral evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) disease, has a distinct ability to evolve resistance around antibody targeting, as was evident from the emergence of various SARS-CoV-2 spike antibody variants. Importantly, the effectiveness of current antivirals is waning due to the rapid emergence of new variants of concern, more recently the omicron variant. One means of avoiding the emergence of viral resistance is by using long asRNA to target SARS-CoV-2. Similar work has proven successful with HIV targeting by long asRNA. In this study, we describe a long asRNA targeting SARS-CoV-2 RNA-dependent RNA polymerase gene and the ability to deliver this RNA in extracellular vesicles (EVs) to repress virus expression. The observations presented in this study suggest that EV-delivered asRNAs are one means to targeting SARS-CoV-2 infection, which is both effective and broadly applicable as a means to control viral expression in the absence of mutation. This is the first demonstration of the use of engineered EVs to deliver long asRNA payloads for antiviral therapy.
Collapse
Affiliation(s)
- Adi Idris
- School of Pharmacy and Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Brisbane, Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Surya Shrivastava
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, California, USA
| | - Aroon Supramaniam
- School of Pharmacy and Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Brisbane, Australia
| | - Roslyn M. Ray
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, California, USA
| | - Galina Shevchenko
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, California, USA
| | - Dhruba Acharya
- School of Pharmacy and Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Brisbane, Australia
| | - Nigel A.J. McMillan
- School of Pharmacy and Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Brisbane, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| |
Collapse
|
24
|
Moazzam M, Zhang M, Hussain A, Yu X, Huang J, Huang Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol Ther 2024; 32:284-312. [PMID: 38204162 PMCID: PMC10861989 DOI: 10.1016/j.ymthe.2024.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/01/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Five small interfering RNA (siRNA)-based therapeutics have been approved by the Food and Drug Administration (FDA), namely patisiran, givosiran, lumasiran, inclisiran, and vutrisiran. Besides, siRNA delivery to the target site without toxicity is a big challenge for researchers, and naked-siRNA delivery possesses several challenges, including membrane impermeability, enzymatic degradation, mononuclear phagocyte system (MPS) entrapment, fast renal excretion, endosomal escape, and off-target effects. The siRNA therapeutics can silence any disease-specific gene, but their intracellular and extracellular barriers limit their clinical applications. For this purpose, several modifications have been employed to siRNA for better transfection efficiency. Still, there is a quest for better delivery systems for siRNA delivery to the target site. In recent years, nanoparticles have shown promising results in siRNA delivery with minimum toxicity and off-target effects. Patisiran is a lipid nanoparticle (LNP)-based siRNA formulation for treating hereditary transthyretin-mediated amyloidosis that ultimately warrants the use of nanoparticles from different classes, especially lipid-based nanoparticles. These nanoparticles may belong to different categories, including lipid-based, polymer-based, and inorganic nanoparticles. This review briefly discusses the lipid, polymer, and inorganic nanoparticles and their sub-types for siRNA delivery. Finally, several clinical trials related to siRNA therapeutics are addressed, followed by the future prospects and conclusions.
Collapse
Affiliation(s)
- Muhammad Moazzam
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaotong Yu
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China.
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Rigerna Therapeutics Co. Ltd., Suzhou 215127, China.
| |
Collapse
|
25
|
Idris A, Supramaniam A, Tayyar Y, Kelly G, McMillan NAJ, Morris KV. An intranasally delivered ultra-conserved siRNA prophylactically represses SARS-CoV-2 infection in the lung and nasal cavity. Antiviral Res 2024; 222:105815. [PMID: 38246206 DOI: 10.1016/j.antiviral.2024.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/15/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
There remains a striking overall mortality burden of COVID-19 worldwide. Given the waning effectiveness of current SARS-CoV-2 antivirals due to the rapid emergence of new variants of concern (VOC), we employed a direct-acting molecular therapy approach using gene silencing RNA interference (RNAi) technology. In this study, we developed and screened several ultra-conserved small-interfering RNAs (siRNAs) before selecting one potent siRNA candidate for pre-clinical in vivo testing. This non-immunostimulatory, anti-SARS-CoV-2 siRNA candidate maintains its antiviral activity against all tested SARS-CoV-2 VOC and works effectively as a single agent. For the first time, significant antiviral effects in both the lungs and nasal cavities of SARS-CoV-2 infected mice were observed when this siRNA candidate was delivered intranasally (IN) as a prophylactic agent with the aid of lipid nanoparticles (LNPs). Importantly, a pre-exposure prophylactic IN-delivered anti-SARS-CoV-2 siRNA antiviral that can ameliorate viral replication in the nasal cavity could potentially prevent aerosol spread of respiratory viruses. An IN delivery approach would allow for the development of a direct-acting nasal spray approach that could be self-administered prophylactically.
Collapse
Affiliation(s)
- Adi Idris
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia; Centre for Immunlogy and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | - Aroon Supramaniam
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
| | - Yaman Tayyar
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia; Prorenata Biotech, Molendinar, Queensland, Australia
| | - Gabrielle Kelly
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
| | - Nigel A J McMillan
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
| | - Kevin V Morris
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia; Centre for Genomics and Personalized Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
26
|
Suleiman AA, Al-Chalabi R, Shaban SA. Integrative role of small non-coding RNAs in viral immune response: a systematic review. Mol Biol Rep 2024; 51:107. [PMID: 38227137 DOI: 10.1007/s11033-023-09141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Various viruses cause viral infection, and these viruses have different microscopic sizes, genetic material, and morphological forms. Due to a viral infection, the host body induces defense mechanisms that activate the innate and adaptive immune system. sncRNAs are involved in various biological processes and play an essential role in antiviral response in viruses including ZIKV, HCV, DENV, SARS-CoV, and West Nile virus, and regulate the complex interactions between the viruses and host cells. This review discusses the role of miRNAs, siRNAs, piRNAs, and tiRNAs in antiviral response. Cellular miRNAs bind with virus mRNA and perform their antiviral response in multiple viruses. However, the chemical modifications of miRNA necessary to avoid nuclease attack, which is then involved with intracellular processing, have proven challenging for therapeutic replacement of miRNAs. siRNAs have significant antiviral responses by targeting any gene of interest along the correct nucleotide of targeting mRNA. Due to this ability, siRNAs have valuable characteristics in antiviral response for therapeutic purposes. Additionally, the researchers noted the involvement of piRNAs and tiRNAs in the antiviral response, yet their findings were deemed insignificant.
Collapse
Affiliation(s)
| | | | - Semaa A Shaban
- Biology Department, College of Sciences, Tikrit University, Tikrit, Iraq
| |
Collapse
|
27
|
Wu SN, Xiao T, Chen H, Li XH. Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition. RNA Biol 2024; 21:1-18. [PMID: 39630134 PMCID: PMC11632750 DOI: 10.1080/15476286.2024.2433830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) pandemic and is continuously spreading globally. The continuous emergence of new SARS-CoV-2 variants keeps posing threats, highlighting the need for fast-acting, mutation-resistant broad-spectrum therapeutics. Protein translation is vital for SARS-CoV-2 replication, producing early non-structural proteins for RNA replication and transcription, and late structural proteins for virion assembly. Targeted blocking of viral protein translation is thus a potential approach to developing effective anti-SARS-CoV-2 drugs. SARS-CoV-2, as an obligate parasite, utilizes the host's translation machinery. Translation-blocking strategies that target the SARS-CoV-2 mRNA, especially those that target its conserved elements are generally preferred. In this review, we discuss the current understanding of SARS-CoV-2 translation, highlighting the important conserved motifs and structures involved in its regulation. We also discuss the current strategies for blocking SARS-CoV-2 translation through viral RNA degradation or RNA element dysfunction.
Collapse
Affiliation(s)
- Shan-Na Wu
- Department of Pharmaceutics, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ting Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hui Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiao-Hong Li
- Department of Pharmaceutics, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Carneiro S, Müller JT, Merkel OM. Targeted Molecular Therapeutics for Pulmonary Diseases: Addressing the Need for Precise Drug Delivery. Handb Exp Pharmacol 2024; 284:313-328. [PMID: 38177399 DOI: 10.1007/164_2023_703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Respiratory diseases are a major concern in public health, impacting a large population worldwide. Despite the availability of therapies that alleviate symptoms, selectively addressing the critical points of pathopathways remains a major challenge. Innovative formulations designed for reaching these targets within the airways, enhanced selectivity, and prolonged therapeutic effects offer promising solutions. To provide insights into the specific medical requirements of chronic respiratory diseases, the initial focus of this chapter is directed on lung physiology, emphasizing the significance of lung barriers. Current treatments involving small molecules and the potential of gene therapy are also discussed. Additionally, we will explore targeting approaches, with a particular emphasis on nanoparticles, comparing targeted and non-targeted formulations for pulmonary administration. Finally, the potential of inhaled sphingolipids in the context of respiratory diseases is briefly discussed, highlighting their promising prospects in the field.
Collapse
Affiliation(s)
- Simone Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joschka T Müller
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University Munich, Munich, Germany.
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich, Germany.
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
29
|
Zhang J, Chen B, Gan C, Sun H, Zhang J, Feng L. A Comprehensive Review of Small Interfering RNAs (siRNAs): Mechanism, Therapeutic Targets, and Delivery Strategies for Cancer Therapy. Int J Nanomedicine 2023; 18:7605-7635. [PMID: 38106451 PMCID: PMC10725753 DOI: 10.2147/ijn.s436038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Small interfering RNA (siRNA) delivery by nanocarriers has been identified as a promising strategy in the study and treatment of cancer. Short nucleotide sequences are synthesized exogenously to create siRNA, which triggers RNA interference (RNAi) in cells and silences target gene expression in a sequence-specific way. As a nucleic acid-based medicine that has gained popularity recently, siRNA exhibits novel potential for the treatment of cancer. However, there are still many obstacles to overcome before clinical siRNA delivery devices can be developed. In this review, we discuss prospective targets for siRNA drug design, explain siRNA drug properties and benefits, and give an overview of the current clinical siRNA therapeutics for the treatment of cancer. Additionally, we introduce the siRNA chemical modifications and delivery systems that are clinically sophisticated and classify bioresponsive materials for siRNA release in a methodical manner. This review will serve as a reference for researchers in developing more precise and efficient targeted delivery systems, promoting ongoing advances in clinical applications.
Collapse
Affiliation(s)
- Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Chunyuan Gan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, People’s Republic of China
| |
Collapse
|
30
|
González RD, Simões S, Ferreira L, Carvalho ATP. Designing Cell Delivery Peptides and SARS-CoV-2-Targeting Small Interfering RNAs: A Comprehensive Bioinformatics Study with Generative Adversarial Network-Based Peptide Design and In Vitro Assays. Mol Pharm 2023; 20:6079-6089. [PMID: 37941379 DOI: 10.1021/acs.molpharmaceut.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Nucleic acid technologies with designed intracellular delivery systems are some of the most promising therapies of the future. Small interfering (si)RNAs inhibit gene expression and protein synthesis and may complement current vaccines with faster design and production. Although successful delivery remains an issue, delivery peptides may help to fill this gap. Here, we address this issue by applying bioinformatic approaches to design new putative cell delivery peptides and siRNAs for COVID-19 variants and other related viral diseases. Of the 29,880 RNA sequences analyzed, 62 were identified in silico as able to target the virus mRNA sequence, and from the 9,984 peptide sequences analyzed, 10 were selected as delivery peptides. From the latter, we further performed in vitro studies of the two best-ranked peptides and compared them with the broadly used TAT delivery peptide. One of them, seq5, displayed better internalization results with about double intensity signal compared to TAT after a 1 h incubation time in GFP-HeLa cells. This peptide has, thus, the features of a delivery peptide and could be used for cargo intracellular delivery.
Collapse
Affiliation(s)
- Ricardo D González
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Susana Simões
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Lino Ferreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Alexandra T P Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon, Northern Ireland BT63 5QD, United Kingdom
| |
Collapse
|
31
|
Dauksaite V, Tas A, Wachowius F, Spruit A, van Hemert MJ, Snijder EJ, van der Veer EP, van Zonneveld AJ. Highly Potent Antisense Oligonucleotides Locked Nucleic Acid Gapmers Targeting the SARS-CoV-2 RNA Genome. Nucleic Acid Ther 2023; 33:381-385. [PMID: 37782140 DOI: 10.1089/nat.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused the current worldwide pandemic and the associated coronavirus disease 2019 with potentially lethal outcome. Although effective vaccines strongly contributed to reduce disease severity, establishing a toolbox to control current and newly emerging coronaviruses of epidemic concern requires the development of novel therapeutic compounds, to treat severely infected individuals and to prevent virus transmission. Here we present a therapeutic strategy targeting the SARS-CoV-2 RNA genome using antisense oligonucleotides (ASOs). We demonstrate that selected locked nucleic acid gapmers have the potency to reduce the in vitro intracellular viral load by up to 96%. Our promising results strongly support the case for further development of our preselected ASOs as therapeutic or prophylactic antiviral agents.
Collapse
Affiliation(s)
- Vita Dauksaite
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Centre, Leiden, The Netherlands
| | - Ali Tas
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Anouk Spruit
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Centre, Leiden, The Netherlands
| | - Martijn J van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
32
|
Reza MN, Mahmud S, Ferdous N, Ahammad I, Hossain MU, Al Amin M, Mohiuddin AKM. Gene silencing of Helicobacter pylori through newly designed siRNA convenes the treatment of gastric cancer. Cancer Med 2023; 12:22407-22419. [PMID: 38037736 PMCID: PMC10757103 DOI: 10.1002/cam4.6772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/05/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Helicobacter pylori is a gastric pathogen that is responsible for causing chronic inflammation and increasing the risk of gastric cancer development. It is capable of persisting for decades in the harsh gastric environment because of the inability of the host to eradicate the infection. Several treatment strategies have been developed against this bacterium using different antibiotics. But the effectiveness of treating H. pylori has significantly decreased due to widespread antibiotic resistance, including an increased risk of gastric cancer. The small interfering RNAs (siRNA), which is capable of sequence-specific gene-silencing can be used as a new therapeutic approach for the treatment of a variety of such malignancies. In the current study, we rationally designed two siRNA molecules to silence the cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) genes of H. pylori for their significant involvement in developing cancer. METHODS We selected a common region of all the available transcripts from different countries of CagA and VacA to design the siRNA molecules. The final siRNA candidate was selected based on the results from machine learning algorithms, off-target similarity, and various thermodynamic properties. RESULT Further, we utilized molecular docking and all atom molecular dynamics (MD) simulations to assess the binding interactions of the designed siRNAs with the major components of the RNA-induced silencing complex (RISC) and results revealed the ability of the designed siRNAs to interact with the proteins of RISC complex in comparable to those of the experimentally reported siRNAs. CONCLUSION These designed siRNAs should effectively silence the CagA and VacA genes of H. pylori during siRNA mediated treatment in gastric cancer.
Collapse
Affiliation(s)
- Mahjerin Nasrin Reza
- Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Ishtiaque Ahammad
- Bioinformatics DivisionNational Institute of BiotechnologyAshuliaBangladesh
| | | | - Md. Al Amin
- Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - A. K. M. Mohiuddin
- Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| |
Collapse
|
33
|
Kassab G, Doran K, Mo Y, Zheng G. Inhalable Gene Therapy and the Lung Surfactant Problem. NANO LETTERS 2023; 23:10099-10102. [PMID: 37930273 DOI: 10.1021/acs.nanolett.3c03547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Lung-targeting RNA-carrying lipid nanoparticles (LNPs) are often intravenously administered and accumulate in the pulmonary endothelium. However, most respiratory diseases are localized in the airway or the alveolar epithelium. Inhalation has been explored as a more direct delivery method, but it presents its own challenges. We believe that one reason LNPs have failed to transfect RNA into alveolar epithelial cells is their interaction with the lung surfactant (LS). We propose that inhalable LNP design should take inspiration from biological agents and other nanoparticles to overcome this barrier. Screening should first focus on LS penetration and then be optimized for cell uptake and endosomal release. This will enable more efficient applications of RNA-LNPs in lung diseases.
Collapse
Affiliation(s)
- Giulia Kassab
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Katie Doran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
34
|
Jayasinghe M, Gao C, Yap G, Yeo BZJ, Vu LT, Tay DJW, Loh WX, Aw ZQ, Chen H, Phung DC, Hoang DV, Prajogo RC, Hooi L, Lim FQ, Pirisinu M, Mok CK, Lim KW, Tang SJ, Tan KS, Chow EKH, Chen L, Phan AT, Chu JJH, Le MTN. Red Blood Cell-Derived Extracellular Vesicles Display Endogenous Antiviral Effects and Enhance the Efficacy of Antiviral Oligonucleotide Therapy. ACS NANO 2023; 17:21639-21661. [PMID: 37852618 PMCID: PMC10655171 DOI: 10.1021/acsnano.3c06803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The COVID-19 pandemic has resulted in a large number of fatalities and, at present, lacks a readily available curative treatment for patients. Here, we demonstrate that unmodified red blood cell-derived extracellular vesicles (RBCEVs) can inhibit SARS-CoV-2 infection in a phosphatidylserine (PS) dependent manner. Using T cell immunoglobulin mucin domain-1 (TIM-1) as an example, we demonstrate that PS receptors on cells can significantly increase the adsorption and infection of authentic and pseudotyped SARS-CoV-2 viruses. RBCEVs competitively inhibit this interaction and block TIM-1-mediated viral entry into cells. We further extend the therapeutic efficacy of this antiviral treatment by loading antisense oligonucleotides (ASOs) designed to target conserved regions of key SARS-CoV-2 genes into RBCEVs. We establish that ASO-loaded RBCEVs are efficiently taken up by cells in vitro and in vivo to suppress SARS-CoV-2 replication. Our findings indicate that this RBCEV-based SARS-CoV-2 therapeutic displays promise as a potential treatment capable of inhibiting SARS-CoV-2 entry and replication.
Collapse
Affiliation(s)
- Migara
K. Jayasinghe
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Chang Gao
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Gracemary Yap
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Brendon Zhi Jie Yeo
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Luyen Tien Vu
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Douglas Jie Wen Tay
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen Xiu Loh
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Zhen Qin Aw
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Huixin Chen
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Dai Cao Phung
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Dong Van Hoang
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Rebecca Carissa Prajogo
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Lissa Hooi
- Cancer
Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117599, Singapore
| | - Fang Qing Lim
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Marco Pirisinu
- Department
of Biomedical Sciences, Jockey Club College of Veterinary Medicine
and Life Sciences, City University of Hong
Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Chee Keng Mok
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Kah Wai Lim
- Division
of Physics & Applied Physics, School of Physical & Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sze Jing Tang
- Cancer
Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117599, Singapore
| | - Kai Sen Tan
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Edward Kai-Hua Chow
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Cancer
Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117599, Singapore
| | - Leilei Chen
- Cancer
Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117599, Singapore
- Department
of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117594, Singapore
| | - Anh Tuan Phan
- Division
of Physics & Applied Physics, School of Physical & Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Justin Jang Hann Chu
- Infectious
Diseases Translational Research Programme and Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117545, Singapore
- Biosafety
Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Institute
of Molecular and Cell Biology, Agency for
Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Minh TN Le
- Institute
for Digital Medicine and Department of Pharmacology, Yong Loo Lin
School of Medicine, National University
of Singapore, 16 Medical Drive, Singapore 117600, Singapore
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Institute
of Molecular and Cell Biology, Agency for
Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| |
Collapse
|
35
|
Mohammad Faizal NDF, Ramli NA, Mat Rani NNI, Shaibie NA, Aarti, Poonsawas P, Sharma SK, Mohd Amin MCI. Leveraging immunoliposomes as nanocarriers against SARS-CoV-2 and its emerging variants. Asian J Pharm Sci 2023; 18:100855. [PMID: 38125653 PMCID: PMC10730353 DOI: 10.1016/j.ajps.2023.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 12/23/2023] Open
Abstract
The global COVID-19 pandemic arising from SARS-CoV-2 has impacted many lives, gaining interest worldwide ever since it was first identified in December 2019. Till 2023, 752 million cumulative cases and 6.8 million deaths were documented globally. COVID-19 has been rapidly evolving, affecting virus transmissibility and properties and contributing to increased disease severity. The Omicron is the most circulating variant of concern. Although success in its treatment has indicated progress in tackling the virus, limitations in delivering the current antiviral agents in battling emerging variants remain remarkable. With the latest advancements in nanotechnology for controlling infectious diseases, liposomes have the potential to counteract SARS-CoV-2 because of their ability to employ different targeting strategies, incorporating monoclonal antibodies for the active and passive targeting of infected patients. This review will present a concise summary of the possible strategies for utilizing immunoliposomes to improve current treatment against the occurrence of SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Nur Dini Fatini Mohammad Faizal
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nurul Afina Ramli
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy, University Royal College of Medicine Perak (UniKL RCMP) No.3, Jalan Greentown, Ipoh 30450, Perak, Malaysia
| | - Nur Adania Shaibie
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Aarti
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | | - Sunil K. Sharma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology and Vaccine (CENTRIC), Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
36
|
Vaswani CM, Varkouhi AK, Gupta S, Ektesabi AM, Tsoporis JN, Yousef S, Plant PJ, da Silva AL, Cen Y, Tseng YC, Batah SS, Fabro AT, Advani SL, Advani A, Leong-Poi H, Marshall JC, Garcia CC, Rocco PRM, Albaiceta GM, Sebastian-Bolz S, Watts TH, Moraes TJ, Capelozzi VL, Dos Santos CC. Preventing occludin tight-junction disruption via inhibition of microRNA-193b-5p attenuates viral load and influenza-induced lung injury. Mol Ther 2023; 31:2681-2701. [PMID: 37340634 PMCID: PMC10491994 DOI: 10.1016/j.ymthe.2023.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Virus-induced lung injury is associated with loss of pulmonary epithelial-endothelial tight junction integrity. While the alveolar-capillary membrane may be an indirect target of injury, viruses may interact directly and/or indirectly with miRs to augment their replication potential and evade the host antiviral defense system. Here, we expose how the influenza virus (H1N1) capitalizes on host-derived interferon-induced, microRNA (miR)-193b-5p to target occludin and compromise antiviral defenses. Lung biopsies from patients infected with H1N1 revealed increased miR-193b-5p levels, marked reduction in occludin protein, and disruption of the alveolar-capillary barrier. In C57BL/6 mice, the expression of miR-193b-5p increased, and occludin decreased, 5-6 days post-infection with influenza (PR8). Inhibition of miR-193b-5p in primary human bronchial, pulmonary microvascular, and nasal epithelial cells enhanced antiviral responses. miR-193b-deficient mice were resistant to PR8. Knockdown of occludin, both in vitro and in vivo, and overexpression of miR-193b-5p reconstituted susceptibility to viral infection. miR-193b-5p inhibitor mitigated loss of occludin, improved viral clearance, reduced lung edema, and augmented survival in infected mice. Our results elucidate how the innate immune system may be exploited by the influenza virus and how strategies that prevent loss of occludin and preserve tight junction function may limit susceptibility to virus-induced lung injury.
Collapse
Affiliation(s)
- Chirag M Vaswani
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Amir K Varkouhi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Sahil Gupta
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Amin M Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Sadiya Yousef
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Pamela J Plant
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Adriana L da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Brazil
| | - Yuchen Cen
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada
| | - Yi-Chieh Tseng
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada
| | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Howard Leong-Poi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John C Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cristiana C Garcia
- Laboratory of Respiratory, Exanthematic Viruses, Enterovirus and Viral Emergencies, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil; Integrated Research Group on Biomarkers. René Rachou Institute, FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Brazil
| | - Guillermo M Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain; CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Steffen Sebastian-Bolz
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Theo J Moraes
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON, Canada; Department of Pediatrics University of Toronto and Respirology, Hospital for Sick Children, Toronto, ON, Canada
| | - Vera L Capelozzi
- Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Claudia C Dos Santos
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Interdepartmental Division of Critical Care, St Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Bowden-Reid E, Ledger S, Zhang Y, Di Giallonardo F, Aggarwal A, Stella AO, Akerman A, Milogiannakis V, Walker G, Rawlinson W, Turville S, Kelleher AD, Ahlenstiel C. Novel siRNA therapeutics demonstrate multi-variant efficacy against SARS-CoV-2. Antiviral Res 2023; 217:105677. [PMID: 37478918 DOI: 10.1016/j.antiviral.2023.105677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a respiratory virus that causes COVID-19 disease, with an estimated global mortality of approximately 2%. While global response strategies, which are predominantly reliant on regular vaccinations, have shifted from zero COVID to living with COVID, there is a distinct lack of broad-spectrum direct acting antiviral therapies that maintain efficacy across evolving SARS-CoV-2 variants of concern. This is of most concern for immunocompromised and immunosuppressed individuals who lack robust immune responses following vaccination, and others at risk for severe COVID and long-COVID. RNA interference (RNAi) therapeutics induced by short interfering RNAs (siRNAs) offer a promising antiviral treatment option, with broad-spectrum antiviral capabilities unparalleled by current antiviral therapeutics and a high genetic barrier to antiviral escape. Here we describe novel siRNAs, targeting highly conserved regions of the SARS-CoV-1 and 2 genome of both human and animal species, with multi-variant antiviral potency against eight SARS-CoV-2 lineages - Ancestral VIC01, Alpha, Beta, Gamma, Delta, Zeta, Kappa and Omicron. Treatment with our siRNA resulted in significant protection against virus-mediated cell death in vitro, with >97% cell survival (P < 0.0001), and corresponding reductions of viral nucleocapsid RNA of up to 99.9% (P < 0.0001). When compared to antivirals; Sotrovimab and Remdesivir, the siRNAs demonstrated a more potent antiviral effect and similarly, when multiplexing siRNAs to target different viral regions simultaneously, an increased antiviral effect was observed compared to individual siRNA treatments (P < 0.0001). These results demonstrate the potential for a highly effective broad-spectrum direct acting antiviral against multiple SARS-CoV-2 variants, including variants resistant to antivirals and vaccine generated neutralizing antibodies.
Collapse
Affiliation(s)
| | - Scott Ledger
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Yuan Zhang
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | - Gregory Walker
- New South Wales Health Pathology, Sydney, NSW, Australia
| | - William Rawlinson
- New South Wales Health Pathology, Sydney, NSW, Australia; Virology Research Laboratory, Serology and Virology Division (SAViD), Prince of Wales Hospital, Sydney, NSW, Australia
| | - Stuart Turville
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia; RNA Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony D Kelleher
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia; RNA Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Chantelle Ahlenstiel
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia; RNA Institute, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
38
|
Wang J, Tan M, Wang Y, Liu X, Lin A. Advances in modification and delivery of nucleic acid drugs. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:417-428. [PMID: 37643976 PMCID: PMC10495244 DOI: 10.3724/zdxbyxb-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/14/2023] [Indexed: 08/18/2023]
Abstract
Nucleic acid-based drugs, such as RNA and DNA drugs, exert their effects at the genetic level. Currently, widely utilized nucleic acid-based drugs include nucleic acid aptamers, antisense oligonucleotides, mRNA, miRNA, siRNA and saRNA. However, these drugs frequently encounter challenges during clinical application, such as poor stability, weak targeting specificity, and difficulties in traversing physiological barriers. By employing chemical modifications of nucleic acid structures, it is possible to enhance the stability and targeting specificity of certain nucleic acid drugs within the body, thereby improving delivery efficiency and reducing immunogenicity. Moreover, utilizing nucleic acid drug carriers can facilitate the transportation of drugs to lesion sites, thereby aiding efficient intracellular escape and promoting drug efficacy within the body. Currently, commonly employed delivery carriers include virus vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers and extracellular vesicles. Nevertheless, individual modifications or delivery carriers alone are insufficient to overcome numerous obstacles. The integration of nucleic acid chemical modifications with drug delivery systems holds promise for achieving enhanced therapeutic effects. However, this approach also presents increased technical complexity and clinical translation costs. Therefore, the development of nucleic acid drug carriers and nucleic acid chemical modifications that are both practical and simple, while maintaining high efficacy, low toxicity, and precise nucleic acid delivery, has become a prominent research focus in the field of nucleic acid drug development. This review comprehensively summarizes the advancements in nucleic acid-based drug modifica-tions and delivery systems. Additionally, strategies to enhance nucleic acid drug delivery efficiency are discussed, with the aim of providing valuable insights for the translational application of nucleic acid drugs.
Collapse
Affiliation(s)
- Junfeng Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Manman Tan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Xiangrui Liu
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China.
| |
Collapse
|
39
|
Chatterjee K, Lakdawala S, Quadir SS, Puri D, Mishra DK, Joshi G, Sharma S, Choudhary D. siRNA-Based Novel Therapeutic Strategies to Improve Effectiveness of Antivirals: An Insight. AAPS PharmSciTech 2023; 24:170. [PMID: 37566146 DOI: 10.1208/s12249-023-02629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Since the ground-breaking discovery of RNA interference (RNAi), scientists have made significant progress in the field of small interfering RNA (siRNA) treatments. Due to severe barriers to the therapeutic application of siRNA, nanoparticle technologies for siRNA delivery have been designed. For pathological circumstances such as viral infection, toxic RNA abnormalities, malignancies, and hereditary diseases, siRNAs are potential therapeutic agents. However, systemic administration of siRNAs in vivo remains a substantial issue due to a lack of "drug-likeness" (siRNA are relatively larger than drugs and have low hydrophobicity), physiological obstacles, and possible toxicities. This write-up covers important accomplishment in the field of clinical trials and patents specially based of siRNAs using targeting viruses. Furthermore, it offers deep insight of nanoparticle applied for siRNA delivery and strategies to improve the effectiveness of antivirals.
Collapse
Affiliation(s)
- Krittika Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sagheerah Lakdawala
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Dinesh Puri
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248001, India
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur (C.G.), 495009, India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India.
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
40
|
Chen C, Chen C, Li Y, Gu R, Yan X. Characterization of lipid-based nanomedicines at the single-particle level. FUNDAMENTAL RESEARCH 2023; 3:488-504. [PMID: 38933557 PMCID: PMC11197724 DOI: 10.1016/j.fmre.2022.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lipid-based nanomedicines (LBNMs), including liposomes, lipid nanoparticles (LNPs) and extracellular vesicles (EVs), are recognized as one of the most clinically acceptable nano-formulations. However, the bench-to-bedside translation efficiency is far from satisfactory, mainly due to the lack of in-depth understanding of their physical and biochemical attributes at the single-particle level. In this review, we first give a brief introduction of LBNMs, highlighting some milestones and related scientific and clinical achievements in the past several decades, as well as the grand challenges in the characterization of LBNMs. Next, we present an overview of each category of LBNMs as well as the core properties that largely dictate their biological characteristics and clinical performance, such as size distribution, particle concentration, morphology, drug encapsulation and surface properties. Then, the recent applications of several analytical techniques including electron microscopy, atomic force microscopy, fluorescence microscopy, Raman microscopy, nanoparticle tracking analysis, tunable resistive pulse sensing and flow cytometry on the single-particle characterization of LBNMs are thoroughly discussed. Particularly, the comparative advantages of the newly developed nano-flow cytometry that enables quantitative analysis of both the physical and biochemical characteristics of LBNMs smaller than 40 nm with high throughput and statistical robustness are emphasized. The overall aim of this review article is to illustrate the importance, challenges and achievements associated with single-particle characterization of LBNMs.
Collapse
Affiliation(s)
- Chaoxiang Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
41
|
Yadav K, Sahu KK, Sucheta, Gnanakani SPE, Sure P, Vijayalakshmi R, Sundar VD, Sharma V, Antil R, Jha M, Minz S, Bagchi A, Pradhan M. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications. Int J Biol Macromol 2023; 241:124582. [PMID: 37116843 DOI: 10.1016/j.ijbiomac.2023.124582] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | | | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - V D Sundar
- Department of Pharmaceutical Technology, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - Versha Sharma
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Ruchita Antil
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, England, United Kingdom of Great Britain and Northern Ireland
| | - Megha Jha
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, M.P., 484887, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | | |
Collapse
|
42
|
Sharifi E, Yousefiasl S, Trovato M, Sartorius R, Esmaeili Y, Goodarzi H, Ghomi M, Bigham A, Moghaddam FD, Heidarifard M, Pourmotabed S, Nazarzadeh Zare E, Paiva-Santos AC, Rabiee N, Wang X, Tay FR. Nanostructures for prevention, diagnosis, and treatment of viral respiratory infections: from influenza virus to SARS-CoV-2 variants. J Nanobiotechnology 2023; 21:199. [PMID: 37344894 PMCID: PMC10283343 DOI: 10.1186/s12951-023-01938-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Yasaman Esmaeili
- School of Advanced Technologies in Medicine, Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Hamid Goodarzi
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Ashkan Bigham
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Maryam Heidarifard
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
43
|
Kurakula H, Vaishnavi S, Sharif MY, Ellipilli S. Emergence of Small Interfering RNA-Based Gene Drugs for Various Diseases. ACS OMEGA 2023; 8:20234-20250. [PMID: 37323391 PMCID: PMC10268023 DOI: 10.1021/acsomega.3c01703] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Small molecule, peptide, and protein-based drugs have been developed over decades to treat various diseases. The importance of gene therapy as an alternative to traditional drugs has increased after the discovery of gene-based drugs such as Gendicine for cancer and Neovasculgen for peripheral artery disease. Since then, the pharma sector is focusing on developing gene-based drugs for various diseases. After the discovery of the RNA interference (RNAi) mechanism, the development of siRNA-based gene therapy has been accelerated immensely. siRNA-based treatment for hereditary transthyretin-mediated amyloidosis (hATTR) using Onpattro and acute hepatic porphyria (AHP) by Givlaari and three more FDA-approved siRNA drugs has set up a milestone and further improved the confidence for the development of gene therapeutics for a spectrum of diseases. siRNA-based gene drugs have more advantages over other gene therapies and are under study to treat different types of diseases such as viral infections, cardiovascular diseases, cancer, and many more. However, there are a few bottlenecks to realizing the full potential of siRNA-based gene therapy. They include chemical instability, nontargeted biodistribution, undesirable innate immune responses, and off-target effects. This review provides a comprehensive view of siRNA-based gene drugs: challenges associated with siRNA delivery, their potential, and future prospects.
Collapse
Affiliation(s)
- Harshini Kurakula
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Swetha Vaishnavi
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Mohammed Yaseen Sharif
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Satheesh Ellipilli
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
44
|
Diarimalala RO, Wei Y, Hu D, Hu K. Inflammasomes during SARS-CoV-2 infection and development of their corresponding inhibitors. Front Cell Infect Microbiol 2023; 13:1218039. [PMID: 37360532 PMCID: PMC10288989 DOI: 10.3389/fcimb.2023.1218039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) continues to be a burden for human health since its outbreak in Wuhan, China in December 2019. Recently, the emergence of new variants of concerns (VOCs) is challenging for vaccines and drugs efficiency. In severe cases, SARS-CoV-2 provokes inappropriate hyperinflammatory immune responses leading to acute respiratory distress syndrome (ARDS) and even death. This process is regulated by inflammasomes which are activated after binding of the viral spike (S) protein to cellular angiotensin-converting enzyme 2 (ACE2) receptor and triggers innate immune responses. Therefore, the formation of "cytokines storm" leads to tissue damage and organ failure. NOD-like receptor family pyrin domain containing 3 (NLRP3) is the best studied inflammasome known to be activated during SARS-CoV-2 infection. However, some studies suggest that SARS-CoV-2 infection is associated with other inflammasomes as well; such as NLRP1, absent in melanoma-2 (AIM-2), caspase-4 and -8 which were mostly found during dsRNA virus or bacteria infection. Multiple inflammasome inhibitors that exist for other non-infectious diseases have the potential to be used to treat severe SARS-CoV-2 complications. Some of them have showed quite encouraging results during pre- and clinical trials. Nevertheless, further studies are in need for the understanding and targeting of SARS-Cov-2-induced inflammasomes; mostly an update of its role during the new VOCs infection is necessary. Hence, this review highlights all reported inflammasomes involved in SARS-CoV-2 infection and their potential inhibitors including NLRP3- and Gasdermin D (GSDMD)-inhibitors. Further strategies such as immunomodulators and siRNA are also discussed. As highly related to COVID-19 severe cases, developing inflammasome inhibitors holds a promise to treat severe COVID-19 syndrome effectively and reduce mortality.
Collapse
|
45
|
Gudima G, Kofiadi I, Shilovskiy I, Kudlay D, Khaitov M. Antiviral Therapy of COVID-19. Int J Mol Sci 2023; 24:ijms24108867. [PMID: 37240213 DOI: 10.3390/ijms24108867] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Since the beginning of the COVID-19 pandemic, the scientific community has focused on prophylactic vaccine development. In parallel, the experience of the pharmacotherapy of this disease has increased. Due to the declining protective capacity of vaccines against new strains, as well as increased knowledge about the structure and biology of the pathogen, control of the disease has shifted to the focus of antiviral drug development over the past year. Clinical data on safety and efficacy of antivirals acting at various stages of the virus life cycle has been published. In this review, we summarize mechanisms and clinical efficacy of antiviral therapy of COVID-19 with drugs based on plasma of convalescents, monoclonal antibodies, interferons, fusion inhibitors, nucleoside analogs, and protease inhibitors. The current status of the drugs described is also summarized in relation to the official clinical guidelines for the treatment of COVID-19. In addition, here we describe innovative drugs whose antiviral effect is provided by antisense oligonucleotides targeting the SARS-CoV-2 genome. Analysis of laboratory and clinical data suggests that current antivirals successfully combat broad spectra of emerging strains of SARS-CoV-2 providing reliable defense against COVID-19.
Collapse
Affiliation(s)
- Georgii Gudima
- NRC Institute of Immunology, Federal Medico-Biological Agency, 115522 Moscow, Russia
| | - Ilya Kofiadi
- NRC Institute of Immunology, Federal Medico-Biological Agency, 115522 Moscow, Russia
- Department of Immunology, N.I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Igor Shilovskiy
- NRC Institute of Immunology, Federal Medico-Biological Agency, 115522 Moscow, Russia
| | - Dmitry Kudlay
- NRC Institute of Immunology, Federal Medico-Biological Agency, 115522 Moscow, Russia
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology, Federal Medico-Biological Agency, 115522 Moscow, Russia
- Department of Immunology, N.I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| |
Collapse
|
46
|
Zhong W, Huang L, Lin Y, Xing C, Lu C. Endogenous dual miRNA-triggered dynamic assembly of DNA nanostructures for in-situ dual siRNA delivery. SCIENCE CHINA MATERIALS 2023; 66:1-9. [PMID: 37362200 PMCID: PMC10163297 DOI: 10.1007/s40843-022-2420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 06/28/2023]
Abstract
A theranostic strategy of multiple microRNA (miRNA)-triggered in-situ delivery of small interfering RNA (siRNA) can effectively improve the precise therapy of cancer cells. Benefiting from the advantages of programmability, specific molecular recognition, easy functionalization and marked biocompatibility of DNA nanostructures, we designed a three-dimensional (3D) DNA nano-therapeutic platform for dual miRNA-triggered in-situ delivery of siRNA. The 3D DNA nanostructure (TY1Y2) was constructed based on the self-assembly of a DNA tetrahedra scaffold, two sets of Y-shaped DNA (Y1 and Y2), and EpCAM-aptamer which functionalized as the ligand molecule for the recognition of specific cancer cells. After being specifically internalized into the targeted cancer cells, TY1Y2 was triggered by two endogenous miRNAs (miR-21 and miR-122), resulting in the generation of strong fluorescence resonance energy transfer fluorescent signal for dual miRNAs imaging. Meanwhile, the therapeutic siRNAs (siSurvivin and siBcl2) could also be in-situ generated and released from TY1Y2 through the strand-displacement reactions for the synergistic gene therapy of cancer cells. This 3D DNA nanostructure integrated the specific imaging of endogenous biomarkers and the in-situ delivery of therapeutic genes into the multifunctional nanoplatform, revealing the promising applications for the diagnosis and treatment of cancer. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s40843-022-2420-y.
Collapse
Affiliation(s)
- Wukun Zhong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Lei Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Yuhong Lin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, 318000 China
| | - Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou, 350108 China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| |
Collapse
|
47
|
Canlas KKV, Hong J, Chae J, Seo HW, Kang SH, Choi J, Park H. Trends in nano-platforms for the treatment of viral infectious diseases. KOREAN J CHEM ENG 2023; 40:706-713. [PMID: 37025620 PMCID: PMC10026216 DOI: 10.1007/s11814-023-1388-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 03/22/2023]
Abstract
Viral diseases have always been a major health issue, from the currently eradicated poliovirus to the still unresolved human immunodeficiency virus, and have since become a recent global threat brought about by the COVID-19 pandemic. Pathogenic viruses easily spread through various means such as contaminated food and water intake, exchange of bodily fluids, or even inhalation of airborne particles mainly due to their miniscule size. Furthermore, viral coats contain virulent proteins which trigger assimilation into target cells on contact through either direct penetration or induction of endocytosis. In some viruses their outer envelope contains masking ligands that create a means of escape from detection of immune cells. To deal with the nanometer size range and biomolecular-based invasion mechanism, nanoparticles are highly suitable for the treatment. The review highlights the progress in nanoparticle technology, particularly viral therapeutics, including therapeutic strategies and existing clinical applications.
Collapse
|
48
|
Hariharan VN, Shin M, Chang CW, O’Reilly D, Biscans A, Yamada K, Guo Z, Somasundaran M, Tang Q, Monopoli K, Krishnamurthy PM, Devi G, McHugh N, Cooper DA, Echeverria D, Cruz J, Chan IL, Liu P, Lim SY, McConnell J, Singh SP, Hildebrand S, Sousa J, Davis SM, Kennedy Z, Ferguson C, Godinho BMDC, Thillier Y, Caiazzi J, Ly S, Muhuri M, Kelly K, Humphries F, Cousineau A, Parsi KM, Li Q, Wang Y, Maehr R, Gao G, Korkin D, McDougall WM, Finberg RW, Fitzgerald KA, Wang JP, Watts JK, Khvorova A. Divalent siRNAs are bioavailable in the lung and efficiently block SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2023; 120:e2219523120. [PMID: 36893269 PMCID: PMC10089225 DOI: 10.1073/pnas.2219523120] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/05/2023] [Indexed: 03/11/2023] Open
Abstract
The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.
Collapse
Affiliation(s)
- Vignesh N. Hariharan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Minwook Shin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Ching-Wen Chang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Daniel O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Zhiru Guo
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Mohan Somasundaran
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Kathryn Monopoli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | | | - Gitali Devi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - David A. Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - John Cruz
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Io Long Chan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Ping Liu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Sun-Young Lim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jill McConnell
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Satya Prakash Singh
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Sarah M. Davis
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Chantal Ferguson
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Bruno M. D. C. Godinho
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Yann Thillier
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jillian Caiazzi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Manish Muhuri
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Fiachra Humphries
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Alyssa Cousineau
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Krishna Mohan Parsi
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Qi Li
- MassBiologics, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Yang Wang
- MassBiologics, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - René Maehr
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Guangping Gao
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA01655
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Dmitry Korkin
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA01609
| | - William M. McDougall
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Robert W. Finberg
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| |
Collapse
|
49
|
Tarim EA, Anil Inevi M, Ozkan I, Kecili S, Bilgi E, Baslar MS, Ozcivici E, Oksel Karakus C, Tekin HC. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions. Biomed Microdevices 2023; 25:10. [PMID: 36913137 PMCID: PMC10009869 DOI: 10.1007/s10544-023-00649-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
The COVID-19 pandemic has posed significant challenges to existing healthcare systems around the world. The urgent need for the development of diagnostic and therapeutic strategies for COVID-19 has boomed the demand for new technologies that can improve current healthcare approaches, moving towards more advanced, digitalized, personalized, and patient-oriented systems. Microfluidic-based technologies involve the miniaturization of large-scale devices and laboratory-based procedures, enabling complex chemical and biological operations that are conventionally performed at the macro-scale to be carried out on the microscale or less. The advantages microfluidic systems offer such as rapid, low-cost, accurate, and on-site solutions make these tools extremely useful and effective in the fight against COVID-19. In particular, microfluidic-assisted systems are of great interest in different COVID-19-related domains, varying from direct and indirect detection of COVID-19 infections to drug and vaccine discovery and their targeted delivery. Here, we review recent advances in the use of microfluidic platforms to diagnose, treat or prevent COVID-19. We start by summarizing recent microfluidic-based diagnostic solutions applicable to COVID-19. We then highlight the key roles microfluidics play in developing COVID-19 vaccines and testing how vaccine candidates perform, with a focus on RNA-delivery technologies and nano-carriers. Next, microfluidic-based efforts devoted to assessing the efficacy of potential COVID-19 drugs, either repurposed or new, and their targeted delivery to infected sites are summarized. We conclude by providing future perspectives and research directions that are critical to effectively prevent or respond to future pandemics.
Collapse
Affiliation(s)
- E Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Muge Anil Inevi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Ilayda Ozkan
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Seren Kecili
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Eyup Bilgi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - M Semih Baslar
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | | | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey.
- METU MEMS Center, Ankara, Turkey.
| |
Collapse
|
50
|
McCollum C, Courtney CM, O’Connor NJ, Aunins TR, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Safety and Biodistribution of Nanoligomers Targeting the SARS-CoV-2 Genome for the Treatment of COVID-19. ACS Biomater Sci Eng 2023; 9:1656-1671. [PMID: 36853144 PMCID: PMC10000012 DOI: 10.1021/acsbiomaterials.2c00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
As the world braces to enter its fourth year of the coronavirus disease 2019 (COVID-19) pandemic, the need for accessible and effective antiviral therapeutics continues to be felt globally. The recent surge of Omicron variant cases has demonstrated that vaccination and prevention alone cannot quell the spread of highly transmissible variants. A safe and nontoxic therapeutic with an adaptable design to respond to the emergence of new variants is critical for transitioning to the treatment of COVID-19 as an endemic disease. Here, we present a novel compound, called SBCoV202, that specifically and tightly binds the translation initiation site of RNA-dependent RNA polymerase within the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, inhibiting viral replication. SBCoV202 is a Nanoligomer, a molecule that includes peptide nucleic acid sequences capable of binding viral RNA with single-base-pair specificity to accurately target the viral genome. The compound has been shown to be safe and nontoxic in mice, with favorable biodistribution, and has shown efficacy against SARS-CoV-2 in vitro. Safety and biodistribution were assessed using three separate administration methods, namely, intranasal, intravenous, and intraperitoneal. Safety studies showed the Nanoligomer caused no outward distress, immunogenicity, or organ tissue damage, measured through observation of behavior and body weight, serum levels of cytokines, and histopathology of fixed tissue, respectively. SBCoV202 was evenly biodistributed throughout the body, with most tissues measuring Nanoligomer concentrations well above the compound KD of 3.37 nM. In addition to favorable availability to organs such as the lungs, lymph nodes, liver, and spleen, the compound circulated through the blood and was rapidly cleared through the renal and urinary systems. The favorable biodistribution and lack of immunogenicity and toxicity set Nanoligomers apart from other antisense therapies, while the adaptability of the nucleic acid sequence of Nanoligomers provides a defense against future emergence of drug resistance, making these molecules an attractive potential treatment for COVID-19.
Collapse
Affiliation(s)
- Colleen
R. McCollum
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Colleen M. Courtney
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Nolan J. O’Connor
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Thomas R. Aunins
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Tristan X. Jordan
- Department
of Microbiology, New York University Langone, New York, New York 10016, United States
| | - Keegan L. Rogers
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Stephen Brindley
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jared M. Brown
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
- Antimicrobial
Regeneration Consortium Labs, Louisville, Colorado 80027, United States
| | - Anushree Chatterjee
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
- Antimicrobial
Regeneration Consortium Labs, Louisville, Colorado 80027, United States
| |
Collapse
|