1
|
Patel KK, Tariveranmoshabad M, Kadu S, Shobaki N, June C. From concept to cure: The evolution of CAR-T cell therapy. Mol Ther 2025; 33:2123-2140. [PMID: 40070120 DOI: 10.1016/j.ymthe.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/21/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer immunotherapy in the 21st century, providing innovative solutions and life-saving therapies for previously untreatable diseases. This approach has shown remarkable success in treating various hematological malignancies and is now expanding into clinical trials for solid tumors, such as prostate cancer and glioblastoma, as well as infectious and autoimmune diseases. CAR-T cell therapy involves harvesting a patient's T cells, genetically engineering them with viral vectors to express CARs targeting specific antigens and reinfusing the modified cells into the patient. These CAR-T cells function independently of major histocompatibility complex (MHC) antigen presentation, selectively identifying and eliminating target cells. This review highlights the key milestones in CAR-T cell evolution, from its invention to its clinical applications. It outlines the historical timeline leading to the invention of CAR-T cells, discusses the major achievements that have transformed them into a breakthrough therapy, and addresses remaining challenges, including high manufacturing costs, limited accessibility, and toxicity issues such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Additionally, the review explores future directions and advances in the field, such as developing next-generation CAR-T cells aiming to maximize efficacy, minimize toxicity, and broaden therapeutic applications.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/trends
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Neoplasms/therapy
- Neoplasms/immunology
- Animals
Collapse
Affiliation(s)
- Kisha K Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mito Tariveranmoshabad
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siddhant Kadu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nour Shobaki
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Fisher BM, Cevaal PM, Roche M, Lewin SR. HIV Tat as a latency reversing agent: turning the tables on viral persistence. Front Immunol 2025; 16:1571151. [PMID: 40292298 PMCID: PMC12021871 DOI: 10.3389/fimmu.2025.1571151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
The 'shock and kill' approach to an HIV cure involves the use of latency reversing agents (LRAs) to reactivate latent HIV, with the aim to induce death of infected cells through virus induced cytolysis or immune mediated clearance. Most LRAs tested to date have been unable to overcome the blocks to transcription elongation and splicing that persist in resting CD4+ T cells. Furthermore, most LRAs target host factors and therefore have associated toxicities. Therefore, there remains a high need for HIV-specific LRAs that can also potently upregulate expression of multiply-spliced HIV RNA and viral protein. The HIV Transactivator of Transcription (Tat) protein plays an important role in viral replication - amplifying transcription from the viral promoter - but it is present at low to negligible levels in latently infected cells. As such, it has been hypothesized that providing Tat in trans could result in efficient HIV reactivation from latency. Recent studies exploring different types of Tat-based LRAs have used different nanoparticles for Tat delivery and describe potent, HIV-specific induction of multiply-spliced HIV RNA and protein ex vivo. However, there are several potential challenges to using Tat as a therapeutic, including the ability of Tat to cause systemic toxicities in vivo, limited delivery of Tat to the HIV reservoir due to poor uptake of nucleic acid by resting cells, and challenges in activating truly transcriptionally silent viruses. Identifying ways to mitigate these challenges will be critical to developing effective Tat-based LRA approaches towards an HIV cure.
Collapse
Affiliation(s)
- Bridget M. Fisher
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paula M. Cevaal
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- ATRACT Research Centre, Infectious and Inflammatory Diseases Theme, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Zhang L, Seow BYL, Bae KH, Zhang Y, Liao KC, Wan Y, Yang YY. Role of PEGylated lipid in lipid nanoparticle formulation for in vitro and in vivo delivery of mRNA vaccines. J Control Release 2025; 380:108-124. [PMID: 39875076 DOI: 10.1016/j.jconrel.2025.01.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
mRNA-loaded lipid nanoparticles (mRNA-LNPs) hold great potential for disease treatment and prevention. LNPs are normally made from four lipids including ionizable lipid, helper lipid, cholesterol, and PEGylated lipid (PEG-lipid). Although PEG-lipid has the lowest content, it plays a crucial role in the effective delivery of mRNA-LNPs. However, previous studies have yet to elucidate the key factors of PEG-lipid that influence the properties of LNPs. This study reported how PEG-lipid content, lipid tail length, and chemical linkage between PEG and lipid affected in vitro and in vivo properties of mRNA-LNPs. Forty-eight LNP formulations were prepared and characterized. The results revealed that a PEG-lipid molar content exceeding 3.0 % significantly reduced the encapsulation efficiency of mRNA in LNPs via manual mixing. An increased PEG-lipid content also significantly decreased mRNA translation efficiency. Although the chemical linkage had minimal impact, the lipid tail length of PEG-lipid significantly affected the properties of mRNA-LNPs, irrespective of whether the LNPs were prepared using manual or microfluidic mixing. mRNA-LNPs made from ALC-0159 with C14 lipid tails, which is used in Pfizer/BioNTech COVID-19 mRNA vaccines, or C16-Ceramide-PEG preferably accumulated in the liver, while mRNA-LNPs prepared from C8-Ceramide-PEG were largely found in the lymph nodes. In a mouse SARS-CoV-2 Delta variant spike protein-encoded mRNA vaccine model, mRNA-LNPs made from either C8-Ceramide-PEG or C16-Ceramide-PEG yielded comparable vaccination efficacy to mRNA-LNPs made from ALC-0159, while mRNA-LNPs formulated with DSPE-PEG with C18 lipid tails mediated lower vaccination efficacy. C16-Ceramide-PEG LNPs and DSPE-PEG LNPs induced higher anti-PEG antibody response than C8-Ceramide-PEG and ALC-0159 LNPs. All the LNPs tested did not cause significant toxicity in mice. These results offer valuable insights into the use of PEG-lipid in LNP formulations and suggest that C8-Ceramide-PEG holds potential for use in the formulation of mRNA vaccine-loaded LNPs.
Collapse
Affiliation(s)
- Li Zhang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore
| | - Brandon Yi Loong Seow
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore
| | - Ki Hyun Bae
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore
| | - Yue Zhang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore
| | - Kuo-Chieh Liao
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore 138672, Republic of Singapore
| | - Yue Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore 138672, Republic of Singapore
| | - Yi Yan Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore.
| |
Collapse
|
4
|
Hofstraat SRJ, Anbergen T, Zwolsman R, Deckers J, van Elsas Y, Trines MM, Versteeg I, Hoorn D, Ros GWB, Bartelet BM, Hendrikx MMA, Darwish YB, Kleuskens T, Borges F, Maas RJF, Verhalle LM, Tielemans W, Vader P, de Jong OG, Tabaglio T, Wee DKB, Teunissen AJP, Brechbühl E, Janssen HM, Fransen PM, de Dreu A, Schrijver DP, Priem B, Toner YC, Beldman TJ, Netea MG, Mulder WJM, Kluza E, van der Meel R. Nature-inspired platform nanotechnology for RNA delivery to myeloid cells and their bone marrow progenitors. NATURE NANOTECHNOLOGY 2025; 20:532-542. [PMID: 39900620 PMCID: PMC12014499 DOI: 10.1038/s41565-024-01847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/06/2024] [Indexed: 02/05/2025]
Abstract
Nucleic acid therapeutics are used for silencing, expressing or editing genes in vivo. However, their systemic stability and targeted delivery to bone marrow resident cells remains a challenge. In this study we present a nanotechnology platform based on natural lipoproteins, designed for delivering small interfering RNA (siRNA), antisense oligonucleotides and messenger RNA to myeloid cells and haematopoietic stem and progenitor cells in the bone marrow. We developed a prototype apolipoprotein nanoparticle (aNP) that stably incorporates siRNA into its core. We then created a comprehensive library of aNP formulations and extensively characterized their physicochemical properties and in vitro performance. From this library, we selected eight representative aNP-siRNA formulations and evaluated their ability to silence lysosomal-associated membrane protein 1 (Lamp1) expression in immune cell subsets in mice after intravenous administration. Using the most effective aNP identified from the screening process, we tested the platform's potential for therapeutic gene silencing in a syngeneic murine tumour model. We also demonstrated the aNP platform's suitability for splice-switching with antisense oligonucleotides and for protein production with messenger RNA by myeloid progenitor cells in the bone marrow. Our data indicate that the aNP platform holds translational potential for delivering various types of nucleic acid therapeutics to myeloid cells and their progenitors.
Collapse
Affiliation(s)
- Stijn R J Hofstraat
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tom Anbergen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robby Zwolsman
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jeroen Deckers
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yuri van Elsas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirre M Trines
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Iris Versteeg
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daniek Hoorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Gijs W B Ros
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Branca M Bartelet
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merel M A Hendrikx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Biotrip B.V., Eindhoven, the Netherlands
| | - Youssef B Darwish
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Teun Kleuskens
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Francisca Borges
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne J F Maas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lars M Verhalle
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willem Tielemans
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Pieter Vader
- CDL Research & Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Tommaso Tabaglio
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dave Keng Boon Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eliane Brechbühl
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Anne de Dreu
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David P Schrijver
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Bram Priem
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yohana C Toner
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thijs J Beldman
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands.
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Ewelina Kluza
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
5
|
Adhikari A, Chen IA. Antibody-Nanoparticle Conjugates in Therapy: Combining the Best of Two Worlds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409635. [PMID: 40051146 PMCID: PMC12001320 DOI: 10.1002/smll.202409635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Indexed: 04/17/2025]
Abstract
Monoclonal antibodies (mAbs) and antibody fragments have revolutionized medicine as highly specific binding agents and inhibitors. At the same time, several types of nanomaterials, including liposomes, lipid nanoparticles (NPs), polymersomes, metal and metal oxide NPs, and protein nanostructures, are increasingly utilized and explored for therapeutic potential due to their versatility, chemical and physical properties, and tunability. However, nanomaterials alone often lack specificity, leading to relatively low efficacy and/or high toxicity. To address this problem, a rapidly emerging area is antibody-nanomaterial conjugates (ANCs), which combine the precise targeting specificity of antibodies with the effector functionality of the nanomaterial. In this review, we give a brief introduction to mAbs and major conjugation techniques, describe major classes of nanomaterials being studied for therapeutic potential, and review the literature on ANCs of each class. Special focus is given to emerging applications including ANCs addressing the blood-brain barrier, ANCs delivering nucleic acids, and light-activated ANCs. While many disease targets are related to cancer, ANCs are also under development to address autoimmune, neurological, and infectious diseases. While important challenges remain, ANCs are poised to become a next-generation therapeutic technology.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical and Biomolecular EngineeringDepartment of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90049USA
| | - Irene A. Chen
- Department of Chemical and Biomolecular EngineeringDepartment of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90049USA
| |
Collapse
|
6
|
Lambaren K, Trac N, Fehrenbach D, Madhur M, Chung EJ. T Cell-Targeting Nanotherapies for Atherosclerosis. Bioconjug Chem 2025; 36:332-346. [PMID: 39979082 DOI: 10.1021/acs.bioconjchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Cardiovascular diseases remain the leading cause of mortality worldwide. Specifically, atherosclerosis is a primary cause of acute cardiac events. However, current therapies mainly focus on lipid-lowering versus addressing the underlying inflammatory response that leads to its development and progression. Nanoparticle-mediated drug delivery offers a promising approach for targeting and regulating these inflammatory responses. In atherosclerotic lesions, inflammatory cascades result in increased T helper (Th) 1 and Th17 activity and reduced T regulatory activation. The regulation of T cell responses is critical in preventing the inflammatory imbalance in atherosclerosis, making them a key therapeutic target for nanotherapy to achieve precise atherosclerosis treatment. By functionalizing nanoparticles with targeting modalities, therapeutic agents can be delivered specifically to immune cells in atherosclerotic lesions. In this Review, we outline the role of T cells in atherosclerosis, examine current nanotherapeutic strategies for targeting T cells and modulating their differentiation, and provide perspectives for the development of nanoparticles specifically tailored to target T cells for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Karla Lambaren
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Noah Trac
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Daniel Fehrenbach
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Meena Madhur
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Eun Ji Chung
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
- Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Dong W, Li Y, Fei Q, Li S, He X, Chai Y, Zhou J, Zong Y, Geng J, Li Z. Targeted spleen modulation: a novel strategy for next-generation disease immunotherapy. Theranostics 2025; 15:4416-4445. [PMID: 40225564 PMCID: PMC11984396 DOI: 10.7150/thno.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/09/2025] [Indexed: 04/15/2025] Open
Abstract
The spleen, the largest lymphatic organ, comprises a diverse array of immunocytes in approximately one quarter of the body, including T cells, B cells, natural killer cells, and myeloid cells (such as dendritic cells, neutrophils, myeloid-derived suppressor cells, and macrophages). These immune cells undergo dynamic transitions and mobilization, enabling the spleen to execute a wide range of immunological functions. The spleen's structural organization and multicellular composition, along with its reservoir of lymphocytes, facilitate the capture and clearance of blood-borne antigens while also orchestrating both innate and adaptive immune responses. Additionally, the spleen plays critical roles in hematopoiesis and the removal of aged or damaged red blood cells. Despite being innervated by sympathetic (catecholaminergic) nerve fibers, the spleen lacks parasympathetic (vagal or cholinergic) innervation. The neuroimmune axis, particularly the interplay between sympathetic and parasympathetic nervous system immune circuits, significantly influences disease onset and progression. Extensive research employing physical, genetic, and pharmacological approaches has sought to directly modulate splenic immunocytes and activate neuroimmune interactions to restore immune homeostasis and counteract disease. Two primary mechanisms underlie these immunomodulatory interventions: (1) the cholinergic anti-inflammatory pathway, wherein norepinephrine released by splenic catecholaminergic fibers binds to β2-adrenergic receptors on CD4⁺ T cells, triggering acetylcholine secretion, which in turn suppresses inflammatory cytokine production in macrophages via α7 nicotinic acetylcholine receptor signaling, and (2) direct immunomodulation of splenic immunocytes, which regulates key genes and signaling pathways, alters cytokine secretion, and modulates ion flux to influence cellular functions. Among various therapeutic strategies, physical methods, particularly electrical stimulation and splenic ultrasound stimulation, have demonstrated the greatest promise for clinical applications in splenic immunomodulation and disease management.
Collapse
Affiliation(s)
- Wei Dong
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Center for Tumor and Immunology, The Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qiaoman Fei
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Senyang Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xinrui He
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yichao Chai
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Junyi Zhou
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yujin Zong
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Geng
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Center for Tumor and Immunology, The Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Center for Tumor and Immunology, The Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Nie S, Yang B, Ma R, Zha L, Qin Y, Ou L, Chen X, Li L. Synthetic nanomaterials for spleen-specific mRNA delivery. Biomaterials 2025; 314:122859. [PMID: 39362024 DOI: 10.1016/j.biomaterials.2024.122859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
In recent years, mRNA vaccine has achieved increasing interest owing to its high potency, safety, ease of production, and low-cost manufacturing. Currently approved mRNA vaccines are administered intramuscularly to transfect local antigen-presenting cells (APCs) to initiate low to moderate immune responses. Spleen, the largest secondary lymphoid organ in the body which contains a large number of APCs close to B and T lymphocytes, could be the ideal site for effective initiation of an enhanced immune response. Here, we provide an overview of the recent advances in the development of synthetic materials for spleen-specific mRNA delivery, and lipid nanoparticle-based approaches will be highlighted. We further discuss the main challenges for spleen-specific mRNA delivery to provide a reference for the development of next-generation synthetic nanomaterials with optimal properties.
Collapse
Affiliation(s)
- Shihong Nie
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Beiqi Yang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruiying Ma
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lili Zha
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yuyang Qin
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, 138667, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Zwolsman R, Darwish YB, Kluza E, van der Meel R. Engineering Lipid Nanoparticles for mRNA Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70007. [PMID: 40195623 PMCID: PMC11976204 DOI: 10.1002/wnan.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/09/2025]
Abstract
Over the last decades, messenger RNA (mRNA) has emerged as a promising therapeutic modality, enabling the delivery of genetic instructions to cells for producing therapeutic proteins or antigens. As such, mRNA-based therapies can be developed for a wide range of conditions, including infections, cancer, metabolic disorders, and genetic diseases. Nevertheless, using mRNA therapeutically requires chemical modifications to reduce immunostimulatory effects and nanotechnology to prevent degradation and ensure intracellular delivery. Lipid nanoparticles (LNPs) have become the most effective delivery platform for mRNA therapeutics, which are primarily employed for vaccine purposes following local administration and hepatic applications following systemic administration. Here, we review the state-of-the-art LNP-mRNA technology and discuss its potential for immunotherapy. We first outline the requirements for mRNA to be used therapeutically, including the role of LNP-mediated delivery. Next, we highlight LNP-mRNA immunotherapy approaches for vaccination, immuno-oncology, and autoimmune disorders. In addition, we discuss challenges that are limiting LNP-mRNA's widespread use, including tunable biodistribution and immunostimulatory effects. Finally, we provide an outlook on how implementing approaches such as library screening and machine learning will guide the development of next-generation mRNA therapeutics.
Collapse
Affiliation(s)
- Robby Zwolsman
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Youssef B. Darwish
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
10
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2025; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
11
|
Park W, Choi J, Hwang J, Kim S, Kim Y, Shim MK, Park W, Yu S, Jung S, Yang Y, Kweon DH. Apolipoprotein Fusion Enables Spontaneous Functionalization of mRNA Lipid Nanoparticles with Antibody for Targeted Cancer Therapy. ACS NANO 2025; 19:6412-6425. [PMID: 39908463 PMCID: PMC11841042 DOI: 10.1021/acsnano.4c16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
The mRNA-lipid nanoparticles (mRNA@LNPs) offer a novel opportunity to treat targets previously considered undruggable. Although antibody conjugation is crucial for enhancing the specificity, delivery efficiency, and minimizing the toxicity of mRNA therapeutics, current chemical conjugation methods are complex and produce heterogeneous particles with misoriented antibodies. In this work, we introduce a chemical-free approach to functionalize mRNA@LNPs with antibodies, mimicking protein corona formation for targeted mRNA delivery. By fusing apolipoprotein to the Fc domain of a targeting antibody, we enabled the antibody to spontaneously display on the surface of mRNA@LNPs without altering the existing LNP process or employing complex chemical conjugation techniques. We demonstrated precise protein expression using trastuzumab-bound mRNA@LNPs, facilitating specific mRNA expression in HER2-positive cancer cells. mRNA was efficiently delivered to the tumor site after intravenous administration. While the control LNPs lacking targeting antibodies caused acute liver toxicity, trastuzumab-displayed LNPs showed no systemic toxicity. The tumor-specific delivery of p53 tumor suppressor mRNA led to the complete regression of cancer cells. Thus, apolipoprotein fusion enables a straightforward and scalable production of antibody-functionalized mRNA@LNPs, offering significant therapeutic potential in gene therapy.
Collapse
Affiliation(s)
- Wonbeom Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Jiwoong Choi
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Jaehyeon Hwang
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Suhyun Kim
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Yelee Kim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Department
of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Man Kyu Shim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Wooram Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Seokhyeon Yu
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Sangwon Jung
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Yoosoo Yang
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Division
of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dae-Hyuk Kweon
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| |
Collapse
|
12
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Lewin SR, Bansbach C, Kemps D, Mathae L, Das KT, McCune JM, Deeks SG, Ndung'u T. Target product profile for cell-based and gene-based therapies to achieve a cure for HIV. Lancet HIV 2025; 12:e154-e162. [PMID: 39761679 DOI: 10.1016/s2352-3018(24)00277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 02/08/2025]
Abstract
This target product profile (TPP) highlights the minimal and optimal characteristics for ex-vivo and in-vivo cell and gene therapy-based products aimed at achieving an HIV cure (ie, durable antiretroviral-free viral control). The need for an effective, safe, scalable, affordable, accessible, and acceptable cure for HIV infection remains a major global priority. The possibilities for cell and gene therapy-based products for an HIV cure are rapidly expanding. In a multi-stakeholder consensus process of clinical experts and civil society, including representatives from low-income and middle-income countries, participants generally agreed on the optimal targets, whereas consensus on the minimal targets was not reached on every parameter. There was less agreement on the minimal targets for ex-vivo than in-vivo therapies given the complexity of ex-vivo interventions. The TPP is planned to be updated at regular intervals. Building a TPP, such as this one, is an important process for stakeholder engagement and aligning ambitions for the development of products that are acceptable to both clinicians and civil society.
Collapse
Affiliation(s)
- Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | | | | | - Lauren Mathae
- Center for Global Health Practice and Impact, Georgetown University, Washington, DC, USA
| | - Kumitaa Theva Das
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Joseph M McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa; HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; University College London, London, UK
| |
Collapse
|
14
|
Laeremans T, Janssens A, Aerts JL. From natural defenders to therapeutic warriors: NK cells in HIV immunotherapy. Immunotherapy 2025; 17:133-145. [PMID: 39905963 PMCID: PMC11901454 DOI: 10.1080/1750743x.2025.2460965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells both play essential roles in controlling viral infections by eliminating virus-infected cells. Unlike CTLs, which require priming and activation by antigen-presenting cells, NK cells possess a remarkable capacity to mount a rapid antiviral immune response immediately after infection. Additionally, they can bolster the adaptive immune system by secreting cytokines and directly interacting with other immune cells. However, during chronic human immunodeficiency virus (HIV) infection, various immune cells, including NK cells, experience functional impairments. This has led to the exploration of NK cell-based immunotherapy as a promising strategy to reverse these dysfunctions and contribute to the pursuit of a functional cure for HIV. Building on the success of NK cell therapies in cancer treatment, these approaches offer significant potential for transforming the HIV cure field. This review provides a comprehensive overview of the latest advances in NK cell-based immunotherapy for HIV, outlining the progress made and the key challenges that must be overcome to achieve a functional cure for people living with HIV.
Collapse
Affiliation(s)
- Thessa Laeremans
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Amber Janssens
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Joeri L. Aerts
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
15
|
Bowden-Reid E, Moles E, Kelleher A, Ahlenstiel C. Harnessing antiviral RNAi therapeutics for pandemic viruses: SARS-CoV-2 and HIV. Drug Deliv Transl Res 2025:10.1007/s13346-025-01788-x. [PMID: 39833468 DOI: 10.1007/s13346-025-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Using the knowledge from decades of research into RNA-based therapies, the COVID-19 pandemic response saw the rapid design, testing and production of the first ever mRNA vaccines approved for human use in the clinic. This breakthrough has been a significant milestone for RNA therapeutics and vaccines, driving an exponential growth of research into the field. The development of novel RNA therapeutics targeting high-threat pathogens, that pose a substantial risk to global health, could transform the future of health delivery. In this review, we provide a detailed overview of the two RNA interference (RNAi) pathways and how antiviral RNAi therapies can be used to treat acute or chronic diseases caused by the pandemic viruses SARS-CoV-2 and HIV, respectively. We also provide insights into short-interfering RNA (siRNA) delivery systems, with a focus on how lipid nanoparticles can be functionalized to achieve targeted delivery to specific sites of disease. This review will provide the current developments of SARS-CoV-2 and HIV targeted siRNAs, highlighting strategies to advance the progression of antiviral siRNA along the clinical development pathway.
Collapse
Affiliation(s)
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, 2052, Australia.
- Australian Centre for Nanomedicine, Faculty of Engineering, UNSW Sydney, Sydney, 2052, Australia.
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| | - Anthony Kelleher
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| |
Collapse
|
16
|
Han EL, Tang S, Kim D, Murray AM, Swingle KL, Hamilton AG, Mrksich K, Padilla MS, Palanki R, Li JJ, Mitchell MJ. Peptide-Functionalized Lipid Nanoparticles for Targeted Systemic mRNA Delivery to the Brain. NANO LETTERS 2025; 25:800-810. [PMID: 39688915 DOI: 10.1021/acs.nanolett.4c05186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Systemic delivery of large nucleic acids, such as mRNA, to the brain remains challenging in part due to the blood-brain barrier (BBB) and the tendency of delivery vehicles to accumulate in the liver. Here, we design a peptide-functionalized lipid nanoparticle (LNP) platform for targeted mRNA delivery to the brain. We utilize click chemistry to functionalize LNPs with peptides that target receptors overexpressed on brain endothelial cells and neurons, namely the RVG29, T7, AP2, and mApoE peptides. We evaluate the effect of LNP targeting on brain endothelial and neuronal cell transfection in vitro, investigating factors such as serum protein adsorption, intracellular trafficking, endothelial transcytosis, and exosome secretion. Finally, we show that LNP peptide functionalization enhances mRNA transfection in the mouse brain and reduces hepatic delivery after systemic administration. Specifically, RVG29 LNPs improved neuronal transfection in vivo, establishing its potential as a nonviral platform for delivering mRNA to the brain.
Collapse
Affiliation(s)
- Emily L Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sophia Tang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dongyoon Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amanda M Murray
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kaitlin Mrksich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Jacqueline J Li
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Khan SH, Choi Y, Veena M, Lee JK, Shin DS. Advances in CAR T cell therapy: antigen selection, modifications, and current trials for solid tumors. Front Immunol 2025; 15:1489827. [PMID: 39835140 PMCID: PMC11743624 DOI: 10.3389/fimmu.2024.1489827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of hematologic malignancies, achieving remarkable clinical success with FDA-approved therapies targeting CD19 and BCMA. However, the extension of these successes to solid tumors remains limited due to several intrinsic challenges, including antigen heterogeneity and immunosuppressive tumor microenvironments. In this review, we provide a comprehensive overview of recent advances in CAR T cell therapy aimed at overcoming these obstacles. We discuss the importance of antigen identification by emphasizing the identification of tumor-specific and tumor-associated antigens and the development of CAR T therapies targeting these antigens. Furthermore, we highlight key structural innovations, including cytokine-armored CARs, protease-regulated CARs, and CARs engineered with chemokine receptors, to enhance tumor infiltration and activity within the immunosuppressive microenvironment. Additionally, novel manufacturing approaches, such as the Sleeping Beauty transposon system, mRNA-based CAR transfection, and in vivo CAR T cell production, are discussed as scalable solution to improve the accessibility of CAR T cell therapies. Finally, we address critical therapeutic limitations, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and suboptimal persistence of CAR T cells. An examination of emerging strategies for countering these limitations reveals that CRISPR-Cas9-mediated genetic modifications and combination therapies utilizing checkpoint inhibitors can improve CAR T cell functionality and durability. By integrating insights from preclinical models, clinical trials, and innovative engineering approaches, this review addresses advances in CAR T cell therapies and their performance in solid tumors.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Antigens, Neoplasm/immunology
- Tumor Microenvironment/immunology
- Animals
- Clinical Trials as Topic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Safwaan H. Khan
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yeonjoo Choi
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Mysore Veena
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - John K. Lee
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Hematology/Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
18
|
He X, Li G, Huang L, Shi H, Zhong S, Zhao S, Jiao X, Xin J, Yin X, Liu S, He Z, Guo M, Yang C, Jin Z, Guo J, Song X. Nonviral targeted mRNA delivery: principles, progresses, and challenges. MedComm (Beijing) 2025; 6:e70035. [PMID: 39760110 PMCID: PMC11695212 DOI: 10.1002/mco2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025] Open
Abstract
Messenger RNA (mRNA) therapeutics have garnered considerable attention due to their remarkable efficacy in the treatment of various diseases. The COVID-19 mRNA vaccine and RSV mRNA vaccine have been approved on the market. Due to the inherent nuclease-instability and negative charge of mRNA, delivery systems are developed to protect the mRNA from degradation and facilitate its crossing cell membrane to express functional proteins or peptides in the cytoplasm. However, the deficiency in transfection efficiency and targeted biological distribution are still the major challenges for the mRNA delivery systems. In this review, we first described the physiological barriers in the process of mRNA delivery and then discussed the design approach and recent advances in mRNA delivery systems with an emphasis on their tissue/cell-targeted abilities. Finally, we pointed out the existing challenges and future directions with deep insights into the design of efficient mRNA delivery systems. We believe that a high-precision targeted delivery system can greatly improve the therapeutic effects and bio-safety of mRNA therapeutics and accelerate their clinical transformations. This review may provide a new direction for the design of mRNA delivery systems and serve as a useful guide for researchers who are looking for a suitable mRNA delivery system.
Collapse
Affiliation(s)
- Xi He
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
- State Key Laboratory of Quality Research in Chinese MedicineMacau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyTaipaMacauChina
| | - Guohong Li
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Letao Huang
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haixing Shi
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Sha Zhong
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Siyu Zhao
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangyu Jiao
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jinxiu Xin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaoling Yin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shengbin Liu
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhongshan He
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengran Guo
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chunli Yang
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhaohui Jin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jun Guo
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangrong Song
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
19
|
Amabile A, Phelan M, Yu Z, Silva P, Marks A, Morla-Folch J, Sohn M, Mollaoglu G, Falcomata C, Teunissen AJP, Brody JD, Dong Y, Brown BD. Bispecific antibody targeting of lipid nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629467. [PMID: 39763831 PMCID: PMC11702604 DOI: 10.1101/2024.12.20.629467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Lipid nanoparticles (LNP) are the most clinically advanced non-viral gene delivery system. While progress has been made for enhancing delivery, cell specific targeting remains a challenge. Targeting moieties such as antibodies can be chemically-conjugated to LNPs however, this approach is complex and has challenges for scaling up. Here, we developed an approach to generate antibody-conjugated LNPs that utilizes a bispecific antibody (bsAb) as the targeting bridge. As a docking site for the bsAb, we generated LNPs with a short epitope, derived from hemagglutinin antigen (HA), embedded in the PEG component of the particle (LNPHA). We generated bsAb in which one domain binds HA and the other binds different cell surface proteins, including PD-L1, CD4, CD5, and SunTag. Non-chemical conjugation of the bsAb and LNP resulted in a major increase in the efficiency and specificity of transfecting cells expressing the cognate target. LNP/bsAb mediated a 4-fold increase in in vivo transfection of PD-L1 expressing cancer cells, and a 26-fold increase in ex vivo transfection of quiescent primary human T cells. Additionally, we created a universal bsAb recognizing HA and anti-rat IgG2, enabling LNP tethering to off-the-shelf antibodies such as CD4, CD8, CD20, CD45, and CD3. By utilizing a molecular dock and bsAb technology, these studies demonstrate a simple and effective strategy to generate antibody-conjugated LNPs, enabling precise and efficient mRNA delivery.
Collapse
Affiliation(s)
- Angelo Amabile
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- RNA NanoCore - Lipid Nanoparticle Therapeutics Core, ISMMS, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Matthew Phelan
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Zhixin Yu
- RNA NanoCore - Lipid Nanoparticle Therapeutics Core, ISMMS, New York, NY, USA
| | - Pedro Silva
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- RNA NanoCore - Lipid Nanoparticle Therapeutics Core, ISMMS, New York, NY, USA
| | - Adam Marks
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, ISMMS, New Yok, NY, USA
| | - Moah Sohn
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Gurkan Mollaoglu
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Chiara Falcomata
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | | | - Joshua D Brody
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
- Hematology and Medical Oncology, ISMMS, New York, New York, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- RNA NanoCore - Lipid Nanoparticle Therapeutics Core, ISMMS, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| | - Brian D Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
- RNA NanoCore - Lipid Nanoparticle Therapeutics Core, ISMMS, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, ISMMS, New York, New York, USA
| |
Collapse
|
20
|
Nguyen HM, Alexander KE, Collinge M, Hickey JC, Lanz TA, Li J, Sheehan MJ, Newman LC, Thorn M. mRNA-LNPs induce immune activation and cytokine release in human whole blood assays across diverse health conditions. Mol Ther 2024:S1525-0016(24)00818-9. [PMID: 39673130 DOI: 10.1016/j.ymthe.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
RNA medicines have become a promising platform for therapeutic use in recent years. Understanding the immunomodulatory effects of novel mRNA-lipid nanoparticles (LNPs) is crucial for future therapeutic development. An in vitro whole blood assay was developed to assess the impact of mRNA-LNPs on immune cell function, cytokine release, and complement activation. mRNA-LNPs significantly increased CD69 expression on T cells and natural killer cells, and CD80/CD86 on myeloid subsets, in a dose-dependent fashion. Furthermore, mRNA-LNPs elicited a robust release of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, monocyte chemoattractant protein-1, IL-6, and IP-10, indicating a potent immune response. Notably, mRNA-LNPs stimulate early cytokine production prior to triggering immune cell activation, suggesting a temporal and biological relationship. Moreover, mRNA-LNPs induce complement activation via the alternative pathway, as evidenced by increased serum sC5b-9, C3a, and Bb, which can amplify the inflammatory response and potentially impact safety. In vitro effects of mRNA-LNPs in whole blood of healthy human donors were compared with those from disease cohorts including systemic lupus erythematosus, type 2 diabetes mellitus, and cancer donors. The differences in mRNA-LNP effects on samples from healthy and diseased populations may impact therapeutic efficacy or toxicity, indicating a need for tailoring LNPs for specific target populations.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA
| | | | - Mark Collinge
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA
| | - James C Hickey
- BioMedicine Design, Pfizer Inc, Cambridge, MA 02139, USA
| | - Thomas A Lanz
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA
| | - Jin Li
- BioMedicine Design, Pfizer Inc, Cambridge, MA 02139, USA
| | - Mark J Sheehan
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA
| | - Leah C Newman
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA
| | - Mitchell Thorn
- Drug Safety Research and Development, Pfizer Inc, Groton, CT 06340, USA.
| |
Collapse
|
21
|
Baena JC, Pérez LM, Toro-Pedroza A, Kitawaki T, Loukanov A. CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad. Int J Mol Sci 2024; 25:13157. [PMID: 39684867 DOI: 10.3390/ijms252313157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named "CAR T nanosymbiosis", offers new opportunities to overcome these challenges. Nanomaterials can enhance CAR T cell delivery, manufacturing, activity modulation, and targeting of the tumor microenvironment, providing better control and precision. This approach aims to improve the efficacy of CAR T cells against solid tumors, reduce associated toxicities, and ultimately enhance patient outcomes. Several studies have shown promising results, and developing this therapy further is essential for increasing its accessibility and effectiveness. Our "addition by subtraction model" synthesizes these multifaceted elements into a unified strategy to advance cancer treatment paradigms.
Collapse
Affiliation(s)
- Juan C Baena
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Lucy M Pérez
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Alejandro Toro-Pedroza
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Toshio Kitawaki
- Department of Hematology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Alexandre Loukanov
- Department of Chemistry and Materials Science, National Institute of Technology, Gunma College, Maebashi 371-8530, Japan
- Laboratory of Engineering Nanobiotechnology, University of Mining and Geology "St. Ivan Rilski", 1700 Sofia, Bulgaria
| |
Collapse
|
22
|
Fan M, Zheng J, Huang Y, Lu M, Shang Z, Du M. Nanoparticle-mediated universal CAR-T therapy. Int J Pharm 2024; 666:124779. [PMID: 39349228 DOI: 10.1016/j.ijpharm.2024.124779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
In recent years, chimeric antigen receptor (CAR)-T cell therapy has been highly successful in treating hematological malignancies, leading to significant advancements in the cancer immunotherapy field. However, the typical CAR-T therapy necessitates the enrichment of patients' own leukocytes for ex vivo production of CAR-T cells, this customized pattern requires a complicated and time-consuming manufacturing procedure, making it costly and less accessible. The off-the-shelf universal CAR-T strategy could reduce manufacturing costs and realize timely drug administration, presenting as an ideal substitute for typical CAR-T therapy. Utilizing nanocarriers for targeted gene delivery is one of the approaches for the realization of universal CAR-T therapy, as biocompatible and versatile nanoparticles could deliver CAR genes to generate CAR-T cells in vivo. Nanoparticle-mediated in situ generation of CAR-T cells possesses multiple advantages, including lowered cost, simplified manufacturing procedure, and shortened administration time, this strategy is anticipated to provide a potentially cost-effective alternative to current autologous CAR-T cell manufacturing, thus facilitating the prevalence and improvement of CAR-T therapy.
Collapse
Affiliation(s)
- Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiayu Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingxia Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Zhi Shang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
23
|
Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther 2024; 9:322. [PMID: 39543114 PMCID: PMC11564800 DOI: 10.1038/s41392-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
In the last decade, messenger ribonucleic acid (mRNA)-based drugs have gained great interest in both immunotherapy and non-immunogenic applications. This surge in interest can be largely attributed to the demonstration of distinct advantages offered by various mRNA molecules, alongside the rapid advancements in nucleic acid delivery systems. It is noteworthy that the immunogenicity of mRNA drugs presents a double-edged sword. In the context of immunotherapy, extra supplementation of adjuvant is generally required for induction of robust immune responses. Conversely, in non-immunotherapeutic scenarios, immune activation is unwanted considering the host tolerability and high expression demand for mRNA-encoded functional proteins. Herein, mainly focused on the linear non-replicating mRNA, we overview the preclinical and clinical progress and prospects of mRNA medicines encompassing vaccines and other therapeutics. We also highlight the importance of focusing on the host-specific variations, including age, gender, pathological condition, and concurrent medication of individual patient, for maximized efficacy and safety upon mRNA administration. Furthermore, we deliberate on the potential challenges that mRNA drugs may encounter in the realm of disease treatment, the current endeavors of improvement, as well as the application prospects for future advancements. Overall, this review aims to present a comprehensive understanding of mRNA-based therapies while illuminating the prospective development and clinical application of mRNA drugs.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Meixing Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, P. R. China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, P. R. China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
24
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
25
|
Vasileva O, Zaborova O, Shmykov B, Ivanov R, Reshetnikov V. Composition of lipid nanoparticles for targeted delivery: application to mRNA therapeutics. Front Pharmacol 2024; 15:1466337. [PMID: 39508050 PMCID: PMC11537937 DOI: 10.3389/fphar.2024.1466337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Today, lipid nanoparticles (LNPs) are some of the main delivery systems for mRNA-based therapeutics. The scope of LNP applications in terms of RNA is not limited to antiviral vaccines but encompasses anticancer drugs and therapeutics for genetic (including rare) diseases. Such widespread use implies high customizability of targeted delivery of LNPs to specific organs and tissues. This review addresses vector-free options for targeted delivery of LNPs, namely the influence of lipid composition of these nanoparticles on their biodistribution. In the review, experimental studies are examined that are focused on the biodistribution of mRNA or of the encoded protein after mRNA administration via LNPs in mammals. We also performed a comprehensive analysis of individual lipids' functional groups that ensure biodistribution to desired organs. These data will allow us to outline prospects for further optimization of lipid compositions of nanoparticles for targeted delivery of mRNA therapeutics.
Collapse
Affiliation(s)
- Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Olga Zaborova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
- Chemistry Department, Moscow State University, Moscow, Russia
| | - Bogdan Shmykov
- Chemistry Department, Moscow State University, Moscow, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
26
|
Tarab-Ravski D, Stotsky-Oterin L, Elisha A, Kundoor GR, Ramishetti S, Hazan-Halevy I, Haas H, Peer D. The future of genetic medicines delivered via targeted lipid nanoparticles to leukocytes. J Control Release 2024; 376:286-302. [PMID: 39401676 DOI: 10.1016/j.jconrel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Genetic medicines hold vast therapeutic potential, offering the ability to silence or induce gene expression, knock out genes, and even edit DNA fragments. Applying these therapeutic modalities to leukocytes offers a promising path for treating various conditions yet overcoming the obstacles of specific and efficient delivery to leukocytes remains a major bottleneck in their clinical translation. Lipid nanoparticles (LNPs) have emerged as the leading delivery system for nucleic acids due to their remarkable versatility and ability to improve their in vivo stability, pharmacokinetics, and therapeutic benefits. Equipping LNPs with targeting moieties can promote their specific cellular uptake and internalization to leukocytes, making targeted LNPs (tLNPs) an inseparable part of developing leukocyte-targeted gene therapy. However, despite the significant advancements in research, genetic medicines for leukocytes using targeted delivery approaches have not been translated into the clinic yet. Herein, we discuss the important aspects of designing tLNPs and highlight the considerations for choosing an appropriate bioconjugation strategy and targeting moiety. Furthermore, we provide our insights on limiting challenges and identify key areas for further research to advance these exciting therapies for patient care.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Govinda Reddy Kundoor
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Heinrich Haas
- NeoVac Ltd. 127 Olympic Ave., OX14 4SA, Milton Park, Oxfordshire, UK; Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Zhao H, Li M, Zhou J, Hu L, Lu S, Li P. The Recent Research Progress of the Tumor mRNA Vaccine. Vaccines (Basel) 2024; 12:1167. [PMID: 39460333 PMCID: PMC11512251 DOI: 10.3390/vaccines12101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Tumors have long posed a significant threat to human life and health, and the messenger ribonucleic acid (mRNA) vaccine is seen as an attractive approach for cancer immunotherapy due to its developmental simplicity, rapid manufacture, and increased immune safety and efficiency. In this review, we have summarized details of the developmental history of mRNA vaccines, discussed the basic molecular structure and the effect on the stable and translation level of mRNA, analyzed the underlying immune efficiency and mechanisms on tumors, and assessed the current status of clinical research. We explored the treatment and application prospects of mRNA vaccines, aiming to provide perspectives on the future of mRNA tumor vaccines for ongoing clinical research.
Collapse
Affiliation(s)
- Hao Zhao
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310051, China; (H.Z.); (M.L.); (J.Z.); (S.L.)
| | - Miying Li
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310051, China; (H.Z.); (M.L.); (J.Z.); (S.L.)
| | - Jiaren Zhou
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310051, China; (H.Z.); (M.L.); (J.Z.); (S.L.)
| | - Lidan Hu
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Shaohong Lu
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310051, China; (H.Z.); (M.L.); (J.Z.); (S.L.)
| | - Pan Li
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310051, China; (H.Z.); (M.L.); (J.Z.); (S.L.)
| |
Collapse
|
28
|
Wells K, Liu T, Zhu L, Yang L. Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy. NANOSCALE 2024; 16:17699-17722. [PMID: 39257225 DOI: 10.1039/d4nr01780c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cancer immunotherapy represents a promising targeted treatment by leveraging the patient's immune system or adoptive transfer of active immune cells to selectively eliminate cancer cells. Despite notable clinical successes, conventional immunotherapies face significant challenges stemming from the poor infiltration of endogenous or adoptively transferred cytotoxic T cells in tumors, immunosuppressive tumor microenvironment and the immune evasion capability of cancer cells, leading to limited efficacy in many types of solid tumors. Overcoming these hurdles is essential to broaden the applicability of immunotherapies. Recent advances in nanotherapeutics have emerged as an innovative tool to overcome these challenges and enhance the therapeutic potential of tumor immunotherapy. The unique biochemical and biophysical properties of nanomaterials offer advantages in activation of immune cells in vitro for cell therapy, targeted delivery, and controlled release of immunomodulatory agents in vivo. Nanoparticles are excellent carriers for tumor associated antigens or neoantigen peptides for tumor vaccine, empowering activation of tumor specific T cell responses. By precisely delivering immunomodulatory agents to the tumor site, immunoactivating nanoparticles can promote tumor infiltration of endogenous T cells or adoptively transferred T cells into tumors, to overcoming delivery and biological barriers in the tumor microenvironment, augmenting the immune system's ability to recognize and eliminate cancer cells. This review provides an overview of the current advances in immunotherapeutic approaches utilizing nanotechnology. With a focus on discussions concerning strategies to enhance activity and efficacy of cytotoxic T cells and explore the intersection of engineering nanoparticles and immunomodulation aimed at bolstering T cell-mediated immune responses, we introduce various nanoparticle formulations designed to deliver therapeutic payloads, tumor antigens and immunomodulatory agents for T cell activation. Diverse mechanisms through which nanoparticle-based approaches influence T cell responses by improving antigen presentation, promoting immune cell trafficking, and reprogramming immunosuppressive tumor microenvironments to potentiate anti-tumor immunity are examined. Additionally, the synergistic potential of combining nanotherapeutics with existing immunotherapies, such as immune checkpoint inhibitors and adoptive T cell therapies is explored. In conclusion, this review highlights emerging research advances on activation of cytotoxic T cells using nanoparticle agents to support the promises and potential applications of nanoparticle-based immunomodulatory agents for cancer immunotherapy.
Collapse
Affiliation(s)
- Kory Wells
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
30
|
Han X, Alameh MG, Gong N, Xue L, Ghattas M, Bojja G, Xu J, Zhao G, Warzecha CC, Padilla MS, El-Mayta R, Dwivedi G, Xu Y, Vaughan AE, Wilson JM, Weissman D, Mitchell MJ. Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo. Nat Chem 2024; 16:1687-1697. [PMID: 38982196 PMCID: PMC11446653 DOI: 10.1038/s41557-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/14/2024] [Indexed: 07/11/2024]
Abstract
Lipid nanoparticles (LNPs) are widely used for mRNA delivery, with cationic lipids greatly affecting biodistribution, cellular uptake, endosomal escape and transfection efficiency. However, the laborious synthesis of cationic lipids limits the discovery of efficacious candidates and slows down scale-up manufacturing. Here we develop a one-pot, tandem multi-component reaction based on the rationally designed amine-thiol-acrylate conjugation, which enables fast (1 h) and facile room-temperature synthesis of amidine-incorporated degradable (AID) lipids. Structure-activity relationship analysis of a combinatorial library of 100 chemically diverse AID-lipids leads to the identification of a tail-like amine-ring-alkyl aniline that generally affords efficacious lipids. Experimental and theoretical studies show that the embedded bulky benzene ring can enhance endosomal escape and mRNA delivery by enabling the lipid to adopt a more conical shape. The lead AID-lipid can not only mediate local delivery of mRNA vaccines and systemic delivery of mRNA therapeutics, but can also alter the tropism of liver-tropic LNPs to selectively deliver gene editors to the lung and mRNA vaccines to the spleen.
Collapse
Affiliation(s)
- Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Majed Ghattas
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Goutham Bojja
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claude C Warzecha
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garima Dwivedi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Xu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Li J, Foged C. Evaluating the breadth of nucleic acid-based payloads delivered in lipid nanoparticles to establish fundamental differences in development. Expert Opin Drug Deliv 2024; 21:1441-1461. [PMID: 39387233 DOI: 10.1080/17425247.2024.2409142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nucleic acid (NA)-based therapeutics have shown great potential for downregulating or augmenting gene expression, and for promising applications, e.g., protein-replacement therapy and vaccination, a comprehensive understanding of the requirements for their targeted delivery to specific tissues or cells is needed. AREAS COVERED In this review, we discuss clinical applications of four representative types of NA-based therapeutics, i.e. antisense oligonucleotides, small interfering RNA, messenger RNA, and circular RNA, with a focus on the lipid nanoparticle (LNP) technology used for intracellular delivery. The in vivo fate of LNPs is discussed to improve the understanding of trafficking of nanomedicines at the systemic and cellular levels. In addition, NA-based vaccines are discussed, focusing on targeting antigen-presenting cells and immune activation. EXPERT OPINION Optimization of delivery systems for NA-based therapeutics is mainly focused on the standard requirements of prolonged systemic circulation and enhancing endosomal escape. Depending on the final destination in specific target tissues or cells, strategies should be adjusted to achieve the desired biodistribution of NA-based payloads. More studies relating to the pharmacokinetics of both cargo and carrier are encouraged, because their in vivo fates may differ, considering the possibility of premature cargo release before reaching the target.
Collapse
Affiliation(s)
- Jinjin Li
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
32
|
Liu Y, Huang Y, He G, Guo C, Dong J, Wu L. Development of mRNA Lipid Nanoparticles: Targeting and Therapeutic Aspects. Int J Mol Sci 2024; 25:10166. [PMID: 39337651 PMCID: PMC11432440 DOI: 10.3390/ijms251810166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as leading non-viral carriers for messenger RNA (mRNA) delivery in clinical applications. Overcoming challenges in safe and effective mRNA delivery to target tissues and cells, along with controlling release from the delivery vehicle, remains pivotal in mRNA-based therapies. This review elucidates the structure of LNPs, the mechanism for mRNA delivery, and the targeted delivery of LNPs to various cells and tissues, including leukocytes, T-cells, dendritic cells, Kupffer cells, hepatic endothelial cells, and hepatic and extrahepatic tissues. Here, we discuss the applications of mRNA-LNP vaccines for the prevention of infectious diseases and for the treatment of cancer and various genetic diseases. Although challenges remain in terms of delivery efficiency, specific tissue targeting, toxicity, and storage stability, mRNA-LNP technology holds extensive potential for the treatment of diseases.
Collapse
Affiliation(s)
- Yaping Liu
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Huang
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guantao He
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Guo
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinhua Dong
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
33
|
Lu RM, Hsu HE, Perez SJLP, Kumari M, Chen GH, Hong MH, Lin YS, Liu CH, Ko SH, Concio CAP, Su YJ, Chang YH, Li WS, Wu HC. Current landscape of mRNA technologies and delivery systems for new modality therapeutics. J Biomed Sci 2024; 31:89. [PMID: 39256822 PMCID: PMC11389359 DOI: 10.1186/s12929-024-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents with high efficiency and without triggering side effects. In this regard, lipid nanoparticles have been successfully utilized to improve mRNA delivery and protect the cargo from extracellular degradation. Encapsulation in lipid nanoparticles was an essential factor in the successful clinical application of mRNA vaccines, which conclusively demonstrated the technology's potential to yield approved medicines. In this review, we begin by describing current advances in mRNA modifications, design of novel lipids and development of lipid nanoparticle components for mRNA-based drugs. Then, we summarize key points pertaining to preclinical and clinical development of mRNA therapeutics. Finally, we cover topics related to targeted delivery systems, including endosomal escape and targeting of immune cells, tumors and organs for use with mRNA vaccines and new treatment modalities for human diseases.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiang-En Hsu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Yin-Shiou Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ching-Hang Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Yi-Jen Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Yi-Han Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| |
Collapse
|
34
|
Huang L, Huang Z, Zhang Y, Lin C, Zhao Z, Li R, Saw PE, Xu X. Advances in targeted delivery of mRNA into immune cells for enhanced cancer therapy. Theranostics 2024; 14:5528-5550. [PMID: 39310113 PMCID: PMC11413781 DOI: 10.7150/thno.93745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/06/2024] [Indexed: 09/25/2024] Open
Abstract
Messenger RNA (mRNA) therapy has been applied to the treatment of various human diseases including malignant tumors. Increasing evidences have shown that mRNA can enhance the efficacy of cancer immunotherapy by modulating the functions of immune cells and stimulating their activity. However, mRNA is a type of negatively charged biomacromolecules that are susceptible to serum nucleases and cannot readily cross the cell membrane. In the past few decades, various nanoparticles (NPs)-based delivery systems have been rationally designed and developed to facilitate the intracellular uptake and cytosolic delivery of mRNA. More importantly, by means of the specific recognition between the targeting ligands decorated on NP surface and receptors specifically expressed on immune cells, these mRNA delivery systems could be functionalized to target immune cells to further enhance the mRNA-based cancer immunotherapy. In this review, we briefly introduced the advancements of mRNA in cancer therapy, discussed the challenges faced by mRNA delivery, and systematically summarized the recent development in NPs-based mRNA delivery systems targeting various types of immune cells for cancer immunotherapy. The future development of NPs-mediated targeted mRNA delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Linzhuo Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Yuxuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Chunhao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Zixuan Zhao
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| |
Collapse
|
35
|
Jain M, Yu X, Schneck JP, Green JJ. Nanoparticle Targeting Strategies for Lipid and Polymer-Based Gene Delivery to Immune Cells In Vivo. SMALL SCIENCE 2024; 4:2400248. [PMID: 40212067 PMCID: PMC11935263 DOI: 10.1002/smsc.202400248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Indexed: 04/13/2025] Open
Abstract
Lipid nanoparticles and polymeric nanoparticles are promising biomaterial platforms for robust intracellular DNA and mRNA delivery, highlighted by the widespread use of nanoparticle- (NP) based mRNA vaccines to help end the COVID-19 pandemic. Recent research has sought to adapt this nanotechnology to transfect and engineer immune cells in vivo. The immune system is an especially appealing target due to its involvement in many different diseases, and ex vivo-engineered immune cell therapies like chimeric antigen receptor (CAR) T therapy have already demonstrated remarkable clinical success in certain blood cancers. Although gene delivery can potentially address some of the cost and manufacturing concerns associated with current autologous immune cell therapies, transfecting immune cells in vivo is challenging. Not only is extrahepatic NP delivery to lymphoid organs difficult, but immune cells like T cells have demonstrated particular resistance to transfection. Despite these challenges, the modular nature of NPs allows researchers to examine critical structure-function relationships between a particle's properties and its ability to specifically engineer immune cells in vivo. Herein, several nanomaterial components are outlined, including targeting ligands, nucleic acid cargo, chemical properties, physical properties, and the route of administration to specifically target NPs to immune cells for optimal in vivo transfection.
Collapse
Affiliation(s)
- Manav Jain
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Xinjie Yu
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Department of Chemical & Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jonathan P. Schneck
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Departments of Pathology and MedicineJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Jordan J. Green
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Department of Chemical & Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer CenterThe Bloomberg∼Kimmel Institute for Cancer ImmunotherapyJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Departments of Ophthalmology, Neurosurgery, and Materials Science & EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
36
|
Saber N, Senti ME, Schiffelers RM. Lipid Nanoparticles for Nucleic Acid Delivery Beyond the Liver. Hum Gene Ther 2024; 35:617-627. [PMID: 39139067 DOI: 10.1089/hum.2024.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Lipid nanoparticles (LNPs) are the most clinically advanced drug delivery system for nucleic acid therapeutics, exemplified by the success of the COVID-19 mRNA vaccines. However, their clinical use is currently limited to hepatic diseases and vaccines due to their tendency to accumulate in the liver upon intravenous administration. To fully leverage their potential, it is essential to understand and address their liver tropism, while also developing strategies to enhance delivery to tissues beyond the liver. Ensuring that these therapeutics reach their target cells while avoiding off-target cells is essential for both their efficacy and safety. There are three potential targeting strategies-passive, active, and endogenous-which can be used individually or in combination to target nonhepatic tissues. In this review, we delve into the recent advancements in LNP engineering for delivering nucleic acid beyond the liver.
Collapse
Affiliation(s)
- Nadine Saber
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
37
|
Gao Y, Yang L, Li Z, Peng X, Li H. mRNA vaccines in tumor targeted therapy: mechanism, clinical application, and development trends. Biomark Res 2024; 12:93. [PMID: 39217377 PMCID: PMC11366172 DOI: 10.1186/s40364-024-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Malignant tumors remain a primary cause of human mortality. Among the various treatment modalities for neoplasms, tumor vaccines have consistently shown efficacy and promising potential. These vaccines offer advantages such as specificity, safety, and tolerability, with mRNA vaccines representing promising platforms. By introducing exogenous mRNAs encoding antigens into somatic cells and subsequently synthesizing antigens through gene expression systems, mRNA vaccines can effectively induce immune responses. Katalin Karikó and Drew Weissman were awarded the 2023 Nobel Prize in Physiology or Medicine for their great contributions to mRNA vaccine research. Compared with traditional tumor vaccines, mRNA vaccines have several advantages, including rapid preparation, reduced contamination, nonintegrability, and high biodegradability. Tumor-targeted therapy is an innovative treatment modality that enables precise targeting of tumor cells, minimizes damage to normal tissues, is safe at high doses, and demonstrates great efficacy. Currently, targeted therapy has become an important treatment option for malignant tumors. The application of mRNA vaccines in tumor-targeted therapy is expanding, with numerous clinical trials underway. We systematically outline the targeted delivery mechanism of mRNA vaccines and the mechanism by which mRNA vaccines induce anti-tumor immune responses, describe the current research and clinical applications of mRNA vaccines in tumor-targeted therapy, and forecast the future development trends of mRNA vaccine application in tumor-targeted therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, 110001, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
38
|
Hsiao S, Chen S, Jiang Y, Wang Q, Yang Y, Lai Y, Zhong T, Liao J, Wu Y. Library-Assisted Evolution in Eukaryotic Cells Yield Adenine Base Editors with Enhanced Editing Specificity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309004. [PMID: 38874509 PMCID: PMC11321652 DOI: 10.1002/advs.202309004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/05/2024] [Indexed: 06/15/2024]
Abstract
The current-generation adenine base editor (ABE) ABE8e, which has evolved from the prokaryotic evolution system, exhibits high efficiency in mediating A-to-G conversion and is presumed to be promising for gene therapy. However, its much wider editing window and substantially higher off-target editing activity restricted its applications in precise base editing for therapeutic use. This study uses a library-assisted protein evolution approach using eukaryotic cells to generate ABE variants with improved specificity and reduced off-target editing while maintaining high activity in human cells. The study generated an expanded set of ABEs with efficient editing activities and chose four evolved variants that offered either similar or modestly higher efficiency within a narrower editing window of protospacer position ≈4-7 compared to that of ABE8e in human cells, which would enable minimized bystander editing. Moreover, these variants resulted in reduced off-target editing events when delivered as plasmid or mRNA into human cells. Finally, these variants can install both disease-suppressing mutations and disease-correcting mutations efficiently with minimal undesired bystander editing making them promising approaches for specific therapeutic edits. In summary, the work establishes a mutant-library-assisted protein evolution method in eukaryotic cells and generates alternative ABE variants as efficient tools for precise human genome editing.
Collapse
Affiliation(s)
- Shenlin Hsiao
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Shuanghong Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yanhong Jiang
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Qiudao Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yang Yang
- Department of HematologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi530021China
| | - Yongrong Lai
- Department of HematologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi530021China
| | - Tao Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Jiaoyang Liao
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
- YolTech TherapeuticsShanghai201199China
| | - Yuxuan Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
- YolTech TherapeuticsShanghai201199China
| |
Collapse
|
39
|
Long J, Wang Y, Jiang X, Ge J, Chen M, Zheng B, Wang R, Wang M, Xu M, Ke Q, Wang J. Nanomaterials Boost CAR-T Therapy for Solid Tumors. Adv Healthc Mater 2024; 13:e2304615. [PMID: 38483400 DOI: 10.1002/adhm.202304615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Indexed: 05/22/2024]
Abstract
T cell engineering, particularly via chimeric antigen receptor (CAR) modifications for enhancing tumor specificity, has shown efficacy in treating hematologic malignancies. The extension of CAR-T cell therapy to solid tumors, however, is impeded by several challenges: The absence of tumor-specific antigens, antigen heterogeneity, a complex immunosuppressive tumor microenvironment, and physical barriers to cell infiltration. Additionally, limitations in CAR-T cell manufacturing capacity and the high costs associated with these therapies restrict their widespread application. The integration of nanomaterials into CAR-T cell production and application offers a promising avenue to mitigate these challenges. Utilizing nanomaterials in the production of CAR-T cells can decrease product variability and lower production expenses, positively impacting the targeting and persistence of CAR-T cells in treatment and minimizing adverse effects. This review comprehensively evaluates the use of various nanomaterials in the production of CAR-T cells, genetic modification, and in vivo delivery. It discusses their underlying mechanisms and potential for clinical application, with a focus on improving specificity and safety in CAR-T cell therapy.
Collapse
Affiliation(s)
- Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, 1001 Xueyuan Road, Shenzhen, 518055, China
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, 362000, China
| | - Boshu Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Rong Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Meifang Xu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Qi Ke
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| |
Collapse
|
40
|
Siebart JC, Chan CS, Yao X, Su FY, Kwong GA. In vivo gene delivery to immune cells. Curr Opin Biotechnol 2024; 88:103169. [PMID: 38972172 PMCID: PMC11316639 DOI: 10.1016/j.copbio.2024.103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/16/2023] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Immune cell therapies are an emerging class of living drugs that rely on the delivery of therapeutic transgenes to enhance, modulate, or restore cell function, such as those that encode for tumor-targeting receptors or replacement proteins. However, many cellular immunotherapies are autologous treatments that are limited by high manufacturing costs, typical vein-to-vein time of 3-4 weeks, and severe immune-related adverse effects. To address these issues, different classes of gene delivery vehicles are being developed to target specific immune cell subsets in vivo to address the limitations of ex vivo manufacturing, modulate therapeutic responses in situ, and reduce on- and off-target toxicity. The success of in vivo gene delivery to immune cells - which is being tested at the preclinical and clinical stages of development for the treatment of cancer, infectious diseases, and autoimmunity - is paramount for the democratization of cellular immunotherapies.
Collapse
Affiliation(s)
- Jamison C Siebart
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ching S Chan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Xinyi Yao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Fang-Yi Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Gabriel A Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA; Georgia ImmunoEngineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
41
|
Raines SLM, Falcinelli SD, Peterson JJ, Van Gulck E, Allard B, Kirchherr J, Vega J, Najera I, Boden D, Archin NM, Margolis DM. Nanoparticle delivery of Tat synergizes with classical latency reversal agents to express HIV antigen targets. Antimicrob Agents Chemother 2024; 68:e0020124. [PMID: 38829049 PMCID: PMC11232404 DOI: 10.1128/aac.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.
Collapse
Affiliation(s)
- Samuel L. M. Raines
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Brigitte Allard
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | - Isabel Najera
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nancie M. Archin
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Lin Y, Chen X, Wang K, Liang L, Zhang H. An Overview of Nanoparticle-Based Delivery Platforms for mRNA Vaccines for Treating Cancer. Vaccines (Basel) 2024; 12:727. [PMID: 39066365 PMCID: PMC11281455 DOI: 10.3390/vaccines12070727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
With its unique properties and potential applications, nanoparticle-based delivery platforms for messenger RNA (mRNA) vaccines have gained significant attention in recent years. Nanoparticles have the advantages of enhancing immunogenicity, targeting delivery, and improving stability, providing a new solution for drug and vaccine delivery. In some clinical studies, a variety of nanoparticle delivery platforms have been gradually applied to a wide range of vaccine applications. Current research priorities are exploring various types of nanoparticles as vaccine delivery systems to enhance vaccine stability and immunogenicity. Lipid nanoparticles (LNPs) have shown promising potential in preclinical and clinical studies on the efficient delivery of antigens to immune cells. Moreover, lipid nanoparticles and other nanoparticles for nucleic acids, especially for mRNA delivery systems, have shown vast potential for vaccine development. In this review, we present various vaccine platforms with an emphasis on nanoparticles as mRNA vaccine delivery vehicles. We describe several novel nanoparticle delivery platforms for mRNA vaccines, such as lipid-, polymer-, and protein-based nanoparticles. In addition, we provide an overview of the anti-tumor immunity of nanovaccines against different tumors in cancer immunotherapy. Finally, we outline future perspectives and remaining challenges for this promising technology of nanoparticle-based delivery platforms for vaccines.
Collapse
Affiliation(s)
- Yang Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Xuehua Chen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Ke Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Jinfeng Laboratory, Chongqing Science and Technology Innovation Center, Chongqing 401329, China
| | - Hongxia Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
43
|
Khawar MB, Afzal A, Si Y, Sun H. Steering the course of CAR T cell therapy with lipid nanoparticles. J Nanobiotechnology 2024; 22:380. [PMID: 38943167 PMCID: PMC11212433 DOI: 10.1186/s12951-024-02630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024] Open
Abstract
Lipid nanoparticles (LNPs) have proven themselves as transformative actors in chimeric antigen receptor (CAR) T cell therapy, surpassing traditional methods and addressing challenges like immunogenicity, reduced toxicity, and improved safety. Promising preclinical results signal a shift toward safer and more effective CAR T cell treatments. Ongoing research aims to validate these findings in clinical trials, marking a new era guided by LNPs utility in CAR therapy. Herein, we explore the preference for LNPs over traditional methods, highlighting the versatility of LNPs and their effective delivery of nucleic acids. Additionally, we address key challenges in clinical considerations, heralding a new era in CAR T cell therapy.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China.
| |
Collapse
|
44
|
Zhang T, Yin H, Li Y, Yang H, Ge K, Zhang J, Yuan Q, Dai X, Naeem A, Weng Y, Huang Y, Liang XJ. Optimized lipid nanoparticles (LNPs) for organ-selective nucleic acids delivery in vivo. iScience 2024; 27:109804. [PMID: 38770138 PMCID: PMC11103379 DOI: 10.1016/j.isci.2024.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Nucleic acid therapeutics offer tremendous promise for addressing a wide range of common public health conditions. However, the in vivo nucleic acids delivery faces significant biological challenges. Lipid nanoparticles (LNPs) possess several advantages, such as simple preparation, high stability, efficient cellular uptake, endosome escape capabilities, etc., making them suitable for delivery vectors. However, the extensive hepatic accumulation of LNPs poses a challenge for successful development of LNPs-based nucleic acid therapeutics for extrahepatic diseases. To overcome this hurdle, researchers have been focusing on modifying the surface properties of LNPs to achieve precise delivery. The review aims to provide current insights into strategies for LNPs-based organ-selective nucleic acid delivery. In addition, it delves into the general design principles, targeting mechanisms, and clinical development of organ-selective LNPs. In conclusion, this review provides a comprehensive overview to provide guidance and valuable insights for further research and development of organ-selective nucleic acid delivery systems.
Collapse
Affiliation(s)
- Tian Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Han Yin
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyin Yang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002 China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002 China
| | - Qing Yuan
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xuyan Dai
- Apharige Therapeutics Co., Ltd, Beijing 102629, China
| | - Abid Naeem
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
45
|
Rossi M, Breman E. Engineering strategies to safely drive CAR T-cells into the future. Front Immunol 2024; 15:1411393. [PMID: 38962002 PMCID: PMC11219585 DOI: 10.3389/fimmu.2024.1411393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety. Nonetheless, their capacity to integrate semi-randomly into the host genome makes them potentially oncogenic via insertional mutagenesis and dysregulation of key cellular genes. Secondary cancers following CAR T-cell administration appear to be a rare adverse event. However several cases documented in the last few years put the spotlight on this issue, which might have been underestimated so far, given the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial successes obtained in hematological malignancies have not yet been replicated in solid tumors. It is now clear that further enhancements are needed to allow CAR T-cells to increase long-term persistence, overcome exhaustion and cope with the immunosuppressive tumor microenvironment. To this aim, a variety of genomic engineering strategies are under evaluation, most relying on CRISPR/Cas9 or other gene editing technologies. These approaches are liable to introduce unintended, irreversible genomic alterations in the product cells. In the first part of this review, we will discuss the viral and non-viral approaches used for the generation of CAR T-cells, whereas in the second part we will focus on gene editing and non-gene editing T-cell engineering, with particular regard to advantages, limitations, and safety. Finally, we will critically analyze the different gene deployment and genomic engineering combinations, delineating strategies with a superior safety profile for the production of next-generation CAR T-cell.
Collapse
|
46
|
Huang X, Ma Y, Ma G, Xia Y. Unlocking the Therapeutic Applicability of LNP-mRNA: Chemistry, Formulation, and Clinical Strategies. RESEARCH (WASHINGTON, D.C.) 2024; 7:0370. [PMID: 38894715 PMCID: PMC11185168 DOI: 10.34133/research.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 06/21/2024]
Abstract
Messenger RNA (mRNA) has emerged as an innovative therapeutic modality, offering promising avenues for the prevention and treatment of a variety of diseases. The tremendous success of mRNA vaccines in effectively combatting coronavirus disease 2019 (COVID-19) evidences the unlimited medical and therapeutic potential of mRNA technology. Overcoming challenges related to mRNA stability, immunogenicity, and precision targeting has been made possible by recent advancements in lipid nanoparticles (LNPs). This review summarizes state-of-the-art LNP-mRNA-based therapeutics, including their structure, material compositions, design guidelines, and screening principles. Additionally, we highlight current preclinical and clinical trends in LNP-mRNA therapeutics in a broad range of treatments in ophthalmological conditions, cancer immunotherapy, gene editing, and rare-disease medicine. Particular attention is given to the translation and evolution of LNP-mRNA vaccines into a broader spectrum of therapeutics. We explore concerns in the aspects of inadequate extrahepatic targeting efficacy, elevated doses, safety concerns, and challenges of large-scale production procedures. This discussion may offer insights and perspectives on near- and long-term clinical development prospects for LNP-mRNA therapeutics.
Collapse
Affiliation(s)
| | - Yishan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
47
|
Weber JA, Lang JF, Carrell EM, Alameh MG, Davidson BL. Temporal restriction of Cas9 expression improves CRISPR-mediated deletion efficacy and fidelity. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102172. [PMID: 38978694 PMCID: PMC11229411 DOI: 10.1016/j.omtn.2024.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/08/2024] [Indexed: 07/10/2024]
Abstract
Clinical application of CRISPR-Cas9 technology for large deletions of somatic mutations is inefficient, and methods to improve utility suffer from our inability to rapidly assess mono- vs. biallelic deletions. Here we establish a model system for investigating allelic heterogeneity at the single-cell level and identify indel scarring from non-simultaneous nuclease activity at gRNA cut sites as a major barrier to CRISPR-del efficacy both in vitro and in vivo. We show that non-simultaneous nuclease activity is partially prevented via restriction of CRISPR-Cas9 expression via inducible adeno-associated viruses (AAVs) or lipid nanoparticles (LNPs). Inducible AAV-based expression of CRISPR-del machinery significantly improved mono- and biallelic deletion frequency in vivo, supporting the use of the Xon cassette over traditional constitutively expressing AAV approaches. These data depicting improvements to deletions and insight into allelic heterogeneity after CRISPR-del will inform therapeutic approaches for phenotypes that require either large mono- or biallelic deletions, such as autosomal recessive diseases or where mutant allele-specific gRNAs are not readily available, or in situations where the targeted sequence for excision is located multiple times in a genome.
Collapse
Affiliation(s)
- Jesse A Weber
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan F Lang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellie M Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Penn Institute for RNA Innovation, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Zhang Y, Gao Z, Yang X, Xu Q, Lu Y. Leveraging high-throughput screening technologies in targeted mRNA delivery. Mater Today Bio 2024; 26:101101. [PMID: 38883419 PMCID: PMC11176929 DOI: 10.1016/j.mtbio.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024] Open
Abstract
Messenger ribonucleic acid (mRNA) has emerged as a promising molecular preventive and therapeutic approach that opens new avenues for healthcare. Although the use of delivery systems, especially lipid nanoparticles (LNPs), greatly improves the efficiency and stability of mRNA, mRNA tends to accumulate in the liver and hardly penetrates physiological barriers to reach the target site after intravenous injection. Hence, the rational design of targeting strategies aimed at directing mRNA to specific tissues and cells remains an enormous challenge in mRNA therapy. High-throughput screening (HTS) is a cutting-edge targeted technique capable of synthesizing chemical compound libraries for the large-scale experiments to validate the efficiency of mRNA delivery system. In this review, we firstly provide an overview of conventional low-throughput targeting strategies. Then the latest advancements in HTS techniques for mRNA targeted delivery, encompassing optimizing structures of large-scale delivery vehicles and developing large-scale surface ligands, as well as the applications of HTS techniques in extrahepatic systemic diseases are comprehensively summarized. Moreover, we illustrate the selection of administration routes for targeted mRNA delivery. Finally, challenges in the field and potential solutions to tackle them are proposed, offering insights for future development toward mRNA targeted therapy.
Collapse
Affiliation(s)
- Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhifei Gao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiao Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Qinglong Xu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| |
Collapse
|
49
|
Metzloff AE, Padilla MS, Gong N, Billingsley MM, Han X, Merolle M, Mai D, Figueroa-Espada CG, Thatte AS, Haley RM, Mukalel AJ, Hamilton AG, Alameh MG, Weissman D, Sheppard NC, June CH, Mitchell MJ. Antigen Presenting Cell Mimetic Lipid Nanoparticles for Rapid mRNA CAR T Cell Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313226. [PMID: 38419362 PMCID: PMC11209815 DOI: 10.1002/adma.202313226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable clinical success in the treatment of hematological malignancies. However, producing these bespoke cancer-killing cells is a complicated ex vivo process involving leukapheresis, artificial T cell activation, and CAR construct introduction. The activation step requires the engagement of CD3/TCR and CD28 and is vital for T cell transfection and differentiation. Though antigen-presenting cells (APCs) facilitate activation in vivo, ex vivo activation relies on antibodies against CD3 and CD28 conjugated to magnetic beads. While effective, this artificial activation adds to the complexity of CAR T cell production as the beads must be removed prior to clinical implementation. To overcome this challenge, this work develops activating lipid nanoparticles (aLNPs) that mimic APCs to combine the activation of magnetic beads and the transfection capabilities of LNPs. It is shown that aLNPs enable one-step activation and transfection of primary human T cells with the resulting mRNA CAR T cells reducing tumor burden in a murine xenograft model, validating aLNPs as a promising platform for the rapid production of mRNA CAR T cells.
Collapse
Affiliation(s)
- Ann E Metzloff
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marshall S Padilla
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ningqiang Gong
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret M Billingsley
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xuexiang Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Merolle
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Mai
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christian G Figueroa-Espada
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ajay S Thatte
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca M Haley
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alvin J Mukalel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alex G Hamilton
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Neil C Sheppard
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carl H June
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
50
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|