1
|
Nazakat L, Ali S, Summer M, Nazakat F, Noor S, Riaz A. Pharmacological modes of plant-derived compounds for targeting inflammation in rheumatoid arthritis: A comprehensive review on immunomodulatory perspective. Inflammopharmacology 2025; 33:1537-1581. [PMID: 40074996 DOI: 10.1007/s10787-025-01664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is one of the most prevalent autoimmune, chronic, inflammatory disease characterized by joint inflammation, synovial swelling, loss of articular structures, swelling, and pain. RA is a major cause of discomfort and disability worldwide, associated with infectious agents, genetic determinants, epigenetic factors, advancing age, obesity, and smoking. Although conventional therapies for RA alleviate the symptoms, but their long-term use is associated with significant side effects. This necessitates the urge to discover complementary and alternative medicine from natural products with minimum side effects. PURPOSE In this review, natural product's potential mechanism of action against RA has been documented in the setting of in-vivo, in-vitro and pre-clinical trials, which provides new treatment opportunities for RA patients. The bioefficacy of these natural product's bioactive compounds must be further studied to discover novel natural medications for RA with high selectivity, improved effectiveness, and economic replacement with minimum side effects. STUDY DESIGN AND METHODS The current review article was designed systematically in chronological order. Plants and their phytochemicals are discussed in an order concerning their mode of action. All the mechanisms of action are depicted in diagrams which are thoroughly generated by the Chembiodraw to maintain the integrity of the work. Moreover, by incorporating the recent data with simple language which is not incorporated previously, we tried to provide a molecular insight to the readers of every level and ethnicity. Moreover, Google Scholar, PubMed, ResearchGate, and Science Direct databases were used to collect the data. SOLUTION Traditionally, various plant extracts and bioactive compounds are effectively used against RA, but their comprehensive pharmacological mechanistic actions are rarely discussed. Therefore, the objective of this study is to systematically review the efficacy and proposed mechanisms of action of different plants and their bioactive compounds including Tripterygium wilfordii Hook F (celastrol and triptolide), Nigella sativa (thymoquinone), Zingiber officinale (shogaols, zingerone), Boswellia serrata (boswellic acids), Curcuma longa (curcumin), and Syzygium aromaticum (eugenol) against rheumatoid arthritis. CONCLUSION These plants have strong anti-inflammatory, anti-oxidant, and anti-arthritic effects in different study designs of rheumatoid arthritis with negligible side effects. Phytomedicines could revolutionize pharmacology as they act through alternative pathways hence seeming biocompatible.
Collapse
Affiliation(s)
- Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Fakiha Nazakat
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Verma S, Hariwal M, Kumar S. Exploratory analysis of agro-morphological characteristics in Nigella sativa L. plant genotypes to determine mutagen colchicine ameliorative/ non-ameliorative impacts. Sci Rep 2024; 14:24521. [PMID: 39424969 PMCID: PMC11489419 DOI: 10.1038/s41598-024-75755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
This experimental study aimed to elucidate the optimal colchicine concentration for inducing polyploidy and to examine the morphological effects on Nigella sativa L. (family Ranunculaceae) plants recognized as 'Kalonji' in India. Here, seeds were exposed with different concentration of colchicine ranging from 0.025 to 0.4% with varying time duration (24-48 h). The agro-morphological attributes and chromosome counts of the putative polyploids were compared with control diploid plants, revealing significant differences. The ploidy level determined by chromosome counts revealed that 0.05-0.1% concentration of colchicine induced tetraploids within both plant genotypes for 24 h and 48 h. However, results based on agro-morphological trait correlation analysis revealed more significant association among yield traits at 0.1% concentration and the principal component analysis revealed that the maximum possible ameliorative effect of the colchicine dose was the lowest concentration (0.025% for a 48-hour exposure time) for the AN1 genotype; likewise, a 0.05% concentration established a more positive association in terms of growth and yield attributes for the AN20 genotype. This study demonstrated that low dosages (0.025% and 0.1%) strongly impact plant growth and yield, whereas higher dosages obliterate these positive effects and add destructive characteristics within plants which ultimately reduces yield.
Collapse
Affiliation(s)
- Shweta Verma
- Laboratory of Cytogenetics, Centre of Advance Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Manisha Hariwal
- Laboratory of Cytogenetics, Centre of Advance Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sanjay Kumar
- Laboratory of Cytogenetics, Centre of Advance Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
AlSuhaymi N. Therapeutic Effects of Nigella sativa Oil and Whole Seeds on STZ-Induced Diabetic Rats: A Biochemical and Immunohistochemical Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:5594090. [PMID: 39156220 PMCID: PMC11330337 DOI: 10.1155/2024/5594090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Background Type II diabetes mellitus (DM) is an increasing health problem that has negative impacts on patients and healthcare systems, worldwide. The development of new therapies with better efficacy, fewer side effects, and lower prices are urgently needed to treat this disease. Aim To evaluate and compare the therapeutic effects of Nigella sativa (N. sativa) seed and oil on the biochemical parameters and regeneration of pancreatic islets (or islets of Langerhans) of streptozotocin (STZ)-induced diabetic rats. Materials and Methods The diabetic rat model was prepared by administering a single dose of STZ (35 mg/kg body weight). The whole seed or the oil of N. sativa was administered to the diabetic and control groups for a period of 28 days, but not to the negative and STZ controls. Serum blood glucose, liver enzymes, lipid profile, and renal function tests (uric acid, albumin, total protein, urea, and creatinine) were measured in all groups. After the rats were euthanized, their pancreases were extracted, and then sectioned and fixed on slides in preparation before staining with H&E stain and immunohistochemical study. Results Treatment of STZ-diabetic rats with N. sativa seeds or oil significantly improved their serum glucose levels, lipid profiles, and liver and renal functions as well as preserved the integrity of pancreatic β cells. Conclusion N. sativa seeds and oil demonstrate significant therapeutic improvement effects on DM and its related complications including effective protection of islets of Langerhans. The therapeutic benefits of N. sativa seeds and oil on DM and its related complications are comparable.
Collapse
Affiliation(s)
- Naif AlSuhaymi
- Department of Emergency Medical ServicesFaculty of Health Sciences AlQunfudahUmm AlQura University, Makkah 21912, Saudi Arabia
| |
Collapse
|
4
|
Das A, Biswas S, Satyaprakash K, Bhattacharya D, Nanda PK, Patra G, Moirangthem S, Nath S, Dhar P, Verma AK, Biswas O, Tardi NI, Bhunia AK, Das AK. Ratanjot ( Alkanna tinctoria L.) Root Extract, Rich in Antioxidants, Exhibits Strong Antimicrobial Activity against Foodborne Pathogens and Is a Potential Food Preservative. Foods 2024; 13:2254. [PMID: 39063340 PMCID: PMC11275321 DOI: 10.3390/foods13142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Natural and sustainable plant-based antioxidants and antimicrobials are highly desirable for improving food quality and safety. The present investigation assessed the antimicrobial and antioxidant properties of active components from Alkanna tinctoria L. (herb) roots, also known as Ratanjot root. Two methods were used to extract active components: microwave-assisted hot water (MAHW) and ethanolic extraction. MAHW extract yielded 6.29%, while the ethanol extract yielded 18.27%, suggesting superior Ratanjot root extract powder (RRP) solubility in ethanol over water. The ethanol extract showed significantly higher antioxidant activity than the MAHW extract. Gas Chromatography-Mass Spectrometry analysis revealed three major phenolic compounds: butanoic acid, 3-hydroxy-3-methyl-; arnebin 7, and diisooctyl pthalate. The color attributes (L*, a*, b*, H°ab, C*ab) for the ethanolic and MAHW extracts revealed significant differences (p < 0.05) in all the above parameters for both types of extracts, except for yellowness (b*) and chroma (C*ab) values. The ethanol extract exhibited antimicrobial activity against 14 foodborne bacteria, with a significantly higher inhibitory effect against Gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus) than the Gram-negative bacteria (Salmonella enterica serovar Typhimurium and Escherichia coli). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both 25 mg/mL for the Gram-negative bacteria, while the MIC and MBC concentrations varied for Gram-positive bacteria (0.049-0.098 mg/mL and 0.098-0.195 mg/mL) and the antimicrobial effect was bactericidal. The antimicrobial activities of RRP extract remained stable under broad temperature (37-100 °C) and pH (2-6) conditions, as well as during refrigerated storage for 30 days. Application of RRP at 1% (10 mg/g) and 2.5% (25 mg/g) levels in a cooked chicken meatball model system prevented lipid oxidation and improved sensory attributes and retarded microbial growth during refrigerated (4 °C) storage for 20 days. Furthermore, the RRP extract was non-toxic when tested with sheep erythrocytes and did not inhibit the growth of probiotics, Lacticaseibacillus casei, and Lactiplantibacillus plantarum. In conclusion, the study suggests that RRP possesses excellent antimicrobial and antioxidant activities, thus making it suitable for food preservation.
Collapse
Affiliation(s)
- Annada Das
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Kaushik Satyaprakash
- Department of Veterinary Public Health and Epidemiology, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur 231001, India;
| | - Dipanwita Bhattacharya
- Department of Livestock Products Technology, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur 231001, India;
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (P.K.N.); (S.N.)
| | - Gopal Patra
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Sushmita Moirangthem
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Santanu Nath
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (P.K.N.); (S.N.)
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B, Judges Court Road, Alipore, Kolkata 700027, India;
| | - Arun K. Verma
- Goat Products Technology Laboratory, ICAR-Central Institute for Research on Goats, Makhdoom, Mathura 281122, India;
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India;
| | - Nicole Irizarry Tardi
- Molecular Food Microbiology Laboratory, Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN 47907, USA;
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN 47907, USA;
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (P.K.N.); (S.N.)
| |
Collapse
|
5
|
Kurnia D, Padilah R, Apriyanti E, Dharsono HDA. Phytochemical Analysis and Anti-Biofilm Potential That Cause Dental Caries from Black Cumin Seeds ( Nigella sativa Linn.). Drug Des Devel Ther 2024; 18:1917-1932. [PMID: 38828022 PMCID: PMC11144408 DOI: 10.2147/dddt.s454217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
The oral cavity is an excellent place for various microorganisms to grow. Spectrococcus mutans and Spectrococcus sanguinis are Gram-negative bacteria found in the oral cavity as pioneer biofilm formers on the tooth surface that cause caries. Caries treatment has been done with antibiotics and therapeutics, but the resistance level of S. mutans and S. sanguinis bacteria necessitates the exploration of new drug compounds. Black cumin (Nigella sativa Linn.) is known to contain secondary metabolites that have antioxidant, antibacterial, anti-biofilm, anti-inflammatory and antifungal activities. The purpose of this review article is to present data on the potential of Nigella sativa Linn seeds as anti-biofilm. This article will discuss biofilm-forming bacteria, the resistance mechanism of antibiotics, the bioactivity of N. sativa extracts and seed isolates together with the Structure Activity Relationship (SAR) review of N. sativa compound isolates. We collected data from reliable references that will illustrate the potential of N. sativa seeds as anti-biofilm drug.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rizal Padilah
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Eti Apriyanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Hendra Dian Adhita Dharsono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Jawa Barat, Indonesia
| |
Collapse
|
6
|
Alu'datt MH, Rababah T, Al-U'datt DGF, Gammoh S, Alkandari S, Allafi A, Alrosan M, Kubow S, Al-Rashdan HK. Designing novel industrial and functional foods using the bioactive compounds from Nigella sativa L. (black cumin): Biochemical and biological prospects toward health implications. J Food Sci 2024; 89:1865-1893. [PMID: 38407314 DOI: 10.1111/1750-3841.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Nigella sativa is one of the nutraceuticals that has gained popularity and studied extensively in recent decades as it is considered a safe medicinal plant for use as a dietary supplement. N. sativa contains a wide variety of bioactive substances, which include polyphenols, volatile oils (thymoquinone and p-cymene), proteins, and peptides. The biological attributes of N. sativa include antioxidant, antimicrobial, antifungal, anti-inflammatory, anticancer, antidiabetic, antihypertensive, hypolipidemic, and antioxidant activities, which have potential applications for the prevention of a variety of chronic diseases. In the food industry, N. sativa improves the sensory qualities, shelf life, strength, and freshness of foods, such as bread, pizza, biscuits, cookies, and cakes. This review discusses the industrial use of N. sativa, which includes processing technologies to enhance its health-promoting properties as well as the isolation of nutraceutical components.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sharifa Alkandari
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Allafi
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Haneen K Al-Rashdan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
7
|
Derosa G, D’Angelo A, Maffioli P, Cucinella L, Nappi RE. The Use of Nigella sativa in Cardiometabolic Diseases. Biomedicines 2024; 12:405. [PMID: 38398007 PMCID: PMC10886913 DOI: 10.3390/biomedicines12020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 02/25/2024] Open
Abstract
Nigella sativa L. is an herb that is commonly used in cooking and in traditional medicine, particularly in Arab countries, the Indian subcontinent, and some areas of eastern Europe. Nigella sativa is also called "black cumin" or "black seeds", as the seeds are the most-used part of the plant. They contain the main bioactive component thymoquinone (TQ), which is responsible for the pleiotropic pharmacological properties of the seeds, including anti-oxidant, anti-inflammatory, anti-hypertensive, anti-hepatotoxic, hypoglycemic, and lipid-lowering properties. In this narrative review, both the potential mechanisms of action of Nigella sativa and the fundamental role played by pharmaceutical technology in optimizing preparations based on this herb in terms of yield, quality, and effectiveness have been outlined. Moreover, an analysis of the market of products containing Nigella sativa was carried out based on the current literature with an international perspective, along with a specific focus on Italy.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Angela D’Angelo
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
| | - Laura Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
8
|
Mukhtar AI, Danborno B, Sadeeq AA. Nigella sativa oil exhibits anti-aging effects in transgenic Alzheimer's Drosophila melanogaster via anti oxidant pathways: survival-rate and life span studies. Toxicol Res (Camb) 2024; 13:tfae017. [PMID: 38344667 PMCID: PMC10857896 DOI: 10.1093/toxres/tfae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/30/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2025] Open
Abstract
In this article we aime to investigate he anti-aging effect of Nigella sativa oil. Transgenic flies engineered under UAS/GAL4 system were acquired from the Bloomington Drosophila stock center. For methodology, (LC50), 30 flies 2-3 days old were divided into four groups, and exposed to diets of 30, 60, 90, and 120 μL/10 g in 3 replicates at a density of 30 flies per vial. Mortality was recorded daily for 7 consecutive days. For survival, (150) 2-3 days adult flies were divided into four groups (I-IV), 100 flies in each group. Group I which served as control fed on 10 g of diet only, group II was fed 10 g of diet only, group III (AB42 + low dose) was fed on 10 g diet +6.39ul NSO, group IV (AB42 + high dose) was fed 10 diet + 12.77ul NSO. The administration lasted for 28 days. For the third phase, a similar protocol was adopted with each group having (400) flies, this phase lasted f till the last fly died. The effect of NSO was assessed by; Studying the mortality daily. Results revealed the lethal concentration of LC50 NSO to be 25.54 mg it was also observed from the study that exposure to NSO in food media at low doses has increased the lifespan of AB-42 treated flies. In conclusion, findings from this study suggest the efficacy of low-dose NSO increased the survival and life span of the AB-42 flies.
Collapse
Affiliation(s)
- A I Mukhtar
- Department of Anatomy, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - B Danborno
- Department of Anatomy, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - A A Sadeeq
- Department of Anatomy, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
9
|
Prakash V, Gabrani R. An Insight into Emerging Phytocompounds for Glioblastoma Multiforme Therapy. Cardiovasc Hematol Agents Med Chem 2024; 22:336-347. [PMID: 37957904 DOI: 10.2174/0118715257262003231031171910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
Despite intense research in the field of glioblastoma multiforme (GBM) therapeutics, the resistance against approved therapy remains an issue of concern. The resistance against the therapy is widely reported due to factors like clonal selection, involvement of multiple developmental pathways, and majorly defective mismatch repair (MMR) protein and functional O6- methylguanine DNA methyltransferase (MGMT) repair enzyme. Phytotherapy is one of the most effective alternatives to overcome resistance. It involves plant-based compounds, divided into several classes: alkaloids; phenols; terpenes; organosulfur compounds. The phytocompounds comprised in these classes are extracted or processed from certain plant sources. They can target various proteins of molecular pathways associated with the progression and survival of GBM. Phytocompounds have also shown promise as immunomodulatory agents and are being explored for immune checkpoint inhibition. Therefore, research and innovations are required to understand the mechanism of action of such phytocompounds against GBM to develop efficacious treatments for the same. This review gives insight into the potential of phytochemical-based therapeutic options for GBM treatment.
Collapse
Affiliation(s)
- Vijeta Prakash
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, Uttar Pradesh, 201309, India
| | - Reema Gabrani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, Uttar Pradesh, 201309, India
| |
Collapse
|
10
|
Wahab S, Alsayari A. Potential Pharmacological Applications of Nigella Seeds with a Focus on Nigella sativa and Its Constituents against Chronic Inflammatory Diseases: Progress and Future Opportunities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3829. [PMID: 38005726 PMCID: PMC10675207 DOI: 10.3390/plants12223829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
The leading cause of death worldwide has been identified as chronic illnesses, according to the World Health Organization (WHO). Chronic inflammatory conditions such as asthma, cancer, diabetes, heart disease, and obesity account for three out of every five deaths. Although many people benefit from using nonsteroidal anti-inflammatory medicines (NSAIDs) for pain and inflammation relief, there are significant adverse effects to using these medications. Medicinal plants possess anti-inflammatory properties with minimal or no side effects. Nigella sativa (NS), also known as black cumin, is one of the plants used in traditional medicine the most. Many studies on the NS have shown that their therapeutic properties are attributed to the seed, oil, and secondary metabolites. This plant has been studied extensively and has many medical uses, such as anti-inflammatory. NS or its phytochemical compounds, such as thymoquinone, can cause cell apoptosis via oxidative stress, block efflux pumps, enhance membrane permeability, and exert potent biocidal effects. Notwithstanding the extensively documented anti-inflammatory effectiveness observed in the experimental model, the precise mechanisms underlying its anti-inflammatory effects in diverse chronic inflammatory diseases and its multi-targeting characteristics remain largely unexplored. This review examines NS or its secondary metabolites, a valuable source for the therapeutic development of chronic inflammatory diseases. Most clinical studies were done for diabetes and cardiovascular disease; therefore, more studies are required to examine the NS extracts and phytoconstituents to treat cancer, obesity, diabetes, asthma, neurological disorders, and COVID-19. This study will be a significant resource for clinicians and biologists seeking a pharmaceutical solution for inflammatory diseases.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | | |
Collapse
|
11
|
Kabutey A, Herák D, Mizera Č. Assessment of Quality and Efficiency of Cold-Pressed Oil from Selected Oilseeds. Foods 2023; 12:3636. [PMID: 37835289 PMCID: PMC10573014 DOI: 10.3390/foods12193636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In this present study, an oil press was used to process 200 g each of sesame, pumpkin, flax, milk thistle, hemp and cumin oilseeds in order to evaluate the amount of oil yield, seedcake, sediments and material losses (oil and sediments). Sesame produced the highest oil yield at 30.60 ± 1.69%, followed by flax (27.73 ± 0.52%), hemp (20.31 ± 0.11%), milk thistle (14.46 ± 0.51%) and pumpkin (13.37 ± 0.35%). Cumin seeds produced the lowest oil yield at 3.46 ± 0.15%. The percentage of sediments in the oil, seedcake and material losses for sesame were 5.15 ± 0.09%, 60.99 ± 0.04% and 3.27 ± 1.56%. Sediments in the oil decreased over longer storage periods, thereby increasing the percentage oil yield. Pumpkin oil had the highest peroxide value at 18.45 ± 0.53 meq O2/kg oil, an acid value of 11.21 ± 0.24 mg KOH/g oil, free fatty acid content of 5.60 ± 0.12 mg KOH/g oil and iodine value of 14.49 ± 0.16 g l/100 g. The univariate ANOVA of the quality parameters against the oilseed type was statistically significant (p-value < 0.05), except for the iodine value, which was not statistically significant (p-value > 0.05). Future studies should analyze the temperature generation, oil recovery efficiency, percentage of residual oil in the seedcake and specific energy consumption of different oilseeds processed using small-large scale presses.
Collapse
Affiliation(s)
- Abraham Kabutey
- Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, 165 20 Prague, Czech Republic; (D.H.); (Č.M.)
| | | | | |
Collapse
|
12
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
13
|
van Staden D, Haynes RK, Viljoen JM. The Science of Selecting Excipients for Dermal Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041293. [PMID: 37111778 PMCID: PMC10145052 DOI: 10.3390/pharmaceutics15041293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Self-emulsification is considered a formulation technique that has proven capacity to improve oral drug delivery of poorly soluble drugs by advancing both solubility and bioavailability. The capacity of these formulations to produce emulsions after moderate agitation and dilution by means of water phase addition provides a simplified method to improve delivery of lipophilic drugs, where prolonged drug dissolution in the aqueous environment of the gastro-intestinal (GI) tract is known as the rate-limiting step rendering decreased drug absorption. Additionally, spontaneous emulsification has been reported as an innovative topical drug delivery system that enables successful crossing of mucus membranes as well as skin. The ease of formulation generated by the spontaneous emulsification technique itself is intriguing due to the simplified production procedure and unlimited upscaling possibilities. However, spontaneous emulsification depends solely on selecting excipients that complement each other in order to create a vehicle aimed at optimizing drug delivery. If excipients are not compatible or unable to spontaneously transpire into emulsions once exposed to mild agitation, no self-emulsification will be achieved. Therefore, the generalized view of excipients as inert bystanders facilitating delivery of an active compound cannot be accepted when selecting excipients needed to produce self-emulsifying drug delivery systems (SEDDSs). Hence, this review describes the excipients needed to generate dermal SEDDSs as well as self-double-emulsifying drug delivery systems (SDEDDSs); how to consider combinations that complement the incorporated drug(s); and an overview of using natural excipients as thickening agents and skin penetration enhancers.
Collapse
Affiliation(s)
- Daniélle van Staden
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, North-West Province, South Africa
| | - Richard K Haynes
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, North-West Province, South Africa
| | - Joe M Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, North-West Province, South Africa
| |
Collapse
|
14
|
Amiruddin Hashmi M, Kausar T, Alam Khan M, Younus H. Assessing the inhibition of glycation of ζ-crystallin by thymoquinone: A mechanistic approach using experimental and computational methods. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Detection of cumin powder adulteration with allergenic nutshells using FT-IR and portable NIRS coupled with chemometrics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Rahim MA, Shoukat A, Khalid W, Ejaz A, Itrat N, Majeed I, Koraqi H, Imran M, Nisa MU, Nazir A, Alansari WS, Eskandrani AA, Shamlan G, AL-Farga A. A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed ( Nigella sativa). Foods 2022; 11:2826. [PMID: 36140949 PMCID: PMC9498113 DOI: 10.3390/foods11182826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The current review investigates the effects of black seed (Nigella sativa) on human health, which is also used to encapsulate and oxidative stable in different food products. In recent decades, many extraction methods, such as cold pressing, supercritical fluid extraction, Soxhlet extraction, hydro distillation (HD) method, microwave-assisted extraction (MAE), ultrasound-assisted extraction, steam distillation, and accelerated solvent extraction (ASE) have been used to extract the oils from black seeds under optimal conditions. Black seed oil contains essential fatty acids, in which the major fatty acids are linoleic, oleic, and palmitic acids. The oxidative stability of black seed oil is very low, due to various environmental conditions or factors (temperature and light) affecting the stability. The oxidative stability of black seed oil has been increased by using encapsulation methods, including nanoprecipitation, ultra-sonication, spray-drying, nanoprecipitation, electrohydrodynamic, atomization, freeze-drying, a electrospray technique, and coaxial electrospraying. Black seed, oil, microcapsules, and their components have been used in various food processing, pharmaceutical, nutraceutical, and cosmetics industries as functional ingredients for multiple purposes. Black seed and oil contain thymoquinone as a major component, which has anti-oxidant, -diabetic, -inflammatory, -cancer, -viral, and -microbial properties, due to its phenolic compounds. Many clinical and experimental studies have indicated that the black seed and their by-products can be used to reduce the risk of cardiovascular diseases, chronic cancer, diabetes, oxidative stress, polycystic ovary syndrome, metabolic disorders, hypertension, asthma, and skin disorders. In this review, we are focusing on black seed oil composition and increasing the stability using different encapsulation methods. It is used in various food products to increase the human nutrition and health properties.
Collapse
Affiliation(s)
- Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Aurbab Shoukat
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Afaf Ejaz
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Nizwa Itrat
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Majeed
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Rexhep Krasniqi No. 56, 10000 Pristina, Kosovo
| | - Muhammad Imran
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Mahr Un Nisa
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Anum Nazir
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| |
Collapse
|
17
|
Khaikin E, Chrubasik-Hausmann S, Kaya S, Zimmermann BF. Screening of Thymoquinone Content in Commercial Nigella sativa Products to Identify a Promising and Safe Study Medication. Nutrients 2022; 14:3501. [PMID: 36079759 PMCID: PMC9460610 DOI: 10.3390/nu14173501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Thymoquinone (TQ) is the leading compound accounting for the pharmacological effects of Nigella sativa seed oil, also known as black seed oil. This study aimed to analyze the TQ content of commercial black seed oils and black seed oil-containing capsules to obtain information on the quality of the products and to find a promising and safe study medication for a putative clinical study. (2) Methods: Six black seed oils and five black seed oil-containing capsules were analyzed. TQ was quantified using a validated method consisting of a simple methanolic extraction and a fast HPLC-UV analysis. (3) Results: The TQ content varied from 3.08 to 809.4 mg/100 g (mean). The highest TQ content was found in a bottled oil, which might be considered for a clinical study. A dose of 4 mL of this oil per day contains 30 mg TQ, which is unlikely to be harmful. Based on the literature, a safe daily TQ dosage appears to be <48.6 mg per adult. (4) Conclusions: These findings suggest that black seed products should be regulated regarding TQ content to enable consumers to buy black seed food supplements of known content for the maintenance and improvement of health.
Collapse
Affiliation(s)
- Elisabeth Khaikin
- Institute of Nutritional and Food Sciences, Food Sciences, University of Bonn, Meckenheimer Allee 166a, 53115 Bonn, Germany
| | | | - Sebahat Kaya
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University of Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Benno F. Zimmermann
- Institute of Nutritional and Food Sciences, Food Sciences, University of Bonn, Meckenheimer Allee 166a, 53115 Bonn, Germany
| |
Collapse
|
18
|
Thomas JV, Mohan ME, Prabhakaran P, Das S S, Maliakel B, Krishnakumar IM. A phase I clinical trial to evaluate the safety of thymoquinone -rich black cumin oil (BlaQmax®) on healthy subjects: Randomized, double-blinded, placebo-controlled prospective study. Toxicol Rep 2022; 9:999-1007. [DOI: 10.1016/j.toxrep.2022.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
|