1
|
Javaid A, Mudavath SL. Niacin-induced flushing: Mechanism, pathophysiology, and future perspectives. Arch Biochem Biophys 2024; 761:110163. [PMID: 39322100 DOI: 10.1016/j.abb.2024.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/06/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Flushing is a typical physiological reaction to high emotional reactions. It is characterized by cutaneous vasodilation and a feeling of warmth and skin redness, especially in the face areas. Flushing is frequently linked to social anxiety, but it can also be a sign of a number of benign and malignant medical disorders. The study focuses on niacin-induced flushing, a well-researched side effect of the niacin, a drug which increases cholesterol levels. Niacin-induced flushing occurs when the hydroxycarboxylic acid receptor 2 (HCA2 or GPR109A) is activated. This starts a signaling cascade that releases prostaglandins, especially PGD2, which causes cutaneous vasodilation. Furthermore, niacin directly interacts with the transient receptor potential (TRP) channel TRPV1, offering a different, non-prostaglandin-based explanation for flushing brought on by niacin, highlighting the intricate physiological mechanisms behind this widespread occurrence. The review delves deeper into the advantages of niacin treatment for the cardiovascular system, highlighting how it can improve lipid profiles and lower cardiovascular events when used with statins. To sum it up, this study offers a thorough understanding of flushing, including its physiological foundation, many etiologies, diagnostic difficulties, and the subtleties of flushing caused by niacin. The investigation of innovative dose forms and nanomedicine highlights the continuous endeavors to improve patient compliance and reduce side effects, laying the groundwork for further developments in flushing treatment.
Collapse
Affiliation(s)
- Aaqib Javaid
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab, 140306, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab, 140306, India; Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli Hyderabad, 500046, Telangana, India.
| |
Collapse
|
2
|
Rafinezhad M, Kheirouri S, Abbasnezhad M, Alizadeh M. What Dietary Vitamins and Minerals Might Be Associated with Paraoxonase-1 Serum Levels in Patients with Coronary Artery Disease? Biol Trace Elem Res 2024:10.1007/s12011-024-04382-3. [PMID: 39313692 DOI: 10.1007/s12011-024-04382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Paraoxonase-1 (PON-1) is an antioxidant enzyme inversely associated with atherosclerosis incidence. Dietary antioxidants help to increase PON-1 serum levels. Since most vitamins and minerals have antioxidant properties, this research aimed to examine the association between PON-1 serum levels and dietary intake of vitamins and minerals in patients with coronary artery disease (CAD). In this cross-sectional study, 102 inpatients with CAD and 60 healthy individuals participated. The average dietary vitamins and minerals intake were computed using information from the food frequency questionnaire with the assistance of Nutritionist IV software. The serum PON-1 level was measured using the ELISA method. Regarding minerals, serum PON-1 level was positively correlated with dietary calcium (β = 0.57, p = 0.001), phosphorus (β = 0.52, p = 0.004), and potassium intake (β = 0.40, p = 0.03), but inversely associated with dietary consumption of iron (β = - 0.43, p = 0.04), and sodium (β = - 0.41, p = 0.02). Concerning vitamins, serum levels of PON-1 were positively associated with vitamin B6 (β = 0.53, p = 0.01) and riboflavin (β = 0.44, p = 0.03) but inversely correlated with niacin (β = - 0.49, p = 0.03). The serum level of PON-1 might be associated with the dietary intake of minerals and vitamins. Therefore, a diet rich in certain minerals and vitamins may be advantageous in increasing serum PON-1 levels and preventing CAD.
Collapse
Affiliation(s)
- Masoumeh Rafinezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohsen Abbasnezhad
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Alizadeh
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Zhao W, Wang Y, Li J, Chen T, Yin D, Dai H, Yao Z, Zhao S. Efficacy and safety of omega-3-acid ethyl acetate 90 capsules in severe hypertriglyceridemia: A randomized, controlled, multicenter study. Lipids 2024; 59:145-157. [PMID: 38830807 DOI: 10.1002/lipd.12406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Omega-3-acid ethyl acetate 90 capsules (containing 465 mg of eicosapentaenoic acid and 375 mg docosahexaenoic acid) is composed of highly purified omega-3 polyunsaturated fatty acid (PUFA) ethyl esters, whose lipid-lowering effect for severe hypertriglyceridemia (HTG) treatment is unclear. This study aimed to evaluate the efficacy and safety of omega-3-acid ethyl acetate 90 capsules in patients with severe HTG. In this randomized, double-blind, placebo-controlled, multicenter study, 239 patients with severe HTG were enrolled and randomized (1:1) into omega-3 group (N = 122) and placebo group (N = 117) to receive 12-week corresponding treatments. Lipid-related indexes were obtained at treatment initiation (W0), 4 weeks (W4), W8, and W12 after treatment. Adverse events and adverse drug reactions were recorded. Triacylglycerols (TAG), total cholesterol (TC), non-high-density lipoprotein cholesterol (non-HDL-C), very-low-density lipoprotein cholesterol (VLDL-C), and apolipoprotein C-III (Apo C-III) at W4, W8, and W12 were decreased in the omega-3 group versus the placebo group (all p < 0.05). Moreover, the percentage changes of TAG, TC, non-HDL-C, and VLDL-C from W0 to W4, W8, and W12, and the percentage change of Apo C-III from W0 to W4 and W8, were more obvious in the omega-3 group compared with the placebo group (all p < 0.05). However, no difference was observed in the percentage changes of HDL-C, low-density lipoprotein cholesterol (LDL-C), and LDL-C/HDL-C ratio during follow-up between groups (all p > 0.05). Additionally, there was no discrepancy in adverse events and adverse drug reactions between groups (all p > 0.05). Omega-3-acid ethyl acetate 90 capsules exhibit satisfied lipid-lowering effect with tolerable safety profile in patients with severe HTG.
Collapse
Affiliation(s)
- Wang Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jin Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tao Chen
- Department of Endocrinology and Metabolism, Adrenal Center, West China Hospital of SiChuan University, Chengdu, Sichuan, China
| | - Delu Yin
- Department of Cardiology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Hailong Dai
- Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Yunnan Cardiovascular Hospital, Kunming, Yunnan, China
| | - Zhuhua Yao
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Shuiping Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Sohouli MH, Tavakoli S, Reis MG, Hekmatdoost A, Guimarães NS. Changes in glucose metabolism, C-reactive protein, and liver enzymes following intake of NAD + precursor supplementation: a systematic review and meta-regression analysis. Nutr Metab (Lond) 2024; 21:35. [PMID: 38915015 PMCID: PMC11195006 DOI: 10.1186/s12986-024-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND There are contradictory effects regarding the effect of NAD + precursor on glucose metabolism and liver enzymes. In order to obtain a better viewpoint from them, this study aimed to comprehensively investigate the effects of NAD + precursor supplementation on glucose metabolism, C-reactive protein (CRP), and liver enzymes. METHODS PubMed/MEDLINE, Web of Science, SCOPUS, and Embase databases were searched using standard keywords to identify all controlled trials investigating the glucose metabolism, CRP, and liver enzymes effects of NAD + precursor. Pooled weighted mean difference (WMD) and 95% confidence intervals (95% CI) were achieved by random-effects model analysis for the best estimation of outcomes. RESULTS Forty-five articles with 9256 participants' were included in this article. The pooled findings showed that NAD + precursor supplementation had a significant increase in glucose (WMD: 2.17 mg/dL, 95% CI: 0.68, 3.66, P = 0.004) and HbA1c (WMD: 0.11, 95% CI: 0.06, 0.16, P < 0.001) as well as a significant decrease in CRP (WMD: -0.93 mg/l, 95% CI -1.47 to -0.40, P < 0.001) compared with control group, and was not statistically significant with respect to insulin and homeostasis model assessment of insulin resistance (HOMA-IR). However, we found no systemic changes in aspartate transaminase (AST), alanine transaminase (ALT), or alkaline phosphatase (ALP) levels after NAD + precursor supplementation. The results of the subgroup analysis showed that the intake of NAD + precursor during the intervention of more than 12 weeks caused a greater increase in the glucose level. Furthermore, Nicotinic acid supplementation (NA) causes a greater increase in glucose and HbA1c levels than nicotinamide (NE) supplementation. CONCLUSIONS Overall, these findings suggest that NAD + precursor supplementation might have an increase effect on glucose metabolism as well as a decrease in CRP.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sogand Tavakoli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcela Gomes Reis
- Health Science at Faculdade, Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nathalia Sernizon Guimarães
- Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| |
Collapse
|
5
|
Gouni-Berthold I, Schwarz J, Berthold HK. Updates in Drug Treatment of Severe Hypertriglyceridemia. Curr Atheroscler Rep 2023; 25:701-709. [PMID: 37642858 PMCID: PMC10564803 DOI: 10.1007/s11883-023-01140-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW To provide an insight into the new pharmacological options for the treatment of severe hypertriglyceridemia (sHTG). RECENT FINDINGS sHTG is difficult to treat. The majority of the traditional pharmacological agents available have limited success in both robustly decreasing triglyceride levels and/or in reducing the incidence of acute pancreatitis (AP), the most severe complication of sHTG. Therapeutic options with novel mechanisms of action have been developed, such as antisense oligonucleotides (ASO) and small interfering RNA (siRNA) targeting APOC3 and ANGPTL3. The review discusses also 2 abandoned drugs for sHTG treatment, evinacumab and vupanorsen. The ASO targeting APOC3, volanesorsen, is approved for use in patients with familial chylomicronemia syndrome (FCS) in Europe. Olezarsen, an N-acetylgalactosamine (GalNAc)-conjugated ASO with the same target, seems to have a better safety and efficacy profile. siRNA targeting APOC3 and ANGPTL3, namely ARO-APOC3 and ARO-ANG3, are also promising for the treatment of sHTG. However, the ultimate clinical goal of any sHTG treatment, the decrease in the risk of AP, has not been definitively achieved till now by any pharmacotherapy, either approved or in development.
Collapse
Affiliation(s)
- Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital, Kerpener Str. 6, 50937 Cologne, Germany
| | - Jonas Schwarz
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital, Kerpener Str. 6, 50937 Cologne, Germany
| | - Heiner K. Berthold
- Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB) and Medical School EWL, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
6
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Lipoprotein(a) and Atherosclerotic Cardiovascular Disease, the Impact of Available Lipid-Lowering Medications on Lipoprotein(a): An Update on New Therapies. Endocr Pract 2022:S1530-891X(22)00901-6. [PMID: 36563785 DOI: 10.1016/j.eprac.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To review evidence of existing and new pharmacological therapies for lowering lipoprotein(a) (Lp[a]) concentrations and their impact on clinically relevant outcomes. METHODS We searched for literature pertaining to Lp(a) and pharmacological treatments in PubMed. We reviewed articles published between 1963 and 2020. RESULTS We found that statins significantly increased Lp(a) concentrations. Therapies that demonstrated varying degrees of Lp(a) reduction included ezetimibe, niacin, proprotein convertase subtilisin/kexin type 9 inhibitors, lipoprotein apheresis, fibrates, aspirin, hormone replacement therapy, antisense oligonucleotide therapy, and small interfering RNA therapy. There was limited data from large observational studies and post hoc analyses showing the potential benefits of these therapies in improving cardiovascular outcomes. CONCLUSION There are multiple lipid-lowering agents currently being used to treat hyperlipidemia that also have a Lp(a)-lowering effect. Two RNA therapies specifically targeted to lower Lp(a) are being investigated in phase 3 clinical trials and, thus far, have shown promising results. However, evidence is lacking to determine the clinical relevance of reducing Lp(a). At present, there is a need for large-scale, randomized, controlled trials to evaluate cardiovascular outcomes associated with lowering Lp(a).
Collapse
|
8
|
Abstract
INTRODUCTION Primary chylomicronemia is characterized by pathological accumulation of chylomicrons in the plasma causing severe hypertriglyceridemia, typically >10 mmol/L (>875 mg/dL). Patients with the ultra-rare familial chylomicronemia syndrome (FCS) subtype completely lack lipolytic capacity and respond minimally to traditional triglyceride-lowering therapies. The mainstay of treatment is a low-fat diet, which is difficult to follow and compromises quality of life. New therapies are being developed primarily to prevent episodes of life-threatening acute pancreatitis. AREAS COVERED Antagonists of apolipoprotein (apo) C-III, such as the antisense oligonucleotide (ASO) volanesorsen, significantly reduce triglyceride levels in chylomicronemia. However, approval of and access to volanesorsen are restricted since a substantial proportion of treated FCS patients developed thrombocytopenia. Newer apo C-III antagonists, namely, the ASO olezarsen (formerly AKCEA-APOCIII-LRx) and short interfering RNA (siRNA) ARO-APOC3, appear to show efficacy with less risk of thrombocytopenia. Potential utility of antagonists of angiopoietin-like protein 3 (ANGPTL3) such as evinacumab and the siRNA ARO-ANG3 in subtypes of chylomicronemia remains to be defined. EXPERT OPINION Emerging pharmacologic therapies for chylomicronemia show promise, particularly apo C-III antagonists. However, these treatments are still investigational. Further study of their efficacy and safety in patients with both rare FCS and more common multifactorial chylomicronemia is needed.
Collapse
Affiliation(s)
- Isabel Shamsudeen
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Paragh G, Németh Á, Harangi M, Banach M, Fülöp P. Causes, clinical findings and therapeutic options in chylomicronemia syndrome, a special form of hypertriglyceridemia. Lipids Health Dis 2022; 21:21. [PMID: 35144640 PMCID: PMC8832680 DOI: 10.1186/s12944-022-01631-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/30/2022] [Indexed: 02/07/2023] Open
Abstract
The prevalence of hypertriglyceridemia has been increasing worldwide. Attention is drawn to the fact that the frequency of a special hypertriglyceridemia entity, named chylomicronemia syndrome, is variable among its different forms. The monogenic form, termed familial chylomicronemia syndrome, is rare, occuring in 1 in every 1 million persons. On the other hand, the prevalence of the polygenic form of chylomicronemia syndrome is around 1:600. On the basis of the genetical alterations, other factors, such as obesity, alcohol consumption, uncontrolled diabetes mellitus and certain drugs may significantly contribute to the development of the multifactorial form. In this review, we aimed to highlight the recent findings about the clinical and laboratory features, differential diagnosis, as well as the epidemiology of the monogenic and polygenic forms of chylomicronemias. Regarding the therapy, differentiation between the two types of the chylomicronemia syndrome is essential, as well. Thus, proper treatment options of chylomicronemia and hypertriglyceridemia will be also summarized, emphasizing the newest therapeutic approaches, as novel agents may offer solution for the effective treatment of these conditions.
Collapse
Affiliation(s)
- György Paragh
- Division of Metabolic Diseases, Department of Internal Medicine, University of Debrecen Faculty of Medicine, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
| | - Ákos Németh
- Division of Metabolic Diseases, Department of Internal Medicine, University of Debrecen Faculty of Medicine, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Mariann Harangi
- Division of Metabolic Diseases, Department of Internal Medicine, University of Debrecen Faculty of Medicine, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Péter Fülöp
- Division of Metabolic Diseases, Department of Internal Medicine, University of Debrecen Faculty of Medicine, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| |
Collapse
|
10
|
Rhainds D, Brodeur MR, Tardif JC. Lipoprotein (a): When to Measure and How to Treat? Curr Atheroscler Rep 2021; 23:51. [PMID: 34235598 DOI: 10.1007/s11883-021-00951-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review current evidence for lipoprotein (a) (Lp(a)) as a risk factor for multiple cardiovascular (CV) disease phenotypes, provide a rationale for Lp(a) lowering to reduce CV risk, identify therapies that lower Lp(a) levels that are available clinically and under investigation, and discuss future directions. RECENT FINDINGS Mendelian randomization and epidemiological studies have shown that elevated Lp(a) is an independent and causal risk factor for atherosclerosis and major CV events. Lp(a) is also associated with non-atherosclerotic endpoints such as venous thromboembolism and calcific aortic valve disease. It contributes to residual CV risk in patients receiving standard-of-care LDL-lowering therapy. Plasma Lp(a) levels present a skewed distribution towards higher values and vary widely between individuals and according to ethnic background due to genetic variants in the LPA gene, but remain relatively constant throughout a person's life. Thus, elevated Lp(a) (≥50 mg/dL) is a prevalent condition affecting >20% of the population but is still underdiagnosed. Treatment guidelines have begun to advocate measurement of Lp(a) to identify patients with very high levels that have a family history of premature CVD or elevated Lp(a). Lipoprotein apheresis (LA) efficiently lowers Lp(a) and was recently associated with a reduction of incident CV events. Statins have neutral or detrimental effects on Lp(a), while PCSK9 inhibitors significantly reduce its level by up to 30%. Specific lowering of Lp(a) with antisense oligonucleotides (ASO) shows good safety and strong efficacy with up to 90% reductions. The ongoing CV outcomes study Lp(a)HORIZON will provide a first answer as to whether selective Lp(a) lowering with ASO reduces the risk of major CV events. Given the recently established association between Lp(a) level and CV risk, guidelines now recommend Lp(a) measurement in specific clinical conditions. Accordingly, Lp(a) is a current target for drug development to reduce CV risk in patients with elevated levels, and lowering Lp(a) with ASO represents a promising avenue.
Collapse
Affiliation(s)
- David Rhainds
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada
| | - Mathieu R Brodeur
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada. .,Faculty of Medicine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
11
|
Abstract
Elevated levels of lipoprotein(a) (Lp(a)) contribute to the risk of early and severe cardiovascular disease (CVD) and Lp(a) is acknowledged as a risk factor to be included in risk assessment. The established lipid-modifying medical therapies do not lower Lp(a) except niacin but no data of endpoint trials are available. Of the new lipid-modifying drugs a few have some impact on Lp(a). Whether the Lp(a) lowering effect contributes to the reduction of CVD events would have to be shown in Lp(a) dedicated trials. None of the available agents is indicated to lower Lp(a). Lipoprotein apheresis lowers levels of Lp(a) significantly by >60% per treatment. Trial data and data of the German Lipoprotein Apheresis Registry show that regular apheresis reduces cardiovascular events. The Apo(a) antisense oligonucleotide is the only approach to specifically lower Lp(a). The IONIS-APO(a)Rx phase 1 and 2 trials showed very substantial decreases of Lp(a) and good tolerability. The hepatospecific variant IONIS-APO(a)-LRx is 30 times more potent. The results of the IONIS-APO(a)-LRx phase 2 trial were presented recently. The highest dosages reduced Lp(a) by 72 and 80%; in about 81 and 98% Lp(a) levels <50 mg/dl were achieved. Tolerability and safety were confirmed, whereby injection site reactions were the most common side effects. This raises hope that the planned phase 3 trial will reproduce these findings and show a reduction of cardiovascular events.
Collapse
|
12
|
Moriarty PM, Gray JV, Gorby LK. Lipoprotein apheresis for lipoprotein(a) and cardiovascular disease. J Clin Lipidol 2019; 13:894-900. [DOI: 10.1016/j.jacl.2019.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/14/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
|
13
|
Hernández-Mijares A, Ascaso JF, Blasco M, Brea Á, Díaz Á, Mantilla T, Pedro-Botet J, Pintó X, Millán J. Residual cardiovascular risk of lipid origin. Components and pathophysiological aspects. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 31:75-88. [PMID: 30262442 DOI: 10.1016/j.arteri.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/10/2018] [Accepted: 06/19/2018] [Indexed: 11/24/2022]
Abstract
There is no doubt about the relationship between LDL-c and cardiovascular risk, as well as about the benefits of statin treatment. Once the objective of LDL-c has been achieved, the evidences that demonstrate the persistence of a high cardiovascular risk, a concept called residual risk, are notable. The residual risk of lipid origin is based on atherogenic dyslipidemia, characterized by an increase in triglycerides and triglyceride-rich lipoproteins, a decrease in HDL-c and qualitative alterations in LDL particles. The most commonly used measures to identify this dyslipidemia are based on the determination of total cholesterol, triglycerides, HDL, non-HDL cholesterol and remaining cholesterol, as well as apolipoprotein B100 and lipoprotein (a) in certain cases. The treatment of atherogenic dyslipidemia is based on weight loss and physical exercise. Regarding pharmacological treatment, we have no evidence of cardiovascular benefit with drugs aimed at lowering triglycerides and HDL-c, fenofibrate seems to be effective in situations of atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Antonio Hernández-Mijares
- Fundación para la Investigación Sanitaria y Biomédica de la Comunidad Valenciana FISABIO, Servicio de Endocrinología y Nutrición, Hospital Universitario Dr. Peset Valencia; Departamento de Medicina, Universitat de València, Valencia, España.
| | - Juan F Ascaso
- Servicio de Endocrinología, Hospital Clínico Universitario; Departamento de Medicina, Universitat de València, Valencia, España
| | - Mariano Blasco
- Área Sanitaria de Delicias, Atención Primaria, Zaragoza, España
| | - Ángel Brea
- Servicio de Medicina Interna, Hospital San Pedro, Logroño, España
| | - Ángel Díaz
- Centro de Salud de Bembibre, Bembibre (León), España
| | - Teresa Mantilla
- Centro de Salud de Prosperidad, Atención Primaria, Madrid, España
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, España
| | - Xavier Pintó
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario de Bellvitge, Universitat de Barcelona, CIBERobn-ISCIII, Barcelona, España
| | - Jesús Millán
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, España.
| | | |
Collapse
|
14
|
Abdullah K, Alam MM, Iqbal Z, Naseem I. Therapeutic effect of vitamin B3 on hyperglycemia, oxidative stress and DNA damage in alloxan induced diabetic rat model. Biomed Pharmacother 2018; 105:1223-1231. [DOI: 10.1016/j.biopha.2018.06.085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023] Open
|
15
|
Abstract
INTRODUCTION Coronary artery calcification (CAC) is reflective of atherosclerotic disease and incrementally predictive of future cardiovascular events (CVE), independent of traditional risk factors. Extra coronary calcium such as aortic valve calcification, which can be identified and quantified by computed tomography (CT) imaging, has shown to predict future CVE in both asymptomatic and symptomatic (i.e. stable angina and acute coronary syndrome [ACS]) settings. It has hence been a vital tool in studies involving new therapies for cardiovascular disease. Areas covered: In this review, promising therapies on the horizon are reviewed, along with the role of cardiac CT and coronary calcification in these studies. A Medline search for peer-reviewed publications using keywords related to coronary calcium score, aortic valve calcium, and therapies targeting the same was carried out. Expert commentary: CT scanning provides a distinct means of detecting and quantifying coronary plaque as well as valvular calcification with excellent reproducibility. Based on voluminous data available, the absence of coronary calcium serves as a factor to de-risk patients for cardiovascular risk stratification and management algorithms. Newer therapies have shown to lower progression of coronary calcification, thus being beneficial in slowing progression of atherosclerotic disease. As British Epidemiologist Geoffrey Rose states, the best predictor of a life-threatening disease is the early manifestation of that disease. As CAC represents the early manifestation of atherosclerosis, it is the best-known stratifier of risk today, and its clinical use will continue to rise.
Collapse
Affiliation(s)
- Chandana Shekar
- a Department of Cardiology , Los Angeles Biomedical Research Institute at Harbor-UCLA , Los Angeles , CA , USA
| | - Matthew Budoff
- a Department of Cardiology , Los Angeles Biomedical Research Institute at Harbor-UCLA , Los Angeles , CA , USA
| |
Collapse
|
16
|
Patti AM, Al-Rasadi K, Giglio RV, Nikolic D, Mannina C, Castellino G, Chianetta R, Banach M, Cicero AF, Lippi G, Montalto G, Rizzo M, Toth PP. Natural approaches in metabolic syndrome management. Arch Med Sci 2018; 14:422-441. [PMID: 29593818 PMCID: PMC5868676 DOI: 10.5114/aoms.2017.68717] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome (MetS) is characterized as a group of cardiometabolic risk factors that raise the risk for heart disease and other health problems, such as diabetes mellitus and stroke. Treatment strategies include pharmacologic interventions and supplementary (or "alternative") treatments. Nutraceuticals are derived from food sources (isolated nutrients, dietary supplements and herbal products) that are purported to provide health benefits, in addition to providing basic nutritional value. Nutraceuticals are claimed to prevent chronic diseases, improve health, delay the aging process, increase life expectancy, and support the structure and function of the body. The study of the beneficial effects of nutraceuticals in patients with MetS, including product standardization, duration of supplementation and definition of optimal dosing, could help better define appropriate treatment. This review focuses on widely marketed nutraceuticals (namely polyphenols, omega-3 fatty acids, macroelements and vitamins) with clinically demonstrated effects on more than one component of MetS.
Collapse
Affiliation(s)
- Angelo Maria Patti
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Khalid Al-Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University, Muscat, Oman
| | - Rosaria Vincenza Giglio
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Dragana Nikolic
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Carlo Mannina
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Giuseppa Castellino
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Roberta Chianetta
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
| | - Arrigo F.G. Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Peter P. Toth
- CGH Medical Center, Sterling, Illinois; Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Schandelmaier S, Briel M, Saccilotto R, Olu KK, Arpagaus A, Hemkens LG, Nordmann AJ. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev 2017; 6:CD009744. [PMID: 28616955 PMCID: PMC6481694 DOI: 10.1002/14651858.cd009744.pub2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Nicotinic acid (niacin) is known to decrease LDL-cholesterol, and triglycerides, and increase HDL-cholesterol levels. The evidence of benefits with niacin monotherapy or add-on to statin-based therapy is controversial. OBJECTIVES To assess the effectiveness of niacin therapy versus placebo, administered as monotherapy or add-on to statin-based therapy in people with or at risk of cardiovascular disease (CVD) in terms of mortality, CVD events, and side effects. SEARCH METHODS Two reviewers independently and in duplicate screened records and potentially eligible full texts identified through electronic searches of CENTRAL, MEDLINE, Embase, Web of Science, two trial registries, and reference lists of relevant articles (latest search in August 2016). SELECTION CRITERIA We included all randomised controlled trials (RCTs) that either compared niacin monotherapy to placebo/usual care or niacin in combination with other component versus other component alone. We considered RCTs that administered niacin for at least six months, reported a clinical outcome, and included adults with or without established CVD. DATA COLLECTION AND ANALYSIS Two reviewers used pre-piloted forms to independently and in duplicate extract trials characteristics, risk of bias items, and outcomes data. Disagreements were resolved by consensus or third party arbitration. We conducted random-effects meta-analyses, sensitivity analyses based on risk of bias and different assumptions for missing data, and used meta-regression analyses to investigate potential relationships between treatment effects and duration of treatment, proportion of participants with established coronary heart disease and proportion of participants receiving background statin therapy. We used GRADE to assess the quality of evidence. MAIN RESULTS We included 23 RCTs that were published between 1968 and 2015 and included 39,195 participants in total. The mean age ranged from 33 to 71 years. The median duration of treatment was 11.5 months, and the median dose of niacin was 2 g/day. The proportion of participants with prior myocardial infarction ranged from 0% (4 trials) to 100% (2 trials, median proportion 48%); the proportion of participants taking statin ranged from 0% (4 trials) to 100% (12 trials, median proportion 100%).Using available cases, niacin did not reduce overall mortality (risk ratio (RR) 1.05, 95% confidence interval (CI) 0.97 to 1.12; participants = 35,543; studies = 12; I2 = 0%; high-quality evidence), cardiovascular mortality (RR 1.02, 95% CI 0.93 to 1.12; participants = 32,966; studies = 5; I2 = 0%; moderate-quality evidence), non-cardiovascular mortality (RR 1.12, 95% CI 0.98 to 1.28; participants = 32,966; studies = 5; I2 = 0%; high-quality evidence), the number of fatal or non-fatal myocardial infarctions (RR 0.93, 95% CI 0.87 to 1.00; participants = 34,829; studies = 9; I2 = 0%; moderate-quality evidence), nor the number of fatal or non-fatal strokes (RR 0.95, 95% CI 0.74 to 1.22; participants = 33,661; studies = 7; I2 = 42%; low-quality evidence). Participants randomised to niacin were more likely to discontinue treatment due to side effects than participants randomised to control group (RR 2.17, 95% CI 1.70 to 2.77; participants = 33,539; studies = 17; I2 = 77%; moderate-quality evidence). The results were robust to sensitivity analyses using different assumptions for missing data. AUTHORS' CONCLUSIONS Moderate- to high-quality evidence suggests that niacin does not reduce mortality, cardiovascular mortality, non-cardiovascular mortality, the number of fatal or non-fatal myocardial infarctions, nor the number of fatal or non-fatal strokes but is associated with side effects. Benefits from niacin therapy in the prevention of cardiovascular disease events are unlikely.
Collapse
Affiliation(s)
- Stefan Schandelmaier
- McMaster UniversityDepartment of Health Research Methods, Evidence, and Impact1280 Main Street WestHamiltonONCanadaL8S4L8
| | - Matthias Briel
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | - Ramon Saccilotto
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | - Kelechi K Olu
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | - Armon Arpagaus
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | - Lars G Hemkens
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | - Alain J Nordmann
- University of BaselBasel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical ResearchBaselSwitzerland
| | | |
Collapse
|
18
|
Abstract
Elevated levels of lipoprotein(a) (Lp(a)) contribute to the risk of early and severe cardiovascular disease (CVD). Recently <50 mg/dl was recommended as the desirable level for clinical use and decision making. All established medical therapies to lower cholesterol levels have no impact on lowering Lp(a) except niacin which is all too often poorly tolerated and not obtainable everywhere. Lipoprotein apheresis is an extracorporeal treatment to lower levels of Lp(a) significantly by > 60%. In some countries it is recommended in very high risk patients with early or progressive CVD. Retrospective data indicate that regular apheresis reduces cardiovascular events, which was substantiated by a recent prospective observational trial. Apheresis is very well tolerated with very few side effects, but it is expensive, time consuming, and offered by specialised centres only. To improve the overall treatment new drug therapies are required. Some of the recently approved lipid modifying drugs lower Lp(a) in addition to LDL-cholesterol: Mipomersen ∼ 25%, CETP-inhibitors ∼ 50%, PCSK9-inhibitors ∼ 30%. If the Lp(a) lowering effect contributes to the expected reduction of CVD events has to be shown in the future. The apo(a) antisense oligonucleotide is the only approach to specifically lower Lp(a). A phase 1 trial showed a decrease in a dose dependant manner (up to 88.8%) in healthy volunteers. Despite the lack of prospective randomised trials apheresis these days remains the standard of care in patients with elevated Lp(a) and severe CVD.
Collapse
Affiliation(s)
- Anja Vogt
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, 80336 Muenchen, Germany.
| |
Collapse
|
19
|
Minto C, Vecchio MG, Lamprecht M, Gregori D. Definition of a tolerable upper intake level of niacin: a systematic review and meta-analysis of the dose-dependent effects of nicotinamide and nicotinic acid supplementation. Nutr Rev 2017; 75:471-490. [DOI: 10.1093/nutrit/nux011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Lee J, Hegele RA. Investigated treatments for lipoprotein lipase deficiency and related metabolic disorders. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1311784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Chen S, Wen X, Zhang W, Wang C, Liu J, Liu C. Hypolipidemic effect of oleanolic acid is mediated by the miR-98-5p/PGC-1β axis in high-fat diet-induced hyperlipidemic mice. FASEB J 2017; 31:1085-1096. [PMID: 27903618 DOI: 10.1096/fj.201601022r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA) is an active component of the traditional Chinese herb Olea europaea L. and has been found to exhibit a significant lipid-lowering effect; however, its direct molecular target is still unknown, which limits its clinical application and the possible structure modification to improve its beneficial functions. In this regard, we carried out the present study to identify potential hepatic targets of OA to mediate its lipid-lowering effect. We found that both acute and chronic OA treatments reduced serum levels of triglycerides, total cholesterol, and LDL cholesterol, and decreased hepatic expression levels of peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β), which is an important regulator in maintaining hepatic lipid homeostasis, and its downstream target genes. Of note, liver-specific knockdown of PGC-1β recapitulated the hypolipidemic effects of OA. At the molecular level, OA accelerated mRNA degradation of PGC-1β. Microarray analysis revealed a host of microRNAs that potentially mediate OA-induced PGC-1β mRNA degradation, among which, miR-98-5p significantly inhibited activity of Pgc-1β 3' UTR as well as PGC-1β expression and promoted its mRNA degradation. Conversely, miR-98-5p inhibitors blunted the inhibitory effects of OA on PGC-1β expression. Collectively, our data demonstrated that OA ameliorated hyperlipidemia, likely via regulation of the miR-98-5p/PGC-1β axis.-Chen, S., Wen, X., Zhang, W., Wang, C., Liu, J., Liu, C. Hypolipidemic effect of oleanolic acid is mediated by the miR-98-5p/PGC-1β axis in high-fat diet-induced hyperlipidemic mice.
Collapse
Affiliation(s)
- Siyu Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
- Jiangsu Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
| | - Wenxiang Zhang
- School of Life Sciences, China Pharmaceutical University, Nanjing, China; and
| | - Chen Wang
- School of Life Sciences, China Pharmaceutical University, Nanjing, China; and
| | - Jun Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
| | - Chang Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; and
- School of Life Sciences, China Pharmaceutical University, Nanjing, China; and
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
22
|
Abstract
A high level of lipoprotein(a) (Lp(a)) is recognized as an independent and additional cardiovascular risk factor contributing to the risk of early onset and progressive course of cardiovascular disease (CVD). All lipid lowering medications in use mainly lower low density lipoprotein-cholesterol (LDL-c) with no or limited effect on levels of Lp(a). Niacin, the only component lowering Lp(a), is firstly often poorly tolerated and secondly not available anymore in many countries. A level of <50 mg/dl was recommended recently as the cut off level for clinical use and decision making. Since lipoprotein apheresis (LA) lowers not only LDL-c but also Lp(a) significantly, its use is recommended in some countries in very high-risk patients with early or progressive CVD. Retrospective analyses show that regular LA improves the course of CVD. This is supported by a recent prospective observational trial and data of the German Lipoprotein Apheresis Registry. Despite many treatment options, all too often it is not possible to reduce LDL-c levels to target and to reduce Lp(a) levels sustainably at all. Therefore, new drug therapies are awaited. Some of the lipid modifying drugs in development lower Lp(a) to some extent in addition to LDL-c; the only specific approach is the apoprotein(a) antisense oligonucleotide. Currently LA is the standard of care as a last resort treatment in high-risk patients with elevated Lp(a) and severe CVD despite optimal control of all other cardiovascular risk factors.
Collapse
Affiliation(s)
- Anja Vogt
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, 80336, München, Germany.
| |
Collapse
|
23
|
Dunbar RL, Goel H, Tuteja S, Song WL, Nathanson G, Babar Z, Lalic D, Gelfand JM, Rader DJ, Grove GL. Measuring niacin-associated skin toxicity (NASTy) stigmata along with symptoms to aid development of niacin mimetics. J Lipid Res 2017; 58:783-797. [PMID: 28119443 DOI: 10.1194/jlr.d071696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/17/2017] [Indexed: 12/25/2022] Open
Abstract
Though cardioprotective, niacin monotherapy is limited by unpleasant cutaneous symptoms mimicking dermatitis: niacin-associated skin toxicity (NASTy). Niacin is prototypical of several emerging drugs suffering off-target rubefacient properties whereby agonizing the GPR109A receptor on cutaneous immune cells provokes vasodilation, prompting skin plethora and rubor, as well as dolor, tumor, and calor, and systemically, heat loss, frigor, chills, and rigors. Typically, NASTy effects are described by subjective patient-reported perception, at best semi-quantitative and bias-prone. Conversely, objective, quantitative, and unbiased methods measuring NASTy stigmata would facilitate research to abolish them, motivating development of several objective methods. In early drug development, such methods might better predict clinical tolerability in larger clinical trials. Measuring cutaneous stigmata may also aid investigations of vasospastic, ischemic, and inflammatory skin conditions. We present methods to measure NASTy physical stigmata to facilitate research into novel niacin mimetics/analogs, detailing characteristics of each technique following niacin, and how NASTy stigmata relate to symptom perception. We gave niacin orally and measured rubor by colorimetry and white-light spectroscopy, plethora by laser Doppler flowmetry, and calor/frigor by thermometry. Surprisingly, each stigma's abruptness predicted symptom perception, whereas peak intensity did not. These methods are adaptable to study other rubefacient drugs or dermatologic and vascular disorders.
Collapse
Affiliation(s)
- Richard L Dunbar
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Philadelphia PA; Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Medical Center, Philadelphia, PA; Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania Medical Center, Philadelphia, PA.
| | - Harsh Goel
- Department Medicine, York Hospital, York, PA
| | - Sony Tuteja
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania Medical Center, Philadelphia, PA
| | - Wen-Liang Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN
| | - Grace Nathanson
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Philadelphia PA
| | | | - Dusanka Lalic
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Philadelphia PA; Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania Medical Center, Philadelphia, PA
| | - Joel M Gelfand
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Philadelphia PA; Departments of Dermatology and Biostatistics and Epidemiology, and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- University of Pennsylvania Institute for Translational Medicine and Therapeutics, Philadelphia PA; Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Medical Center, Philadelphia, PA; Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA; Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania Medical Center, Philadelphia, PA
| | | |
Collapse
|
24
|
Sahebkar A, Reiner Ž, Simental-Mendía LE, Ferretti G, Cicero AFG. Effect of extended-release niacin on plasma lipoprotein(a) levels: A systematic review and meta-analysis of randomized placebo-controlled trials. Metabolism 2016; 65:1664-1678. [PMID: 27733255 DOI: 10.1016/j.metabol.2016.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
Abstract
AIM Lipoprotein(a) (Lp(a)) is a proatherogenic and prothrombotic lipoprotein. Our aim was to quantify the extended-release nicotinic acid Lp(a) reducing effect with a meta-analysis of the available randomized clinical trials. METHODS A meta-analysis and random-effects meta-regression were performed on data pooled from 14 randomized placebo-controlled clinical trials published between 1998 and 2015, comprising 17 treatment arms, which included 9013 subjects, with 5362 in the niacin arm. RESULTS The impact of ER niacin on plasma Lp(a) concentrations was reported in 17 treatment arms. Meta-analysis suggested a significant reduction of Lp(a) levels following ER niacin treatment (weighted mean difference - WMD: -22.90%, 95% CI: -27.32, -18.48, p<0.001). Results also remained similar when the meta-analysis was repeated with standardized mean difference as summary statistic (WMD: -0.66, 95% CI: -0.82, -0.50, p<0.001). When the studies were categorized according to the administered dose, there was a comparable effect between the subsets of studies with administered doses of <2000mg/day (WMD: -21.85%, 95% CI: -30.61, -13.10, p<0.001) and ≥2000mg/day (WMD: -23.21%, 95% CI: -28.41, -18.01, p<0.001). The results of the random-effects meta-regression did not suggest any significant association between the changes in plasma concentrations of Lp(a) with dose (slope: -0.0001; 95% CI: -0.01, 0.01; p=0.983), treatment duration (slope: -0.40; 95% CI: -0.97, 0.17; p=0.166), and percentage change in plasma HDL-C concentrations (slope: 0.44; 95% CI: -0.48, 1.36; p=0.350). CONCLUSION In this meta-analysis of randomized placebo-controlled clinical trials, treatment with nicotinic acid was associated with a significant reduction in Lp(a) levels.
Collapse
Affiliation(s)
- Amirhosssein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran; Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Željko Reiner
- University Hospital Center Zagreb, Department of Internal medicine, Kišpatićeva 12, Zagreb, Croatia
| | | | - Gianna Ferretti
- Dipartimento di Scienze cliniche Specialistiche ed Odontostomatologiche (DISCO), Università Politecnica delle Marche, Italy
| | - Arrigo F G Cicero
- Medicine and Surgery Sciences Dept., Alma Mater Studiorum University of Bologna, Italy.
| |
Collapse
|
25
|
Van Gaal LF, Peiffer F, Ballaux D. Reducing cardiovascular risk in patients with type 2 diabetes: the potential contribution of nicotinic acid. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514050050060901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Current treatment guidelines highlight the increased cardiovascular risk associated with type 2 diabetes and identify the need for intensive risk factor management. Dyslipidaemia characterised by elevated serum triglycerides, low levels of high-density lipoprotein cholesterol (HDL-C) and an increase in small, dense low-density lipoprotein cholesterol (LDL-C) particles (the lipid triad), is one of the most important modifiable cardiovascular risk factors in patients with type 2 diabetes. Statins, which are effective in reducing LDL-C, are currently considered the foundation of lipid-lowering treatment in type 2 diabetes, in addition to lifestyle modification. Increasingly, guidelines also identify low HDL-C as an important secondary priority for treatment. Of the available treatment options, both fibrates and nicotinic acid are effective in treating dyslipidaemia associated with type 2 diabetes, although the latter has greater potency in raising HDL-C. Based on its profile of activity, addition of nicotinic acid to primary statin therapy would be a logical strategy in the treatment of diabetic dyslipidaemia. Outcome data from large prospective studies are awaited to confirm the potential morbidity and mortality benefits of this approach.
Collapse
Affiliation(s)
- Luc F Van Gaal
- Department of Diabetology, Metabolism and Nutrition, Antwerp University Hospital, University of Antwerp, Belgium,
| | - Frida Peiffer
- Department of Diabetology, Metabolism and Nutrition, Antwerp University Hospital, University of Antwerp, Belgium
| | - Dominique Ballaux
- Department of Diabetology, Metabolism and Nutrition, Antwerp University Hospital, University of Antwerp, Belgium
| |
Collapse
|
26
|
Mcgovern ME. Review: Use of nicotinic acid in patients with elevated fasting glucose, diabetes, or metabolic syndrome. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514040040020301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This paper will focus on the use of nicotinic acid as a therapeutic option for cardiovascular risk reduction in patients with abnormal glucose metabolism and `atherogenic dyslipidaemia'. This is characterised by low levels of HDL-C, high triglycerides, and preponderance of small, dense LDL particles. Whilst nicotinic acid may increase plasma glucose in some patients, more recent studies show that the effect of nicotinic acid on glycaemic control is minimal in the majority of patients, and that nicotinic acid decreases the risk of cardiac events in patients with elevated fasting glucose, diabetes, or metabolic syndrome.
Collapse
Affiliation(s)
- Mark E Mcgovern
- 2200 North Commerce Parkway, Suite 300 Weston, Florida 33326 — 3258 USA,
| |
Collapse
|
27
|
Chirasani VR, Revanasiddappa PD, Senapati S. Structural Plasticity of Cholesteryl Ester Transfer Protein Assists the Lipid Transfer Activity. J Biol Chem 2016; 291:19462-73. [PMID: 27445332 DOI: 10.1074/jbc.m116.744623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 12/26/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl esters (CEs) and triglycerides between different lipoproteins. Recent studies have shown that blocking the function of CETP can increase the level of HDL cholesterol in blood plasma and suppress the risk of cardiovascular disease. Hence, understanding the structure, dynamics, and mechanism by which CETP transfers the neutral lipids has received tremendous attention in last decade. Although the recent crystal structure has provided direct evidence of the existence of strongly bound CEs in the CETP core, very little is known about the mechanism of CE/triglyceride transfer by CETP. In this study, we explore the large scale dynamics of CETP by means of multimicrosecond molecular dynamics simulations and normal mode analysis, which provided a wealth of detailed information about the lipid transfer mechanism of CETP. Results show that the bound CEs intraconvert between bent and linear conformations in the CETP core tunnel as a consequence of the high degree of conformational flexibility of the protein. During the conformational switching, there occurred a significant reduction in hydrophobic contacts between the CEs and CETP, and a continuous tunnel traversing across the CETP long axis appeared spontaneously. Thus, our results support the recently proposed "tunnel mechanism" of CETP from cryo-EM studies for the transfer of neutral lipids between different lipoproteins. The detailed understanding obtained here could help in devising methods to prevent CETP function as a cardiovascular disease therapeutic.
Collapse
Affiliation(s)
- Venkat R Chirasani
- From the Bhupat and Jyoti Mehta School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Prasanna D Revanasiddappa
- From the Bhupat and Jyoti Mehta School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- From the Bhupat and Jyoti Mehta School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
28
|
Dunbar RL, Goel H. Niacin Alternatives for Dyslipidemia: Fool's Gold or Gold Mine? Part I: Alternative Niacin Regimens. Curr Atheroscler Rep 2016; 18:11. [PMID: 26876225 PMCID: PMC4753247 DOI: 10.1007/s11883-016-0563-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Niacin was the first drug demonstrating lowered cholesterol prevents coronary heart disease (CHD) events, with two clinical CHD outcome studies establishing a cardioprotective niacin regimen: 1 g thrice daily with meals. Though cardioprotective, skin toxicity limits niacin's use, fostering several variations to improve tolerability. One of these, an extended-release (ER) alternative, proved immensely successful commercially, dominating clinical practice despite departing from the established regimen in several critical ways. Hence, improved tolerability may have come at the cost of diminished efficacy, posing a conundrum: Does it still help the population at risk for CHD to broaden a drug's acceptance by "watering it down"? This question is crucial at this stage now that the ER alternative failed to recapitulate the benefits of the established cardioprotective niacin regimen in two trials of the alternative approach: AIM-HIGH and HPS2-THRIVE. Part I of this review discusses how vastly the ER alternative departs from the established cardioprotective regimen, why that is important physiologically, and how it may explain the findings of AIM-HIGH and HPS2-THRIVE. Given important gaps left by statin therapy, the established cardioprotective niacin regimen remains an important evidence-based therapy for the statin intolerant or statin averse.
Collapse
Affiliation(s)
- Richard L Dunbar
- Department of Medicine, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 3600 Spruce Street, 9-010 Maloney Building, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- The Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Harsh Goel
- Department of Medicine, York Hospital, 1001 S. George Street, York, PA, 17403, USA.
| |
Collapse
|
29
|
Bell DA, Watts GF. Contemporary and Novel Therapeutic Options for Hypertriglyceridemia. Clin Ther 2015; 37:2732-50. [DOI: 10.1016/j.clinthera.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
|
30
|
Nicotinic Acid Accelerates HDL Cholesteryl Ester Turnover in Obese Insulin-Resistant Dogs. PLoS One 2015; 10:e0136934. [PMID: 26366727 PMCID: PMC4569091 DOI: 10.1371/journal.pone.0136934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
AIM Nicotinic acid (NA) treatment decreases plasma triglycerides and increases HDL cholesterol, but the mechanisms involved in these change are not fully understood. A reduction in cholesteryl ester transfer protein (CETP) activity has been advanced to explain most lipid-modulating effects of NA. However, due to the central role of CETP in reverse cholesterol transport in humans, other effects of NA may have been hidden. As dogs have no CETP activity, we conducted this study to examine the specific effects of extended-release niacin (NA) on lipids and high-density lipoprotein (HDL) cholesteryl ester (CE) turnover in obese Insulin-Resistant dogs with increase plasma triglycerides. METHODS HDL kinetics were assessed in fasting dogs before and four weeks after NA treatment through endogenous labeling of cholesterol and apolipoprotein AI by simultaneous infusion of [1,2 13C2] acetate and [5,5,5 2H3] leucine for 8 h. Kinetic data were analyzed by compartmental modeling. In vitro cell cholesterol efflux of serum from NA-treated dogs was also measured. RESULTS NA reduced plasma total cholesterol, low-density lipoprotein cholesterol, HDL cholesterol, triglycerides (TG), and very-low-density lipoprotein TG concentrations (p < 0.05). The kinetic study also showed a higher cholesterol esterification rate (p < 0.05). HDL-CE turnover was accelerated (p < 0.05) via HDL removal through endocytosis and selective CE uptake (p < 0.05). We measured an elevated in vitro cell cholesterol efflux (p < 0.05) with NA treatment in accordance with a higher cholesterol esterification. CONCLUSION NA decreased HDL cholesterol but promoted cholesterol efflux and esterification, leading to improved reverse cholesterol transport. These results highlight the CETP-independent effects of NA in changes of plasma lipid profile.
Collapse
|
31
|
Goldie C, Taylor AJ, Nguyen P, McCoy C, Zhao XQ, Preiss D. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart 2015; 102:198-203. [PMID: 26370223 PMCID: PMC4752613 DOI: 10.1136/heartjnl-2015-308055] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/26/2015] [Indexed: 01/19/2023] Open
Abstract
Objective Previous studies have suggested that niacin treatment raises glucose levels in patients with diabetes and may increase the risk of developing diabetes. We undertook a meta-analysis of published and unpublished data from randomised trials to confirm whether an association exists between niacin and new-onset diabetes. Methods We searched Medline, EMBASE and the Cochrane Central Register of Controlled Trials, from 1975 to 2014, for randomised controlled trials of niacin primarily designed to assess its effects on cardiovascular endpoints and cardiovascular surrogate markers. We included trials with ≥50 non-diabetic participants and average follow-up of ≥24 weeks. Published data were tabulated and unpublished data sought from investigators. We calculated risk ratios (RR) for new-onset diabetes with random-effects meta-analysis. Heterogeneity between trials was assessed using the I2 statistic. Results In 11 trials with 26 340 non-diabetic participants, 1371 (725/13 121 assigned niacin; 646/13 219 assigned control) were diagnosed with diabetes during a weighted mean follow-up of 3.6 years. Niacin therapy was associated with a RR of 1.34 (95% CIs 1.21 to 1.49) for new-onset diabetes, with limited heterogeneity between trials (I2=0.0%, p=0.87). This equates to one additional case of diabetes per 43 (95% CI 30 to 70) initially non-diabetic individuals who are treated with niacin for 5 years. Results were consistent regardless of whether participants received background statin therapy (p for interaction=0.88) or combined therapy with laropiprant (p for interaction=0.52). Conclusions Niacin therapy is associated with a moderately increased risk of developing diabetes regardless of background statin or combination laropiprant therapy.
Collapse
Affiliation(s)
- Christina Goldie
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Allen J Taylor
- Medstar Research Institute, Washington Hospital Center, Washington DC, USA
| | - Peter Nguyen
- Division of Cardiology, Medstar Georgetown University Hospital, Washington DC, USA
| | - Cody McCoy
- University of Tennessee Health and Science Center, College of Medicine, Memphis, Tennessee, USA
| | - Xue-Qiao Zhao
- Cardiovascular Atherosclerosis Research Laboratory, Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - David Preiss
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
32
|
Abstract
This Review discusses new developments in understanding the basis of chylomicronaemia--a challenging metabolic disorder for which there is an unmet clinical need. Chylomicronaemia presents in two distinct primary forms. The first form is very rare monogenic early-onset chylomicronaemia, which presents in childhood or adolescence and is often caused by homozygous mutations in the gene encoding lipoprotein lipase (LPL), its cofactors apolipoprotein C-II or apolipoprotein A-V, the LPL chaperone lipase maturation factor 1 or glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1. The second form, polygenic late-onset chylomicronaemia, which is caused by an accumulation of several genetic variants, can be exacerbated by secondary factors, such as poor diet, obesity, alcohol intake and uncontrolled type 1 or type 2 diabetes mellitus, and is more common than early-onset chylomicronaemia. Both forms of chylomicronaemia are associated with an increased risk of life-threatening pancreatitis; the polygenic form might also be associated with an increased risk of cardiovascular disease. Treatment of chylomicronaemia focuses on restriction of dietary fat and control of secondary factors, as available pharmacological therapies are only minimally effective. Emerging therapies that might prove more effective than existing agents include LPL gene therapy, inhibition of microsomal triglyceride transfer protein and diacylglycerol O-acyltransferase 1, and interference with the production and secretion of apoC-III and angiopoietin-like protein 3.
Collapse
Affiliation(s)
- Amanda J Brahm
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
33
|
Koh Y, Bidstrup H, Nichols DL. Niacin increased glucose, insulin, and C-peptide levels in sedentary nondiabetic postmenopausal women. Int J Womens Health 2014; 6:913-20. [PMID: 25364276 PMCID: PMC4211901 DOI: 10.2147/ijwh.s69908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The current study examined the effects of niacin and a single bout of aerobic exercise on plasma glucose, insulin, and C-peptide in sedentary, nondiabetic postmenopausal women. As a crossover design, 17 participants underwent four different trials: rest during the no-niacin condition (R), exercise during the no-niacin condition (E), rest during the with-niacin condition (RN), and exercise during the with-niacin condition (EN). All participants took 1,000 mg/day of extended-release niacin for 4 weeks during the with-niacin conditions (RN and EN). The exercise treatment consisted of a single bout of treadmill walking at 60% heart rate reserve until 400 kcal were expended. Blood samples were collected at 24 hours after each trial and analyzed for changes in plasma glucose, insulin, and C-peptide. A two by two analysis of variance was used to examine the changes in dependent variables, and the Bonferroni adjustment was employed as the post hoc test. The level of statistical significance was set at P<0.05. There was no significant interaction between exercise and niacin, nor was there a main effect of exercise for changes in glucose, insulin, or C-peptide. However, there was a significant main effect for niacin as mean glucose, insulin, and C-peptide values significantly increased with niacin; glucose increased 10.6% (P=0.001), from 95.03±10.67 mg/dL to 105.07±13.56 mg/dL; insulin increased 61.8% (P=0.001), from 16.98±12.49 μU/mL to 27.48±14.84 μU/mL; and C-peptide increased 46.1% (P=0.001), from 1.65±0.75 ng/mL to 2.41±0.97 ng/mL. Although niacin was generally well tolerated, given its adverse effects on glucose, insulin, and C-peptide profiles, the use of niacin should be done so with caution and under medical supervision.
Collapse
Affiliation(s)
- Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Heidi Bidstrup
- Department of Kinesiology, Texas Woman's University, Denton, TX, USA
| | - David L Nichols
- Department of Kinesiology, Texas Woman's University, Denton, TX, USA
| |
Collapse
|
34
|
Lebouché B, Jenabian MA, Singer J, Graziani GM, Engler K, Trottier B, Thomas R, Brouillette MJ, Routy JP. The role of extended-release niacin on immune activation and neurocognition in HIV-infected patients treated with antiretroviral therapy - CTN PT006: study protocol for a randomized controlled trial. Trials 2014; 15:390. [PMID: 25293882 PMCID: PMC4283109 DOI: 10.1186/1745-6215-15-390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Approximately 30% of HIV-1-infected patients receiving antiretroviral therapy who achieve virologic control have unsatisfactory immune reconstitution, with CD4+ T-cell counts persistently below 350 cells/μL. These patients are at elevated risk for clinical progression to AIDS and non-AIDS events. CD4+ T-cell depletion following infection and persistent immune activation can partially explain this low CD4+ T-cell recovery. Recent data suggest a link between the tryptophan oxidation pathway, immune activation and HIV disease progression based on overstimulation of the tryptophan oxidation pathway by HIV antigens and by interferon-gamma. This overstimulation reduces levels of circulating tryptophan, resulting in inflammation which has been implicated in the development of neurocognitive dysfunction. Niacin (vitamin B3) is able to control the excess tryptophan oxidation, correcting tryptophan depletion, and therefore represents an interesting strategy to improve CD4 recovery.We aim to design a crossover proof-of-concept study to assess supplementation with an extended-release form of niacin (Niaspan FCT™) in combination with antiretroviral therapy, compared to antiretroviral therapy alone, on T-cell immune activation as defined by changes in the percentage of CD8+ CD38+ HLA-DR+ T-cells. METHODS/DESIGN This randomized, open-label, interventional crossover study with an immediate versus deferred use of Niaspan FCT for 24 weeks will assess its ability to reduce immune activation and thus increase CD4 recovery in 20 HIV-infected individuals with suboptimal immune responses despite sustained virologic suppression. A substudy evaluating neurocognitive function will also be conducted. DISCUSSION This randomized trial will provide an opportunity to evaluate the potential benefit of oral extended-release niacin, a drug that can indirectly increase tryptophan, to reduce immune activation and in turn increase CD4+ T-cell recovery. The study will also allow for the evaluation of the impact of Niaspan FCT on neurocognitive function in HIV-infected individuals with suboptimal immune responses despite sustained virologic suppression. TRIAL REGISTRATION This study was registered with ClinicalTrials.gov on 17 December 2013 (registration number: NCT02018965).
Collapse
Affiliation(s)
- Bertrand Lebouché
- />Chronic Viral Illness Service, Montreal Chest Institute, McGill University Health Centre, 3650 Saint Urbain St., Montreal, QC H2X 2P4 Canada
- />Canadian Institutes of Health Research (CIHR) Canadian HIV Trials Network (the CTN), 588-1081 Burrard St., Vancouver, BC V6B 3E6 Canada
- />Department of Family Medicine, McGill University, 5858, chemin de la Côte-des-Neiges, Montreal, QC H3S 1Z1 Canada
| | - Mohammad-Ali Jenabian
- />Chronic Viral Illness Service, Montreal Chest Institute, McGill University Health Centre, 3650 Saint Urbain St., Montreal, QC H2X 2P4 Canada
- />Canadian Institutes of Health Research (CIHR) Canadian HIV Trials Network (the CTN), 588-1081 Burrard St., Vancouver, BC V6B 3E6 Canada
| | - Joel Singer
- />Canadian Institutes of Health Research (CIHR) Canadian HIV Trials Network (the CTN), 588-1081 Burrard St., Vancouver, BC V6B 3E6 Canada
| | - Gina M Graziani
- />Canadian Institutes of Health Research (CIHR) Canadian HIV Trials Network (the CTN), 588-1081 Burrard St., Vancouver, BC V6B 3E6 Canada
- />Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6 Canada
| | - Kim Engler
- />Chronic Viral Illness Service, Montreal Chest Institute, McGill University Health Centre, 3650 Saint Urbain St., Montreal, QC H2X 2P4 Canada
| | - Benoit Trottier
- />Clinique médicale l’Actuel, 1001 boul. de Maisonneuve E, Montreal, QC H2L 4P9 Canada
| | - Réjean Thomas
- />Clinique médicale l’Actuel, 1001 boul. de Maisonneuve E, Montreal, QC H2L 4P9 Canada
| | - Marie-Josée Brouillette
- />Chronic Viral Illness Service, Montreal Chest Institute, McGill University Health Centre, 3650 Saint Urbain St., Montreal, QC H2X 2P4 Canada
| | - Jean-Pierre Routy
- />Chronic Viral Illness Service, Montreal Chest Institute, McGill University Health Centre, 3650 Saint Urbain St., Montreal, QC H2X 2P4 Canada
- />Canadian Institutes of Health Research (CIHR) Canadian HIV Trials Network (the CTN), 588-1081 Burrard St., Vancouver, BC V6B 3E6 Canada
| |
Collapse
|
35
|
Taylor JK, Plaisance EP, Mahurin AJ, Mestek ML, Moncada-Jimenez J, Grandjean PW. Paraoxonase responses to exercise and niacin therapy in men with metabolic syndrome. Redox Rep 2014; 20:42-8. [PMID: 25180827 DOI: 10.1179/1351000214y.0000000103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our purpose was to characterize changes in paraoxonase 1 (PON1) activity and concentration after single aerobic exercise sessions conducted before and after 6 weeks of niacin therapy in men with metabolic syndrome (MetS). Twelve men with MetS expended 500 kcal by walking at 65% of VO2max before and after a 6-week regimen of niacin. Niacin doses were titrated by 500 mg/week from 500 to 1500 mg/day and maintained at 1500 mg/day for the last 4 weeks. Fasting blood samples were collected before and 24 hours after each exercise session and analyzed for PON1 activity, PON1 concentration, myeloperoxidase (MPO), apolipoprotein A1, oxidized low-density lipoprotein (oLDL), lipoprotein particle sizes and concentrations. PON1 activity, PON1 concentration, MPO, and oLDL were unaltered following the independent effects of exercise and niacin (P > 0.05 for all). High-density lipoprotein particle size decreased by 3% (P = 0.040) and concentrations of small very low-density lipoprotein increased (P = 0.016) following exercise. PON1 activity increased 6.1% (P = 0.037) and PON1 concentrations increased 11.3% (P = 0.015) with the combination of exercise and niacin. Exercise and niacin works synergistically to increase PON1 activity and concentration with little or no changes in lipoproteins or markers of lipid oxidation.
Collapse
|
36
|
Basavaraj S, Betageri GV. Can formulation and drug delivery reduce attrition during drug discovery and development-review of feasibility, benefits and challenges. Acta Pharm Sin B 2014; 4:3-17. [PMID: 26579359 PMCID: PMC4590717 DOI: 10.1016/j.apsb.2013.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022] Open
Abstract
Drug discovery and development has become longer and costlier process. The fear of failure and stringent regulatory review process is driving pharmaceutical companies towards “me too” drugs and improved generics (505(b) (2)) fillings. The discontinuance of molecules at late stage clinical trials is common these years. The molecules are withdrawn at various stages of discovery and development process for reasons such as poor ADME properties, lack of efficacy and safety reasons. Hence this review focuses on possible applications of formulation and drug delivery to salvage molecules and improve the drugability. The formulation and drug delivery technologies are suitable for addressing various issues contributing to attrition are discussed in detail.
Collapse
|
37
|
Jacobson TA. Lipoprotein(a), cardiovascular disease, and contemporary management. Mayo Clin Proc 2013; 88:1294-311. [PMID: 24182706 DOI: 10.1016/j.mayocp.2013.09.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 12/29/2022]
Abstract
Elevated lipoprotein(a) (Lp[a]) is a causal genetic risk factor for cardiovascular disease. To determine if current evidence supports both screening and treatment for elevated Lp(a) in high-risk patients, an English-language search of PubMed and MEDLINE was conducted. In population studies, there is a continuous association between Lp(a) concentrations and cardiovascular risk, with synergistic effects when low-density lipoprotein (LDL) is also elevated. Candidates for Lp(a) screening include patients with a personal or family history of premature cardiovascular disease, familial hypercholesterolemia, recurrent cardiovascular events, or inadequate LDL cholesterol (LDL-C) responses to statins. Given the comparative strength of clinical evidence, reducing LDL-C to the lowest attainable value with a high-potency statin should be the primary focus of lipid-modifying therapies. If the Lp(a) level is 30 mg/dL or higher in a patient who has the aforementioned characteristics plus residual LDL-C elevations (≥70-100 mg/dL) despite maximum-potency statins or combination statin therapy, the clinician may consider adding niacin (up to 2 g/d). If, after these interventions, the patient has progressive coronary heart disease (CHD) or LDL-C levels of 160-200 mg/dL or higher, LDL apheresis should be contemplated. Although Lp(a) is a major causal risk factor for CHD, no currently available controlled studies have suggested that lowering it through either pharmacotherapy or LDL apheresis specifically and significantly reduces coronary risk. Further research is needed to (1) optimize management in order to reduce CHD risk associated with elevated Lp(a) and (2) determine what other intermediate- or high-risk groups might benefit from Lp(a) screening.
Collapse
Affiliation(s)
- Terry A Jacobson
- Office of Health Promotion and Disease Prevention, Department of Medicine, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
38
|
Licht CMM, de Geus EJC, Penninx BWJH. Dysregulation of the autonomic nervous system predicts the development of the metabolic syndrome. J Clin Endocrinol Metab 2013; 98:2484-93. [PMID: 23553857 DOI: 10.1210/jc.2012-3104] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Stress is suggested to lead to metabolic dysregulations as clustered in the metabolic syndrome. Although dysregulation of the autonomic nervous system is found to associate with the metabolic syndrome and its dysregulations, no longitudinal study has been performed to date to examine the predictive value of this stress system in the development of the metabolic syndrome. OBJECTIVE We examined whether autonomic nervous system functioning predicts 2-year development of metabolic abnormalities that constitute the metabolic syndrome. DESIGN Data of the baseline and 2-year follow-up assessment of a prospective cohort: the Netherlands Study of Depression and Anxiety was used. SETTING Participants were recruited in the general community, primary care, and specialized mental health care organizations. PARTICIPANTS A group of 1933 participants aged 18-65 years. MAIN OUTCOME MEASURES The autonomic nervous system measures included heart rate (HR), respiratory sinus arrhythmia (RSA; high RSA reflecting high parasympathetic activity), pre-ejection period (PEP; high PEP reflecting low sympathetic activity), cardiac autonomic balance (CAB), and cardiac autonomic regulation (CAR). Metabolic syndrome was based on the updated Adult Treatment Panel III criteria and included high waist circumference, serum triglycerides, blood pressure, serum glucose, and low high-density lipoprotein (HDL) cholesterol. RESULTS Baseline short PEP, low CAB, high HR, and CAR were predictors of an increase in the number of components of the metabolic syndrome during follow-up. High HR and low CAB were predictors of a 2-year decrease in HDL cholesterol, and 2-year increase in diastolic and systolic blood pressure. Short PEP and high CAR also predicted a 2-year increase in systolic blood pressure, and short PEP additionally predicted 2-year increase in diastolic blood pressure. Finally, a low baseline RSA was predictive for subsequent decreases in HDL cholesterol. CONCLUSION Increased sympathetic activity predicts an increase in metabolic abnormalities over time. These findings suggest that a dysregulation of the autonomic nervous system is an important predictor of cardiovascular diseases and diabetes through dysregulating lipid metabolism and blood pressure over time.
Collapse
Affiliation(s)
- Carmilla M M Licht
- Department of Psychiatry, Vrije Universiteit (VU) University Medical Center Amsterdam, The Netherlands.
| | | | | |
Collapse
|
39
|
Brahm A, Hegele RA. Hypertriglyceridemia. Nutrients 2013; 5:981-1001. [PMID: 23525082 PMCID: PMC3705331 DOI: 10.3390/nu5030981] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 12/20/2022] Open
Abstract
Hypertriglyceridemia (HTG) is commonly encountered in lipid and cardiology clinics. Severe HTG warrants treatment because of the associated increased risk of acute pancreatitis. However, the need to treat, and the correct treatment approach for patients with mild to moderate HTG are issues for ongoing evaluation. In the past, it was felt that triglyceride does not directly contribute to development of atherosclerotic plaques. However, this view is evolving, especially for triglyceride-related fractions and variables measured in the non-fasting state. Our understanding of the etiology, genetics and classification of HTG states is also evolving. Previously, HTG was considered to be a dominant disorder associated with variation within a single gene. The old nomenclature includes the term "familial" in the names of several hyperlipoproteinemia (HLP) phenotypes that included HTG as part of their profile, including combined hyperlipidemia (HLP type 2B), dysbetalipoproteinemia (HLP type 3), simple HTG (HLP type 4) and mixed hyperlipidemia (HLP type 5). This old thinking has given way to the idea that genetic susceptibility to HTG results from cumulative effects of multiple genetic variants acting in concert. HTG most is often a "polygenic" or "multigenic" trait. However, a few rare autosomal recessive forms of severe HTG have been defined. Treatment depends on the overall clinical context, including severity of HTG, concomitant presence of other lipid disturbances, and the patient's global risk of cardiovascular disease. Therapeutic strategies include dietary counselling, lifestyle management, control of secondary factors, use of omega-3 preparations and selective use of pharmaceutical agents.
Collapse
Affiliation(s)
- Amanda Brahm
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | | |
Collapse
|
40
|
A Systematic Literature Review of the Association of Lipoprotein(a) and Autoimmune Diseases and Atherosclerosis. Int J Rheumatol 2012; 2012:480784. [PMID: 23304154 PMCID: PMC3523136 DOI: 10.1155/2012/480784] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/05/2012] [Accepted: 09/05/2012] [Indexed: 12/23/2022] Open
Abstract
Objective. To investigate the association of lipoprotein(a) and atherosclerosis-related autoimmune diseases, to provide information on possible pathophysiologic mechanisms, and to give recommendations for Lp(a) determination and therapeutic options. Methods. We performed a systematic review of English language citations referring to the keywords "Lp(a)" AND "autoimmune disease" AND "atherosclerosis," "Lp(a)" AND "immune system" OR "antiphospholipid (Hughes) syndrome (APS)" OR "rheumatoid arthritis" OR "Sjögren's syndrome" OR "systemic lupus erythematosus" OR "systemic sclerosis" OR "systemic vasculitis" published between 1991 and 2011 using Medline database. Results. 22 out of 65 found articles were identified as relevant. Lp(a) association was highest in rheumatoid arthritis (RA), followed by systemic lupus erythematosus (SLE), moderate in APS and lowest in systemic sclerosis (SSc). There was no association found between Lp(a) and systemic vasculitis or Sjögren's syndrome. Conclusion. Immune reactions are highly relevant in the pathophysiology of atherosclerosis, and patients with specific autoimmune diseases are at high risk for CVD. Elevated Lp(a) is an important risk factor for premature atherosclerosis and high Lp(a) levels are also associated with autoimmune diseases. Anti-Lp(a)-antibodies might be a possible explanation. Therapeutic approaches thus far include niacin, Lp(a)-apheresis, farnesoid x-receptor-agonists, and CETP-inhibitors being currently under investigation.
Collapse
|
41
|
Puesta al día en el manejo de las dislipidemias. REVISTA MÉDICA CLÍNICA LAS CONDES 2012. [DOI: 10.1016/s0716-8640(12)70368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Hanson J, Gille A, Offermanns S. Role of HCA2 (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin. Pharmacol Ther 2012; 136:1-7. [DOI: 10.1016/j.pharmthera.2012.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/08/2012] [Indexed: 11/16/2022]
|
43
|
Abstract
Niacin, or water-soluble vitamin B(3), when given at pharmacologic doses, is a powerful lipid-altering agent. This drug, which lowers the levels of atherogenic, apolipoprotein-B-containing lipoproteins, is one of few medications that can raise the levels of atheroprotective HDL cholesterol. Niacin also has beneficial effects on other cardiovascular risk factors, including lipoprotein(a), C-reactive protein, platelet-activating factor acetylhydrolase, plasminogen activator inhibitor 1 and fibrinogen. Many clinical trials have confirmed the lipid effects of niacin treatment; however, its effects on cardiovascular outcomes have been called into question owing to the AIM-HIGH trial, which showed no benefit of niacin therapy on cardiovascular endpoints. Furthermore, use of niacin has historically been limited by tolerability issues. In addition to flushing, worsened hyperglycaemia among patients with diabetes mellitus has also been a concern with niacin therapy. This article reviews the utility of niacin including its mechanism of action, clinical trial data regarding cardiovascular outcomes, adverse effect profile and strategies to address these effects and improve compliance.
Collapse
Affiliation(s)
- Julia C Creider
- Robarts Research Institute and Schulich School of Medicine and Dentistry, University of the Western Ontario, 100 Perth Drive, N6A 5K8 London, Ontario, Canada
| | | | | |
Collapse
|
44
|
Fraterrigo G, Fabbrini E, Mittendorfer B, O'Rahilly S, Scherer PE, Patterson BW, Klein S. Relationship between Changes in Plasma Adiponectin Concentration and Insulin Sensitivity after Niacin Therapy. Cardiorenal Med 2012; 2:211-217. [PMID: 22969777 DOI: 10.1159/000340037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/07/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND: Niaspan® (extended-release niacin) is a nicotinic acid formulation used to treat dyslipidemia in obese subjects. Niaspan binds to the GPR109A receptor in adipose tissue and stimulates adiponectin secretion, which should improve insulin sensitivity. However, Niaspan therapy often causes insulin resistance. The purpose of this study was to evaluate whether Niaspan-induced changes in plasma adiponectin concentration are associated with a blunting of Niaspan's adverse effect on insulin action in obese subjects with non-alcoholic fatty liver disease (NAFLD). METHODS: A hyperinsulinemic-euglycemic clamp procedure was used to assess muscle insulin sensitivity before and after 16 weeks of Niaspan therapy in 9 obese subjects with NAFLD [age 43 ± 5 years; BMI 35.1 ± 1.3 (means ± SEM)]. RESULTS: Niaspan therapy did not affect body weight (99.1 ± 4.2 vs. 100 ± 4.4 kg) or percent body fat (37.8 ± 2.5 vs. 37.0 ± 2.5%). However, Niaspan therapy caused a 22% reduction in insulin-mediated glucose disposal (p < 0.05). The deterioration in glucose disposal was inversely correlated with the Niaspan-induced increase in plasma adiponectin concentration (r = 0.67, p = 0.05). CONCLUSIONS: These results demonstrate that Niaspan causes skeletal muscle insulin resistance, independent of changes in body weight or body fat, and the Niaspan-induced increase in plasma adiponectin concentration might partially ameliorate Niaspan's adverse effect on insulin action in obese subjects with NAFLD.
Collapse
Affiliation(s)
- Gemma Fraterrigo
- Division of Geriatrics and Nutritional Science, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Mo., Tex., USA
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
|
47
|
Shanes JG. A review of the rationale for additional therapeutic interventions to attain lower LDL-C when statin therapy is not enough. Curr Atheroscler Rep 2012; 14:33-40. [PMID: 22109348 PMCID: PMC3252497 DOI: 10.1007/s11883-011-0222-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Statins alone are not always adequate therapy to achieve low-density lipoprotein (LDL) goals in many patients. Many options are available either alone or in combination with statins that makes it possible to reach recommended goals in a safe and tolerable fashion for most patients. Ezetimibe and bile acid sequestrants reduce cholesterol transport to the liver and can be used in combination. Niacin is very effective at lowering LDL, beyond its ability to raise high-density lipoprotein and shift LDL particle size to a less atherogenic type. When statins cannot be tolerated at all, red yeast rice can be used if proper formulations of the product are obtained. Nutrients can also be added to the diet, including plant stanols and sterols, soy protein, almonds, and fiber, either individually or all together as a portfolio diet. A clear understanding of how each of these strategies works is essential for effective results.
Collapse
Affiliation(s)
- Jeffrey G Shanes
- Clinical Medicine, Rosalind Franklin University of Medicine and Science, Melrose Park, IL, USA.
| |
Collapse
|
48
|
Villines TC, Kim AS, Gore RS, Taylor AJ. Niacin: the evidence, clinical use, and future directions. Curr Atheroscler Rep 2012; 14:49-59. [PMID: 22037771 DOI: 10.1007/s11883-011-0212-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of FDA-approved niacin (nicotinic acid or vitamin B3) formulations at therapeutic doses, alone or in combination with statins or other lipid therapies, is safe, improves multiple lipid parameters, and reduces atherosclerosis progression. Niacin is unique as the most potent available lipid therapy to increase high-density lipoprotein (HDL) cholesterol and it significantly reduces lipoprotein(a). Through its action on the GPR109A receptor, niacin may also exert beneficial pleiotropic effects independent of changes in lipid levels, such as improving endothelial function and attenuating vascular inflammation. Studies evaluating the impact of niacin in statin-naïve patients on cardiovascular outcomes, or alone and in combination with statins or other lipid therapies on atherosclerosis progression, have been universally favorable. However, the widespread use of niacin to treat residual lipid abnormalities such as low HDL cholesterol, when used in combination with statins among patients achieving very low (<75 mg/dL) low-density lipoprotein cholesterol levels, is currently not supported by clinical outcome trials.
Collapse
Affiliation(s)
- Todd C Villines
- Cardiology Service, Department of Medicine, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889, USA.
| | | | | | | |
Collapse
|
49
|
Yadav R, France M, Younis N, Hama S, Ammori BJ, Kwok S, Soran H. Extended-release niacin with laropiprant: a review on efficacy, clinical effectiveness and safety. Expert Opin Pharmacother 2012; 13:1345-62. [DOI: 10.1517/14656566.2012.690395] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Affiliation(s)
- Anastazia Kei
- University of Ioannina, School of Medicine, Department of Internal Medicine,
Ioannina, Greece
| | - Moses S Elisaf
- University of Ioannina, School of Medicine, Department of Internal Medicine,
45 110 Ioannina, Greece ;
| |
Collapse
|