1
|
Al'Aref SJ, Gautam N, Mansour M, Alqaisi O, Tarun T, Devabhaktuni S, Atreya A, Abete R, Aquaro GD, Baggiano A, Barison A, Bogaert J, Camastra G, Carigi S, Carrabba N, Casavecchia G, Censi S, Cicala G, De Cecco CN, De Lazzari M, Di Giovine G, Calo L, Dobrovie M, Focardi M, Fusini L, Gaibazzi N, Gismondi A, Gravina M, Guglielmo M, Lanzillo C, Lombardi M, Lorenzoni V, Lozano-Torres J, Margonato D, Martini C, Marzo F, Masci PG, Masi A, Moro C, Muscogiuri G, Mushtaq S, Nese A, Palumbo A, Pavon AG, Pedrotti P, Marra MP, Pradella S, Presicci C, Rabbat MG, Raineri C, Rodriguez-Palomares JF, Sbarbati S, Schoepf UJ, Squeri A, Sverzellati N, Symons R, Tat E, Timpani M, Todiere G, Valentini A, Varga-Szemes A, Volpe A, Guaricci AI, Schwitter J, Pontone G. Clinical parameters of death and heart failure hospitalization in biventricular systolic dysfunction assessed via cardiac magnetic resonance. Int J Cardiol 2025; 419:132709. [PMID: 39515617 DOI: 10.1016/j.ijcard.2024.132709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
AIMS While factors associated with adverse events are well elucidated in setting of isolated left ventricular dysfunction, clinical and imaging-based prognosticators of adverse outcomes are lacking in context of biventricular dysfunction. The purpose of this study was to establish role of clinical variables in prognosis of biventricular heart failure (HF), as assessed by cardiac magnetic resonance imaging. METHODS Study cohort consisted of 840 patients enrolled in DERIVATE registry with coexisting CMR-derived right ventricular (RV) and left ventricular (LV) dysfunction, as defined by RV and LV ejection fractions ≤45 % and ≤ 50 %, respectively. The primary objective was to identify factors associated with adverse long-term outcomes, defined as composite of all-cause death and HF hospitalizations (DHFH). Kaplan-Meir curves were plotted for survival analysis. Cox proportional hazard models were constructed to estimate adjusted hazard ratios (aHRs) and associated 95 % confidence intervals for clinical variables and their correlation with adverse events. RESULTS Mean age was 61.0 years; 83.1 % were male, 26.6 % had diabetes mellitus (DM), and 45.9 % had non-ischemic cardiomyopathy. At median follow-up of 2 years, DHFH occurred in 32.5 % of the cohort. Kaplan-Meir analysis showed higher rate of DHFH in patients with DM (35.2 % vs. 22.6 %, p < 0.001). Multivariate Cox regression analysis showed that DM was independently associated with DHFH (aHR 1.61 [95 % CI: 1.15-2.25]; p = 0.003). Importantly, ACE-inhibitor/ARB usage in patients with DM was associated with significant reduction in DHFH (aHR 0.53 [95 % CI: 0.31-0.90]; p = 0.02). CONCLUSION In patients with biventricular HF, DM was a strong predictor of DHFH, with ACE-inhibitor/ARB usage having cardioprotective effect.
Collapse
Affiliation(s)
- Subhi J Al'Aref
- Department of Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nitesh Gautam
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Munthir Mansour
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Omar Alqaisi
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tushar Tarun
- Department of Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Subodh Devabhaktuni
- Department of Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Auras Atreya
- Department of Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Raffaele Abete
- Department of Cardiology, Policlinico di Monza, Monza, Italy
| | - Giovanni Donato Aquaro
- U.O.C. Risonanza Magnetica per Immagini, Fondazione G. Monasterio CNR-Regione Toscana Pisa, Pisa, Italy
| | - Andrea Baggiano
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Andrea Barison
- U.O.C. Risonanza Magnetica per Immagini, Fondazione G. Monasterio CNR-Regione Toscana Pisa, Pisa, Italy
| | - Jan Bogaert
- Department of Radiology, University Hospital Leuven, Leuven, Belgium
| | | | - Samuela Carigi
- Department of Cardiology, Infermi Hospital, Rimini, Italy
| | - Nazario Carrabba
- Cardiovascular and Thoracic Department of Careggi Hospital, Florence, Italy
| | - Grazia Casavecchia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Stefano Censi
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy
| | - Gloria Cicala
- Department of Diagnostic, Parma University Hospital, Via Gramsci, Parma, Italy
| | - Carlo N De Cecco
- Division of Cardiothoracic Imaging, Emory University, Atlanta, GA, USA
| | - Manuel De Lazzari
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua Medical School, Padova, Italy
| | | | - Leonardo Calo
- Cardiology Department, Policlinico Casilino, Rome, Italy
| | - Monica Dobrovie
- Department of Radiology, University Hospital Leuven, Leuven, Belgium
| | - Marta Focardi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Laura Fusini
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - Nicola Gaibazzi
- Department of Cardiology, Azienda Ospedaliero- Universitaria, Parma, Italy
| | - Annalaura Gismondi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Matteo Gravina
- Department of Radiology, University of Foggia, Foggia, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht, the Netherlands; Department of Cardiology, Haga Teaching Hospital, The Hague, Netherlands
| | | | - Massimo Lombardi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | | | - Jordi Lozano-Torres
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER-CV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Chiara Martini
- Department of Diagnostic, Parma University Hospital, Via Gramsci, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Pier-Giorgio Masci
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Ambra Masi
- De Gasperis' Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Claudio Moro
- Department of Cardiology, ASST Monza, P.O. Desio, Italy
| | - Giuseppe Muscogiuri
- Istituto Auxologico Italiano-IRCCS, Milan, Italy; University of Milan Bicocca, Milan, Italy
| | | | - Alberto Nese
- Dipartimento Neuro-Cardiovascolare, Ospedale Ca' Foncello Treviso, Treviso, Italy
| | - Alessandro Palumbo
- Department of Diagnostic, Parma University Hospital, Via Gramsci, Parma, Italy
| | - Anna Giulia Pavon
- Cardiovascular Department, CMR Center, University Hospital Lausanne, CHUV, Lausanne, Switzerland
| | - Patrizia Pedrotti
- De Gasperis' Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua Medical School, Padova, Italy
| | | | - Cristina Presicci
- Department of Diagnostic, Parma University Hospital, Via Gramsci, Parma, Italy
| | - Mark G Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL, USA; Edward Hines Jr. VA Hospital, Hines, IL, United States of America
| | - Claudia Raineri
- Department of Cardiology, Citta` della salute e della Scienza - Ospedale Molinette, Turin, Italy
| | - Jose' F Rodriguez-Palomares
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER-CV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Angelo Squeri
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy
| | | | - Rolf Symons
- Department of Radiology, University Hospital Leuven, Leuven, Belgium
| | - Emily Tat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL, USA
| | - Mauro Timpani
- UOC Radiologia, Ospedale "F. Spaziani", Frosinone, Italy
| | - Giancarlo Todiere
- U.O.C. Risonanza Magnetica per Immagini, Fondazione G. Monasterio CNR-Regione Toscana Pisa, Pisa, Italy
| | - Adele Valentini
- Department of Radiology, Fondazione IRCCS Policlinico S.Matteo, Pavia, Italy
| | | | | | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Juerg Schwitter
- Cardiovascular Department, CMR Center, University Hospital Lausanne, CHUV, Lausanne, Switzerland; Faculty of Biology and Medicine, Lausanne University, UniL, Lausanne, Switzerland; Faculty of Medicine and Biology, University of Lausanne, UniL, Lausanne, Switzerland
| | - Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, University of Milan, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Zhang R, Wang P, Jin Y, Xie Q, Xiao P. Imperatorin's Effect on Myocardial Infarction Based on Network Pharmacology and Molecular Docking. Cardiovasc Ther 2025; 2025:7551459. [PMID: 39834616 PMCID: PMC11745561 DOI: 10.1155/cdr/7551459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose: Myocardial infarction (MI), a severe cardiovascular disease, is the result of insufficient blood supply to the myocardium. Despite the improvements of conventional therapies, new approaches are needed to improve the outcome post-MI. Imperatorin is a natural compound with multiple pharmacological properties and potential cardioprotective effects. Therefore, this work investigated imperatorin's therapeutic effects and its mechanism of action in an MI mouse model. Methods: Network pharmacology, molecular docking, and experimental validation were performed for exploring the pharmacokinetic properties, therapeutic effects, and molecular targets of imperatorin in MI. Permanent ligation of the left anterior descending artery was performed in male C57BL/6 mice to induce MI before treatment with imperatorin once per day for 1 week. Echocardiography, heart histology, RNA sequencing, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) as well as western blotting were carried out for evaluating cardiac function and structure, as well as gene and protein expression. Results: Imperatorin significantly improved cardiac function, preserved cardiac structure, attenuated cardiac remodeling and fibrosis, and reduced cardiomyocyte apoptosis in MI mice. Eight differentially expressed genes overlapping with key target genes were found, two upregulated and six downregulated. A key target in signaling pathways associated with imperatorin effect in MI was angiotensin-converting enzyme (ACE). Imperatorin inhibited ACE-angiotensin II (Ang II)-angiotensin II Type 1 receptor (AT1R) axis in MI mice. Conclusion: Imperatorin attenuated MI by inhibiting the ACE-Ang II-AT1R axis. Thus, imperatorin might be considered a potential therapeutic agent to cure MI.
Collapse
Affiliation(s)
- Ruizhe Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yao Jin
- Department of Cardiology, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qingya Xie
- Department of Cardiology, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Pingxi Xiao
- Department of Cardiology, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Yin J, Fu X, Luo Y, Leng Y, Ao L, Xie C. A Narrative Review of Diabetic Macroangiopathy: From Molecular Mechanism to Therapeutic Approaches. Diabetes Ther 2024; 15:585-609. [PMID: 38302838 PMCID: PMC10942953 DOI: 10.1007/s13300-024-01532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetic macroangiopathy, a prevalent and severe complication of diabetes mellitus, significantly contributes to the increased morbidity and mortality rates among affected individuals. This complex disorder involves multifaceted molecular mechanisms that lead to the dysfunction and damage of large blood vessels, including atherosclerosis (AS) and peripheral arterial disease. Understanding the intricate pathways underlying the development and progression of diabetic macroangiopathy is crucial for the development of effective therapeutic interventions. This review aims to shed light on the molecular mechanism implicated in the pathogenesis of diabetic macroangiopathy. We delve into the intricate interplay of chronic inflammation, oxidative stress, endothelial dysfunction, and dysregulated angiogenesis, all of which contribute to the vascular complications observed in this disorder. By exploring the molecular mechanism involved in the disease we provide insight into potential therapeutic targets and strategies. Moreover, we discuss the current therapeutic approaches used for treating diabetic macroangiopathy, including glycemic control, lipid-lowering agents, and vascular interventions.
Collapse
Affiliation(s)
- Jiacheng Yin
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, No. 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Yue Luo
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Yuling Leng
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Lianjun Ao
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine No, 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, No. 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
4
|
Guimarães JPT, Queiroz LAD, Menikdiwela KR, Pereira N, Ramalho T, Jancar S, Moustaid-Moussa N, Martins JO. The role of captopril in leukotriene deficient type 1 diabetic mice. Sci Rep 2023; 13:22105. [PMID: 38092813 PMCID: PMC10719306 DOI: 10.1038/s41598-023-49449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
T1D can be associated with metabolic disorders and several impaired pathways, including insulin signaling, and development of insulin resistance through the renin-angiotensin system (RAS). The main precursor of RAS is angiotensinogen (Agt) and this system is often linked to autophagy dysregulation. Dysregulated autophagy has been described in T1D and linked to impairments in both glucose metabolism, and leukotrienes (LTs) production. Here, we have investigated the role of RAS and LTs in both muscle and liver from T1D mice, and its effects on insulin and autophagy pathways. We have chemically induced T1D in 129sve and 129sve 5LO-/- mice (lacking LTs) with streptozotocin (STZ). To further inhibit ACE activity, mice were treated with captopril (Cap). In muscle of T1D mice, treatment with Cap increased the expression of RAS (angiotensinogen and angiotensin II receptor), insulin signaling, and autophagy markers, regardless of the genotype. In the liver of T1D mice, the treatment with Cap increased the expression of RAS and insulin signaling markers, mostly when LTs were absent. 5LO-/- T1D mice showed increased insulin sensitivity, and decreased NEFA, after the Cap treatment. Cap treatment impacted both insulin signaling and autophagy pathways at the mRNA levels in muscle and liver, indicating the potential role of ACE inhibition on insulin sensitivity and autophagy in T1D.
Collapse
Affiliation(s)
- João Pedro Tôrres Guimarães
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University (TTU), Lubbock, TX, USA
- Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, SP, Brazil
| | - Luiz A D Queiroz
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil
| | - Kalhara R Menikdiwela
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University (TTU), Lubbock, TX, USA
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Nayara Pereira
- Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, SP, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP/USP), Ribeirão Preto, SP, Brazil
| | - Theresa Ramalho
- Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, SP, Brazil
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sonia Jancar
- Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, SP, Brazil
| | - Naima Moustaid-Moussa
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University (TTU), Lubbock, TX, USA.
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Koumallos N, Sigala E, Milas T, Baikoussis NG, Aragiannis D, Sideris S, Tsioufis K. Angiotensin Regulation of Vascular Homeostasis: Exploring the Role of ROS and RAS Blockers. Int J Mol Sci 2023; 24:12111. [PMID: 37569484 PMCID: PMC10418800 DOI: 10.3390/ijms241512111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Extensive research has been conducted to elucidate and substantiate the crucial role of the Renin-Angiotensin System (RAS) in the pathogenesis of hypertension, cardiovascular disorders, and renal diseases. Furthermore, the role of oxidative stress in maintaining vascular balance has been well established. It has been observed that many of the cellular effects induced by Angiotensin II (Ang II) are facilitated by reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In this paper, we present a comprehensive overview of the role of ROS in the physiology of human blood vessels, specifically focusing on its interaction with RAS. Moreover, we delve into the mechanisms by which clinical interventions targeting RAS influence redox signaling in the vascular wall.
Collapse
Affiliation(s)
- Nikolaos Koumallos
- Cardiothoracic Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (E.S.); (T.M.); (N.G.B.)
| | - Evangelia Sigala
- Cardiothoracic Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (E.S.); (T.M.); (N.G.B.)
| | - Theodoros Milas
- Cardiothoracic Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (E.S.); (T.M.); (N.G.B.)
| | - Nikolaos G. Baikoussis
- Cardiothoracic Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (E.S.); (T.M.); (N.G.B.)
| | - Dimitrios Aragiannis
- Cardiology Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (D.A.); (S.S.); (K.T.)
| | - Skevos Sideris
- Cardiology Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (D.A.); (S.S.); (K.T.)
| | - Konstantinos Tsioufis
- Cardiology Department, Hippokration Hospital of Athens, 11527 Athens, Greece; (D.A.); (S.S.); (K.T.)
| |
Collapse
|
6
|
Walke D, Micheel D, Schallert K, Muth T, Broneske D, Saake G, Heyer R. The importance of graph databases and graph learning for clinical applications. Database (Oxford) 2023; 2023:baad045. [PMID: 37428679 PMCID: PMC10332447 DOI: 10.1093/database/baad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023]
Abstract
The increasing amount and complexity of clinical data require an appropriate way of storing and analyzing those data. Traditional approaches use a tabular structure (relational databases) for storing data and thereby complicate storing and retrieving interlinked data from the clinical domain. Graph databases provide a great solution for this by storing data in a graph as nodes (vertices) that are connected by edges (links). The underlying graph structure can be used for the subsequent data analysis (graph learning). Graph learning consists of two parts: graph representation learning and graph analytics. Graph representation learning aims to reduce high-dimensional input graphs to low-dimensional representations. Then, graph analytics uses the obtained representations for analytical tasks like visualization, classification, link prediction and clustering which can be used to solve domain-specific problems. In this survey, we review current state-of-the-art graph database management systems, graph learning algorithms and a variety of graph applications in the clinical domain. Furthermore, we provide a comprehensive use case for a clearer understanding of complex graph learning algorithms. Graphical abstract.
Collapse
Affiliation(s)
- Daniel Walke
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany
- Database and Software Engineering Group, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany
| | - Daniel Micheel
- Database and Software Engineering Group, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany
| | - Kay Schallert
- Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, Dortmund 44139, Germany
| | - Thilo Muth
- Section eScience (S.3), Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - David Broneske
- Infrastructure and Methods, German Center for Higher Education Research and Science Studies (DZHW), Lange Laube 12, Hannover 30159, Germany
| | - Gunter Saake
- Database and Software Engineering Group, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany
| | - Robert Heyer
- Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, Dortmund 44139, Germany
- Faculty of Technology, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| |
Collapse
|
7
|
Jogula RMR, Row AT, Siddiqui AH. The Effect of Treatment With Aminoguanidine, an Advanced Glycation End Product Inhibitor, on Streptozotocin-Induced Diabetic Rats and Its Effects on Physiological and Renal Functions. Cureus 2023; 15:e42426. [PMID: 37637592 PMCID: PMC10448780 DOI: 10.7759/cureus.42426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND/AIM Diabetes is a multifactorial syndrome that affects the functioning of the renin-angiotensin system (RAS). The role of advanced glycation end products (AGEs) in diabetes is well known. In the present study, we hypothesized that the prevention of AGE accumulation or abrogation of AGE synthesis using an AGE inhibitor, aminoguanidine (AG), in streptozotocin (STZ)-induced diabetic animal models would affect the progression of diabetes and its related complications. We determined the effects of aminoguanidine (AG), an AGE inhibitor, in STZ-induced diabetic rats by determining various indices of RAS and renal functions. Additionally, we also investigated the effect of the drug, AG, on various hemodynamic and physiological functions in the body of the animals. METHODS Male Sprague Dawley rats weighing 200-250 g were assigned to four groups (n = 4-6): Vehicle, Vehicle+AG, STZ-induced, and STZ-induced+AG rats. Type 1 diabetes was induced by a single intraperitoneal (IP) injection of streptozotocin (55 mg/kg) dissolved in sodium citrate buffer. The control groups (Vehicle) were injected with buffer. The blood glucose levels were measured after 48 hours, and animals with blood glucose levels > 300 mg/dL were included in the study. Blood glucose levels in the vehicle rats were also determined to ensure non-diabetic conditions. After confirmation, AG was administrated at a dose of 1 g/L in drinking water for two weeks. Urine was collected to measure the glomerular filtration rate (GFR), and the immune reactivity for AT1 and AT2 proteins was analyzed by immunoblotting. Data were expressed as mean ± standard error of the mean (SEM), and a p-value < 0.05 was considered statistically significant. RESULTS Diabetic rats had a significant drop in body weight, accompanied by increased food and water consumption. The diabetic rats exhibited significantly increased urine flow and GFR. These phenotypes were significantly or considerately reversed by AG treatment in the STZ+AG-treated diabetic rats. Aminoguanidine prevented the increase in blood sugar levels compared to STZ-induced diabetic rats alone (295.9 ± 50.69 versus 462.3 ± 18.6 mg/dL (p < 0.05)). However, it did not affect the glomerular filtration rate (GFR) and glomerular damage, as assessed by the renal histopathological studies. The STZ-induced diabetic rats had an increased sodium excretion (3.24 ± 0.40 mmol) and significantly increased expression of the AT2 receptor and that of the AT1 receptor, which was slightly reversed by the treatment with AG. Treatment with AG decreased sodium excretion (2.12 ± 0.63, as compared to the diabetic rats). These rats also had modestly decreased expression of the AT2 receptor (0.99 ± 0.07 versus 1.12 ± 0.08, as compared to the STZ-induced diabetic rats), while the AT1 receptors showed a slight increase in the STZ+AG-treated rats compared to the STZ-induced diabetic rats (1.1 ± 0.19 versus 1.08 ± 0.12). CONCLUSION This study highlights the action of the drug AG in not exacerbating any damage in diabetic rats. Employing AG as a pharmacological intervention to prevent an increase in blood sugar adds a new dimension to controlling increased blood sugar and preventing diabetic complications. The employability and pharmacological intervention of the drug AG, in diabetes, therefore, need a renewed and further investigation.
Collapse
Affiliation(s)
| | - Anupama T Row
- Department of Pathology, University Health Center, University of Hyderabad, Hyderabad, IND
| | - Athar H Siddiqui
- School of Medical Sciences, University of Hyderabad, Hyderabad, IND
| |
Collapse
|
8
|
Disparate Clinical Characteristics and Prognosis of HFpEF versus HFrEF Phenotype of Diabetic Cardiomyopathy. J Clin Med 2023; 12:jcm12041565. [PMID: 36836101 PMCID: PMC9960597 DOI: 10.3390/jcm12041565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
AIMS Diabetic cardiomyopathy (DCM) is an ill-defined entity. This study aims to explore the clinical characteristics and prognosis of diabetic patients that disparately develop heart failure (HF) with preserved ejection fraction (HFpEF) other than HF with reduced ejection fraction (HFrEF). PATIENTS AND METHODS A total of 911 patients diagnosed with diabetes mellitus were identified in the ChiHFpEF cohort (NCT05278026). DCM was defined as diabetic patients diagnosed with HF, absent from flow obstructive coronary artery disease (CAD), uncontrolled refractory hypertension and hemodynamics significant heart valvular diseases, arrhythmia and congenital heart diseases. The primary endpoint was a composite of all-cause death and rehospitalization due to HF. RESULTS As compared to DCM-HFrEF patients, DCM-HFpEF patients had a longer duration of diabetes, were older and more noticeable in hypertension and non-obstructive CAD. After a median follow-up of 45.5 months, survival analysis showed that DCM-HFpEF patients had a better composite endpoint. Cox regression implicated that non-obstructive CAD was a negative (HR 0.101, 95% CI 0.028-0.373, p = 0.001) predictor for the composite endpoint of DCM-HFrEF patients. Age was a positive predictor for the composite endpoint of DCM-HFpEF patients (HR 1.044, 95% CI 1.007-1.082, p = 0.018). CONCLUSION DCM-HFpEF is a disparate entity from DCM-HFrEF. Additional phenomic studies are needed to explore the molecular mechanisms and develop targeted therapies.
Collapse
|
9
|
Kaka N, Sethi Y, Patel N, Kaiwan O, Al-Inaya Y, Manchanda K, Uniyal N. Endocrine manifestations of chronic kidney disease and their evolving management: A systematic review. Dis Mon 2022; 68:101466. [PMID: 35965104 DOI: 10.1016/j.disamonth.2022.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic Kidney Disease (CKD) shows a wide range of renal abnormalities including the excretory, metabolic, endocrine, and homeostatic function of the kidney. The prognostic impact of the 'endocrine manifestations' which are often overlooked by clinicians cannot be overstated. METHODS AND OBJECTIVES A systematic review was attempted to provide a comprehensive overview of all endocrine abnormalities of CKD and their evolving principles of management, searching databases of PubMed, Embase, and Scopus and covering the literature between 2002 and 2022. RESULTS The endocrine derangements in CKD can be attributed to a myriad of pathologic processes, in particular decreased clearance, impaired endogenous hormone production, uremia-induced cellular dysfunction, and activation of systemic inflammatory pathways. The major disorders include anemia, hyperprolactinemia, insulin resistance, reproductive hormone deficiency, thyroid hormone deficiency, and serum FGF (Fibroblast Growth Factor) alteration. Long-term effects of CKD also include malnutrition and increased cardiovascular risk. The recent times have unveiled their detailed pathogenesis and have seen an evolution in the principles of management which necessitates a revision of current guidelines. CONCLUSION Increased advertence regarding the pathology, impact, and management of these endocrine derangements can help in reducing morbidity as well as mortality in the CKD patients by allowing prompt individualized treatment. Moreover, with timely and appropriate intervention, a long-term reduction in complications, as well as an enhanced quality of life, can be achieved in patients with CKD.
Collapse
Affiliation(s)
- Nirja Kaka
- GMERS Medical College, Himmatnagar, Gujarat 382007, India
| | - Yashendra Sethi
- Department of Medicine, Government Doon Medical College, Dehradun, Uttarakhand, India
| | - Neil Patel
- GMERS Medical College, Himmatnagar, Gujarat 382007, India.
| | | | | | | | - Nidhi Uniyal
- Department of Medicine, Government Doon Medical College, Dehradun, Uttarakhand, India
| |
Collapse
|
10
|
Hodhodi A, Babakhani A, Rostamzad H. Effect of different extraction conditions on phlorotannin content and antioxidant activity of extract from brown algae (
Sargassum angustifolium
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Alireza Hodhodi
- Fisheries Department, Faculty of Natural Resources University of Guilan Sowmeh Sara Iran
| | - Aria Babakhani
- Fisheries Department, Faculty of Natural Resources University of Guilan Sowmeh Sara Iran
| | - Haniyeh Rostamzad
- Fisheries Department, Faculty of Natural Resources University of Guilan Sowmeh Sara Iran
| |
Collapse
|
11
|
Reshad RAI, Riana SH, Chowdhury MAB, Moin AT, Miah F, Sarkar B, Jewel NA. Diabetes in COVID-19 patients: challenges and possible management strategies. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC8642747 DOI: 10.1186/s43168-021-00099-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The recent pandemic of coronavirus disease 19 (COVID-19) has been causing intense stress among the global population. In the case of hospitalized and ICU-admitted COVID-19 patients with comorbidities, it has been observed that a major portion of them are diabetic. Therefore, researchers had indicated a link between diabetes mellitus (DM) and COVID-19. Furthermore, DM is a potential risk factor for the severity of COVID-19 cases. Thus, in this study, the correlation existing between diabetic patients and COVID-19 was summarized. Main body of the abstract Diabetic patients have a weaker immune system, less viral clearance rate, malfunctions of metabolic activity due to their high blood glucose level, and other associated problems. This does not increase the susceptibility for the patients to be infected with COVID-19. However, the severity of COVID-19 can worsen due to the comorbidity of DM. Short conclusion Proper management, appropriate use of drugs that do not increase the ACE2 expression, lowering blood glucose level, decreasing the susceptibility of SARS-CoV-2, and maintaining a healthy lifestyle could be effective.
Collapse
|
12
|
Chakraborty R, Roy S. Angiotensin-converting enzyme inhibitors from plants: A review of their diversity, modes of action, prospects, and concerns in the management of diabetes-centric complications. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:478-492. [PMID: 34642085 DOI: 10.1016/j.joim.2021.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/10/2021] [Indexed: 12/29/2022]
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are antihypertensive medications often used in the treatment of diabetes-related complications. Synthetic ACE inhibitors are known to cause serious side effects like hypotension, renal insufficiency, and hyperkalaemia. Therefore, there has been an intensifying search for natural ACE inhibitors. Many plants or plant-based extracts are known to possess ACE-inhibitory activity. In this review, articles focusing on the natural ACE inhibitors extracted from plants were retrieved from databases like Google Scholar, PubMed, Scopus, and Web of Science. We have found more than 50 plant species with ACE-inhibitory activity. Among them, Angelica keiskei, Momordica charantia, Muntingia calabura, Prunus domestica, and Peperomia pellucida were the most potent, showing comparatively lower half-maximal inhibitory concentration values. Among the bioactive metabolites, peptides (e.g., Tyr-Glu-Pro, Met-Arg-Trp, and Gln-Phe-Tyr-Ala-Val), phenolics (e.g., cyanidin-3-O-sambubioside and delphinidin-3-O-sambubioside), flavonoids ([-]-epicatechin, astilbin, and eupatorin), terpenoids (ursolic acid and oleanolic acid) and alkaloids (berberine and harmaline) isolated from several plant and fungus species were found to possess significant ACE-inhibitory activity. These were also known to possess promising antioxidant, antidiabetic, antihyperlipidemic and anti-inflammatory activities. Considering the minimal side effects and lower toxicity of herbal compounds, development of antihypertensive drugs from these plant extracts or phytocompounds for the treatment of diabetes-associated complications is an important endeavour. This review, therefore, focuses on the ACE inhibitors extracted from different plant sources, their possible mechanisms of action, present status, and any safety concerns.
Collapse
Affiliation(s)
- Rakhi Chakraborty
- Department of Botany, A.P.C. Roy Government College, Matigara 734010, West Bengal, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur 734011, West Bengal, India.
| |
Collapse
|
13
|
Nutritional Composition and Health Benefits of Various Botanical Types of Melon ( Cucumis melo L.). PLANTS 2021; 10:plants10091755. [PMID: 34579288 PMCID: PMC8469201 DOI: 10.3390/plants10091755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Characterizing the diverse melon cultivars for nutrition aids in crop improvement and promoting a healthy diet. Here, we used in vitro assays to characterize the nutritional qualities and health-beneficial effects of 30 melon (Cucumis melo L.) genotypes, including 10 improved cultivars, 16 landraces, and 4 wild types collected from different parts of India. Two landraces (Sidoota and Alper Green) had the highest (12.20 and 11.25) total soluble solids (TSS) contents. The Sidoota and Pappusa landraces had high reducing sugar contents (2.84 and 2.81 mg g−1 fresh weight [FW]). The highest polyphenols contents (22.0 mg g−1 FW) were observed in the landraces Mage Kaayi-2, Budamekaayi, and Small Melon. Reflecting on the primary and secondary metabolite contents, the Mekke Kaayi and Giriyala landraces exhibited high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (97.6 and 91% at 100 μg mL−1). Additionally, seven of the landraces showed significant nitric oxide (NO) induction activity (>80% inhibition at 200 μg mL−1), indicating their potential health benefits, and seven showed considerable angiotensin-converting enzyme (ACE) inhibition activity (highest in Kashi Madhu), indicating their potential usefulness in reducing hypertension. Genotypes with high health beneficial compounds identified in this study can be used for breeding improved melon cultivars to promote these fruits as well as a healthy diet.
Collapse
|
14
|
Badreldeen A, El Razaky O, Erfan A, El-Bendary A, El Amrousy D. Comparative study of the efficacy of captopril, simvastatin, and L-carnitine as cardioprotective drugs in children with type 1 diabetes mellitus: a randomised controlled trial. Cardiol Young 2021; 31:1315-1322. [PMID: 33536102 DOI: 10.1017/s1047951121000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To assess the efficacy and safety of captopril, simvastatin, and L-carnitine as cardioprotective drugs in children with type 1 diabetes mellitus on different echocardiographic parameters, electrocardiographic parameter, lipid profile, and carotid intima-media thickness. METHODS This randomised controlled trial was conducted on 100 children with type 1 diabetes mellitus for more than 3 years during the period from September 2018 to June 2020. Fifty healthy children of matched age and sex served as a control group. The patients were randomly assigned into four groups (25 children each): no-treatment group who received no cardioprotective drug, simvastatin group who received simvastatin (10-20 mg/day), captopril group who received captopril (0.2 mg/kg/day), and L-carnitine group who received L-carnitine (50 mg/kg/day) for 4 months. Lipid profile, serum troponin I, carotid intima-media thickness, and echocardiographic examinations were performed on all included children before and after the treatment. RESULTS Total cholesterol and low-density lipoprotein were significantly decreased in children who received simvastatin or L-carnitine. Triglycerides significantly decreased only in children who received simvastatin. High-density lipoprotein significantly increased in simvastatin and L-carnitine groups only. Serum troponin I decreased significantly in all the three treatment groups. Carotid intima-media thickness showed no significant change in all treatment groups. Echocardiographic parameters significantly improved in simvastatin, L-carnitine, and captopril groups. CONCLUSION Captopril, simvastatin, and L-carnitine have a significant beneficial effect on cardiac functions in children with type 1 diabetes mellitus. However, only simvastatin and L-carnitine have a beneficial effect on the lipid profile. The drugs were safe and well tolerated.Clinical trial registration: The clinical trial was registered at www.clinicaltrial.gov (NCT03660293).
Collapse
Affiliation(s)
| | - Osama El Razaky
- Pediatric Department, Tanta University Hospital, Tanta, Egypt
| | - Adel Erfan
- Pediatric Department, Tanta University Hospital, Tanta, Egypt
| | | | - Doaa El Amrousy
- Pediatric Department, Tanta University Hospital, Tanta, Egypt
| |
Collapse
|
15
|
Lankatillake C, Luo S, Flavel M, Lenon GB, Gill H, Huynh T, Dias DA. Screening natural product extracts for potential enzyme inhibitors: protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. PLANT METHODS 2021; 17:3. [PMID: 33407662 PMCID: PMC7789656 DOI: 10.1186/s13007-020-00702-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/19/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Enzyme assays have widespread applications in drug discovery from plants to natural products. The appropriate use of blanks in enzyme assays is important for assay baseline-correction, and the correction of false signals associated with background matrix interferences. However, the blank-correction procedures reported in published literature are highly inconsistent. We investigated the influence of using different types of blanks on the final calculated activity/inhibition results for three enzymes of significance in diabetes and obesity; α-glucosidase, α-amylase, and lipase. This is the first study to examine how different blank-correcting methods affect enzyme assay results. Although assays targeting the above enzymes are common in the literature, there is a scarcity of detailed published protocols. Therefore, we have provided comprehensive, step-by-step protocols for α-glucosidase-, α-amylase- and lipase-inhibition assays that can be performed in 96-well format in a simple, fast, and resource-efficient manner with clear instructions for blank-correction and calculation of results. RESULTS In the three assays analysed here, using only a buffer blank underestimated the enzyme inhibitory potential of the test sample. In the absorbance-based α-glucosidase assay, enzyme inhibition was underestimated when a sample blank was omitted for the coloured plant extracts. Similarly, in the fluorescence-based α-amylase and lipase assays, enzyme inhibition was underestimated when a substrate blank was omitted. For all three assays, method six [Raw Data - (Substrate + Sample Blank)] enabled the correction of interferences due to the buffer, sample, and substrate without double-blanking, and eliminated the need to add substrate to each sample blank. CONCLUSION The choice of blanks and blank-correction methods contribute to the variability of assay results and the likelihood of underestimating the enzyme inhibitory potential of a test sample. This highlights the importance of standardising the use of blanks and the reporting of blank-correction procedures in published studies in order to ensure the accuracy and reproducibility of results, and avoid overlooked opportunities in drug discovery research due to inadvertent underestimation of enzyme inhibitory potential of test samples resulting from unsuitable blank-correction. Based on our assessments, we recommend method six [RD - (Su + SaB)] as a suitable method for blank-correction of raw data in enzyme assays.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Shiqi Luo
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Matthew Flavel
- TPM Bioactives Division, The Product Makers Pty Ltd, Melbourne, Australia
- School of Life Sciences, La Trobe University, Melbourne, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, 3083, Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, 3083, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia.
| |
Collapse
|
16
|
Yehya YM, Hussein AM, Ezam K, Eid EA, Ibrahim EM, Sarhan MAFE, Elsayed A, Sarhan ME. Blockade of Renin Angiotensin System Ameliorates the Cardiac Arrhythmias and Sympathetic Neural Remodeling in Hearts of Type 2 DM Rat Model. Endocr Metab Immune Disord Drug Targets 2021; 20:464-478. [PMID: 31544705 DOI: 10.2174/1871530319666190809150921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/16/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The present study was designed to investigate the effects of renin angiotensin system (RAS) blockade on cardiac arrhythmias and sympathetic nerve remodelling in heart tissues of type 2 diabetic rats. METHODS Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group: normal rats, b) DM group; after type 2 diabetes induction, rats received 2ml oral saline daily for 4 weeks, c) DM+ ACEi: after type 2 diabetes induction, rats were treated with enalapril (10 mg/kg, orally for 4 weeks) and d) DM+ ARBs: after type 2 diabetes induction, rats were treated with losartan (30 mg/kg, orally for 4 weeks). RESULTS In type 2 diabetic rats, the results demonstrated significant prolongation in Q-T interval and elevation of blood sugar, HOMA-IR index, TC, TGs, LDL, serum CK-MB, myocardial damage, myocardial MDA, myocardial norepinephrine and tyrosine hydroxylase (TH) density with significant reduction in serum HDL, serum insulin and myocardial GSH and CAT. On the other hand, blockade of RAS at the level of either ACE by enalapril or angiotensin (Ag) receptors by losartan resulted in significant improvement in ECG parameters (Q-T), cardiac enzymes (CK-MB), cardiac morphology, myocardial oxidative stress (low MDA, high CAT and GSH) and myocardial TH density. CONCLUSION RAS plays a role in the cardiac sympathetic nerve sprouting and cardiac arrhythmias induced by type 2 DM and its blockade might have a cardioprotective effect via attenuation of sympathetic nerve fibres remodelling, myocardial norepinephrine contents and oxidative stress.
Collapse
Affiliation(s)
- Yomna M Yehya
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelaziz M Hussein
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled Ezam
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Elsayed A Eid
- Department of internal Medicine and endocrinology, Delta University, Gamasa, Egypt
| | - Eman M Ibrahim
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed A F E Sarhan
- Medical Biochemistry Department, Faculty of Medicine, Mansoura, University, Mansoura, Egypt
| | - Aya Elsayed
- Medical Experimental Research Centre, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed E Sarhan
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Trikha R, Greig D, Kelley BV, Mamouei Z, Sekimura T, Cevallos N, Olson T, Chaudry A, Magyar C, Leisman D, Stavrakis A, Yeaman MR, Bernthal NM. Inhibition of Angiotensin Converting Enzyme Impairs Anti-staphylococcal Immune Function in a Preclinical Model of Implant Infection. Front Immunol 2020; 11:1919. [PMID: 33042111 PMCID: PMC7518049 DOI: 10.3389/fimmu.2020.01919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Evidence suggests the renin-angiotensin system (RAS) plays key immunomodulatory roles. In particular, angiotensin-converting enzyme (ACE) has been shown to play a role in antimicrobial host defense. ACE inhibitors (ACEi) and angiotensin receptor blockers (ARB) are some of the most commonly prescribed medications, especially in patients undergoing invasive surgery. Thus, the current study assessed the immunomodulatory effect of RAS-modulation in a preclinical model of implant infection. Methods:In vitro antimicrobial effects of ACEi and ARBs were first assessed. C57BL/6J mice subsequently received either an ACEi (lisinopril; 16 mg/kg/day), an ARB (losartan; 30 mg/kg/day), or no treatment. Conditioned mice blood was then utilized to quantify respiratory burst function as well as Staphylococcus aureus Xen36 burden ex vivo in each treatment group. S. aureus infectious burden for each treatment group was then assessed in vivo using a validated mouse model of implant infection. Real-time quantitation of infectious burden via bioluminescent imaging over the course of 28 days post-procedure was assessed. Host response via monocyte and neutrophil infiltration within paraspinal and spleen tissue was quantified by immunohistochemistry for F4/80 and myeloperoxidase, respectively. Results: Blood from mice treated with an ACEi demonstrated a decreased ability to eradicate bacteria when mixed with Xen36 as significantly higher levels of colony forming units (CFU) and biofilm formation was appreciated ex vivo (p < 0.05). Mice treated with an ACEi showed a higher infection burden in vivo at all times (p < 0.05) and significantly higher CFUs of bacteria on both implant and paraspinal tissue at the time of sacrifice (p < 0.05 for each comparison). There was also significantly decreased infiltration and respiratory burst function of immune effector cells in the ACEi group (p < 0.05). Conclusion: ACEi, but not ARB, treatment resulted in increased S. aureus burden and impaired immune response in a preclinical model of implant infection. These results suggest that perioperative ACEi use may represent a previously unappreciated risk factor for surgical site infection. Given the relative interchangeability of ACEi and ARB from a cardiovascular standpoint, this risk factor may be modifiable.
Collapse
Affiliation(s)
- Rishi Trikha
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Danielle Greig
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Benjamin V Kelley
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Zeinab Mamouei
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Troy Sekimura
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Nicolas Cevallos
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Thomas Olson
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Ameen Chaudry
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Clara Magyar
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Daniel Leisman
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexandra Stavrakis
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| | - Michael R Yeaman
- Divisions of Molecular Medicine and Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, United States.,The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, United States
| |
Collapse
|
18
|
A narrative review of the potential pharmacological influence and safety of ibuprofen on coronavirus disease 19 (COVID-19), ACE2, and the immune system: a dichotomy of expectation and reality. Inflammopharmacology 2020; 28:1141-1152. [PMID: 32797326 PMCID: PMC7427497 DOI: 10.1007/s10787-020-00745-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 19 (COVID-19) pandemic is currently the most acute healthcare challenge in the world. Despite growing knowledge of the nature of Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), treatment options are still poorly defined. The safety of non-steroidal anti-inflammatory drugs (NSAIDs), specifically ibuprofen, has been openly questioned without any supporting evidence or clarity over dose, duration, or temporality of administration. This has been further conflicted by the initiation of studies to assess the efficacy of ibuprofen in improving outcomes in severe COVID-19 patients. To clarify the scientific reality, a literature search was conducted alongside considerations of the pharmacological properties of ibuprofen in order to construct this narrative review. The literature suggests that double-blind, placebo-controlled study results must be reported and carefully analysed for safety and efficacy in patients with COVID-19 before any recommendations can be made regarding the use of ibuprofen in such patients. Limited studies have suggested: (i) no direct interactions between ibuprofen and SARS-CoV-2 and (ii) there is no evidence to suggest ibuprofen affects the regulation of angiotensin-converting-enzyme 2 (ACE2), the receptor for COVID-19, in human studies. Furthermore, in vitro studies suggest ibuprofen may facilitate cleavage of ACE2 from the membrane, preventing membrane-dependent viral entry into the cell, the clinical significance of which is uncertain. Additionally, in vitro evidence suggests that inhibition of the transcription factor nuclear factor-κB (NF-kB) by ibuprofen may have a role in reducing excess inflammation or cytokine release in COVID-19 patients. Finally, there is no evidence that ibuprofen will aggravate or increase the chance of infection of COVID-19.
Collapse
|
19
|
Gillette M, Taylor A, Butulija D, Kadiyala H, Jneid H. Reflections of the Angiotensin Receptor Blocker Recall by the FDA and Repercussions on Healthcare. Cardiovasc Drugs Ther 2020; 34:579-584. [PMID: 32318933 PMCID: PMC7171054 DOI: 10.1007/s10557-020-06976-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Beginning in July of 2018, the FDA issued a voluntary recall regarding the presence of a contaminant found in the manufacturing of valsartan. What would ensue has become a largely unprecedented sequence of alarming events since the FDA began reporting public recalls, withdrawals and safety alerts on their website in 2016. Since then, the United States has been significantly impacted by drug recalls affecting angiotensin receptor blockers. This report arms clinicians with additional guidance and provides a framework for responding appropriately to future similar incidents and includes an overview of the angiotensin receptor blockers, and their effects and safety profiles. METHODS This report includes a review of data from all pertinent clinical and scientific sources including information from the FDA's inspection documents and recall website. Additional information is provided on the specific bottles including all lot numbers, expiration dates, etc. RESULTS: The recalls/withdrawals are attributable to the presence of cancer-causing contaminants identified during the manufacturing process from drug manufacturers abroad. The root causes behind the recalls and subsequent shortage appear multifactorial, and stem to a certain extent from the outsourcing of medication manufacturing overseas and lack of quality checks and appropriate oversight. CONCLUSIONS This inherent issue is not likely to resolve soon and has eroded the public trust of/in the healthcare system and the pharmaceutical industry. Patients and healthcare providers are significantly affected and should have a full understanding of the matter in order to guide appropriate response and actions.
Collapse
Affiliation(s)
- Michael Gillette
- Section of Cardiology, Baylor College of Medicine and the Michael DeBakey VA Medical Center, 2002 Holcombe Blvd (111), Houston, TX, 77030, USA
| | - Addison Taylor
- Section of Cardiology, Baylor College of Medicine and the Michael DeBakey VA Medical Center, 2002 Holcombe Blvd (111), Houston, TX, 77030, USA
| | - Djenita Butulija
- Section of Cardiology, Baylor College of Medicine and the Michael DeBakey VA Medical Center, 2002 Holcombe Blvd (111), Houston, TX, 77030, USA
| | - Himabindu Kadiyala
- Section of Cardiology, Baylor College of Medicine and the Michael DeBakey VA Medical Center, 2002 Holcombe Blvd (111), Houston, TX, 77030, USA
| | - Hani Jneid
- Section of Cardiology, Baylor College of Medicine and the Michael DeBakey VA Medical Center, 2002 Holcombe Blvd (111), Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Abstract
Diabetes mellitus predisposes affected individuals to a significant spectrum of cardiovascular complications, one of the most debilitating in terms of prognosis is heart failure. Indeed, the increasing global prevalence of diabetes mellitus and an aging population has given rise to an epidemic of diabetes mellitus-induced heart failure. Despite the significant research attention this phenomenon, termed diabetic cardiomyopathy, has received over several decades, understanding of the full spectrum of potential contributing mechanisms, and their relative contribution to this heart failure phenotype in the specific context of diabetes mellitus, has not yet been fully resolved. Key recent preclinical discoveries that comprise the current state-of-the-art understanding of the basic mechanisms of the complex phenotype, that is, the diabetic heart, form the basis of this review. Abnormalities in each of cardiac metabolism, physiological and pathophysiological signaling, and the mitochondrial compartment, in addition to oxidative stress, inflammation, myocardial cell death pathways, and neurohumoral mechanisms, are addressed. Further, the interactions between each of these contributing mechanisms and how they align to the functional, morphological, and structural impairments that characterize the diabetic heart are considered in light of the clinical context: from the disease burden, its current management in the clinic, and where the knowledge gaps remain. The need for continued interrogation of these mechanisms (both known and those yet to be identified) is essential to not only decipher the how and why of diabetes mellitus-induced heart failure but also to facilitate improved inroads into the clinical management of this pervasive clinical challenge.
Collapse
Affiliation(s)
- Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | - E. Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| |
Collapse
|
21
|
Abo El-Nasr NME, Saleh DO, Mahmoud SS, Nofal SM, Abdelsalam RM, Safar MM, El-Abhar HS. Olmesartan attenuates type 2 diabetes-associated liver injury: Cross-talk of AGE/RAGE/JNK, STAT3/SCOS3 and RAS signaling pathways. Eur J Pharmacol 2020; 874:173010. [PMID: 32067934 DOI: 10.1016/j.ejphar.2020.173010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Olmesartan (OLM), an angiotensin receptor blocker, was tested against diabetes/insulin resistance (IR) models associated with renal/cardiovascular complications. Methods: we tested its potential role against diabetes-induced hepatic hitches using an IR/type2 diabetic (IR/D) model induced by high fat/high fructose diet for 7 weeks + a single sub-diabetogenic dose of streptozotocin (35mg/kg; i.p). IR/D rats were orally treated with OLM (10 mg/kg), pioglitazone (PIO; 5 or 10 mg/kg) or their combinations for 4 consecutive weeks. OLM alone opposed the detrimental effects of IR/D; it significantly improved metabolic parameters, liver function, and abated hepatic oxidative stress, and inflammatory cytokine interleukin-6 (IL-6) and its upstream mediator nuclear factor kappa B. Consequently, OLM turned off the downstream cue p-Jak2/STAT3/SOCS3. Moreover, it suppressed the elevated AGE/RAGE/p-JNK pathway and increased the PPARγ/adiponectin cue to signify its anti-inflammatory and anti-oxidant capacity (GSH, MDA). Nevertheless, co-administration of OLM to PIO showed a synergistic improvement in all the aforementioned parameters in a dose dependent manner. Additionally, OLM with PIO10 provoked a surge in hepatic PPARγ and adiponectin (5 and 6 folds) with a sharp decrease of about 85% in the NF-κB/IL-6/p-STAT3/SCOS3 pathway. These effects were confirmed by the histopathological study. In conclusion, OLM and its combination with PIO enhanced insulin sensitivity and guarded against hepatic complications associated with type 2 diabetes probably via modulating various inter-related pathways; namely, metabolic alteration, renin-angiotensin system, inflammatory trajectories, as well as oxidative stress. This study manifests the potential synergistic effects of OLM as an adjuvant therapy to the conventional antidiabetic therapies.
Collapse
Affiliation(s)
- Nesma M E Abo El-Nasr
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt.
| | - Dalia Osama Saleh
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Sawsan S Mahmoud
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Salwa M Nofal
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industry, Future University, Cairo, Egypt
| |
Collapse
|
22
|
Park JH, Dehaini D, Zhou J, Holay M, Fang RH, Zhang L. Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. NANOSCALE HORIZONS 2020; 5:25-42. [PMID: 32133150 PMCID: PMC7055493 DOI: 10.1039/c9nh00291j] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cardiovascular disease (CVD), which encompasses a number of conditions that can affect the heart and blood vessels, presents a major challenge for modern-day healthcare. Nearly one in three people has some form of CVD, with many suffering from multiple or intertwined conditions that can ultimately lead to traumatic events such as a heart attack or stroke. While the knowledge obtained in the past century regarding the cardiovascular system has paved the way for the development of life-prolonging drugs and treatment modalities, CVD remains one of the leading causes of death in developed countries. More recently, researchers have explored the application of nanotechnology to improve upon current clinical paradigms for the management of CVD. Nanoscale delivery systems have many advantages, including the ability to target diseased sites, improve drug bioavailability, and carry various functional payloads. In this review, we cover the different ways in which nanoparticle technology can be applied towards CVD diagnostics and treatments. The development of novel biomimetic platforms with enhanced functionalities is discussed in detail.
Collapse
Affiliation(s)
| | | | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Clinical Outcomes at 2 Years Between Beta-Blockade with ACE Inhibitors or ARBs in Patients with AMI Who Underwent Successful PCI with DES: A Retrospective Analysis of 23,978 Patients in the Korea AMI Registry. Am J Cardiovasc Drugs 2019; 19:403-414. [PMID: 30788675 DOI: 10.1007/s40256-019-00326-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Data concerning the clinical impact of combination therapy with β-blockers (BBs) + angiotensin-converting enzyme inhibitors (ACEIs) compared with BBs + angiotensin-receptor blockers (ARBs) in patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI) with drug-eluting stents (DES) are limited. OBJECTIVE We compared the clinical outcomes at 2 years between these two combination therapies. METHODS We enrolled 23,978 patients with AMI who underwent successful PCI with DES between January 2005 and June 2015 from the Korea AMI Registry (KAMIR) and divided them into the two groups: BB + ACEI (n = 17,310) and BB + ARB (n = 6668). The primary endpoint was major adverse cardiac events (MACE), defined as all-cause death, recurrent myocardial infarction (re-MI), target lesion revascularization (TLR), target vessel revascularization (TVR), and non-TVR. The secondary endpoints were the cumulative incidences of individual components of MACE and target vessel failure (TVF), a composite of death related to the target vessel, re-MI, or clinically driven TVR. RESULTS The relative risk of MACE was higher in the BB + ARB group than in the BB + ACEI group after propensity score-matched (PSM) analysis (hazard ratio [HR] 1.204; 95% confidence interval [CI] 1.057-1.370; p = 0.005). The relative risks of all-cause death (HR 1.435 [95% CI 1.117-1.845]; p = 0.005), cardiac death (HR 1.733 [95% CI 1.253-2.396]; p = 0.001), TVR (HR 1.437 [95% CI 1.157-1.784]; p = 0.001), and TVF (HR 1.231 [95% CI 1.065-1.424]; p = 0.005) were also higher in the BB + ARB group after PSM. CONCLUSIONS The BB + ACEI group demonstrated reduced cumulative incidences of MACE, all-cause death, cardiac death, TVR, and TVF compared with the BB + ARB group in patients with AMI who underwent successful PCI with DES during a 2-year follow-up period.
Collapse
|
24
|
Sikanyika NL, Parkington HC, Smith AI, Kuruppu S. Powering Amyloid Beta Degrading Enzymes: A Possible Therapy for Alzheimer's Disease. Neurochem Res 2019; 44:1289-1296. [PMID: 30806879 DOI: 10.1007/s11064-019-02756-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/23/2022]
Abstract
The accumulation of amyloid beta (Aβ) in the brain is believed to play a central role in the development and progression of Alzheimer's disease. Revisions to the amyloid cascade hypothesis now acknowledge the dynamic equilibrium in which Aβ exists and the importance of enzymes involved in the production and breakdown of Aβ in maintaining healthy Aβ levels. However, while a wealth of pharmacological and immunological therapies are being generated to inhibit the Aβ-producing enzymes, β-site APP cleavage enzyme 1 and γ-secretase, the therapeutic potential of stimulating Aβ-degrading enzymes such as neprilysin, endothelin-converting enzyme-1 and insulin-degrading enzyme remains relatively unexplored. Recent evidence indicates that increasing Aβ degradation as opposed to inhibiting synthesis is a more effective strategy to prevent Aβ build-up. Therefore Aβ degrading enzymes have become valuable targets of therapy. In this review, we discuss the pathway of Aβ synthesis and clearance along with the opportunities they present for therapeutic intervention, the benefits of increasing the expression/activity of Aβ-degrading enzymes, and the untapped therapeutic potential of enzyme activation.
Collapse
Affiliation(s)
- Nkumbu L Sikanyika
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helena C Parkington
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - A Ian Smith
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sanjaya Kuruppu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
25
|
Ma DL, Dong ZZ, Vellaisamy K, Cheung KM, Yang G, Leung CH. Luminescent Strategies for Label-Free G-Quadruplex-Based Enzyme Activity Sensing. CHEM REC 2017; 17:1135-1145. [PMID: 28467681 DOI: 10.1002/tcr.201700014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 12/30/2022]
Abstract
By catalyzing highly specific and tightly controlled chemical reactions, enzymes are essential to maintaining normal cellular physiology. However, aberrant enzymatic activity can be linked to the pathogenesis of various diseases. Therefore, the unusual activity of particular enzymes can represent testable biomarkers for the diagnosis or screening of certain diseases. In recent years, G-quadruplex-based platforms have attracted wide attention for the monitoring of enzymatic activities. In this Personal Account, we discuss our group's works on the development of G-quadruplex-based sensing system for enzyme activities by using mainly iridium(III) complexes as luminescent label-free probes. These studies showcase the versatility of the G-quadruplex for developing assays for a variety of different enzymes.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Ka-Man Cheung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Guanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| |
Collapse
|
26
|
Schindler C. Review: The metabolic syndrome as an endocrine disease: is there an effective pharmacotherapeutic strategy optimally targeting the pathogenesis? Ther Adv Cardiovasc Dis 2016; 1:7-26. [DOI: 10.1177/1753944707082662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The metabolic syndrome (MetS) represents a combination of cardiovascular risk determinants such as obesity, insulin resistance and lipid abnormalities such as hypertriglyceridemia, increased free fatty acids, low high-density-cholesterol and hypertension. As a multiple component condition it imparts a doubling of relative risk for atherosclerotic cardiovascular disease (ASCVD). It is currently controversial which component of the syndrome carries what weight. There is even a considerable debate whether the risk for ASCVD is greater in patients diagnosed with MetS than that by the individual risk factors. At present, no unifying pathogenetic mechanism can explain the metabolic syndrome and there is no unique treatment for it. This review summarizes and critically reviews the currently available clinical and scientific evidence for the concept that the MetS is causally an endocrine disease and discusses pharmacotherapeutic strategies targeting the pathogenesis rather than single symptoms of the cluster.
Collapse
Affiliation(s)
- Christoph Schindler
- Institute of Clinical Pharmacology, Medical Faculty, Technical University of Dresden, Fiedlerstrasse 27, 01307 Dresden, Germany christoph.schindler@ tu-dresden.de
| |
Collapse
|
27
|
Das UN. Renin-angiotensin-aldosterone system in insulin resistance and metabolic syndrome. J Transl Int Med 2016; 4:66-72. [PMID: 28191524 DOI: 10.1515/jtim-2016-0022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Obesity and its consequent complications such as hypertension and metabolic syndrome are increasing in incidence in almost all countries. Insulin resistance is common in obesity. Renin- angiotensin system (RAS) is an important target in the treatment of hypertension and drugs that act on RAS improve insulin resistance and decrease the incidence of type 2 diabetes mellitus, explaining the close association between hypertension and type 2 diabetes mellitus. RAS influences food intake by modulating the hypothalamic expression of neuropeptide Y and orexins via AMPK dephosphorylation. Estrogen reduces appetite by its action on the brain in a way similar to leptin, an anorexigenic action that seems to be mediated via hypothalamic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and synaptic plasticity in the arcuate nucleus similar to leptin. Estrogen stimulates lipoxin A4, a potent vasodilator and platelet anti-aggregator. Since both RAS and estrogen act on the hypothalamic neuropeptides and regulate food intake and obesity, it is likely that RAS modulates LXA4 synthesis. Thus, it is proposed that Angiotensin-II receptor blockers and angiotensin-converting enzymes and angiotensin-II antagonists may have the ability to augment LXA4 synthesis and thus bring about their beneficial actions.
Collapse
|
28
|
Tsouli SG, Liberopoulos EN, Kiortsis DN, Mikhailidis DP, Elisaf MS. Combined Treatment With Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers: A Review of the Current Evidence. J Cardiovasc Pharmacol Ther 2016; 11:1-15. [PMID: 16703216 DOI: 10.1177/107424840601100101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several studies have shown that angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers are useful in the treatment of hypertension, cardiovascular disease, chronic heart failure, and some types of nephropathy. In this context, dual renin-angiotensin system blockade with both angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers may be more effective than treatment with each agent alone. Many clinical trials have demonstrated the beneficial effect of this combined treatment on proteinuria, hypertension, heart failure, and cardiovascular events. Moreover, these studies demonstrated that dual renin-angiotensin system blockade is generally safe and well tolerated. Long-term studies are under way to confirm these effects and also investigate the effectiveness of dual reninangiotensin system blockade on cerebrovascular disease and prevention of type 2 diabetes mellitus. These studies are expected to define the optimal use of combination treatment in everyday clinical practice. This review considers the most important clinical trials that evaluated the effect of dual renin-angiotensin system blockade on blood pressure, heart failure, and renal function.
Collapse
Affiliation(s)
- Sofia G Tsouli
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Abstract
PURPOSE OF REVIEW The kidney mediates the excretion or conservation of water and electrolytes in the face of changing fluid and salt intake and losses. To ultrafilter and reabsorb the exact quantities of free water and salts to maintain euvolemia a range of endocrine, paracrine, and hormonal signaling systems have evolved linking the tubules, capillaries, glomeruli, arterioles, and other intrinsic cells of the kidney. Our understanding of these systems remains incomplete. RECENT FINDINGS Recent work has provided new insights into the workings of the communication pathways between tubular segments and the glomeruli and vasculature, with novel therapeutic agents in development. Particular progress has also been made in the visualization of tubuloglomerular feedback. SUMMARY The review summarizes our current understanding of pathway functions in health and disease, as well as future therapeutic options to protect the healthy and injured kidney.
Collapse
Affiliation(s)
- David A. Ferenbach
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph V. Bonventre
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Del Pino-García R, Gerardi G, Rivero-Pérez MD, González-SanJosé ML, García-Lomillo J, Muñiz P. Wine pomace seasoning attenuates hyperglycaemia-induced endothelial dysfunction and oxidative damage in endothelial cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Ma DL, Wang W, Mao Z, Yang C, Chen XP, Lu JJ, Han QB, Leung CH. A tutorial review for employing enzymes for the construction of G-quadruplex-based sensing platforms. Anal Chim Acta 2016; 913:41-54. [DOI: 10.1016/j.aca.2016.01.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 01/31/2023]
|
33
|
Rutter MK. Night-time blood pressure: a role in the prediction and prevention of diabetes? Diabetologia 2016; 59:234-6. [PMID: 26631216 DOI: 10.1007/s00125-015-3814-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/06/2015] [Indexed: 11/26/2022]
Abstract
This commentary discusses and reviews the implications of two studies published in this issue of Diabetologia by Hermida et al (DOIs: 10.1007/s00125-015-3748-8 and 10.1007/s00125-015-3749-7 ) suggesting that high nocturnal blood pressure could have a role in the prediction of diabetes and act as a therapeutic target to prevent diabetes. This overview addresses the clinical implications of this work and new research that is likely to advance this field. It also provides a framework for interpreting claims of causality from observational studies and clinical trials.
Collapse
Affiliation(s)
- Martin K Rutter
- Endocrinology and Diabetes Research Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
- Manchester Diabetes Centre, 193 Hathersage Road, Manchester, UK.
- Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 0JE, UK.
| |
Collapse
|
34
|
Zamani Z, Nematbakhsh M, Eshraghi-Jazi F, Talebi A, Jilanchi S, Navidi M, Shirdavani S, Ashrafi F. Effect of enalapril in cisplatin-induced nephrotoxicity in rats; gender-related difference. Adv Biomed Res 2016; 5:14. [PMID: 26962516 PMCID: PMC4770600 DOI: 10.4103/2277-9175.175253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/17/2015] [Indexed: 11/05/2022] Open
Abstract
Background: The function of renin angiotensin system (RAS) is gender-related, and this system affects cisplatin (CP)-induced nephrotoxicity. In this study, we compared the effect of enalapril as an angiotensin-converting enzyme (ACE) inhibitor on CP-induced nephrotoxicity between male and female rats. Materials and Methods: Sixty-two adult male and female Wistar rats were divided into eight groups. Both genders received CP (2.5 mg/kg, i.p.) and enalapril (30 mg/kg, i.p.) for 7 days in compared with CP alone or enalapril alone or vehicle alone treated groups. At the end of the experiment, blood samples were obtained, and the kidney tissue was investigated for histopathological changes. Results: CP increased the serum levels of blood urea nitrogen and creatinine as well as kidney weight and kidney tissue damage score in both genders (P < 0.05). However, not only enalapril failed to ameliorate the aforementioned parameters in both genders, but also it intensified nephrotoxicity in females (P < 0.05). In addition, enalapril enhanced body weight loss induced by CP in females (P < 0.05). CP alone decreased kidney level of nitrite in both genders (P < 0.05) and enalapril could not reverse this decreasing. The combination of enalapril and CP significantly increased serum level of nitrite in females, but this was not observed in males (P < 0.05). Conclusion: Enalapril as an ACE inhibitor failed to ameliorate nephrotoxicity induced by CP in both male and female rats. In addition, enalapril aggravated CP-induced nephrotoxicity in female possibly due to gender-dependent RAS response.
Collapse
Affiliation(s)
- Zohreh Zamani
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Institute of Basic and Applied Sciences Research, Isfahan, Iran
| | - Fatemeh Eshraghi-Jazi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Jilanchi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mitra Navidi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soheila Shirdavani
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Ashrafi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Fransen P, Van Hove CE, Leloup AJA, Schrijvers DM, De Meyer GRY, De Keulenaer GW. Effect of angiotensin II-induced arterial hypertension on the voltage-dependent contractions of mouse arteries. Pflugers Arch 2015; 468:257-67. [PMID: 26432297 DOI: 10.1007/s00424-015-1737-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022]
Abstract
Arterial hypertension (AHT) affects the voltage dependency of L-type Ca(2+) channels in cardiomyocytes. We analyzed the effect of angiotensin II (AngII)-induced AHT on L-type Ca(2+) channel-mediated isometric contractions in conduit arteries. AHT was induced in C57Bl6 mice with AngII-filled osmotic mini-pumps (4 weeks). Normotensive mice treated with saline-filled osmotic mini-pumps were used for comparison. Voltage-dependent contractions mediated by L-type Ca(2+) channels were studied in vaso-reactive studies in vitro in isolated aortic and femoral arteries by using extracellular K(+) concentration-response (KDR) experiments. In aortic segments, AngII-induced AHT significantly sensitized isometric contractions induced by elevated extracellular K(+) and depolarization. This sensitization was partly prevented by normalizing blood pressure with hydralazine, suggesting that it was caused by AHT rather than by direct AngII effects on aortic smooth muscle cells. The EC50 for extracellular K(+) obtained in vitro correlated significantly with the rise in arterial blood pressure induced by AngII in vivo. The AHT-induced sensitization persisted when aortic segments were exposed to levcromakalim or to inhibitors of basal nitric oxide release. Consistent with these observations, AngII-treatment also sensitized the vaso-relaxing effects of the L-type Ca(2+) channel blocker diltiazem during K(+)-induced contractions. Unlike aorta, AngII-treatment desensitized the isometric contractions to depolarization in femoral arteries pointing to vascular bed specific responses of arteries to hypertension. AHT affects the voltage-dependent L-type Ca(2+) channel-mediated contraction of conduit arteries. This effect may contribute to the decreased vascular compliance in AHT and explain the efficacy of Ca(2+) channel blockers to reduce vascular stiffness and central blood pressure in AHT.
Collapse
Affiliation(s)
- Paul Fransen
- Department of Pharmaceutical Sciences, Physiopharmacology, Campus Drie Eiken, University of Antwerp, T2, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Cor E Van Hove
- Faculty of Medicine & Health Sciences, Pharmacology, Campus Drie Eiken, University of Antwerp, T2, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Arthur J A Leloup
- Department of Pharmaceutical Sciences, Physiopharmacology, Campus Drie Eiken, University of Antwerp, T2, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Dorien M Schrijvers
- Department of Pharmaceutical Sciences, Physiopharmacology, Campus Drie Eiken, University of Antwerp, T2, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Guido R Y De Meyer
- Department of Pharmaceutical Sciences, Physiopharmacology, Campus Drie Eiken, University of Antwerp, T2, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Department of Pharmaceutical Sciences, Physiopharmacology, Campus Drie Eiken, University of Antwerp, T2, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
36
|
Peng PA, Wang L, Ma Q, Xin Y, Zhang O, Han HY, Liu XL, Ji QW, Zhou YJ, Zhao YX. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress. Cell Biol Int 2015; 39:1408-17. [PMID: 26248489 DOI: 10.1002/cbin.10521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/01/2015] [Indexed: 01/16/2023]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress.
Collapse
Affiliation(s)
- Ping-An Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Le Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Qian Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yi Xin
- Experimental Center, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Ou Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Hong-Ya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiao-Li Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Qing-Wei Ji
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yu-Jie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Ying-Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
37
|
Aygen B, Kucuksu M, Aydin S, Ozercan IH. Effect of enalapril maleate on ghrelin levels in metabolic syndrome in rats. Peptides 2015; 67:39-44. [PMID: 25784288 DOI: 10.1016/j.peptides.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/05/2015] [Accepted: 03/05/2015] [Indexed: 12/13/2022]
Abstract
We have explored how enalapril affects ghrelin levels in serum and renal tissues of rats with fructose-induced MetS, using 5-week-old Wistar albino male rats weighing 220 ± 20 g. They divided into 5 groups: (i) control (CT), no fructose supplement fed on standard rat pellet and tap water for 60 days, (ii) metabolic syndrome (MetS) fed with 10% fructose for 60 days, (iii) rats after metabolic syndrome developed treated with enalapril over 30 days (MetS+E30), (iv) rats in which only enalapril was administered for 60 days (E60), and (v) MetS-treated with enalapril for 60 days (MetS+E60). Enalapril maleate was given at 20mg/kg per day by gavage. Fasting serum insulin, uric acid, triglyceride, low-density lipoprotein cholesterol and total cholesterol levels were significantly higher, and the amount of high density lipoprotein cholesterol, and acylated and desacyl ghrelin levels was significantly lower in the MetS groups. Ghrelins were significantly lower in all 3 groups, which were administered enalapril than that of MetS and the control group. Immunohistochemical staining showed that the density of ghrelin was parallel to the serum levels of the peptide. Ghrelin immunoreactivity in the kidneys was of moderate density in the distal and collecting tubules, mild density in the proximal tubule and glomeruli, whereas the density decreased in the MetS group and other enalapril-treated groups. In conclusion, ghrelin levels in MetS groups were significantly lower than control group, and thus Enalapril treatment improves components of MetS and has direct effects on serum ghrelin levels that are independent of MetS.
Collapse
Affiliation(s)
- Bilge Aygen
- Department of Nephrology, Firat University, Faculty of Medicine, Elazig, 23119, Turkey.
| | - Mehmet Kucuksu
- Department of Nephrology, Firat University, Faculty of Medicine, Elazig, 23119, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry (Firat Hormones Research Group), Firat University, Faculty of Medicine, Elazig, 23119, Turkey.
| | - Ibrahim Hanifi Ozercan
- Department of Medical Pathology, Firat University, Faculty of Medicine, Elazig, 23119, Turkey
| |
Collapse
|
38
|
Forsythe RO, Brownrigg J, Hinchliffe RJ. Peripheral arterial disease and revascularization of the diabetic foot. Diabetes Obes Metab 2015; 17:435-44. [PMID: 25469642 DOI: 10.1111/dom.12422] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/19/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023]
Abstract
Diabetes is a complex disease with many serious potential sequelae, including large vessel arterial disease and microvascular dysfunction. Peripheral arterial disease is a common large vessel complication of diabetes, implicated in the development of tissue loss in up to half of patients with diabetic foot ulceration. In addition to peripheral arterial disease, functional changes in the microcirculation also contribute to the development of a diabetic foot ulcer, along with other factors such as infection, oedema and abnormal biomechanical loading. Peripheral arterial disease typically affects the distal vessels, resulting in multi-level occlusions and diffuse disease, which often necessitates challenging distal revascularisation surgery or angioplasty in order to improve blood flow. However, technically successful revascularisation does not always result in wound healing. The confounding effects of microvascular dysfunction must be recognised--treatment of a patient with a diabetic foot ulcer and peripheral arterial disease should address this complex interplay of pathophysiological changes. In the case of non-revascularisable peripheral arterial disease or poor response to conventional treatment, alternative approaches such as cell-based treatment, hyperbaric oxygen therapy and the use of vasodilators may appear attractive, however more robust evidence is required to justify these novel approaches.
Collapse
Affiliation(s)
- R O Forsythe
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
39
|
Hashimoto S, Kubota N, Sato H, Sasaki M, Takamoto I, Kubota T, Nakaya K, Noda M, Ueki K, Kadowaki T. Insulin receptor substrate-2 (Irs2) in endothelial cells plays a crucial role in insulin secretion. Diabetes 2015; 64:876-86. [PMID: 25277391 DOI: 10.2337/db14-0432] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial cells are considered to be essential for normal pancreatic β-cell function. The current study attempted to demonstrate the role of insulin receptor substrate-2 (Irs2) in endothelial cells with regard to insulin secretion. Endothelial cell-specific Irs2 knockout (ETIrs2KO) mice exhibited impaired glucose-induced, arginine-induced, and glucagon-induced insulin secretion and showed glucose intolerance. In batch incubation and perifusion experiments using isolated islets, glucose-induced insulin secretion was not significantly different between the control and the ETIrs2KO mice. In contrast, in perfusion experiments, glucose-induced insulin secretion was significantly impaired in the ETIrs2KO mice. The islet blood flow was significantly impaired in the ETIrs2KO mice. After the treatment of these knockout mice with enalapril maleate, which improved the islet blood flow, glucose-stimulated insulin secretion was almost completely restored to levels equal to those in the control mice. These data suggest that Irs2 deletion in endothelial cells leads to a decreased islet blood flow, which may cause impaired glucose-induced insulin secretion. Thus, Irs2 in endothelial cells may serve as a novel therapeutic target for preventing and ameliorating type 2 diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Shinji Hashimoto
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan Clinical Nutrition Program, National Institute of Health and Nutrition, Tokyo, Japan Laboratory for Metabolic Homeostasis, Rikagaku Kenkyusho (RIKEN) Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hiroyuki Sato
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motohiro Sasaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Iseki Takamoto
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Clinical Nutrition Program, National Institute of Health and Nutrition, Tokyo, Japan Laboratory for Metabolic Homeostasis, Rikagaku Kenkyusho (RIKEN) Center for Integrative Medical Sciences, Kanagawa, Japan Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Keizo Nakaya
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiko Noda
- Department of Diabetes Research, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan Clinical Nutrition Program, National Institute of Health and Nutrition, Tokyo, Japan
| |
Collapse
|
40
|
Simon CB, Lee-McMullen B, Phelan D, Gilkes J, Carter CS, Buford TW. The renin-angiotensin system and prevention of age-related functional decline: where are we now? AGE (DORDRECHT, NETHERLANDS) 2015; 37:9753. [PMID: 25663422 PMCID: PMC4320995 DOI: 10.1007/s11357-015-9753-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/27/2015] [Indexed: 05/19/2023]
Abstract
Declining physical function is a major health problem for older adults as it is associated with multiple comorbidities and mortality. Exercise has been shown to improve physical function, though response to exercise is variable. Conversely, drugs targeting the renin-angiotensin system (RAS) pathway, including angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs), are also reported to improve physical function. In the past decade, significant strides have been made to understand the complexity and specificity of the RAS system as it pertains to physical function in older adults. Prior findings have also determined that interactions between antihypertensive medications and exercise may influence physical function above and beyond either factor alone. We review the latest research on RAS, exercise, and physical function for older adults. We also outline future research aims in this area, including genetic influences and clinical phenotyping, for the purpose of maintaining or improving physical function through tailored treatments.
Collapse
Affiliation(s)
- Corey B. Simon
- />Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL USA
| | - Brittany Lee-McMullen
- />Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL USA
| | - Dane Phelan
- />Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL USA
| | - Janine Gilkes
- />Department of Medicine, College of Medicine, University of Florida, Gainesville, FL USA
| | - Christy S. Carter
- />Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL USA
| | - Thomas W. Buford
- />Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL USA
- />Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL USA
| |
Collapse
|
41
|
Regoli D, Gobeil F. Critical insights into the beneficial and protective actions of the kallikrein-kinin system. Vascul Pharmacol 2015; 64:1-10. [PMID: 25579779 DOI: 10.1016/j.vph.2014.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022]
Abstract
Hypertension is characterized by an imbalance between the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II AT-1 receptor antagonists (also known as sartans or ARBs) are potent modulators of these systems and are highly effective as first-line treatments for hypertension, diabetic nephropathies, and diseases of the brain and coronary arteries. However, these agents are mechanistically distinct and should not be considered interchangeable. In this mini-review, we provide novel insights into the often neglected roles of the KKS in the beneficial, protective, and reparative actions of ACEIs. Indeed, ACEIs are the only antihypertensive drugs that properly reduce the imbalance between the RAS and the KKS, thereby restoring optimal cardiovascular homeostasis and significantly reducing morbidity and the risk of all-cause mortality among individuals affected by hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Domenico Regoli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | - Fernand Gobeil
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4.
| |
Collapse
|
42
|
Teta D. Insulin resistance as a therapeutic target for chronic kidney disease. J Ren Nutr 2014; 25:226-9. [PMID: 25511524 DOI: 10.1053/j.jrn.2014.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 10/29/2014] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance (IR) is a prevalent metabolic feature in chronic kidney disease (CKD). Postreceptor insulin-signaling defects have been observed in uremia. A decrease in the activity of phosphatidylinositol 3-kinase appears critical in the pathophysiology of CKD-associated IR. Lipotoxicity due to ectopic accumulation of lipid moieties has recently emerged as another mechanism by which CKD and/or associated metabolic disorders may lead to IR through impairment of various insulin-signaling molecules. Metabolic acidosis, anemia, excess of fat mass, inflammation, vitamin D deficiency, adipokine imbalance, physical inactivity, and the accumulation of nitrogenous compounds of uremia all contribute to CKD-associated IR. The clinical impacts of IR in this setting are numerous, including endothelial dysfunction, increased cardiovascular mortality, muscle wasting, and possibly initiation and progression of CKD. This is why IR may be a therapeutic target in the attempt to improve outcomes in CKD. General measures to improve IR are directed to counteract causal factors. The use of pharmaceutical agents such as inhibitors of the renin-angiotensin system may improve IR in hypertensive and CKD patients. Pioglitazone appears a safe and promising therapeutic agent to reduce IR and uremic-associated abnormalities. However, interventional studies are needed to test if the reduction and/or normalization of IR may actually improve outcomes in these patients.
Collapse
Affiliation(s)
- Daniel Teta
- Service of Nephrology, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
43
|
Peroxisome proliferator-activated receptor gamma concentrations in newly diagnosed hypertension patients and the metabolic effects of olmesartan. Arch Med Res 2014; 45:138-42. [PMID: 24480732 DOI: 10.1016/j.arcmed.2013.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS We undertook this study to investigate the effects of olmesartan treatment on PPAR-gamma (PPAR-γ) concentrations and metabolic syndrome (MetS) components in hypertensive (HT) patients. METHODS The study included 46 newly diagnosed hypertensive patients and 30 healthy controls. All hypertensive patients were given 40 mg of olmesartan, and they were evaluated weekly in the first month and then twice weekly during follow-up visits. At the end of 3 months, MetS components were assessed and serum PPAR-γ transcription factor concentrations were again measured. RESULTS MetS was noted in 80.4% of HT patients. Serum PPAR-γ transcription factor concentration were significantly lower in those with HT compared with the controls (p = 0.005). PPAR-γ concentrations of controls were 1.14-fold higher than hypertensive patients. HDL levels were significantly increased after treatment (p = 0.004), triglyceride, total cholesterol, fasting blood glucose (FBG), and LDL levels were significantly reduced (p <0.05). There was a tendency toward increased PPAR-γ concentrations after treatment, but these were not statistically significant (p = 0.154). CONCLUSIONS Olmesartan treatment was found to generate beneficial effects on MetS parameters in HT patients but did not produce any significant increases in serum PPAR-γ transcription factor concentration.
Collapse
|
44
|
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142:375-415. [PMID: 24462787 DOI: 10.1016/j.pharmthera.2014.01.003] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality among the diabetic population. Both experimental and clinical evidence suggest that diabetic subjects are predisposed to a distinct cardiomyopathy, independent of concomitant macro- and microvascular disorders. 'Diabetic cardiomyopathy' is characterized by early impairments in diastolic function, accompanied by the development of cardiomyocyte hypertrophy, myocardial fibrosis and cardiomyocyte apoptosis. The pathophysiology underlying diabetes-induced cardiac damage is complex and multifactorial, with elevated oxidative stress as a key contributor. We now review the current evidence of molecular disturbances present in the diabetic heart, and their role in the development of diabetes-induced impairments in myocardial function and structure. Our focus incorporates both the contribution of increased reactive oxygen species production and reduced antioxidant defenses to diabetic cardiomyopathy, together with modulation of protein signaling pathways and the emerging role of protein O-GlcNAcylation and miRNA dysregulation in the progression of diabetic heart disease. Lastly, we discuss both conventional and novel therapeutic approaches for the treatment of left ventricular dysfunction in diabetic patients, from inhibition of the renin-angiotensin-aldosterone-system, through recent evidence favoring supplementation of endogenous antioxidants for the treatment of diabetic cardiomyopathy. Novel therapeutic strategies, such as gene therapy targeting the phosphoinositide 3-kinase PI3K(p110α) signaling pathway, and miRNA dysregulation, are also reviewed. Targeting redox stress and protective protein signaling pathways may represent a future strategy for combating the ever-increasing incidence of heart failure in the diabetic population.
Collapse
Affiliation(s)
- Karina Huynh
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | | | - Julie R McMullen
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
45
|
Ganne S, Arora S, Karam J, McFarlane SI. Therapeutic interventions for hypertension in metabolic syndrome: a comprehensive approach. Expert Rev Cardiovasc Ther 2014; 5:201-11. [PMID: 17338665 DOI: 10.1586/14779072.5.2.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypertension is a major component of the metabolic syndrome and a major cardiovascular risk factor. Both disorders are rapidly increasing in frequency, with hypertension affecting nearly 60 million Americans and over 1 billion people worldwide, and metabolic syndrome affecting 44% of the US population above the age of 60 years. Sedentary lifestyle, together with obesity and aging of the population, are the major contributing factors for this growing epidemic. Hypertension in metabolic syndrome possesses unique pathophysiological aspects that have considerable implications on therapy of this disease. In this article, we review the pathophysiology and provide a rationale for the current therapeutic options in light of the most recent clinical trials in the field.
Collapse
Affiliation(s)
- Sudha Ganne
- State University of New York, Division of Endocrinology, Diabetes and Hypertension, Downstate Medical Center, Brooklyn, NY, USA.
| | | | | | | |
Collapse
|
46
|
McFarlane SI. Role of angiotensin receptor blockers in diabetes: implications of recent clinical trials. Expert Rev Cardiovasc Ther 2014; 7:1363-71. [DOI: 10.1586/erc.09.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Reboldi G, Gentile G, Angeli F, Verdecchia P. Exploring the optimal combination therapy in hypertensive patients with diabetes mellitus. Expert Rev Cardiovasc Ther 2014; 7:1349-61. [DOI: 10.1586/erc.09.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Song L, Zhang SL, Bai KH, Yang J, Xiong HY, Li X, Liu T, Liu HR. Serum agonistic autoantibodies against type-1 angiotensin II receptor titer in patients with epithelial ovarian cancer: a potential role in tumor cell migration and angiogenesis. J Ovarian Res 2013; 6:22. [PMID: 23561060 PMCID: PMC3626713 DOI: 10.1186/1757-2215-6-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 04/02/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Although agonistic autoantibodies against type-1 angiotensin-II receptor (AT1-AA) are frequently detected in women with preeclampsia, the clinical significance of AT1-AA in association with epithelial ovarian cancer (EOC) has not been identified. METHODS In an attempt to clarify this issue, we measured serum AT1-AA titer from EOC patients (n = 89) and healthy normal subjects (n = 55), correlated AT1-AA titer with EOC stage and grade, and demonstrated the effects of purified AT1-AA on migration of ovarian cancer cells and angiogenesis of chick embryo chorioallantoic membrane. RESULTS We found that the AT1-AA titer was significantly higher in EOC patients compared with healthy control subjects (1.77 ± 0.28 vs. 0.35 ± 0.05, P < 0.01). The positive rate was averaged by 72.1±2.5% in EOC patients and 15.5 ±1.5% in control (P < 0.01). Increased AT1-AA titer in EOC patients was associated with advanced stages and grades of EOC, and positively correlated with level of vascular endothelial growth factor (r = 0.855, P < 0.01). Furthermore, AT1-AA directly stimulated migration of ovarian cancer cells and enhanced microvascular density of chick embryo chorioallantoic membrane. These AT1-AA-mediated effects were significantly blocked either by an autoantibody-neutralizing peptide or an angiotensin II type I receptor antagonist, losartan. CONCLUSION Taken together, we found that a higher serum AT1-AA titer may be associated with advanced progression of EOC in patients and play an important role in development of EOC by promoting cancer cell migration and angiogenesis. These findings implicate that AT1-AA might be selected as a detectable biomarker and potential therapeutic target in diagnosis and treatment of EOC patients.
Collapse
Affiliation(s)
- Li Song
- Department of Pathophysiology, Capital Medical University, Beijing, P,R, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Shi W, Meszaros JG, Zeng SJ, Sun YY, Zuo MX. Living high training low induces physiological cardiac hypertrophy accompanied by down-regulation and redistribution of the renin-angiotensin system. Acta Pharmacol Sin 2013; 34:342-51. [PMID: 23377552 PMCID: PMC4002499 DOI: 10.1038/aps.2012.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/28/2012] [Indexed: 01/13/2023]
Abstract
AIM Living high training low" (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2. In this study, we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in renin-angiotensin system in rats. METHODS Adult male SD rats were randomly assigned into 4 groups, and trained on living low-sedentary (LLS, control), living low-training low (LLTL), living high-sedentary (LHS) and living high-training low (LHTL) protocols, respectively, for 4 weeks. Hematological parameters, hemodynamic measurement, heart hypertrophy and plasma angiotensin II (Ang II) level of the rats were measured. The gene and protein expression of angiotensin-converting enzyme (ACE), angiotensinogen (AGT) and angiotensin II receptor I (AT1) in heart tissue was assessed using RT-PCR and immunohistochemistry, respectively. RESULTS LLTL, LHS and LHTL significantly improved cardiac function, increased hemoglobin concentration and RBC. At the molecular level, LLTL, LHS and LHTL significantly decreased the expression of ACE, AGT and AT1 genes, but increased the expression of ACE and AT1 proteins in heart tissue. Moreover, ACE and AT1 protein expression was significantly increased in the endocardium, but unchanged in the epicardium. CONCLUSION LHTL training protocol suppresses ACE, AGT and AT1 gene expression in heart tissue, but increases ACE and AT1 protein expression specifically in the endocardium, suggesting that the physiological heart hypertrophy induced by LHTL is regulated by region-specific expression of renin-angiotensin system components.
Collapse
Affiliation(s)
- Wei Shi
- Laboratory of Neuroscience and Brain Development, School of Life Science, Beijing Normal University, Beijing 100875, China
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - J Gary Meszaros
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Shao-ju Zeng
- Laboratory of Neuroscience and Brain Development, School of Life Science, Beijing Normal University, Beijing 100875, China
| | - Ying-yu Sun
- Laboratory of Neuroscience and Brain Development, School of Life Science, Beijing Normal University, Beijing 100875, China
| | - Ming-xue Zuo
- Laboratory of Neuroscience and Brain Development, School of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
50
|
Hypertension management in the high cardiovascular risk population. Int J Hypertens 2013; 2013:382802. [PMID: 23476746 PMCID: PMC3580899 DOI: 10.1155/2013/382802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/26/2012] [Indexed: 01/13/2023] Open
Abstract
The incidence of hypertension is increasing every year. Blood pressure (BP) control is an important therapeutic goal for the slowing of progression as well as for the prevention of Cardiovascular disease. The management of hypertension in the high cardiovascular risk population remains a real challenge as the population continues to age, the incidence of diabetes increases, and more and more people survive acute myocardial infarction. We will review hypertension management in the high cardiovascular risk population: patients with coronary heart disease (CHD) and heart failure (HF) as well as in diabetic patients.
Collapse
|