1
|
Fan J, Wang Y, Yang H, Huang S, Ma Y, Guo J, Jia Y, Zhang Y, Fan Y, Xiao D, Zhang J, Li J, Dong Y, Zhao Y, Guo M, Tang Q, Li SS, Sun T, Jin X. Protosappanin B activates the Wnt pathway to protect against glucocorticoid-induced osteoblast inhibition and enhance bone formation. Chem Biol Interact 2025; 410:111436. [PMID: 39986363 DOI: 10.1016/j.cbi.2025.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Osteoporosis remains a major health challenge due to impaired osteoblast function and reduced bone formation, particularly in glucocorticoid-induced osteoporosis (GIOP). The Wnt/β-catenin signaling pathway plays a critical role in osteogenesis, making it a promising target for protective interventions against osteoporosis-related bone loss. In this study, virtual screening of a natural product library identified Protosappanin B (PB) as a potential Wnt pathway activator with high binding affinity for Wnt receptors. We investigated PB's protective effects on osteoblast function under glucocorticoid exposure using MC3T3-E1 cells treated with dexamethasone (DEX) and an in vivo zebrafish model of GIOP. PB significantly promoted osteoblast proliferation, facilitated cell cycle progression, and attenuated DEX-induced apoptosis in a dose-dependent manner. Additionally, PB enhanced osteoblast differentiation and mineralization, counteracting DEX's inhibitory effects on alkaline phosphatase (ALP) activity and calcium deposition. In zebrafish, PB mitigated DEX-induced skeletal defects, improving bone and craniofacial cartilage formation. Western blot analysis confirmed that PB restored β-catenin levels, activating the Wnt/β-catenin pathway. Notably, the osteogenic effects of PB were abolished by XAV939, a Wnt signaling inhibitor, further supporting its Wnt-dependent mechanism of action. These findings indicate that PB provides protective effects against glucocorticoid-induced osteoblast dysfunction and bone loss by modulating Wnt signaling. This study highlight the potential of PB as a natural agent for preventing GIOP-related bone deterioration and warrants further investigation into its clinical applicability.
Collapse
Affiliation(s)
- Jigeng Fan
- Tianjin Medical University, Tianjin, China
| | - Yahui Wang
- Tianjin Medical University, Tianjin, China
| | | | | | - Yuan Ma
- NanYang Central Hospital, NanYang, China
| | - Jie Guo
- Tianjin Medical University, Tianjin, China
| | - YuTao Jia
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Ying Zhang
- Tianjin Key Specialty of Integrated Traditional Chinese and Western Medicine, Tianjin Institute of Rehabilitation, Tianjin Union Medical Center, Tianjin, China
| | - Yonggang Fan
- School of Medicine, Nankai University, Tianjin, China
| | | | | | - Jianwei Li
- School of Medicine, Nankai University, Tianjin, China
| | - Yu Dong
- School of Medicine, Nankai University, Tianjin, China
| | - Ying Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Miao Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Qiong Tang
- Department of Respiratory, Tianjin Union Medical Center, Tianjin, China
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China.
| | - Tianwei Sun
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China.
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
Lu W, Feng W, Zhen H, Jiang S, Li Y, Liu S, Ru Q, Xiao W. Unlocking the therapeutic potential of WISP-1: A comprehensive exploration of its role in age-related musculoskeletal disorders. Int Immunopharmacol 2025; 145:113791. [PMID: 39667044 DOI: 10.1016/j.intimp.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
As the global population ages, the incidence of age-related musculoskeletal diseases continues to increase, driven by numerous complex and poorly understood factors. WNT-1 inducible secreted protein 1 (WISP-1), a secreted matrix protein, plays a critical role in the growth and development of the musculoskeletal system, including chondrogenesis, osteogenesis, and myogenesis. Numerous in vivo and in vitro studies have demonstrated that WISP-1 is significantly upregulated in age-related musculoskeletal conditions, such as osteoarthritis, osteoporosis, and sarcopenia, suggesting its involvement in the pathogenesis of these diseases. Regulating WISP-1 expression holds promise as a therapeutic strategy for improving musculoskeletal function, potentially offering new avenues for treating age-related musculoskeletal diseases in clinical practice. This review highlights the signaling pathways associated with WISP-1, its physiological roles within the musculoskeletal system, and its therapeutic potential in treating age-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Haozu Zhen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710001, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
3
|
Hansen BB, Hass Rubin K, Vind Nielsen C, Frost Nielsen M, Hermann AP, Abrahamsen B. Biological Heterogeneity in Susceptibility to Glucocorticoid-Induced Bone Loss: Short- and Long-Term Hip BMD Trajectories. J Clin Endocrinol Metab 2024:dgae832. [PMID: 39671259 DOI: 10.1210/clinem/dgae832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Indexed: 12/15/2024]
Abstract
CONTEXT Glucocorticoids (GCs) are widely used for their anti-inflammatory and immunosuppressive properties. Their effect on bone health is predominantly negative by decreasing bone formation and increasing risk of fractures. OBJECTIVE This work aimed to quantify the short- and long-term changes in total hip bone mineral density (THBMD) after initiating systemic GC treatment in previously GC treatment-naive adults without bone protective agents. METHODS An observational study was conducted using THBMD data from dual-energy x-ray absorptiometry (DXA). Individuals were stratified by sex and tertiles of GC exposure. Individuals not GC-exposed served as a reference group. Routine-care DXA scans were obtained from the main public hospitals servicing the Island of Funen in Denmark. A total of 15 099 adults underwent routine DXA at Odense University Hospital between 2006 and 2021. Data were enriched with Danish national registers. Intervention included systemic GCs (observational data). The short-term outcome included annualized THBMD changes between first 2 DXA scans. The long-term outcome included greater than 5% annualized THBMD loss over a 10-year follow-up. RESULTS Strong associations between GC exposure and THBMD loss was found for both outcomes, with larger losses in the middle and upper tertiles of GC exposure. The risk of experiencing greater than 5% annualized THBMD loss was elevated, especially in the first 2 years of initiating GC treatment. There is significant heterogeneity in THBMD responses, with approximately 1 in 5 patients experiencing no nominal bone loss despite receiving upper tertile levels of GC exposure. CONCLUSION The findings confirm the association between initial GC exposure and significant bone loss. The heterogeneity in individual responses emphasizes the need for early monitoring and personalized approaches in managing bone health for patients undergoing GC treatment.
Collapse
Affiliation(s)
- Benjamin Bakke Hansen
- OPEN-Open Patient Data Explorative Network, Odense University Hospital, Odense 5230, Denmark
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense 5230, Denmark
| | - Katrine Hass Rubin
- OPEN-Open Patient Data Explorative Network, Odense University Hospital, Odense 5230, Denmark
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense 5230, Denmark
| | - Catharina Vind Nielsen
- Department of Endocrinology, Odense University Hospital, Odense 5230, Denmark
- Department of Diabetes and Endocrinology, Esbjerg Hospital, University Hospital of Southern Denmark, Esbjerg 6700, Denmark
| | - Morten Frost Nielsen
- Department of Endocrinology, Odense University Hospital, Odense 5230, Denmark
- Excellence Center for Improved Diagnostics and Use of Corticosteroids in Clinical Practice - Region of Southern Denmark, Odense C 5000, Denmark
| | - Anne Pernille Hermann
- Department of Endocrinology, Odense University Hospital, Odense 5230, Denmark
- Excellence Center for Improved Diagnostics and Use of Corticosteroids in Clinical Practice - Region of Southern Denmark, Odense C 5000, Denmark
| | - Bo Abrahamsen
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense 5230, Denmark
- Excellence Center for Improved Diagnostics and Use of Corticosteroids in Clinical Practice - Region of Southern Denmark, Odense C 5000, Denmark
- Department of Medicine 1, Holbæk Hospital, Holbæk 4300, Denmark
| |
Collapse
|
4
|
Wang YT, Zheng SY, Jiang SD, Luo Y, Wu YX, Naranmandakh S, Li YS, Liu SG, Xiao WF. Irisin in degenerative musculoskeletal diseases: Functions in system and potential in therapy. Pharmacol Res 2024; 210:107480. [PMID: 39490914 DOI: 10.1016/j.phrs.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Degenerative musculoskeletal diseases are a class of diseases related to the gradual structural and functional deterioration of muscles, joints, and bones, including osteoarthritis (OA), osteoporosis (OP), sarcopenia (SP), and intervertebral disc degeneration (IDD). As the proportion of aging people around the world increases, degenerative musculoskeletal diseases not only have a multifaceted impact on patients, but also impose a huge burden on the medical industry in various countries. Therefore, it is crucial to find key regulatory factors and potential therapeutic targets. Recent studies have shown that irisin plays an important role in degenerative musculoskeletal diseases, suggesting that it may become a key molecule in the prevention and treatment of degenerative diseases of the musculoskeletal system. Therefore, this review provides a comprehensive description of the release and basic functions of irisin, and summarizes the role of irisin in OA, OP, SP, and IDD from a cellular and tissue perspective, providing comprehensive basis for clinical application. In addition, we summarized the many roles of irisin as a key information molecule in bone-muscle-adipose crosstalk and a regulatory molecule involved in inflammation, senescence, and cell death, and proposed the interesting possibility of irisin in degenerative musculoskeletal diseases.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-de Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shu-Guang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Aspera-Werz RH, Chen G, Schilonka L, Bouakaz I, Bronne C, Cobraiville E, Nolens G, Nussler A. Impact of Particle Size and Sintering Temperature on Calcium Phosphate Gyroid Structure Scaffolds for Bone Tissue Engineering. J Funct Biomater 2024; 15:355. [PMID: 39728155 PMCID: PMC11727752 DOI: 10.3390/jfb15120355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024] Open
Abstract
Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue. This study aimed to compare the influences of particle size and sintering temperature on the mechanical properties and biocompatibility of calcium phosphate (CaP) gyroid scaffolds. CaP gyroid scaffolds were fabricated by 3D printing using powders with the same chemical composition but different particle sizes and sintering temperatures. The physicochemical characterization of the scaffolds was performed using X-ray diffractometry, scanning electron microscopy, and microtomography analyses. The immortalized human mesenchymal stem cell line SCP-1 (osteoblast-like cells) and osteoclast-like cells (THP-1 cells) were seeded on the scaffolds as mono- or co-cultures. Bone cell attachment, number of live cells, and functionality were assessed at different time points over a period of 21 days. Improvements in mechanical properties were observed for scaffolds fabricated with narrow-particle-size-distribution powder. The physicochemical analysis showed that the microstructure varied with sintering temperature and that narrow particle size distribution resulted in smaller micropores and a smoother surface. Viable osteoblast- and osteoclast-like cells were observed for all scaffolds tested, but scaffolds produced with a smaller particle size distribution showed less attachment of osteoblast-like cells. Interestingly, low attachment of osteoclast-like cells was observed for all scaffolds regardless of surface roughness. Although bone cell adhesion was lower in scaffolds made with powder containing smaller particle sizes, the long-term function of osteoblast-like and osteoclast-like cells was superior in scaffolds with improved mechanical properties.
Collapse
Affiliation(s)
- Romina Haydeé Aspera-Werz
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Guanqiao Chen
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Lea Schilonka
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Islam Bouakaz
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | - Catherine Bronne
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | | | - Grégory Nolens
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | - Andreas Nussler
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| |
Collapse
|
6
|
Settino M, Maurotti S, Tirinato L, Greco S, Coppoletta AR, Cardamone A, Musolino V, Montalcini T, Pujia A, Mare R. Zibibbo Grape Seeds' Polyphenolic Profile: Effects on Bone Turnover and Metabolism. Pharmaceuticals (Basel) 2024; 17:1418. [PMID: 39598330 PMCID: PMC11597100 DOI: 10.3390/ph17111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The consumption of seeds as food has become increasingly common due to their numerous health benefits. Among these, the seeds of the Zibibbo grape from Pantelleria, a native species of southern Italy, remain largely unexplored and are usually considered waste material from viticulture. Nevertheless, Zibibbo grape seeds may offer health benefits, particularly for the elderly and people with metabolic disorders, due to their potential content of beneficial compounds such as polyphenols. METHODS The Zibibbo grape seeds extract (ZSE) was characterized using UV-visible spectrophotometry and HPLC chromatography. The antioxidant activity of ZSE was measured by different colorimetric assays and Electronic Paramagnetic Resonance (EPR). Additionally, specific in vitro tests were conducted on human osteoblast cell lines (Saos-2 and MG63) aiming to evaluate the ZSE's effects on bone turnover and metabolism. Western blotting was used to assess the impact on specific proteins and pathways related to bone health. RESULTS The ZSE contained almost ~3 mg/mL of carbohydrates and phenolic compounds, including rutin (~6.4 ppm) and hesperidin (~44.6 ppm). The extracts exhibited an antioxidant activity greater than 90% across all tests performed. Moreover, the Zibibbo seed extracts exerted a significant proliferative effect on the Saos-2 cell human osteoblast-like cell line, also modulating the phosphorylation of specific kinases involved in cell health and metabolism. CONCLUSIONS Zibibbo grape seeds are rich in phenolic compounds, especially flavonoids with strong antioxidant and free radical scavenging properties. ZSE demonstrated beneficial effects on bone metabolism and osteoblast proliferation, suggesting potential for counteracting osteodegenerative conditions like osteoporosis. If confirmed through further studies, Zibibbo grape seed phenolic compounds could serve as an adjunctive therapy for osteoporosis, helping to slow aging and bone degeneration.
Collapse
Affiliation(s)
- Mariagiovanna Settino
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.M.); (T.M.)
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.M.); (T.M.)
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (L.T.); (S.G.)
| | - Simona Greco
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (L.T.); (S.G.)
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (A.R.C.); (A.C.)
| | - Antonio Cardamone
- Pharmacology Laboratory, Department of Health Sciences, Institute of Research for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (A.R.C.); (A.C.)
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.S.); (S.M.); (T.M.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (L.T.); (S.G.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Mare
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (L.T.); (S.G.)
| |
Collapse
|
7
|
Fu W, Liu G, Kim SH, Kim B, Kim OS, Ma G, Yang Y, Liu D, Zhu S, Kang JS, Kim O. Effects of 625 nm light-emitting diode irradiation on preventing ER stress-induced apoptosis via GSK-3β phosphorylation in MC3T3-E1. Photochem Photobiol 2024; 100:1408-1418. [PMID: 38214077 DOI: 10.1111/php.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Prolonged endoplasmic reticulum (ER) stress contributes to cell apoptosis and interferes with bone homeostasis. Although photobiomodulation (PBM) might be used for ER stress-induced diseases, the role of PBM in relieving cell apoptosis remains unknown. During ER stress, glycogen synthase kinase-3β (GSK-3β) is critical; however, its functions in PBM remain uncertain. Thus, this study aimed to investigate the role of GSK-3β in 625 nm light-emitting diode irradiation (LEDI) relieving tunicamycin (TM)-induced apoptosis. Based on the results, pre-625 nm LEDI (Pre-IR) phosphorylated GSK-3β via ROS production. Compared with the TM group, Pre-IR + TM group reduced the phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF-2α) and B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)/Bcl-2 ratio through regulating GSK-3β. Furthermore, a similar tendency was observed between Pre-IR + TM and Pre-LiCl+TM groups in preventing TM-induced early and late apoptosis. In summary, this study suggests that the Pre-IR treatment in TM-induced ER stress is beneficial for preventing cell apoptosis via GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Wenqi Fu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Guo Liu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Sun-Hun Kim
- Department of Oral Anatomy, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Ying Yang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
- Dental Implant Center, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Danyang Liu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Siyu Zhu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jae-Seok Kang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
8
|
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208:107383. [PMID: 39214266 DOI: 10.1016/j.phrs.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Hu X, Wang Z, Wang W, Cui P, Kong C, Chen X, Lu S. Irisin as an agent for protecting against osteoporosis: A review of the current mechanisms and pathways. J Adv Res 2024; 62:175-186. [PMID: 37669714 PMCID: PMC11331170 DOI: 10.1016/j.jare.2023.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Osteoporosis is recognized as a skeletal disorder characterized by diminished bone tissue quality and density. Regular physical exercise is widely acknowledged to preserve and enhance bone health, but the detailed molecular mechanisms involved remain unclear. Irisin, a factor derived from muscle during exercise, influences bone and muscle. Since its discovery in 2012, irisin has been found to promote bone growth and reduce bone resorption, establishing a tangible link between muscle exertion and bone health. Consequently, the mechanism by which irisin prevents osteoporosis have attracted significant scientific interest. AIM OF THE REVIEW This study aims to elucidate the multifaceted relationship between exercise, irisin, and bone health. Focusing on irisin, a muscle-derived factor released during exercise, we seek to understand its role in promoting bone growth and inhibiting resorption. Through a review of current research article on irisin in osteoporosis, Our review provides a deep dive into existing research on influence of irisin in osteoporosis, exploring its interaction with pivotal signaling pathways and its impact on various cell death mechanisms and inflammation. We aim to uncover the molecular underpinnings of how irisin, secreted during exercise, can serve as a therapeutic strategy for osteoporosis. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Irisin, secreted during exercise, plays a vital role in bridging muscle function to bone health. It not only promotes bone growth but also inhibits bone resorption. Specifically, Irisin fosters osteoblast proliferation, differentiation, and mineralization predominantly through the ERK, p38, and AMPK signaling pathways. Concurrently, it regulates osteoclast differentiation and maturation via the JNK, Wnt/β-catenin and RANKL/RANK/OPG signaling pathways. This review further delves into the profound significance of irisin in osteoporosis and its involvement in diverse cellular death mechanisms, including apoptosis, autophagy, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
10
|
Zhou YS, Huang J, Cao WX, Yu AX, Li P, Liang JL, Leng XY, Jin J, Yu P, Liu J. The therapeutic mechanism of Compound Lurong Jiangu Capsule for the treatment of cadmium-induced osteoporosis: network pharmacology and experimental verification. Front Endocrinol (Lausanne) 2024; 15:1331488. [PMID: 39050570 PMCID: PMC11266182 DOI: 10.3389/fendo.2024.1331488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Among bone diseases, osteoporosis-like skeleton, such as trabecular thinning, fracture and so on, is the main pathological change of cadmium-induced osteoporosis(Cd-OP), accompanied by brittle bone and increased fracture rate. However, the mechanism underlying cadmium-induced osteoporosis has remained elusive. Compound Lurong Jiangu Capsule (CLJC) is an experienced formula for the treatment of bone diseases, which has the effect of tonifying kidney and strengthening bones, promoting blood circulation and relieving pain. Objective Network pharmacology and molecular docking technology combined with experiments were used to investigate the potential mechanism of CLJC in treating Cd-OP. Method The active compounds and corresponding targets of each herb in CLJC were searched in the TCMSP and BATMAN-TCM databases. The DisGeNet, OMIM, and GeneCards databases searched for Cd-OP targets. The relationship between both of them was visualized by establishing an herb-compound-target network using Cytoscape 3.9.1 software. Gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed after determining the intersection of the targets from CLJC and Cd-OP. What's more, molecular docking was performed to validate the results. All of them were aim to obtain hud signaling pathways for further study. Finally, BAX, BCL-2, and CASPASE-3 were screened and selected for further experiments, which included bone imaging and reconstruction analysis (Micro-CT), hematoxylin-eosin Staining (HE), and western blot (WB). Results 106 common targets from CLJC and Cd-OP targets were identified. KEGG pathway analysis suggested that multiple signaling pathways, such as the pathways in cancer, may play roles in treatment. Verification of the molecular docking was successful. Here we showed that Cd-OP displayed Tb.Th and Tb.N significantly reduced and even broke, irregular proliferation of bone cortex, uneven and loose trabecular bone arrangement, changed in apoptosis-related proteins, such as significant upregulation of CASPASE-3, BAX protein and significant downregulation of BCL-2 protein in vivo, while CLJC rescued these phenotypes. Conclusion This study revealed that CLJC can reduce the expression of apoptosis-related proteins, and multiple components and multiple targets inhibit Cd-OP through apoptosis signaling pathway.
Collapse
Affiliation(s)
- Ya-shuang Zhou
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jian Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin, China
| | - Wen-xuan Cao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ao-xue Yu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Pan Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-ling Liang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiang-yang Leng
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jian Jin
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Yu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jia Liu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
11
|
Zhang M, Huang Y, Bai J, Xu W, Shan H, Sheng L, Gao X, Han Y, Wang S, Bai C, Tian B, Ni Y, Dong Q, Ma F, Zhou X. XAF1 promotes osteoclast apoptosis by antagonizing the XIAP-caspase axis. J Orthop Translat 2024; 47:15-28. [PMID: 38957269 PMCID: PMC11217565 DOI: 10.1016/j.jot.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Background Over-activated osteoclast (OC) is a major cause of diseases related to bone loss and bone metabolism. Both bone resorption inhibition and apoptosis induction of osteoclast are crucial in treating these diseases. X-linked inhibitor of apoptosis protein (XIAP)-associated factor 1 (XAF1) is an important interferon-stimulated and apoptotic gene. However, how XAF1 regulates bone formation and remodeling is unknown. Methods We generate global and chimeric Xaf1 knockout mouse models and utilize these models to explore the function and mechanism of XAF1 in regulating bone formation and remodeling in vivo and in vitro. Results We show that XAF1 depletion enhances osteoclast generation in vitro. XAF1 knockout increases osteoclast number and bone resorption, thereby exacerbating bone loss in both OVX and osteolysis models. Activation of XAF1 with BV6 (a potent XIAP inhibitor) suppresses osteoclast formation. Mechanistically, XAF1 deletion decreases osteoclast apoptosis by facilitating the interaction between XIAP and caspase-3/7. Conclusions Our data illustrates an essential role of XAF1 in controlling osteoclastogenesis in both osteoporosis and osteolysis mouse models and highlights its underlying mechanism, indicating a potential role in clinical treatment.The translational potential of this article: The translation potential of this article is that we first indicated that osteoclast apoptosis induced by XAF1 contribute to the progression of osteoporosis and osteolysis, which provides a novel strategy in the prevention of osteoporosis and osteolysis.
Collapse
Affiliation(s)
- Mingchao Zhang
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Yingkang Huang
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Jinyu Bai
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Wushuang Xu
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Huajian Shan
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Lei Sheng
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xiang Gao
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yu Han
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Shiyou Wang
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Chaowen Bai
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Bo Tian
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yichao Ni
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Qirong Dong
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| |
Collapse
|
12
|
Jin Z, Xu H, Sun X, Yan B, Wang L. Targeting SAT1 prevents osteoporosis through promoting osteoclast apoptosis. Biomed Pharmacother 2024; 175:116732. [PMID: 38739990 DOI: 10.1016/j.biopha.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Osteoporosis is a systemic bone disease characterized by decreased bone mass that is tightly regulated by the coordinated actions of osteoclasts and osteoblasts. Apoptosis as a precise programmed cell death involves a cascade of gene expression events which are mechanistically linked to the regulation of bone metabolism. Nevertheless, the critical biomolecules involved in regulating cell apoptosis in osteoporosis remain unknown. To gain a deeper insight into the relationship between apoptosis and osteoporosis, this study integrated the sequencing results of human samples and using a machine learning workflow to overcome the limitations of a single study. Among all immune cell populations, we assessed the apoptotic level and portrayed the distinct subtypes and lineage differentiation of monocytic cells in osteoporotic tissues. Osteoclasts expressed a higher level of Spermidine/spermine-N1-Acetyltransferase1 (SAT1) during osteoclastogenesis which prevented osteoclasts apoptosis and facilitate osteoporosis progression. In addition, Berenil, one potent SAT1 inhibitor, increased osteoclast apoptosis and reversed the bone loss in the femurs of a murine ovariectomy model. In summary, Berenil promotes osteoclast apoptosis, inhibits the bone resorption and improves the abnormal bone structure in vitro and in vivo models by targeting SAT1, demonstrating its potential as a precise therapeutic strategy for clinical osteoporosis treatment.
Collapse
Affiliation(s)
- Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Xueyu Sun
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China.
| | - Lin Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
13
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
14
|
Chen W, Wang Q, Tao H, Lu L, Zhou J, Wang Q, Huang W, Yang X. Subchondral osteoclasts and osteoarthritis: new insights and potential therapeutic avenues. Acta Biochim Biophys Sin (Shanghai) 2024; 56:499-512. [PMID: 38439665 DOI: 10.3724/abbs.2024017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain. With increased understanding of bone biology and targeted therapies, researchers have found that the activity and function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiufei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Huaqiang Tao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Lingfeng Lu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiang Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Wei Huang
- Department of Orthopaedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| |
Collapse
|
15
|
de Wildt BWM, Cuypers LAB, Cramer EEA, Wentzel AS, Ito K, Hofmann S. The Impact of Culture Variables on a 3D Human In Vitro Bone Remodeling Model: A Design of Experiments Approach. Adv Healthc Mater 2023; 12:e2301205. [PMID: 37405830 PMCID: PMC11469142 DOI: 10.1002/adhm.202301205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Human in vitro bone remodeling models, using osteoclast-osteoblast cocultures, can facilitate the investigation of human bone remodeling while reducing the need for animal experiments. Although current in vitro osteoclast-osteoblast cocultures have improved the understanding of bone remodeling, it is still unknown which culture conditions support both cell types. Therefore, in vitro bone remodeling models can benefit from a thorough evaluation of the impact of culture variables on bone turnover outcomes, with the aim to reach balanced osteoclast and osteoblast activity, mimicking healthy bone remodeling. Using a resolution III fractional factorial design, the main effects of commonly used culture variables on bone turnover markers in an in vitro human bone remodeling model are identified. This model is able to capture physiological quantitative resorption-formation coupling along all conditions. Culture conditions of two runs show promising results: conditions of one run can be used as a high bone turnover system and conditions of another run as a self-regulating system as the addition of osteoclastic and osteogenic differentiation factors is not required for remodeling. The results generated with this in vitro model allow for better translation between in vitro studies and in vivo studies, toward improved preclinical bone remodeling drug development.
Collapse
Affiliation(s)
- Bregje W. M. de Wildt
- Orthopaedic Biomechanics and Institute for Complex Molecular Systems (ICMS)Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Lizzy A. B. Cuypers
- Orthopaedic Biomechanics and Institute for Complex Molecular Systems (ICMS)Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Department of Regenerative BiomaterialsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterP.O. Box 9101Nijmegen6525 GAThe Netherlands
| | - Esther E. A. Cramer
- Orthopaedic Biomechanics and Institute for Complex Molecular Systems (ICMS)Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Annelieke S. Wentzel
- Orthopaedic Biomechanics and Institute for Complex Molecular Systems (ICMS)Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics and Institute for Complex Molecular Systems (ICMS)Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics and Institute for Complex Molecular Systems (ICMS)Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| |
Collapse
|
16
|
Lu H, Zhang Z, Wang Z, Wang J, Mi T, Jin L, Wu X, Luo J, Liu Y, Liu J, Cai W, Guo P, He D. Human Mesenchymal Stem Cells-Derived Exosome Mimetic Vesicles Regulation of the MAPK Pathway and ROS Levels Inhibits Glucocorticoid-Induced Apoptosis in Osteoblasts. Stem Cells Int 2023; 2023:5537610. [PMID: 37771550 PMCID: PMC10533242 DOI: 10.1155/2023/5537610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Background Long-term extensive use of glucocorticoids will lead to hormonal necrosis of the femoral head, and osteoblasts play an important role in the prevention of osteonecrosis. However, there is no complete cure for necrosis of the femoral head. Mesenchymal stem cell- (MSCs-) derived exosomes are widely used for the repair of various tissue lesions. Therefore, the aim of this study was to investigate the mechanism of dexamethasone- (DEX-) induced osteoblast apoptosis and the therapeutic effect of human umbilical cord MSC- (hucMSC-) derived exosome mimetic vesicles (EMVs) on osteoblast-induced apoptosis by DEX. Methods The viability and apoptosis of primary MC3T3-E1 cells were determined by the Cell Counting Kit-8 (CCK-8), FITC-Annexin V/PI staining and immunoblot. The intracellular levels of reactive oxygen species (ROS) after DEX treatment were measured by 2', 7' -dichlorodihydrofluorescein diacetate (DCFH-DA) staining. In this study, hucMSC-EMVs and N-acetyl-l-cysteine (NAC) were used as therapeutic measures. The expression of B-cell lymphoma 2-associated X, Bcl 2, HO-1, and nuclear factor erythroid-derived 2-like 2 and MAPK- signaling pathway in osteogenic cell MC3T3-E1 cells treated with Dex was analyzed by the immunoblotting. Results DEX significantly induced osteoblasts MC3T3-E1 apoptosis and ROS accumulation. MAPK-signaling pathway was activated in MC3T3-E1 after DEX treatment. hucMSC-EMVs intervention significantly downregulated DEX-induced MAPK-signaling pathway activation and ROS accumulation. In addition, hucMSC-EMVs can reduce the apoptosis levels in osteoblast MC3T3-E1 cells induced by DEX. Conclusions Our study confirmed that hucMSC-EMVs regulates MAPK-signaling pathway and ROS levels to inhibit DEX-induced osteoblast apoptosis.
Collapse
Affiliation(s)
- Hongxu Lu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Zhaoying Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Junyi Luo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yimeng Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Junhong Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Wenquan Cai
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
17
|
Tiwari S, Prasad R, Wanjari MB, Sharma R. Understanding the Impact of Menopause on Women With Schizophrenia-Spectrum Disorders: A Comprehensive Review. Cureus 2023; 15:e37979. [PMID: 37223185 PMCID: PMC10202668 DOI: 10.7759/cureus.37979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/22/2023] [Indexed: 05/25/2023] Open
Abstract
Menopause is a physiological event in women's lives that typically transpires in midlife, denoting the cessation of ovarian function and ultimately leading to the end of reproductive capacity. However, women with schizophrenia-spectrum disorders may encounter unique challenges during this period because of the interaction between hormonal changes and their pre-existing mental health conditions. This literature review aims to investigate the consequences of menopause on women with schizophrenia-spectrum disorders, including modifications in symptomatology, cognitive function, and quality of life. Potential interventions will also be examined, including hormone replacement therapy and psychosocial support. The study findings suggest that menopause can worsen symptoms, such as hallucinations and delusions, and may also impair cognitive function, resulting in memory and executive function difficulties. Nevertheless, hormone replacement therapy and psychosocial support could offer potential avenues to manage symptoms and improve the quality of life for women with schizophrenia-spectrum disorders during menopause.
Collapse
Affiliation(s)
- Swasti Tiwari
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur B Wanjari
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ranjana Sharma
- Medical Surgical Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
18
|
Zhang T, Zhao Z, Wang T. Pulsed electromagnetic fields as a promising therapy for glucocorticoid-induced osteoporosis. Front Bioeng Biotechnol 2023; 11:1103515. [PMID: 36937753 PMCID: PMC10020513 DOI: 10.3389/fbioe.2023.1103515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is considered the third type of osteoporosis and is accompanied by high morbidity and mortality. Long-term usage of glucocorticoids (GCs) causes worsened bone quality and low bone mass via their effects on bone cells. Currently, there are various clinical pharmacological treatments to regulate bone mass and skeletal health. Pulsed electromagnetic fields (PEMFs) are applied to treat patients suffering from delayed fracture healing and non-unions. PEMFs may be considered a potential and side-effect-free therapy for GIOP. PEMFs inhibit osteoclastogenesis, stimulate osteoblastogenesis, and affect the activity of bone marrow mesenchymal stem cells (BMSCs), osteocytes and blood vessels, ultimately leading to the retention of bone mass and strength. However, the underlying signaling pathways via which PEMFs influence GIOP remain unclear. This review attempts to summarize the underlying cellular mechanisms of GIOP. Furthermore, recent advances showing that PEMFs affect bone cells are discussed. Finally, we discuss the possibility of using PEMFs as therapy for GIOP.
Collapse
Affiliation(s)
- Tianxiao Zhang
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiliang Zhao
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, China
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Tiantian Wang,
| |
Collapse
|
19
|
Li Z, Li D, Chen R, Gao S, Xu Z, Li N. Cell death regulation: A new way for natural products to treat osteoporosis. Pharmacol Res 2023; 187:106635. [PMID: 36581167 DOI: 10.1016/j.phrs.2022.106635] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a common metabolic bone disease that results from the imbalance of homeostasis within the bone. Intra-bone homeostasis is dependent on a precise dynamic balance between bone resorption by osteoclasts and bone formation by mesenchymal lineage osteoblasts, which comprises a series of complex and highly standardized steps. Programmed cell death (PCD) (e.g., apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis) is a cell death process that involves a cascade of gene expression events with tight structures. These events play a certain role in regulating bone metabolism by determining the fate of bone cells. Moreover, existing research has suggested that natural products derived from a wide variety of dietary components and medicinal plants modulate the PCDs based on different mechanisms, which show great potential for the prevention and treatment of osteoporosis, thus revealing the emergence of more acceptable complementary and alternative drugs with lower costs, fewer side effects and more long-term application. Accordingly, this review summarizes the common types of PCDs in the field of osteoporosis. Moreover, from the perspective of targeting PCDs, this review also discussed the roles of currently reported natural products in the treatment of osteoporosis and the involved mechanisms. Based on this, this review provides more insights into new molecular mechanisms of osteoporosis and provides a reference for developing more natural anti-osteoporosis drugs in the future.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Renchang Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shang Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
20
|
Chen X, Li Y, Zhang Z, Chen L, Liu Y, Huang S, Zhang X. Xianling Gubao attenuates high glucose-induced bone metabolism disorder in MG63 osteoblast-like cells. PLoS One 2022; 17:e0276328. [PMID: 36548302 PMCID: PMC9778583 DOI: 10.1371/journal.pone.0276328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus (DM) patients are prone to osteoporosis, and high glucose (HG) can affect bone metabolism. In the present study, we investigated the protective effects of traditional Chinese herbal formulation Xianling Gubao (XLGB) on HG-treated MG63 osteoblast-like cells. MG63 cells were incubated with control (mannitol), HG (20 mM glucose) or HG + XLGB (20 mM glucose+200 mg/L XLGB) mediums. Cell proliferation, apoptosis, migration and invasion were examined using CCK8, colony-formation, flow cytometry, Hoechst/PI staining, wound-healing and transwell assays, respectively. ELISA, RT-PCR and western blot analysis were used to detect the levels of osteogenesis differentiation-associated markers such as ALP, OCN, OPN, RUNX2, OPG, and OPGL in MG63 cells. The levels of the PI3K/Akt signaling pathway related proteins, cell cycle-related proteins, and mitochondrial apoptosis-related proteins were detected using western blot analysis. In HG-treated MG63 cells, XLGB significantly attenuated the suppression on the proliferation, migration and invasion of MG63 cells caused by HG. HG downregulated the activation of the PI3K/Akt signaling pathway and the expressions of cell cycle-related proteins, while XLGB reversed the inhibition of HG on MG63 cells. Moreover, XLGB significantly reduced the promotion on the apoptosis of MG63 cells induced by HG, the expressions of mitochondrial apoptosis-related proteins were suppressed by XLGB treatment. In addition, the expressions of osteogenesis differentiation-associated proteins were also rescued by XLGB in HG-treated MG63 cells. Our data suggest that XLGB rescues the MG63 osteoblasts against the effect of HG. The potential therapeutic mechanism of XLGB partially attributes to inhibiting the osteoblast apoptosis and promoting the bone formation of osteoblasts.
Collapse
Affiliation(s)
- Xinlong Chen
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Li
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, China
| | - Zhongwen Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Liping Chen
- Department of Endocrinology and Metabology, Weifang Medical University, Shandong Provincial Qianfoshan Hospital, Weifang, China
| | - Yaqian Liu
- Department of Endocrinology and Metabology, Weifang Medical University, Shandong Provincial Qianfoshan Hospital, Weifang, China
| | - Shuhong Huang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Xiaoqian Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
- * E-mail:
| |
Collapse
|
21
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
22
|
Zhang L, Zheng YL, Wang R, Wang XQ, Zhang H. Exercise for osteoporosis: A literature review of pathology and mechanism. Front Immunol 2022; 13:1005665. [PMID: 36164342 PMCID: PMC9509020 DOI: 10.3389/fimmu.2022.1005665] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a disease that weakens bones and has a high morbidity rate worldwide, which is prevalent among the elderly, particularly, women of postmenopausal age. The dynamic balance between bone formation and resorption is necessary for normal bone metabolism. Many factors, including aging, estrogen deficiency, and prolonged immobilization, disrupt normal apoptosis, autophagy, and inflammation, leading to abnormal activation of osteoclasts, which gradually overwhelm bone formation by bone resorption. Moderate exercise as an effective non-drug treatment helps increase bone formation and helps relieve OP. The possible mechanisms are that exercise affects apoptosis and autophagy through the release of exercise-stimulated myohormone and the secretion of anti-inflammatory cytokines via mechanical force. In addition, exercise may also have an impact on the epigenetic processes involved in bone metabolism. Mechanical stimulation promotes bone marrow mesenchymal stem cells (BMSCs) to osteogenic differentiation by altering the expression of non-coding RNAs. Besides, by reducing DNA methylation, the mechanical stimulus can also alter the epigenetic status of osteogenic genes and show associated increased expression. In this review, we reviewed the possible pathological mechanisms of OP and summarized the effects of exercise on bone metabolism, and the mechanisms by which exercise alleviates the progression of OP, to provide a reference for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Rui Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xue-Qiang Wang, ; Hao Zhang,
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, China
- *Correspondence: Xue-Qiang Wang, ; Hao Zhang,
| |
Collapse
|
23
|
Emerging Potential Therapeutic Targets of Ferroptosis in Skeletal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3112388. [PMID: 35941905 PMCID: PMC9356861 DOI: 10.1155/2022/3112388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Ferroptosis is a new programmed cell death characterized by the accumulation of lipid peroxidation mediated by iron and inflammation. Since the transcentury realization of ferroptosis as an iron-dependent modality of nonapoptotic cell death in 2012, there has been growing interest in the function of ferroptosis and its relationship to clinical diseases. Recent studies have shown that ferroptosis is associated with multiple diseases, including degenerative diseases, ischemia reperfusion injury, cardiovascular disease, and cancer. Cell death induced by ferroptosis has also been related to several skeletal diseases, such as inflammatory arthritis, osteoporosis, and osteoarthritis. Research on ferroptosis can clarify the pathogenesis of skeletal diseases and provide a novel therapeutic target for its treatment. In this review, we summarize current information about the molecular mechanism of ferroptosis and describe its emerging role and therapeutic potential in skeletal diseases.
Collapse
|
24
|
de Wildt BWM, Ito K, Hofmann S. Human Platelet Lysate as Alternative of Fetal Bovine Serum for Enhanced Human In Vitro Bone Resorption and Remodeling. Front Immunol 2022; 13:915277. [PMID: 35795685 PMCID: PMC9251547 DOI: 10.3389/fimmu.2022.915277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction To study human physiological and pathological bone remodeling while addressing the principle of replacement, reduction and refinement of animal experiments (3Rs), human in vitro bone remodeling models are being developed. Despite increasing safety-, scientific-, and ethical concerns, fetal bovine serum (FBS), a nutritional medium supplement, is still routinely used in these models. To comply with the 3Rs and to improve the reproducibility of such in vitro models, xenogeneic-free medium supplements should be investigated. Human platelet lysate (hPL) might be a good alternative as it has been shown to accelerate osteogenic differentiation of mesenchymal stromal cells (MSCs) and improve subsequent mineralization. However, for a human in vitro bone model, hPL should also be able to adequately support osteoclastic differentiation and subsequent bone resorption. In addition, optimizing co-culture medium conditions in mono-cultures might lead to unequal stimulation of co-cultured cells. Methods We compared supplementation with 10% FBS vs. 10%, 5%, and 2.5% hPL for osteoclast formation and resorption by human monocytes (MCs) in mono-culture and in co-culture with (osteogenically stimulated) human MSCs. Results and Discussion Supplementation of hPL can lead to a less donor-dependent and more homogeneous osteoclastic differentiation of MCs when compared to supplementation with 10% FBS. In co-cultures, osteoclastic differentiation and resorption in the 10% FBS group was almost completely inhibited by MSCs, while the supplementation with hPL still allowed for resorption, mostly at low concentrations. The addition of hPL to osteogenically stimulated MSC mono- and MC-MSC co-cultures resulted in osteogenic differentiation and bone-like matrix formation, mostly at high concentrations. Conclusion We conclude that hPL could support both osteoclastic differentiation of human MCs and osteogenic differentiation of human MSCs in mono- and in co-culture, and that this can be balanced by the hPL concentration. Thus, the use of hPL could limit the need for FBS, which is currently commonly accepted for in vitro bone remodeling models.
Collapse
|
25
|
Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022; 149:275249. [PMID: 35502779 PMCID: PMC9124578 DOI: 10.1242/dev.199908] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying bone development, repair and regeneration are reliant on the interplay and communication between osteoclasts and other surrounding cells. Osteoclasts are multinucleated monocyte lineage cells with resorptive abilities, forming the bone marrow cavity during development. This marrow cavity, essential to hematopoiesis and osteoclast-osteoblast interactions, provides a setting to investigate the origin of osteoclasts and their multi-faceted roles. This Review examines recent developments in the embryonic understanding of osteoclast origin, as well as interactions within the immune environment to regulate normal and pathological bone development, homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tuyet Nguyen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
26
|
Murshid SA. Bone permeability and mechanotransduction: Some current insights into the function of the lacunar-canalicular network. Tissue Cell 2022; 75:101730. [PMID: 35032785 DOI: 10.1016/j.tice.2022.101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Lacunar-canalicular (LC) permeability involves the passage of fluids, nutrients, oxygen, ions, and signalling molecules through bone tissue, facilitating the maintenance of bone vitality and function and responses to various physiological conditions and diseases. LC permeability and fluid flow-shear stress/drag force play important roles in mechanotransduction in bone tissue by inducing mechanical stimuli in osteocytes, modulating cellular functions, and determining bone adaptation. Alterations in LC structure may therefore influence the fluid flow pattern through the LC network, thereby affecting the ability of osteocytes to sense and translate mechanical signals and possibly contributing to bone remodelling. Several bone-health conditions are associated with changes in LC structure and function and may affect mechanotransduction and responses, although the mechanisms underlying these associations are still not fully understood. In this review, recent studies of LC networks, their formation and transfer mechanical stimuli, and changes in structure, functional permeability, and mechanotransduction that result from age, pathology, and mechanical loading are discussed. Additionally, applications of vibration and low-intensity pulsed ultrasound in bone healthcare and regeneration fields are also presented.
Collapse
Affiliation(s)
- Sakhr Ahmed Murshid
- Institute for Globally Distributed Open Research and Education (IGDORE); Ilmajoki Health Public Dental Clinics, Social and Health Care Services in Jalasjärvi, Ilmajoki, Kurikka, Finland.
| |
Collapse
|
27
|
LPS-inducible circAtp9b is highly expressed in osteoporosis and promotes the apoptosis of osteoblasts by reducing the formation of mature miR-17-92a. J Orthop Surg Res 2022; 17:193. [PMID: 35346278 PMCID: PMC8962610 DOI: 10.1186/s13018-022-03072-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background Circular RNA circAtp9b is an enhancer of LPS-induced inflammation, which promotes osteoporosis (OS). This study explored the role of circAtp9b in OS. Methods RT-qPCR was performed to detect the expression of circAtp9b and microRNA (miR)-17-92a (both mature and premature) in OS and healthy controls. The subcellular location of circAtp9b was assessed by nuclear fractionation assay. The direct interaction between circAtp9b and premature miR-17-92a was detected by RNA pull-down assay. The role of circAtp9b in regulating the maturation of miR-17-92a in osteoblasts was explored by overexpression assay and RT-qPCR. Cell apoptosis was analyzed by cell apoptosis assay. Results OS patients exhibited upregulation of circAtp9b and premature miR-17-92a, but downregulation of mature miR-17-92a. In osteoblasts, circAtp9b suppressed the maturation of miR-17-92a. LPS upregulated circAtp9b and premature miR-17-92a, and downregulated mature miR-17-92a in osteoblasts. CircAtp9b was detected in both nucleus and cytoplasm, and it directly interacted with premature miR-17-92a. Overexpression of circAtp9b reduced the effects of miR-17-92a on the apoptosis of osteoblasts induced by LPS. Conclusion CircAtp9b is LPS-inducible and upregulation of circAtp9b in OS promotes the apoptosis of osteoblasts by reducing the formation of mature miR-17-92a. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03072-x.
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs) regulate osteogenic differentiation and influence osteoporosis (OP). The aim of this study was to determine the potential role of miR-874-3p in OP. The expression levels of miR-874-3p and leptin (LEP) in the femoral neck trabeculae of 35 patients with or without OP were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The effects of miR-874-3p or LEP on the cell proliferation and alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osterix (OSX) levels were observed by upregulating miR-874-3p in human bone marrow mesenchymal stem cells (hBMSCs). Additionally, calcium deposition levels were evaluated using alizarin red staining (ARS). Molecular mechanisms of miR-874-3p and LEP underlying the osteogenic differentiation of hBMSCs were also evaluated using bioinformatics analysis, luciferase reporter assays, and RNA pull-down assays. The miR-874-3p levels were significantly lower in the femoral neck trabeculae of patients with OP than those of the control group, while the opposite was observed regarding the levels of LEP. Expression levels of miR-874-3p in hBMSCs were upregulated during osteogenic differentiation, while those of LEP were downregulated. Moreover, miR-874-3p upregulation promoted ALP, RUNX2, OCN, and OSX mRNA expression, cell proliferation, and calcium deposition in hBMSCs. LEP was found to be a target gene of miR-874-3p. Overexpression of LEP inhibited the expression of osteoblast markers and reversed the effect of osteogenic differentiation induced by the upregulation of miR-874-3p. In conclusion, miR-874-3p promoted the proliferation and differentiation of hBMSCs by downregulating the expression of LEP, thus inhibiting OP. Abbreviations : miRNAs: microRNAs; OP: osteoporosis; hBMSCs: human Bone Marrow Mesenchymal stem cells; LEP: leptin; DEGs: differentially expressed genes
Collapse
Affiliation(s)
- Ling Mei
- Department of Orthopedic, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Min Li
- Department of Cardiovascular, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Tao Zhang
- The First Clinical Medical College, Hubei University of Chinese Medicines, Wuhan, Hubei, China
| |
Collapse
|
29
|
Qiu Y, Zhao Y, Long Z, Song A, Huang P, Wang K, Xu L, Molloy DP, He G. Liquiritigenin promotes osteogenic differentiation and prevents bone loss via inducing auto-lysosomal degradation and inhibiting apoptosis. Genes Dis 2021; 10:284-300. [PMID: 37013063 PMCID: PMC10066282 DOI: 10.1016/j.gendis.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Osteoporosis (OP) is a debilitating skeletal abnormality involving bone remodeling and bone cell homeostasis characterized by decreased bone strength and high fracture risk. A novel therapeutic intervention for OP by manipulating cellular autophagy-apoptosis processes to promote skeletal homeostasis is presented. Protective effects of the naturally occurring plant extract Liquiritigenin (LG) were demonstrated in an ovariectomy (OVX)-OP mouse model and preosteoblast MC3T3-E1 cells. Micro-CT and histological staining assessments of skeletal phenotype were applied alongside detection of autophagy activity in osteocytes and MC3T3-E1 cells by transmission electron microscopy (TEM). The effects of LG on chloroquine (CQ)- and the apoptosis-inducing TS-treated osteogenic differentiations and status of lysosomes within MC3T3-E1 cells were analyzed by Neutral red, Alizarin red S and alkaline phosphatase (ALP) staining and Western blot assays. Treatment with LG prevented bone loss, increased osteogenic differentiation in vivo and in vitro, and inhibited osteoclast formation to some extent. TEM analyses revealed that LG can improve auto-lysosomal degradation within osteocytes from OVX mice and MC3T3-E1 cells. The abnormal status of lysosomes associated with CQ and TS treatments was notably alleviated by LG which also reduced levels of apoptosis-induced inhibition of osteogenic differentiation and averted abnormal osteogenic differentiation as a consequence of a blockage in autolysosome degradation. Overall, LG stimulates bone growth in OVX mice through increased osteogenic differentiation and regulation of autophagy-apoptosis mechanisms, presenting an auspicious natural therapy for OP.
Collapse
|
30
|
Analysis of Molecular Mechanism of Erxian Decoction in Treating Osteoporosis Based on Formula Optimization Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6641838. [PMID: 34239693 PMCID: PMC8238601 DOI: 10.1155/2021/6641838] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Osteoporosis (OP) is a highly prevalent orthopedic condition in postmenopausal women and the elderly. Currently, OP treatments mainly include bisphosphonates, receptor activator of nuclear factor kappa-B ligand (RANKL) antibody therapy, selective estrogen receptor modulators, teriparatide (PTH1-34), and menopausal hormone therapy. However, increasing evidence has indicated these treatments may exert serious side effects. In recent years, Traditional Chinese Medicine (TCM) has become popular for treating orthopedic disorders. Erxian Decoction (EXD) is widely used for the clinical treatment of OP, but its underlying molecular mechanisms are unclear thanks to its multiple components and multiple target features. In this research, we designed a network pharmacology method, which used a novel node importance calculation model to identify critical response networks (CRNs) and effective proteins. Based on these proteins, a target coverage contribution (TCC) model was designed to infer a core active component group (CACG). This approach decoded the mechanisms underpinning EXD's role in OP therapy. Our data indicated that the drug response network mediated by the CACG effectively retained information of the component-target (C-T) network of pathogenic genes. Functional pathway enrichment analysis showed that EXD exerted therapeutic effects toward OP by targeting PI3K-Akt signaling (hsa04151), calcium signaling (hsa04020), apoptosis (hsa04210), estrogen signaling (hsa04915), and osteoclast differentiation (hsa04380) via JNK, AKT, and ERK. Our method furnishes a feasible methodological strategy for formula optimization and mechanism analysis and also supplies a reference scheme for the secondary development of the TCM formula.
Collapse
|
31
|
Wang C, Xie Q, Sun W, Zhou Y, Liu Y. lncRNA WT1-AS is upregulated in osteoporosis and regulates the apoptosis of osteoblasts by interacting with p53. Exp Ther Med 2021; 22:734. [PMID: 34055051 PMCID: PMC8138279 DOI: 10.3892/etm.2021.10166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022] Open
Abstract
In cervical cancer, cellular tumor antigen p53 (p53) interacts with long non-coding WT1 antisense RNA (WT1-AS) and this protein serves an important role in osteoporosis. The present study aimed to investigate the role of WT1-AS in osteoporosis. WT1-AS was upregulated in the plasma of patients with osteoporosis and was positively correlated with p53 expression. Altered expression of WT1-AS and p53 separated patients with osteoporosis from healthy controls. Expression levels of WT1-AS and p53 decreased with prolonged treatment. In osteoblasts, WT1-AS overexpression resulted in increased p53 expression, while WT1-AS small interfering RNA (siRNA) silencing resulted in decreased p53 expression. In addition, WT1-AS overexpression resulted in increased apoptosis rate, while WT1-AS siRNA silencing resulted in decreased apoptosis rate in osteoblasts. p53 overexpression attenuated the effects of WT1-AS siRNA silencing on cell apoptosis. Therefore, WT1-AS was upregulated during osteoporosis and regulated the apoptosis of osteoblasts by interacting with p53.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Nuclear Medicine, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Quan Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Wen Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Ying Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yu Liu
- Cancer Institute Of Hainan Medicail University, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
32
|
Ziemińska M, Sieklucka B, Pawlak K. Vitamin K and D Supplementation and Bone Health in Chronic Kidney Disease-Apart or Together? Nutrients 2021; 13:809. [PMID: 33804453 PMCID: PMC7999920 DOI: 10.3390/nu13030809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Vitamin K (VK) and vitamin D (VD) deficiency/insufficiency is a common feature of chronic kidney disease (CKD), leading to impaired bone quality and a higher risk of fractures. CKD patients, with disturbances in VK and VD metabolism, do not have sufficient levels of these vitamins for maintaining normal bone formation and mineralization. So far, there has been no consensus on what serum VK and VD levels can be considered sufficient in this particular population. Moreover, there are no clear guidelines how supplementation of these vitamins should be carried out in the course of CKD. Based on the existing results of preclinical studies and clinical evidence, this review intends to discuss the effect of VK and VD on bone remodeling in CKD. Although the mechanisms of action and the effects of these vitamins on bone are distinct, we try to find evidence for synergy between them in relation to bone metabolism, to answer the question of whether combined supplementation of VK and VD will be more beneficial for bone health in the CKD population than administering each of these vitamins separately.
Collapse
Affiliation(s)
- Marta Ziemińska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, 15-222 Bialystok, Poland;
| |
Collapse
|
33
|
Kumar A, Balbach J. Inactivation of parathyroid hormone: perspectives of drug discovery to combating hyperparathyroidism. Curr Mol Pharmacol 2021; 15:292-305. [PMID: 33573587 DOI: 10.2174/1874467214666210126112839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
Hormonal coordination is tightly regulated within the human body and thus regulates human physiology. The parathyroid hormone (PTH), a member of the endocrine system, regulates the calcium and phosphate level within the human body. Under non-physiological conditions, PTH levels get upregulated (hyperparathyroidism) or downregulated (hypoparathyroidism) due to external or internal factors. In the case of hyperparathyroidism, elevated PTH stimulates cellular receptors present in the bones, kidneys, and intestines to increase the blood calcium level, leading to calcium deposition. This eventually causes various symptoms including kidney stones. Currently, there is no known medication that directly targets PTH in order to suppress its function. Therefore, it is of great interest to find novel small molecules or any other means that can modulate PTH function. The molecular signaling of PTH starts by binding of its N-terminus to the G-protein coupled PTH1/2 receptor. Therefore, any intervention that affects the N-terminus of PTH could be a lead candidate for treating hyperparathyroidism. As a proof-of-concept, there are various possibilities to inhibit molecular PTH function by (i) a small molecule, (ii) N-terminal PTH phosphorylation, (iii) fibril formation and (iv) residue-specific mutations. These modifications put PTH into an inactive state, which will be discussed in detail in this review article. We anticipate that exploring small molecules or other means that affect the N-terminus of PTH could be lead candidates in combating hyperparathyroidism.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College of Science, Technology and Medicine London, South Kensington, London SW7 2BU. United Kingdom
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle- Wittenberg. Germany
| |
Collapse
|
34
|
Niedermair T, Lukas C, Li S, Stöckl S, Craiovan B, Brochhausen C, Federlin M, Herrmann M, Grässel S. Influence of Extracellular Vesicles Isolated From Osteoblasts of Patients With Cox-Arthrosis and/or Osteoporosis on Metabolism and Osteogenic Differentiation of BMSCs. Front Bioeng Biotechnol 2020; 8:615520. [PMID: 33425878 PMCID: PMC7785908 DOI: 10.3389/fbioe.2020.615520] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Studies with extracellular vesicles (EVs), including exosomes, isolated from mesenchymal stem cells (MSC) indicate benefits for the treatment of musculoskeletal pathologies as osteoarthritis (OA) and osteoporosis (OP). However, little is known about intercellular effects of EVs derived from pathologically altered cells that might influence the outcome by counteracting effects from “healthy” MSC derived EVs. We hypothesize, that EVs isolated from osteoblasts of patients with hip OA (coxarthrosis/CA), osteoporosis (OP), or a combination of both (CA/OP) might negatively affect metabolism and osteogenic differentiation of bone-marrow derived (B)MSCs. Methods: Osteoblasts, isolated from bone explants of CA, OP, and CA/OP patients, were compared regarding growth, viability, and osteogenic differentiation capacity. Structural features of bone explants were analyzed via μCT. EVs were isolated from supernatant of naïve BMSCs and CA, OP, and CA/OP osteoblasts (osteogenic culture for 35 days). BMSC cultures were stimulated with EVs and subsequently, cell metabolism, osteogenic marker gene expression, and osteogenic differentiation were analyzed. Results: Trabecular bone structure was different between the three groups with lowest number and highest separation in the CA/OP group. Viability and Alizarin red staining increased over culture time in CA/OP osteoblasts whereas growth of osteoblasts was comparable. Alizarin red staining was by trend higher in CA compared to OP osteoblasts after 35 days and ALP activity was higher after 28 and 35 days. Stimulation of BMSC cultures with CA, OP, and CA/OP EVs did not affect proliferation but increased caspase 3/7-activity compared to unstimulated BMSCs. BMSC viability was reduced after stimulation with CA and CA/OP EVs compared to unstimulated BMSCs or stimulation with OP EVs. ALP gene expression and activity were reduced in BMSCs after stimulation with CA, OP, and CA/OP EVs. Stimulation of BMSCs with CA EVs reduced Alizarin Red staining by trend. Conclusion: Stimulation of BMSCs with EVs isolated from CA, OP, and CA/OP osteoblasts had mostly catabolic effects on cell metabolism and osteogenic differentiation irrespective of donor pathology and reflect the impact of tissue microenvironment on cell metabolism. These catabolic effects are important for understanding differences in effects of EVs on target tissues/cells when harnessing them as therapeutic drugs.
Collapse
Affiliation(s)
- Tanja Niedermair
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Christoph Lukas
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Shushan Li
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Sabine Stöckl
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Benjamin Craiovan
- Chair of Arthroplasty, Center for Orthopaedics and Trauma Surgery, University Hospital Giessen and Marburg GmbH, Marburg, Germany
| | | | - Marianne Federlin
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Marietta Herrmann
- IInterdisciplinary Center for Clinical Research (IZKF), Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg and Bernhard-Heine-Center for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| |
Collapse
|
35
|
Al Saedi A, Myers DE, Stupka N, Duque G. 1,25(OH) 2D 3 ameliorates palmitate-induced lipotoxicity in human primary osteoblasts leading to improved viability and function. Bone 2020; 141:115672. [PMID: 33011427 DOI: 10.1016/j.bone.2020.115672] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Contributing to bone loss with aging is a progressive reduction in osteoblast number and function leading to decreased bone formation. In aging bone, mesenchymal stem cells decrease in number and their differentiation potential into osteoblasts is reduced. Instead, there is a shift towards adipogenic differentiation and increased lipid accumulation in the marrow of osteoporotic bones. Bone marrow adipocytes produce palmitic acid (PA), a saturated fatty acid, which is toxic to osteoblasts in vitro. Vitamin D (1,25(OH)2D3) stimulates osteoblastogenesis and has known anti-apoptotic effects on osteoblasts, as such it may protect human primary osteoblasts from PA-induced lipotoxicity. Here, the effects of PA (250 μM) or 1,25(OH)2D3 (10-8 M), alone or in combination, on osteoblast differentiation and mineralization, viability and autophagy were investigated. In PA-treated osteoblasts, 1,25(OH)2D3 ameliorated the decrease in the mRNA transcript abundance of representative palmitoylation (ZDHHC1, ZDHHC2 and ZDHHC12) and osteogenic (alkaline phosphatase and osteocalcin) genes. Collectively these gene regulate signaling pathways pertinent to osteoblastogenesis. In osteoblasts treated with PA and 1,25(OH)2D3, the capacity to undergo differentiation and mineralization was recovered and cell viability was increased when compared to osteoblasts treated with PA alone. 1,25(OH)2D3, irrespective of PA treatment, increased the expression of key osteogenic signaling proteins; specifically, SMAD1-3,5, Runx2 and β-catenin. 1,25(OH)2D3 also attenuated the high level of impaired autophagy induced by PA and potentiated a shift towards activated, functional autophagy and increased flux through autolysosomes. Altogether, these findings provide in vitro evidence regarding the potential of 1,25(OH)2D3 to protect osteoblasts from lipotoxicity by modulating autophagy and facilitating cell differentiation, which may enhance bone formation in an osteoporotic microenvironment with a high level of marrow adipose tissue.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Damian E Myers
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Nicole Stupka
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
36
|
Søe K. Osteoclast Fusion: Physiological Regulation of Multinucleation through Heterogeneity-Potential Implications for Drug Sensitivity. Int J Mol Sci 2020; 21:E7717. [PMID: 33086479 PMCID: PMC7589811 DOI: 10.3390/ijms21207717] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Classically, osteoclast fusion consists of four basic steps: (1) attraction/migration, (2) recognition, (3) cell-cell adhesion, and (4) membrane fusion. In theory, this sounds like a straightforward simple linear process. However, it is not. Osteoclast fusion has to take place in a well-coordinated manner-something that is not simple. In vivo, the complex regulation of osteoclast formation takes place within the bone marrow-in time and space. The present review will focus on considering osteoclast fusion in the context of physiology and pathology. Special attention is given to: (1) regulation of osteoclast fusion in vivo, (2) heterogeneity of osteoclast fusion partners, (3) regulation of multi-nucleation, (4) implications for physiology and pathology, and (5) implications for drug sensitivity and side effects. The review will emphasize that more attention should be given to the human in vivo reality when interpreting the impact of in vitro and animal studies. This should be done in order to improve our understanding of human physiology and pathology, as well as to improve anti-resorptive treatment and reduce side effects.
Collapse
Affiliation(s)
- Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; ; Tel.: +45-65-41-31-90
- Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
37
|
Circulating Long Non-Coding RNA GAS5 Is Overexpressed in Serum from Osteoporotic Patients and Is Associated with Increased Risk of Bone Fragility. Int J Mol Sci 2020; 21:ijms21186930. [PMID: 32967315 PMCID: PMC7554802 DOI: 10.3390/ijms21186930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis (OP) is a multifactorial disorder in which environmental factors along with genetic variants and epigenetic mechanisms have been implicated. Long non-coding RNAs (lncRNAs) have recently emerged as important regulators of bone metabolism and OP aetiology. In this study, we analyzed the expression level and the genetic association of lncRNA GAS5 in OP patients compared to controls. Quantitative RT-PCR analysis of GAS5 was performed on the serum of 56 OP patients and 28 healthy individuals. OP subjects were divided into three groups of analysis: 29 with fragility fractures of lumbar spine (OP_VF), 14 with fragility fractures of femoral neck (OP_FF) and 13 without fractures (OP_WF). Genotyping of the rs145204276 insertion/deletion polymorphism has also been performed by Restriction fragment length polymorphism (RFLP) and direct sequencing analyses. Expression of circulating GAS5 is significantly increased in OP patients compared to controls (p < 0.01), with a statistically higher significance in fractured OP individuals vs. healthy subjects (p < 0.001). No statistically significant change was found in female OP patients; conversely, GAS5 is upregulated in the subgroup of fractured OP women sera (p < 0.01) and in all OP males (p < 0.05). Furthermore, a direct correlation between GAS5 expression level and parathyroid hormone (PTH) concentration was found in OP patients (r = 0.2930; p = 0.0389). Genetic analysis of rs145204276 revealed that the deletion allele was correlated with a higher expression of GAS5 in OP patients (0.22 ± 0.02 vs. 0.15 ± 0.01, ** p < 0.01). Our results suggest circulating GAS5 as a putative biomarker for the diagnosis and prognosis of OP and OP-related fractures.
Collapse
|
38
|
Yamakawa T, Okamatsu N, Ishikawa K, Kiyohara S, Handa K, Hayashi E, Sakai N, Karakawa A, Chatani M, Tsuji M, Inagaki K, Kiuchi Y, Negishi-Koga T, Takami M. Novel gene Merlot inhibits differentiation and promotes apoptosis of osteoclasts. Bone 2020; 138:115494. [PMID: 32569872 DOI: 10.1016/j.bone.2020.115494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Extended osteoclast longevity is deeply involved in the pathogenesis of bone diseases such as osteoporosis and rheumatoid arthritis, though the mechanisms that determine osteoclast lifespan are not fully understood. Here we present findings indicating that the newly characterized gene Merlot, which encodes a highly conserved yet uncharacterized protein in vertebrates, is an important regulator for termination of osteoclastogenesis via induction of apoptosis. Mice lacking Merlot exhibited low bone mass due to increased osteoclast and bone resorption. Furthermore, osteoclast precursors overexpressing Merlot failed to differentiate into mature osteoclasts, while Merlot deficiency led to hyper-nucleation and prolonged survival of osteoclasts, accompanied by sustained nuclear localization of nuclear factor of activated T cell c1 (NFATc1) and derepression of glycogen synthase kinase-3β (GSK3β) activity, known to regulate NFATc1 activity and induce apoptosis. Merlot-deficient osteoclasts were found to represent suppression of caspase-3-mediated apoptosis and Merlot deficiency caused transcriptional downregulation of a proapoptotic cascade, including Bax, Bak, Noxa, and Bim, as well as the executor caspase members Casp-3, -6, and -7, and upregulation of anti-apoptotic Bcl2, resulting in a low apoptotic threshold. Thus, Merlot regulates osteoclast lifespan by inhibition of differentiation and simultaneous induction of apoptosis via regulation of the NFATc1-GSK3β axis.
Collapse
Affiliation(s)
- Tomoyuki Yamakawa
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Nobuaki Okamatsu
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Shuichi Kiyohara
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Implant Dentistry, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Kazuaki Handa
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Erika Hayashi
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Nobuhiro Sakai
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akiko Karakawa
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Katsunori Inagaki
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takako Negishi-Koga
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8629, Japan.
| | - Masamichi Takami
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
39
|
Jähn-Rickert K, Wölfel EM, Jobke B, Riedel C, Hellmich M, Werner M, McDonald MM, Busse B. Elevated Bone Hardness Under Denosumab Treatment, With Persisting Lower Osteocyte Viability During Discontinuation. Front Endocrinol (Lausanne) 2020; 11:250. [PMID: 32499755 PMCID: PMC7243474 DOI: 10.3389/fendo.2020.00250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Denosumab is a potent osteoclast inhibitor targeted to prevent osteoporotic bone loss and thereby reduce fractures in the aging population. Recently, an elevated risk of rebound fractures following denosumab discontinuation was identified, unless patients were transitioned to an alternative antiresorptive medication. How denosumab affects the interaction of mechanosensitive osteocytes and bone quality remains unknown. We hypothesized that denosumab influences osteocyte function contributing to bone reorganization and increased fractures during discontinuation. Bone quality and osteocytes were assessed in archived iliac crest bone biopsies obtained from patients with high fracture occurrence from 2011 to 2016. Biopsies were obtained due to high fracture occurrence prior and during osteoporosis therapy from (i) patients with at least two semiannual subcutaneous injections of 60 mg denosumab, (ii) patients with rebound fractures during discontinuation, and (iii) patients of a treatment-naive group. In total, biopsies from 43 individuals were analyzed (mean age, 65.5 ± 12.1 years). Our results showed that during denosumab treatment, iliac cortical bone had a higher bone tissue hardness compared to treatment-naive bone (p = 0.0077) and a higher percentage of mineralized osteocyte lacunae (p = 0.0095). The density of empty osteocyte lacunae was higher with denosumab compared to treatment-naive (p = 0.014) and remained high in trabecular bone during discontinuation (p = 0.0071). We conclude that during denosumab treatment, increased bone hardness may contribute to improved fracture resistance. In biopsies from patients with high fracture occurrence, denosumab treatment reduced osteocyte viability, an effect that persisted during treatment discontinuation. High-resolution imaging of osteocyte viability indicates a role for osteocytes as a potential future mechanistic target to understand rebound bone loss and increased fractures with denosumab discontinuation.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M. Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Jobke
- Telemedicine Clinic/Unilabs, Barcelona, Spain
| | - Christoph Riedel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Michelle M. McDonald
- Garvan Institute of Medical Research, Bone Microenvironment Group, Darlinghurst, NSW, Australia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Björn Busse
| |
Collapse
|
40
|
Porcine bone collagen peptides promote osteoblast proliferation and differentiation by activating the PI3K/Akt signaling pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103697] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Soysa NS, Alles N. Positive and negative regulators of osteoclast apoptosis. Bone Rep 2019; 11:100225. [PMID: 31720316 PMCID: PMC6838739 DOI: 10.1016/j.bonr.2019.100225] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/22/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
Survival and apoptosis are of major importance in the osteoclast life cycle. As osteoclasts have short lifespan, any alteration that prolongs their viability may cause enhanced osteoclast activity. Hence, the regulation of OC apoptosis has been recognized as a critical factor in bone remodeling. An imbalance in bone remodeling due to increased osteoclast activity leads to most adult bone diseases such as osteoporosis, rheumatoid arthritis and multiple myeloma. Therefore, manipulating osteoclast death would be a viable therapeutic approach in ameliorating bone diseases, with accelerated resorption. Over the last few decades we have witnessed the unraveling of many of the intracellular mechanisms responsible for osteoclast apoptosis. Thus, an understanding of the underlying mechanisms by which osteoclasts undergo programmed cell death and the regulators that modulate that activity will undoubtedly provide an insight into the development of pharmacological agents to treat such pathological bone diseases.
Collapse
Affiliation(s)
- Niroshani Surangika Soysa
- Division of Pharmacology, Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Sri Lanka
| | - Neil Alles
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Sri Lanka
| |
Collapse
|
42
|
Al Saedi A, Bermeo S, Plotkin L, Myers DE, Duque G. Mechanisms of palmitate-induced lipotoxicity in osteocytes. Bone 2019; 127:353-359. [PMID: 31226530 DOI: 10.1016/j.bone.2019.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lipotoxicity is defined as cellular toxicity observed in the presence of an abnormal accumulation of fat and adipocyte-derived factors in non-fat tissues. Palmitic acid (PA), an abundant fatty acid in the bone marrow and particularly in osteoporotic bones, affects osteoblastogenesis and osteoblast function, decreasing their survival through induction of apoptosis and dysfunctional autophagy. In this study, we hypothesized that PA also has a lipotoxic effect on osteocytes in vitro. METHODS Initially, we tested the effect of PA on osteocyte-derived factors DKK1, sclerostin and RANKL. Then, we tested whether PA affects survival and causes apoptosis in osteocytes. Subsequently, we investigated the effect of PA on autophagy by detecting the membrane component LC3-II (Western blot) and staining it and lysosomes with Lysotracker Red dye. RESULTS PA decreases RANKL, DKK1 and sclerostin expression in osteocytes. In addition, we found that PA induces apoptosis and reduces osteocyte survival. PA also caused autophagy failure identified by a significant increase in LC3-II and a reduced number of autophagosomes/lysosomes in the cytoplasm. CONCLUSION In addition to the effects of PA on RANKL, DKK1 and sclerostin expression, which could have significant deleterious impact on bone cell coupling and bone turnover, PA also induced apoptosis and reduced autophagy in osteocytes. Considering that apoptosis and cell dysfunction are two common changes occurring in the osteocytes of osteoporotic bone, our findings suggest that PA could play a role in the pathogenesis of the disease. Suppression of these effects could bring new potential targets for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Sandra Bermeo
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Lilian Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, USA
| | - Damian E Myers
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia; Sydney Medical School Nepean, The University of Sydney, Penrith, NSW, Australia.
| |
Collapse
|
43
|
Cannarella R, Barbagallo F, Condorelli RA, Aversa A, La Vignera S, Calogero AE. Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly. J Clin Med 2019; 8:jcm8101564. [PMID: 31581477 PMCID: PMC6832998 DOI: 10.3390/jcm8101564] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction: Osteoporosis is increasingly prevalent in the elderly, with fractures mostly occurring in women and men who are older than 55 and 65 years of age, respectively. The aim of this review was to examine the evidence regarding the influence of hormones on bone metabolism, followed by clinical data of hormonal changes in the elderly, in the attempt to provide possible poorly explored diagnostic and therapeutic candidate targets for the management of primary osteoporosis in the aging population. Material and methods: An extensive Medline search using PubMed, Embase, and Cochrane Library was performed. Results: While the rise in Thyroid-stimulating hormone (TSH) levels has a protective role on bone mass, the decline of estrogen, testosterone, Insulin-like growth factor 1 (IGF1), and vitamin D and the rise of cortisol, parathyroid hormone, and follicle-stimulating hormone (FSH) favor bone loss in the elderly. Particularly, the AA rs6166 FSH receptor (FSHR) genotype, encoding for a more sensitive FSHR than that encoded by the GG one, is associated with low total body mass density (BMD), independently of circulating estrogen. A polyclonal antibody with a FSHR-binding sequence against the β-subunit of murine FSH seems to be effective in ameliorating bone loss in ovariectomized mice. Conclusions: A complete hormonal assessment should be completed for both women and men during bone loss evaluation. Novel possible diagnostic and therapeutic tools might be developed for the management of male and female osteoporosis.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
44
|
Kao KT, Denker M, Zacharin M, Wong SC. Pubertal abnormalities in adolescents with chronic disease. Best Pract Res Clin Endocrinol Metab 2019; 33:101275. [PMID: 31047817 DOI: 10.1016/j.beem.2019.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pubertal disorders in the context of chronic disease especially in those with chronic inflammatory disorders or those requiring prolonged periods of treatment with glucocorticoid are common reasons for referral to the paediatric endocrine clinic. Disorders of puberty are also common in adolescents with disability requiring management by paediatric endocrinologists. In these adolescents, impaired skeletal development is also observed and this can be associated with fragility fractures. Chronic inflammation, glucocorticoid and sub-optimal nutrition all impact on the hypothalamic-pituitary gonadal axis, and can also impact on skeletal development locally by their effects on the growth plate and bone. Addressing pubertal disorders is important to ensure adolescents with chronic disease are matched with their peers, promote adequate bone mass accrual and linear growth. Careful discussion with primary clinicians, the young person and the family is needed when instituting endocrine therapies to address puberty and manage bone health.
Collapse
Affiliation(s)
- K T Kao
- Department of Endocrinology, Royal Children's Hospital, Melbourne, Australia; Developmental Endocrinology Research Group, Royal Hospital for Children, Glasgow, United Kingdom
| | - M Denker
- Developmental Endocrinology Research Group, Royal Hospital for Children, Glasgow, United Kingdom
| | - M Zacharin
- Department of Endocrinology, Royal Children's Hospital, Melbourne, Australia
| | - S C Wong
- Developmental Endocrinology Research Group, Royal Hospital for Children, Glasgow, United Kingdom.
| |
Collapse
|
45
|
Qu H, Li T, Jin H, Zhang S, He B. Silent Mating Type Information Regulation 2 Homolog (SIRT1) Influences Osteogenic Proliferation and Differentiation of MC3T3-E1 Cells via Regulation of miR-132-3p. Med Sci Monit 2019; 25:2289-2295. [PMID: 30923307 PMCID: PMC6451357 DOI: 10.12659/msm.912392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The essence of osteoporosis is mainly the imbalance of bone formation and absorption. Previous studies indicated that SIRT1 is closely related to bone metabolism and bone mass as a regulator of bone mass. The literature reports that microRNAs are significant regulators of osteoblast proliferation and differentiation. Material/Methods In this study, SIRT1 protein and mRNA levels were examined by Western blot and RT-PCR. Osteogenic proliferation was examined by CCK8 assay and osteogenic markers, including ALP, OCN, and RUNX2, were examined by ELISA. The target of miR-132-3p was identified by luciferase reporter assay. Results LPS downregulated the SIRT1 protein level and β-glycerophosphate upregulated the SIRT1 protein level. The results demonstrated that SIRT1 overexpression promoted the proliferation and differentiation in MC3T3-E1 cells, and SIRT1 interference had the opposite effect. Luciferase reporter assay revealed that miR-132-3p inhibited the reporter gene activity of SIRT1. LPS upregulated the mRNA level of miR-132-3p, and β-glycerophosphate downregulated the mRNA level of miR-132-3p. Conclusions miR-132-3p is a pivotal regulator in osteogenic proliferation and differentiation by targeting SIRT1.
Collapse
Affiliation(s)
- Hangbo Qu
- Department of Orthopedic Surgery, Hangzhou Third Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Taoye Li
- Department of Orthopedic Surgery, Hangzhou Third Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Hongting Jin
- Department of Orthopedic Surgery, Institute of Orthopedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China (mainland)
| | - Shanxing Zhang
- Department of Orthopedic Surgery, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Bangjian He
- Department of Orthopedic Surgery, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
46
|
Yiallouris A, Tsioutis C, Agapidaki E, Zafeiri M, Agouridis AP, Ntourakis D, Johnson EO. Adrenal Aging and Its Implications on Stress Responsiveness in Humans. Front Endocrinol (Lausanne) 2019; 10:54. [PMID: 30792695 PMCID: PMC6374303 DOI: 10.3389/fendo.2019.00054] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
Normal aging results in subtle changes both in ACTH and cortisol secretion. Most notable is the general increase in mean daily serum cortisol levels in the elderly, without a noteworthy alteration in the normal circadian rhythm pattern. Glucocorticoid excess seen in the elderly population can have serious consequences in both the structural and functional integrity of various key areas in the brain, including the hippocampus, amygdala, prefrontal cortex, with consequent impairment in normal memory, cognitive function, and sleep cycles. The chronically elevated glucocorticoid levels also impinge on the normal stress response in the elderly, leading to an impaired ability to recover from stressful stimuli. In addition to the effects on the brain, glucocorticoid excess is associated with other age-related changes, including loss of muscle mass, hypertension, osteopenia, visceral obesity, and diabetes, among others. In contrast to the increase in glucocorticoid levels, other adrenocortical hormones, particularly serum aldosterone and DHEA (the precursor to androgens and estrogens) show significant decreases in the elderly. The underlying mechanisms for their decrease remain unclear. While the adrenomedullary hormone, norephinephrine, shows an increase in plasma levels, associated with a decrease in clearance, no notable changes observed in plasma epinephrine levels in the elderly. The multiplicity and complexity of the adrenal hormone changes observed throughout the normal aging process, suggests that age-related alterations in cellular growth, differentiation, and senescence specific to the adrenal gland must also be considered.
Collapse
Affiliation(s)
- Andreas Yiallouris
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Laboratory of Education & Research Neuroscience, Department of Anatomy, School of Medicine, National and Kapodistrian University Athens, Athens, Greece
| | - Constantinos Tsioutis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Society of Junior Doctors, Athens, Greece
| | | | - Maria Zafeiri
- Society of Junior Doctors, Athens, Greece
- Diabetes and Obesity Center, Konstantopouleio Hospital, Athens, Greece
| | | | | | - Elizabeth O. Johnson
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Laboratory of Education & Research Neuroscience, Department of Anatomy, School of Medicine, National and Kapodistrian University Athens, Athens, Greece
| |
Collapse
|
47
|
Abstract
This chapter describes the surgical procedures for ovariectomy and orchiectomy in mice and rats. In addition to providing technical details of the surgical techniques, details of anesthesia options and pre-, peri-, and postoperative care are also included.
Collapse
Affiliation(s)
- Antonia Sophocleous
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Aymen I Idris
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| |
Collapse
|
48
|
Mukherjee D, Srinivasan B, Anbu J, Azamthulla M, Banala VT, Ramachandra SG. Improvement of bone microarchitecture in methylprednisolone induced rat model of osteoporosis by using thiolated chitosan-based risedronate mucoadhesive film. Drug Dev Ind Pharm 2018; 44:1845-1856. [PMID: 30028215 DOI: 10.1080/03639045.2018.1503297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE In this study, we investigated the potential of thiolated chitosan-based mucoadhesive film, loaded with risedronate sodium in the treatment of osteoporosis. SIGNIFICANCE Risedronate sodium is a bisphosphonate derivative having very low bioavailability when administered through the oral route. Moreover, the adverse effects associated with the drug when administered through GIT necessitate an alternative and feasible route which can improve its bioavailability and therapeutic efficacy. METHODS Thiolation of chitosan was interpreted by different analytical techniques. The mucoadhesive films were prepared by the solvent evaporation method and evaluated for drug content analysis, swelling degree, mucoadhesive parameters, and permeation characterization. For the screening of preclinical efficacy and pharmacodynamic parameters, a methylprednisolone induced osteoporotic rat model was used. The trabecular microarchitecture and biochemical markers were evaluated for determination of bone resorption. RESULTS The different analytical characterization of synthesized thiolated chitosan revealed that chitosan was successfully incorporated with thiol groups. The formulation containing 2:1 ratio of thiolated chitosan and HPMC-4KM was found to have the maximum swelling degree, mucoadhesive strength with a good force of adhesion and better in vitro permeability compared to the marketed formulation. With respect to trabecular microarchitecture, the drug-loaded film formulation showed superior and promising results. Furthermore, the film formulation also improved the serum level of biomarkers better than the marketed formulation. CONCLUSIONS The results significantly suggest that risedronate loaded novel mucoadhesive film formulation could be a logical approach in the therapeutic intervention of osteoporosis.
Collapse
Affiliation(s)
- Dhrubojyoti Mukherjee
- a Department of Pharmaceutics , M. S. Ramaiah University of Applied Sciences , Bengaluru , India
| | - Bharath Srinivasan
- a Department of Pharmaceutics , M. S. Ramaiah University of Applied Sciences , Bengaluru , India
| | - J Anbu
- b Department of Pharmacology , M. S. Ramaiah University of Applied Sciences , Bengaluru , India
| | - Mohammad Azamthulla
- b Department of Pharmacology , M. S. Ramaiah University of Applied Sciences , Bengaluru , India
| | | | - S G Ramachandra
- d Central Animal Facility , Indian Institute of Science , Bengaluru , India
| |
Collapse
|
49
|
Zhu SY, Zhuang JS, Wu Q, Liu ZY, Liao CR, Luo SG, Chen JT, Zhong ZM. Advanced oxidation protein products induce pre-osteoblast apoptosis through a nicotinamide adenine dinucleotide phosphate oxidase-dependent, mitogen-activated protein kinases-mediated intrinsic apoptosis pathway. Aging Cell 2018; 17:e12764. [PMID: 29659123 PMCID: PMC6052394 DOI: 10.1111/acel.12764] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 12/16/2022] Open
Abstract
Osteoblast apoptosis contributes to age‐related bone loss. Advanced oxidation protein products (AOPPs) are recognized as the markers of oxidative stress and potent inducers of apoptosis. We have demonstrated that AOPP accumulation was correlated with age‐related bone loss. However, the effect of AOPPs on the osteoblast apoptosis still remains unknown. Exposure of osteoblastic MC3T3‐E1 cells to AOPPs caused the excessive generation of reactive oxygen species (ROS) by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Increased ROS induced phosphorylation of mitogen‐activated protein kinases (MAPKs), which subsequently triggered intrinsic apoptosis pathway by inducing mitochondrial dysfunction, endoplasmic reticulum stress, and Ca2+ overload and eventually leads to apoptosis. Chronic AOPP loading in aged Sprague‐Dawley rats induced osteoblast apoptosis and activated NADPH oxidase signaling cascade, in combination with accelerated bone loss and deteriorated bone microstructure. Our study suggests that AOPPs induce osteoblast apoptosis by the NADPH oxidase‐dependent, MAPK‐mediated intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Si-Yuan Zhu
- Department of Spinal Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Jing-Shen Zhuang
- Department of Spinal Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Qian Wu
- Department of Spinal Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Zhong-Yuan Liu
- Department of Spinal Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Cong-Rui Liao
- Department of Spinal Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Shi-Gan Luo
- Department of Spinal Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Jian-Ting Chen
- Department of Spinal Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Zhao-Ming Zhong
- Department of Spinal Surgery; Nanfang Hospital; Southern Medical University; Guangzhou China
| |
Collapse
|
50
|
van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ. The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol 2018; 6:647-658. [PMID: 30017799 PMCID: PMC6089223 DOI: 10.1016/s2213-8587(18)30026-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
Abstract
During ageing, the secretory patterns of the hormones produced by the hypothalamic-pituitary axis change, as does the sensitivity of the axis to negative feedback by end hormones. Additionally, glucose homoeostasis tends towards disequilibrium with increasing age. Along with these endocrine alterations, a loss of bone and muscle mass and strength occurs, coupled with an increase in fat mass. In addition, ageing-induced effects are difficult to disentangle from the influence of other factors that are common in older people, such as chronic diseases, inflammation, and low nutritional status, all of which can also affect endocrine systems. Traditionally, the decrease in hormone activity during the ageing process has been considered to be detrimental because of the related decline in bodily functions. The concept of hormone replacement therapy was suggested as a therapeutic intervention to stop or reverse this decline. However, clearly some of these changes are a beneficial adaptation to ageing, whereas hormonal intervention often causes important adverse effects. In this paper, we discuss the effects of age on the different hypothalamic-pituitary-hormonal organ axes, as well as age-related changes in calcium and bone metabolism and glucose homoeostasis.
Collapse
Affiliation(s)
- Annewieke W van den Beld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Internal Medicine, Groene Hart Hospital, Gouda, Netherlands.
| | - Jean-Marc Kaufman
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - M Carola Zillikens
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Steven W J Lamberts
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Aart J van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| |
Collapse
|