1
|
Gallo CC, Honda TSB, Alves PT, Han SW. Macrophages mobilized by the overexpression of the macrophage-colony stimulating factor promote efficient recovery of the ischemic muscle functionality. Life Sci 2023; 317:121478. [PMID: 36758666 DOI: 10.1016/j.lfs.2023.121478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
AIMS Narrowing or occlusion of arteries that supply the limbs can evolve to critical limb ischemia. M-CSF promotes proliferation, differentiation and survival of monocytes and macrophages, and polarization of macrophages to M2-subtype, which are essential elements for vessel formation and tissue repair. Based on these properties of M-CSF, we hypothesize that transfection of M-CSF into ischemic limbs may promote vessel formation and repair of ischemic limbs. MAIN METHODS Hindlimb ischemia was surgically induced in 10-12 weeks old Balb/c and gene therapy was performed with intramuscular application of either uP-MCSF or uP plasmids (100 μg). Macrophage and monocyte subpopulations were assessed by flow cytometry and blood flow was monitored by Laser Doppler Perfusion Imaging (LDPI). Thirty days after transfection, we assessed gastrocnemius mass and muscle force, subsequently collecting the muscle for histology. KEY FINDINGS We successfully developed the uP-MCSF plasmid, which increases M-CSF expression in the muscle transiently. Thirty days after uP-MCSF gene therapy in ischemic muscles, the treated group presented: improved muscle force, reduced fibrosis and increased arteriogenesis, although LDPI analysis did not show any significant difference in blood flow among groups. Noteworthy, we observed a temporary increase in MHCIIhighCD206high macrophages after uP-MCSF transfection. SIGNIFICANCE M-CSF gene therapy improved ischemic muscle functionality by promoting arteriogenesis and decreasing fibrosis, likely through increased MHCIIhighCD206high macrophages and not via classically known M2-macrophages.
Collapse
Affiliation(s)
- Camila Congentino Gallo
- Interdisciplinary Center for Gene Therapy, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tâmisa Seeko Bandeira Honda
- Interdisciplinary Center for Gene Therapy, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Patrícia Terra Alves
- Interdisciplinary Center for Gene Therapy, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sang Won Han
- Interdisciplinary Center for Gene Therapy, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil..
| |
Collapse
|
2
|
Bernard C, Zavoriti A, Pucelle Q, Chazaud B, Gondin J. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies. Physiol Rep 2022; 10:e15480. [PMID: 36200266 PMCID: PMC9535344 DOI: 10.14814/phy2.15480] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Skeletal muscle is a plastic tissue that regenerates ad integrum after injury and adapts to raise mechanical loading/contractile activity by increasing its mass and/or myofiber size, a phenomenon commonly refers to as skeletal muscle hypertrophy. Both muscle regeneration and hypertrophy rely on the interactions between muscle stem cells and their neighborhood, which include inflammatory cells, and particularly macrophages. This review first summarizes the role of macrophages in muscle regeneration in various animal models of injury and in response to exercise-induced muscle damage in humans. Then, the potential contribution of macrophages to skeletal muscle hypertrophy is discussed on the basis of both animal and human experiments. We also present a brief comparative analysis of the role of macrophages during muscle regeneration versus hypertrophy. Finally, we summarize the current knowledge on the impact of different immunomodulatory strategies, such as heat therapy, cooling, massage, nonsteroidal anti-inflammatory drugs and resolvins, on skeletal muscle regeneration and their potential impact on muscle hypertrophy.
Collapse
Affiliation(s)
- Clara Bernard
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Aliki Zavoriti
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Quentin Pucelle
- Université de Versailles Saint‐Quentin‐En‐YvelinesVersaillesFrance
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| |
Collapse
|
3
|
Türkez H, Arslan ME, Tatar A, Özdemir Ö, Sönmez E, Çadirci K, Hacimüftüoğlu A, Ceylan B, Açikyildiz M, Kahraman CY, Geyikoğlu F, Tatar A, Mardinoglu A. Molecular Genetics and Cytotoxic Responses to Titanium Diboride and Zinc Borate Nanoparticles on Cultured Human Primary Alveolar Epithelial Cells. MATERIALS 2022; 15:ma15072359. [PMID: 35407693 PMCID: PMC9000154 DOI: 10.3390/ma15072359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023]
Abstract
Titanium diboride (TiB2) and zinc borate (Zn3BO6) have been utilized in wide spectrum industrial areas because of their favorable properties such as a high melting point, good wear resistance, high hardness and thermal conductivity. On the other hand, the biomedical potentials of TiB2 and Zn3BO6 are still unknown because there is no comprehensive analysis that uncovers their biocompatibility features. Thus, the toxicogenomic properties of TiB2 and Zn3BO6 nanoparticles (NPs) were investigated on human primary alveolar epithelial cell cultures (HPAEpiC) by using different cell viability assays and microarray analyses. Protein-Protein Interaction Networks Functional Enrichment Analysis (STRING) was used to associate differentially expressed gene probes. According to the results, up to 10 mg/L concentration of TiB2 and Zn3BO6 NPs application did not stimulate a cytotoxic effect on the HPAEpiC cell cultures. Microarray analysis revealed that TiB2 NPs exposure enhances cellular adhesion molecules, proteases and carrier protein expression. Furthermore, Zn3BO6 NPs caused differential gene expressions in the cell cycle, cell division and extracellular matrix regulators. Finally, STRING analyses put forth that inflammation, cell regeneration and tissue repair-related gene interactions were affected by TiB2 NPs application. Zn3BO6 NPs exposure significantly altered inflammation, lipid metabolism and infection response activator-related gene interactions. These investigations illustrated that TiB2 and Zn3BO6 NPs exposure may affect different aspects of cellular machineries such as immunogenic responses, tissue regeneration and cell survival. Thus, these types of cellular mechanisms should be taken into account before the use of the related NPs in further biomedical applications.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (H.T.); (B.C.)
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25240 Erzurum, Turkey; (M.E.A.); (Ö.Ö.)
| | - Arzu Tatar
- Department of Otorhinolaryngology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Özlem Özdemir
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25240 Erzurum, Turkey; (M.E.A.); (Ö.Ö.)
| | - Erdal Sönmez
- Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, 25240 Erzurum, Turkey;
| | - Kenan Çadirci
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, 25240 Erzurum, Turkey;
| | - Ahmet Hacimüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey;
| | - Bahattin Ceylan
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (H.T.); (B.C.)
| | - Metin Açikyildiz
- Department of Chemistry, Faculty of Science and Art, Kilis 7 Aralık University, 79000 Kilis, Turkey;
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Fatime Geyikoğlu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, 25240 Erzurum, Turkey;
| | - Abdulgani Tatar
- Department of Medical Genetics, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
- Correspondence:
| |
Collapse
|
4
|
Bedrin MD, Putko RM, Dickens JF. Analgesia in Athletes: A Review of Commonly Used Oral and Injectable Modalities. Sports Med Arthrosc Rev 2021; 29:e71-e76. [PMID: 34730120 DOI: 10.1097/jsa.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pain is common among athletes at all levels and the treatment of pain can be a challenging and frustrating task. The team physician needs a fundamental knowledge of analgesic strategies as it relates to athletes. It is important to understand the mechanism of action, side effect profile/associated complications, incidence of and indications for use, as well as the controversies associated with the most common analgesic medications used in sports medicine. Several "in vogue" treatment modalities, including cannabidiol, are also becoming more commonly used and are worth discussion.
Collapse
|
5
|
Singh P, Chazaud B. Benefits and pathologies associated with the inflammatory response. Exp Cell Res 2021; 409:112905. [PMID: 34736921 DOI: 10.1016/j.yexcr.2021.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 10/20/2022]
Abstract
Adult skeletal muscle regenerates completely after a damage, thanks to the satellite cells, or muscle stem cells (MuSCs), that implement the adult myogenic program. This program is sustained by both robust intrinsic mechanisms and extrinsic cues coming from the close neighborhood of MuSCs during muscle regeneration. Among the various cell types present in the regenerating muscle, immune cells, and particularly macrophages, exert numerous functions and provide sequential transient niches to support the myogenic program. The adequate orchestration of the delivery of these cues ensures efficient muscle regeneration and full functional recovery. The situation is very different in muscular dystrophies where asynchronous and permanent microinjuries occur, triggering contradictory regenerating cues at the same time in a specific area, that lead to chronic inflammation and fibrogenesis. Here we review the beneficial effects that leukocytes, and particularly macrophages, exert on their neighboring cells during skeletal muscle regeneration after an acute injury. Then, the more complicated (and less beneficial) roles of leukocytes during muscular dystrophies are presented. Finally, we discuss how the inflammatory compartment may be a target to improve muscle regeneration in both acute muscle injury and muscle diseases.
Collapse
Affiliation(s)
- Pawandeep Singh
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, 69008, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
6
|
Nelson GB, McMellen CJ, Kolaczko JG, Millett PJ, Gillespie RJ, Su CA. Immunologic Contributions Following Rotator Cuff Injury and Development of Cuff Tear Arthropathy. JBJS Rev 2021; 9:01874474-202111000-00006. [PMID: 34757960 DOI: 10.2106/jbjs.rvw.21.00126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
» Rotator cuff tear arthropathy (RCTA) describes a pattern of glenohumeral degenerative changes following chronic rotator cuff tears that is characterized by superior humeral head migration, erosion of the greater tuberosity of the humeral head, contouring of the coracoacromial arch to create a socket for the humeral head, and eventual glenohumeral arthritis. » Acute and chronic inflammatory changes following rotator cuff tears are thought to contribute to cartilage damage, muscle fibrosis, and fatty infiltration in the glenohumeral joint. » In vitro animal studies targeting various inflammatory modulators, including macrophages, insulin-like growth factor-I, and transforming growth factor-beta pathways, provide promising therapeutic targets to improve healing after rotator cuff tears. » The role of platelet-rich plasma in the treatment and prevention of RCTA has been investigated, with conflicting results.
Collapse
Affiliation(s)
- Grant B Nelson
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Christopher J McMellen
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jensen G Kolaczko
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Robert J Gillespie
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Charles A Su
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
7
|
Tsai WC, Yu TY, Chang GJ, Chang HN, Lin LP, Lin MS, Pang JHS. Use of Platelet-Rich Plasma Plus Suramin, an Antifibrotic Agent, to Improve Muscle Healing After Injuries. Am J Sports Med 2021; 49:3102-3112. [PMID: 34351815 DOI: 10.1177/03635465211030295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The increasing use of platelet-rich plasma (PRP) to treat muscle injuries raises concerns because transforming growth factor-beta (TGF-β) in PRP may promote fibrosis in the injured muscle and thus impair muscle regeneration. PURPOSE To investigate whether suramin (a TGF-β inhibitor) can reduce muscle fibrosis to improve healing of the injured muscle after PRP treatment and identify the underlying molecular mechanism. STUDY DESIGN Controlled laboratory study. METHODS Myoblasts isolated from the gastrocnemius muscle of Sprague Dawley rats were treated with PRP or PRP plus suramin. MTT assays were performed to evaluate cell viability. The expression of fibrosis-associated proteins (such as type I collagen and fibronectin), Smad2, and phosphorylated Smad2 was determined using Western blot analysis and immunofluorescent staining. An anti-TGF-β antibody was employed to verify the role of TGF-β in fibronectin expression. Gastrocnemius muscles were injured through a partial transverse incision and then treated using PRP or PRP plus suramin. Hematoxylin and eosin staining was conducted to evaluate the healing process 7 days after the injury. Immunofluorescent staining was performed to evaluate fibronectin expression. Muscle contractile properties-fast-twitch and tetanic strength-were evaluated through electric stimulation. RESULTS PRP plus 25 μg/mL of suramin promoted myoblast proliferation. PRP induced fibronectin expression in myoblasts, but suramin reduced this upregulation. The anti-TGF-β antibody also reduced the upregulation of fibronectin expression in the presence of PRP. The upregulation of phosphorylated Smad2 by PRP was reduced by either the anti-TGF-β antibody or suramin. In the animal study, no significant difference was discovered in muscle healing between the PRP versus PRP plus suramin groups. However, the PRP plus suramin group had reduced fibronectin expression at the injury site. Fast-twitch strength and tetanic strength were significantly higher in the injured muscle treated using PRP or PRP plus suramin. CONCLUSION Simultaneous PRP and suramin use reduced fibrosis in the injured muscle and promoted healing without negatively affecting the muscle's contractile properties. The underlying molecular mechanism may be associated with the phosphorylated Smad2 pathway. CLINICAL RELEVANCE Simultaneous PRP and suramin use may reduce muscle fibrosis without compromising muscle contractile properties and thus improve muscle healing.
Collapse
Affiliation(s)
- Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Hsiang-Ning Chang
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Li-Ping Lin
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Miao-Sui Lin
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Jong-Hwei S Pang
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
8
|
Corbiere TF, Koh TJ. Local low-intensity vibration improves healing of muscle injury in mice. Physiol Rep 2021; 8:e14356. [PMID: 31981324 PMCID: PMC6981306 DOI: 10.14814/phy2.14356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 01/05/2023] Open
Abstract
Recovery from traumatic muscle injuries is typically prolonged and incomplete. Our previous study demonstrated that whole‐body low‐intensity vibration (LIV) enhances healing in a mouse laceration model. We sought to determine whether locally applied LIV (a) improves muscle repair following injury in mice and (b) is directly transduced by cultured muscle cells, via increased IGF‐1 activity. C57BL/6J mice were subjected to laceration of the gastrocnemius muscle and were treated with LIV applied directly to the lower leg for 30 min/day or non‐LIV sham treatment (controls) for 7 or 14 days. LIV was also applied to differentiating myotubes in culture for 30 min/day for 3 or 6 days. Compared with control mice, LIV increased myofiber cross‐sectional area, diameter, and percent area of peripherally nucleated fibers, and decreased percent damaged area after 14 days of treatment. In cultured myotubes, LIV increased fusion and diameter compared with controls after 6 days of treatment. These LIV‐induced effects were associated with increased total Akt on day 7 in injured muscle and on day 3 in myotubes, whereas phosphorylated‐to‐total Akt ratio increased on day 14 in injured muscle and on day 6 in myotubes but were not associated with increased IGF‐1 levels at any time point. These changes were also associated with LIV‐induced suppression of FOXO1 and Atrogin‐1 gene expression at day 7 in injured muscle. These findings demonstrate that muscle cells can directly transduce LIV signals into increased growth and differentiation, and this effect is associated with increased Akt signaling.
Collapse
Affiliation(s)
- Thomas F Corbiere
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Skeletal muscle healing by M1-like macrophages produced by transient expression of exogenous GM-CSF. Stem Cell Res Ther 2020; 11:473. [PMID: 33158459 PMCID: PMC7648431 DOI: 10.1186/s13287-020-01992-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Background After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. The sequence of M1 and M2 macrophage accumulation and the duration of each subtype in the injured area may help to direct the relative extent of fibrogenesis and myogenesis during healing. We hypothesized that increasing the number of M1 macrophages early after traumatic muscle injury would produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. Methods To test this hypothesis, we transfected skeletal muscle with a plasmid vector to transiently express GM-CSF shortly after injury to drive the polarization of macrophages towards the M1 subset. C57BL/6 mouse tibialis anterior (TA) muscles were injured by contusion and electroporated with uP-mGM, which is a plasmid vector that transiently expresses GM-CSF. Myogenesis, angiogenesis, and fibrosis were evaluated by histology, immunohistochemistry, and RT-qPCR; subpopulations of macrophages by flow cytometry; and muscle functioning by the maximum running speed on the treadmill and the recovery of muscle mass. Results Muscle injury increased the number of local M1-like macrophages and decreased the number of M2-like macrophages on day 4, and uP-mGM treatment enhanced this variation. uP-mGM treatment decreased TGF-β1 protein expression on day 4, and the Sirius Red-positive area decreased from 35.93 ± 15.45% (no treatment) to 2.9% ± 6.5% (p < 0.01) on day 30. uP-mGM electroporation also increased Hgf, Hif1α, and Mtor gene expression; arteriole density; and muscle fiber number during regeneration. The improvement in the quality of the muscle tissue after treatment with uP-mGM affected the increase in the TA muscle mass and the maximum running speed on a treadmill. Conclusion Collectively, our data show that increasing the number of M1-like macrophages immediately after traumatic muscle injury promotes muscle recovery with less fibrosis, and this can be achieved by the transient expression of GM-CSF.
Collapse
|
10
|
Fibrosis following Acute Skeletal Muscle Injury: Mitigation and Reversal Potential in the Clinic. JOURNAL OF SPORTS MEDICINE 2020; 2020:7059057. [PMID: 33376749 PMCID: PMC7745048 DOI: 10.1155/2020/7059057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle injuries occur often in athletics and in daily life. In minor injuries, muscles are able to regenerate completely and recover their functional capabilities. However, in the case of severe injuries, the injured muscle cannot recover to a functional level because of the formation of fibrous scar tissue. The physical barrier of scars is significantly challenged in both research and clinical treatment. Fibrous scar tissue not only limits cells' migration, but also contributes to normal tissue biomechanical properties. This scar formation creates an unsuitable environment for tissue structure resulting in frequent pain. Antifibrosis treatment is one of the major strategies used to augment muscle regeneration and accelerate its functional recovery. This review will discuss the currently available methods for improving muscle regeneration with a specific focus on antifibrosis applications. We also discussed several novel hypotheses and clinical applications in muscle fibrosis treatment currently in practice.
Collapse
|
11
|
Matsuzaki S, Pouly JL, Canis M. Dose-dependent pro- or anti-fibrotic responses of endometriotic stromal cells to interleukin-1β and tumor necrosis factor α. Sci Rep 2020; 10:9467. [PMID: 32528066 PMCID: PMC7289797 DOI: 10.1038/s41598-020-66298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
Endometriosis are characterized by dense fibrous tissue. Numerous studies have investigated roles of inflammation on the pathophysiology of endometriosis. However, the interplay of inflammation and fibrosis remains to be clarified. Here we show that low levels of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNFα) promoted a fibrotic phenotype, whereas high levels of IL-1β and TNFα inactivated the fibrotic phenotype of endometriotic stromal cells (Ectopic-ES). IL-1β 10 pg/mL and TNFα 100 and 1,000 pg/mL had minimal effects, whereas the highest dose of IL-1β (100 pg/mL) significantly decreased collagen gel contraction in Ectopic-ES. Furthermore, in Ectopic-ES, low levels of IL-1β (1 pg/mL) and/or TNFα 10 pg/mL significantly increased Col I mRNA expression, whereas higher doses of IL-1β (10 and/or 100 pg/mL) and/or TNFα (100 and/or 1,000 pg/mL) significantly decreased Col I and/or αSMA mRNA expression and the percentage of cells with Col I + and/or αSMA + stress fibers. In contrast, in either menstrual endometrial stromal cells of patients with endometriosis or those of healthy women, varying doses of IL-1β and/or TNFα had no significant effects on either Col I or αSMA mRNA/protein expression. The present findings bring into question whether we should still continue to attempt anti-inflammatory treatment strategies for endometriosis.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France.
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMA, Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand, France.
| | - Jean-Luc Pouly
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMA, Clermont-Ferrand, France
| | - Michel Canis
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMA, Clermont-Ferrand, France
| |
Collapse
|
12
|
Reichl FX, Högg C, Liu F, Schwarz M, Teupser D, Hickel R, Bloch W, Schweikl H, Thomas P, Summer B. Actovegin® reduces PMA-induced inflammation on human cells. Eur J Appl Physiol 2020; 120:1671-1680. [PMID: 32447451 PMCID: PMC8497287 DOI: 10.1007/s00421-020-04398-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/16/2020] [Indexed: 01/06/2023]
Abstract
Purpose The effect of Actovegin® was investigated on PMA- and LPS-induced human peripheral blood mononuclear cells (PBMCs). Methods PBMCs (1 × 106 cells/ml) from five blood donors (2 f, 3 m; 45–55 years) were grown in medium and exposed to Actovegin® in the presence or absence of PMA or LPS. Supernatants were collected to assess the concentration of cytokines (TNF-α, IL-1beta, IL-6 and IL-10). The reactive oxygen species (ROS) were assessed by a ROS-GloTM H2O2 assay. Results Stimulation of cells by PMA or LPS (without Actovegin®) significantly increased the secretion of IL-1beta, IL-6, IL-10 and TNF-α from PBMCs, compared to controls. Pre-treatment of cells with Actovegin® (1, 5, 25, 125 µg/ml) plus PMA significantly decreased the secretion of IL-1beta from PBMCs, compared to controls (PMA without Actovegin®). In contrast, addition of Actovegin® (1, 5, 25, 125 and 250 µg/ml) plus LPS did not alter the IL-1beta production, compared to controls (LPS without Actovegin®). TNF-α, IL-6 and IL-10 do not contribute to the reduction of inflammatory reactions with Actovegin®. Conclusions Actovegin® can reduce the PMA-induced IL-1beta release and the ROS production from PBMCs. These findings may help to explain the clinically known positive effects of Actovegin® on athletic injuries with inflammatory responses (e.g., muscle injuries, tendinopathies).
Collapse
Affiliation(s)
- Franz-Xaver Reichl
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany.
| | - Christof Högg
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| | - Fangfang Liu
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| | - Markus Schwarz
- Institute for Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Teupser
- Institute for Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestr. 70, 80336, Munich, Germany
| | - Wilhelm Bloch
- Molecular and Cellular Sport Medicine, German Sport University, Cologne, Germany
| | - Helmut Schweikl
- Department of Conservative Dentistry and Periodontology, University Hospital, Regensburg, Germany
| | - Peter Thomas
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Burkhard Summer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
13
|
Palumbo P, Lombardi F, Augello FR, Giusti I, Dolo V, Leocata P, Cifone MG, Cinque B. Biological effects of selective COX-2 inhibitor NS398 on human glioblastoma cell lines. Cancer Cell Int 2020; 20:167. [PMID: 32435158 PMCID: PMC7222447 DOI: 10.1186/s12935-020-01250-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of glioblastoma (GBM). The poor survival of GBM was mainly associated with the presence of glioma stem cells (GSC) and the markedly inflammatory microenvironment. To further explore the involvement of COX-2 in glioma biology, the effects of NS398, a selective COX-2 inhibitor, were evaluated on GSC derived from COX-2 expressing GBM cell lines, i.e., U87MG and T98G, in terms of neurospheres' growth, autophagy, and extracellular vesicle (EV) release. Methods Neurospheres' growth and morphology were evaluated by optical and scanning electron microscopy. Autophagy was measured by staining acidic vesicular organelles. Extracellular vesicles (EV), released from neurospheres, were analyzed by transmission electron microscopy. The autophagic proteins Beclin-1 and LC3B, as well as the EV markers CD63 and CD81, were analyzed by western blotting. The scratch assay test was used to evaluate the NS398 influence on GBM cell migration. Results Both cell lines were strongly influenced by NS398 exposure, as showed by morphological changes, reduced growth rate, and appearance of autophagy. Furthermore, the inhibitor led to a functional change of EV released by neurospheres. Indeed, EV secreted by NS398-treated GSC, but not those from control cells, were able to significantly inhibit adherent U87MG and T98G cell migration and induced autophagy in recipient cells, thus leading to effects quite similar to those directly caused by NS398 in the same cells. Conclusion Despite the intrinsic diversity and individual genetic features of U87MG and T98G, comparable effects were exerted by the COX-2 inhibitor NS398 on both GBM cell lines. Overall, our findings support the crucial role of the inflammatory-associated COX-2/PGE2 system in glioma and glioma stem cell biology.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Ilaria Giusti
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Pietro Leocata
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
14
|
Macrophages fine tune satellite cell fate in dystrophic skeletal muscle of mdx mice. PLoS Genet 2019; 15:e1008408. [PMID: 31626629 PMCID: PMC6821135 DOI: 10.1371/journal.pgen.1008408] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/30/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Satellite cells (SCs) are muscle stem cells that remain quiescent during homeostasis and are activated in response to acute muscle damage or in chronic degenerative conditions such as Duchenne Muscular Dystrophy. The activity of SCs is supported by specialized cells which either reside in the muscle or are recruited in regenerating skeletal muscles, such as for instance macrophages (MΦs). By using a dystrophic mouse model of transient MΦ depletion, we describe a shift in identity of muscle stem cells dependent on the crosstalk between MΦs and SCs. Indeed MΦ depletion determines adipogenic conversion of SCs and exhaustion of the SC pool leading to an exacerbated dystrophic phenotype. The reported data could also provide new insights into therapeutic approaches targeting inflammation in dystrophic muscles. Muscular dystrophies are a heterogenous group of genetic disorders characterized by muscle wasting, leading to loss of mobility and eventually to death due to respiratory or cardiac failure. Duchenne Muscular Dystrophy (DMD) is one of the most severe dystrophies and is caused by the loss of functional dystrophin protein owing to genetic mutations, consequently, the sarcolemma becomes fragile and susceptible to muscle damage induced by contraction. Satellite cells (SCs) are skeletal muscle stem cells that mediate the repair process leading to muscle regeneration. Dystrophic muscles undergo continuous cycles of degeneration and regeneration eventually culminating in myofiber loss and deposition of fibrous and fatty connective tissue. Inflammation is always associated with the muscle regeneration process. Among different types of inflammatory cells, mainly macrophages (MΦs) are present in regenerating skeletal muscles and are involved in the regenerative process both after an acute injury and during pathological conditions such as DMD. We focused on the cross-talk between MΦs and SCs in a mouse model of DMD and highlighted a role of MΦs in preserving the SC identity.
Collapse
|
15
|
Platelet-rich plasma for thumb carpometacarpal joint osteoarthritis in a professional pianist: case-based review. Rheumatol Int 2019; 39:2167-2175. [DOI: 10.1007/s00296-019-04454-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023]
|
16
|
Liao CH, Lin LP, Yu TY, Hsu CC, Pang JHS, Tsai WC. Ibuprofen inhibited migration of skeletal muscle cells in association with downregulation of p130cas and CrkII expressions. Skelet Muscle 2019; 9:23. [PMID: 31464636 PMCID: PMC6714350 DOI: 10.1186/s13395-019-0208-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 08/13/2019] [Indexed: 11/28/2022] Open
Abstract
Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat sports-related muscle injuries. However, NSAIDs were recently shown to impede the muscle healing process after acute injury. Migration of skeletal muscle cells is a crucial step during the muscle healing process. The present study was performed to investigate the effect and molecular mechanisms of action of ibuprofen, a commonly used NSAID, on the migration of skeletal muscle cells. Methods Skeletal muscle cells isolated from the gastrocnemius muscle of Sprague-Dawley rats were treated with ibuprofen. MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was used to evaluate cell viability, and cell apoptosis was evaluated by TUNEL assay, after ibuprofen treatment. Skeletal muscle cell migration and spreading were evaluated using the transwell filter migration assay and F-actin staining, respectively. The protein expression of p130cas and CrkII, which are cell migration facilitating genes, was determined by western blot analysis. The overexpression of p130cas of muscle cells was achieved by p130cas vector transfection. Results The results demonstrated that ibuprofen did not have a significant negative effect on cell viability and apoptosis. Ibuprofen inhibited the migration and spreading of skeletal muscle cells in a dose-dependent manner. Ibuprofen also dose-dependently decreased the protein expression of p130cas and CrkII. Furthermore, overexpression of p130cas resulted in the promotion of cell migration and spreading and counteracted ibuprofen-mediated inhibition. Conclusion This study suggested that ibuprofen exerts a potentially adverse effect on the migration of skeletal muscle cells by downregulating protein expression of p130cas and CrkII. These results indicate a possible mechanism underlying the possible negative effect of NSAIDs on muscle regeneration.
Collapse
Affiliation(s)
- Chih-Hao Liao
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, No.123, Dinghu Rd., Guishan Dist, Taoyuan City, 333, Taiwan
| | - Li-Ping Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, No.123, Dinghu Rd., Guishan Dist, Taoyuan City, 333, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, No.123, Dinghu Rd., Guishan Dist, Taoyuan City, 333, Taiwan
| | - Chih-Chin Hsu
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Jong-Hwei S Pang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, No.123, Dinghu Rd., Guishan Dist, Taoyuan City, 333, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, No.123, Dinghu Rd., Guishan Dist, Taoyuan City, 333, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan City, Taiwan.
| |
Collapse
|
17
|
Manoharan P, Song T, Radzyukevich TL, Sadayappan S, Lingrel JB, Heiny JA. KLF2 in Myeloid Lineage Cells Regulates the Innate Immune Response during Skeletal Muscle Injury and Regeneration. iScience 2019; 17:334-346. [PMID: 31326700 PMCID: PMC6652133 DOI: 10.1016/j.isci.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle repair and regeneration after injury requires coordinated interactions between the innate immune system and the injured muscle. Myeloid cells predominate in these interactions. This study examined the role of KLF2, a zinc-finger transcription factor that regulates immune cell activation, in specifying myeloid cell functions during muscle regeneration. Loss of KLF2 in myeloid lineage cells (myeKlf2-/- mice) dramatically enhanced the initial inflammatory response to acute muscle injury (cardiotoxin). Injured muscles showed dramatically elevated expression of inflammatory mediators and greater numbers of infiltrating, pro-inflammatory monocytes that matured earlier into activated macrophages. Notably, the inflammatory phase resolved earlier and regeneration progressed to myogenesis, marked by elevated expression of factors that promote the formation of new fibers from satellite cells. Regeneration was completed earlier, with phenotypically normal adult fibers integrated into the muscle syncytium. These findings identify myeloid KLF2 as a key regulator of myeloid cell functions in adult skeletal muscle regeneration.
Collapse
Affiliation(s)
- Palanikumar Manoharan
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| | - Taejeong Song
- Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Tatiana L Radzyukevich
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
18
|
Kazemi-Darabadi S, Nayebzadeh R, Shahbazfar AA, Kazemi-Darabadi F, Fathi E. Curcumin and Nanocurcumin Oral Supplementation Improve Muscle Healing in a Rat Model of Surgical Muscle Laceration. Bull Emerg Trauma 2019; 7:292-299. [PMID: 31392230 PMCID: PMC6681885 DOI: 10.29252/beat-0703013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/16/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To compare the effects of curcumin and nanocurcumin oral supplementation on the muscle healing rate of an animal model of surgical muscle laceration. METHODS Thirty-two male adult rats were randomly divided into sham, control, curcumin, and nanocurcumin groups. Partial transection of the gastrocnemius muscle was made in the right limb of the control and treatment groups. The sham and control groups received normal saline, curcumin group received 500 mg/kg of curcumin and nanocurcumin group received 100 mg curcumin-loaded nanomicelles orally every day. They euthanized two weeks later and the specimens were stained by hematoxylin-eosin (H&E) and Masson's trichrome methods. Aspartate transaminase (AST) and creatine phosphokinase (CPK) were measured in blood samples. RESULTS The percentage of collagen fibers in the nanocurcumin group was significantly lesser than the control and curcumin groups (p<0.001). Muscle fiber regeneration in the treatment groups was significantly higher than the control group (p<0.001). The blood vessels of the nanocurcumin group were significantly more than other groups (p<0.001). Plasma AST had a significant difference in the control group compared to the sham and nanocurcumin groups (p=0.026). The plasma CPK level of the control group was also significantly higher than other groups (p<0.001). CONCLUSION In conclusion, although oral curcumin supplementation has little effects because of its poor bioavailability, embedding it in nanoparticles could enhance its systemic effects in promoting the muscle healing process.
Collapse
Affiliation(s)
- Siamak Kazemi-Darabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ramin Nayebzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Faranak Kazemi-Darabadi
- Emergency Department, Fatemi Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
19
|
Owens DJ, Twist C, Cobley JN, Howatson G, Close GL. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? Eur J Sport Sci 2018; 19:71-85. [PMID: 30110239 DOI: 10.1080/17461391.2018.1505957] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exercise-induced muscle damage (EIMD) is characterized by symptoms that present both immediately and for up to 14 days after the initial exercise bout. The main consequence of EIMD for the athlete is the loss of skeletal muscle function and soreness. As such, numerous nutrients and functional foods have been examined for their potential to ameliorate the effects of EIMD and accelerate recovery, which is the purpose of many nutritional strategies for the athlete. However, the trade-off between recovery and adaptation is rarely considered. For example, many nutritional interventions described in this review target oxidative stress and inflammation, both thought to contribute to EIMD but are also crucial for the recovery and adaptation process. This calls into question whether long term administration of supplements and functional foods used to target EIMD is indeed best practice. This rapidly growing area of sports nutrition will benefit from careful consideration of the potential hormetic effect of long term use of nutritional aids that ameliorate muscle damage. This review provides a concise overview of what EIMD is, its causes and consequences and critically evaluates potential nutritional strategies to ameliorate EIMD. We present a pragmatic practical summary that can be adopted by practitioners and direct future research, with the purpose of pushing the field to better consider the fine balance between recovery and adaptation and the potential that nutritional interventions have in modulating this balance.
Collapse
Affiliation(s)
- Daniel J Owens
- a Research Institute for Sport and Exercise Science , Liverpool John Moores University , Liverpool , UK
| | - Craig Twist
- b Department of Sport and Exercise Sciences , University of Chester , Chester , UK
| | - James N Cobley
- c Department of Diabetes and Cardiovascular Disease, Center of Health Sciences , University of the Highlands and Islands , Inverness , UK
| | - Glyn Howatson
- d Department of Sport, Exercise & Rehabilitation , Northumbria University , Newcastle upon Tyne , UK.,e Water Research Group , North West University , Potchefstroom , South Africa
| | - Graeme L Close
- a Research Institute for Sport and Exercise Science , Liverpool John Moores University , Liverpool , UK
| |
Collapse
|
20
|
Abstract
Recovery from traumatic muscle injuries is typically prolonged and incomplete, leading to impaired muscle and joint function. We sought to determine whether mechanical stimulation via whole-body low-intensity vibration (LIV) could (1) improve muscle regeneration and (2) reduce muscle fibrosis following traumatic injury. C57BL/6J mice were subjected to a laceration of the gastrocnemius muscle and were treated with LIV (0.2 g at 90 Hz or 0.4 g at 45 Hz for 30 min/day) or non-LIV sham treatment (controls) for seven or 14 days. Muscle regeneration and fibrosis were assessed in hematoxylin and eosin or Masson's trichrome stained muscle cryosections, respectively. Compared to non-LIV control mice, the myofiber cross-sectional area was larger in mice treated with each LIV protocol after 14 days of treatment. Minimum fiber diameter was also larger in mice treated with LIV of 90 Hz/0.2 g after 14 days of treatment. There was also a trend toward a reduction in collagen deposition after 14 days of treatment with 45 Hz/0.4 g (p = 0.059). These findings suggest that LIV may improve muscle healing by enhancing myofiber growth and reducing fibrosis. The LIV-induced improvements in muscle healing suggest that LIV may represent a novel therapeutic approach for improving the healing of traumatic muscle injuries.
Collapse
|
21
|
Abreu P, Marzuca-Nassr GN, Hirabara SM, Curi R. Experimental Model of Skeletal Muscle Laceration in Rats. Methods Mol Biol 2018; 1735:397-401. [PMID: 29380330 DOI: 10.1007/978-1-4939-7614-0_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This is a modified experimental model previously developed in mouse to study skeletal muscle laceration in rats. All experimental procedures are performed during the light period, including anesthesia and surgery. The animals are randomly distributed into control and injured groups prior to the procedure. This experimental model can be used to investigate skeletal muscle laceration repair.
Collapse
Affiliation(s)
- Phablo Abreu
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.
| | | | - Sandro Massao Hirabara
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
|
23
|
Ceafalan LC, Fertig TE, Popescu AC, Popescu BO, Hinescu ME, Gherghiceanu M. Skeletal muscle regeneration involves macrophage-myoblast bonding. Cell Adh Migr 2017; 12:228-235. [PMID: 28759306 PMCID: PMC6149487 DOI: 10.1080/19336918.2017.1346774] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Regeneration in adult skeletal muscle relies on the activation, proliferation, and fusion of myogenic precursor cells (MPC), mostly resident satellite cells (SC). However, the regulatory mechanism during this process is still under evaluation, with the final aim to manipulate regeneration when the intrinsic mechanism is corrupted. Furthermore, intercellular connections during skeletal muscle regeneration have not been previously thoroughly documented. Our hypothesis was that a direct and close cellular interaction between SC/MPC and invading myeloid cells is a key step to control regeneration. We tested this hypothesis during different steps of skeletal muscle regeneration: (a) the recruitment of activated SC; (b) the differentiation of MPC; (c) myotubes growth, in a mouse model of crush injury. Samples harvested (3 and 5 days) post-injury were screened by light and confocal microscopy. Ultrastructural analysis was performed by conventional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) followed by 3D modeling of electron tomography (ET) data. This revealed a new type of interaction between macrophages and myogenic cells by direct heterocellular surface apposition over large areas and long linear distances. In the analyzed volume, regions spaced below 20 nm, within molecular range, represented 31% of the macrophage membrane surface and more than 27% of the myotube membrane. The constant interaction throughout all stages of myogenesis suggests a potential new type of regulatory mechanism for the myogenic process. Thus, deciphering structural and molecular mechanisms of SC-macrophage interaction following injury might open promising perspectives for improving muscle healing.
Collapse
Affiliation(s)
- Laura Cristina Ceafalan
- a Ultrastructural Pathology Laboratory , Victor Babes National Institute of Pathology , Bucharest , Romania.,b Department of Cellular & Molecular Biology and Histology , School of Medicine, Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | - Tudor Emanuel Fertig
- a Ultrastructural Pathology Laboratory , Victor Babes National Institute of Pathology , Bucharest , Romania
| | - Alexandru Cristian Popescu
- a Ultrastructural Pathology Laboratory , Victor Babes National Institute of Pathology , Bucharest , Romania.,b Department of Cellular & Molecular Biology and Histology , School of Medicine, Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | - Bogdan Ovidiu Popescu
- a Ultrastructural Pathology Laboratory , Victor Babes National Institute of Pathology , Bucharest , Romania.,c Department of Neurology, School of Medicine , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | - Mihail Eugen Hinescu
- a Ultrastructural Pathology Laboratory , Victor Babes National Institute of Pathology , Bucharest , Romania.,b Department of Cellular & Molecular Biology and Histology , School of Medicine, Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | - Mihaela Gherghiceanu
- a Ultrastructural Pathology Laboratory , Victor Babes National Institute of Pathology , Bucharest , Romania.,b Department of Cellular & Molecular Biology and Histology , School of Medicine, Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| |
Collapse
|
24
|
Barcelos RP, Bresciani G, Cuevas MJ, Martínez-Flórez S, Soares FAA, González-Gallego J. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway. Appl Physiol Nutr Metab 2017; 42:757-764. [DOI: 10.1139/apnm-2016-0593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rômulo Pillon Barcelos
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, RS, 99052-900, Brazil
- Institute of Biomedicine, University of León, Campus Universitario, 24071 León, Spain
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900 Brazil
| | - Guilherme Bresciani
- Grupo de Investigación en Rendimiento Físico y Salud Escuela de Educación Física, Pontificia Universidad Católica de Valparaiso, Valparaiso, 2530388 Chile
| | - Maria José Cuevas
- Institute of Biomedicine, University of León, Campus Universitario, 24071 León, Spain
| | | | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | |
Collapse
|
25
|
Abstract
Eccentric-contraction-induced skeletal muscle injuries, included in what is clinically referred to as muscle strains, are among the most common injuries treated in the sports medicine setting. Although patients with mild injuries often fully recover to their preinjury levels, patients who suffer moderate or severe injuries can have a persistent weakness and loss of function that is refractory to rehabilitation exercises and currently available therapeutic interventions. The objectives of this review were to describe the fundamental biophysics of force transmission in muscle and the mechanism of muscle-strain injuries, as well as the cellular and molecular processes that underlie the repair and regeneration of injured muscle tissue. The review also summarizes how commonly used therapeutic modalities affect muscle regeneration and opportunities to further improve our treatment of skeletal muscle strain injuries.
Collapse
|
26
|
Abstract
Muscle injuries are frequent and represent one of the most substantial medical problems in professional football. They can have both traumatic and overuse causes with direct practical consequence due to differences in terms of the post-primary care regimen and prognosis. An accurate diagnosis is the first step towards a specific treatment and usually allows to predict return to play (RTP). Current treatment principles have no firm scientific basis; they are practiced largely as empirical medicine due to a lack of prospective randomised studies. Immediate treatment usually follows the PRICE-principle (protection, rest, ice, compression, elevation). Depending on the type of the muscle injury, specific physical and physiotherapeutical procedures as well as rehabilitative exercises and gradual training therapy are used to recondition the injured structure, to restore coordination and proprioception, and to normalise movement patterns. Injection therapy with various substances is frequently used, with positive results empirically, but evidence in form of prospective randomised studies is lacking. A precise rehabilitation plan should be developed for every muscle injury, including recommendations for sport-specific training with increasing intensity. Since there are no guidelines regarding safe RTP, regular follow-up examinations on the current muscle status are crucial to evaluate the progress made in terms of healing and to determine when the injured muscle can be exposed to the next step of load. This narrative review describes the various factors that a medical team should consider during assessment, treatment and rehabilitation of a muscle injury with particular focus on professional football.
Collapse
Affiliation(s)
- Peter Ueblacker
- a MW Center of Orthopedics and Sports Medicine , Munich , Germany.,b Department of Osteology and Biomechanics , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Lutz Haensel
- a MW Center of Orthopedics and Sports Medicine , Munich , Germany
| | | |
Collapse
|
27
|
Huard J, Lu A, Mu X, Guo P, Li Y. Muscle Injuries and Repair: What's New on the Horizon! Cells Tissues Organs 2016; 202:227-236. [PMID: 27825155 DOI: 10.1159/000443926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Although we recognize the many advantages of improved musculoskeletal health, we also note that our ability to sustain this health and to maintain quality of life in an aging population is currently deficient. However, global efforts have produced numerous advances in tissue engineering and regenerative medicine that will collectively serve to fill this deficiency in the near future. The purpose of this review is to highlight our current knowledge, to outline our recent advances, and to discuss the evolving paradigms in skeletal muscle injury and repair.
Collapse
|
28
|
|
29
|
Tunaru S, Chennupati R, Nüsing RM, Offermanns S. Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor. PLoS One 2016; 11:e0163633. [PMID: 27662627 PMCID: PMC5035018 DOI: 10.1371/journal.pone.0163633] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023] Open
Abstract
19(S)-hydroxy-eicosatetraenoic acid (19(S)-HETE) belongs to a family of arachidonic acid metabolites produced by cytochrome P450 enzymes, which play critical roles in the regulation of cardiovascular, renal and pulmonary functions. Although it has been known for a long time that 19(S)-HETE has vascular effects, its mechanism of action has remained unclear. In this study we show that 19(S)-HETE induces cAMP accumulation in the human megakaryoblastic leukemia cell line MEG-01. This effect was concentration-dependent with an EC50 of 520 nM, insensitive to pharmacological inhibition of COX-1/2 and required the expression of the G-protein Gs. Systematic siRNA-mediated knock-down of each G-protein coupled receptor (GPCR) expressed in MEG-01 followed by functional analysis identified the prostacyclin receptor (IP) as the mediator of the effects of 19(S)-HETE, and the heterologously expressed IP receptor was also activated by 19(S)-HETE in a concentration-dependent manner with an EC50 of 567 nM. Pretreatment of isolated murine platelets with 19(S)-HETE blocked thrombin-induced platelets aggregation, an effect not seen in platelets from mice lacking the IP receptor. Furthermore, 19(S)-HETE was able to relax mouse mesenteric artery- and thoracic aorta-derived vessel segments. While pharmacological inhibition of COX-1/2 enzymes had no effect on the vasodilatory activity of 19(S)-HETE these effects were not observed in vessels from mice lacking the IP receptor. These results identify a novel mechanism of action for the CYP450-dependent arachidonic acid metabolite 19(S)-HETE and point to the existence of a broader spectrum of naturally occurring prostanoid receptor agonists.
Collapse
Affiliation(s)
- Sorin Tunaru
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231 Bad Nauheim, Germany
- * E-mail: (ST); (SO)
| | - Ramesh Chennupati
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Rolf M. Nüsing
- Institute for Clinical Pharmacology, J.W. Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231 Bad Nauheim, Germany
- Medical Faculty, J.W. Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- * E-mail: (ST); (SO)
| |
Collapse
|
30
|
Wilde JM, Gumucio JP, Grekin JA, Sarver DC, Noah AC, Ruehlmann DG, Davis ME, Bedi A, Mendias CL. Inhibition of p38 mitogen-activated protein kinase signaling reduces fibrosis and lipid accumulation after rotator cuff repair. J Shoulder Elbow Surg 2016; 25:1501-8. [PMID: 27068389 PMCID: PMC4992438 DOI: 10.1016/j.jse.2016.01.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND The repair of rotator cuff tears is often complicated by fatty degeneration, which is the combination of lipid accumulation, fibrosis, inflammation, and muscle weakness. A signaling molecule that plays a central role in these processes is p38 mitogen-activated protein kinase (MAPK). The purpose of this study was to evaluate the ability of a small molecule inhibitor of p38 MAPK, SB203580, to reduce fatty degeneration in a preclinical model of rotator cuff injury and repair. MATERIALS AND METHODS Adult rats underwent a bilateral supraspinatus tenotomy that was repaired 30 days later. Rats were treated with SB203580 or vehicle every 2 days, with injections beginning 3 days before surgery and continuing until 7 days after surgery. Two weeks after surgical repair, muscles were analyzed using histology, lipid profiling, gene expression, and permeabilized muscle fiber contractility. RESULTS Inhibition of p38 MAPK resulted in a nearly 49% reduction in fat accumulation and a 29% reduction in collagen content, along with changes in corresponding genes regulating adipogenesis and matrix accumulation. There was also a marked 40% to 80% decrease in the expression of several proinflammatory genes, including IL1B, IL6, and COX2, and a 360% increase in the anti-inflammatory gene IL10. No differences were observed for muscle fiber force production. CONCLUSION Inhibition of p38 MAPK was found to result in a significant decrease in intramuscular lipid accumulation and fibrosis that is usually seen in the degenerative cascade of rotator cuff tears, without having negative effects on the contractile properties of the rotator cuff muscle tissue.
Collapse
Affiliation(s)
- Jeffrey M Wilde
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan P Gumucio
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy A Grekin
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew C Noah
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David G Ruehlmann
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max E Davis
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Corresponding Author: Christopher L. Mendias, PhD, ATC, Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200, USA,
| |
Collapse
|
31
|
Baniasadi H, Mashayekhan S, Fadaoddini S, Haghirsharifzamini Y. Design, fabrication and characterization of oxidized alginate–gelatin hydrogels for muscle tissue engineering applications. J Biomater Appl 2016; 31:152-61. [DOI: 10.1177/0885328216634057] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, we reported the preparation of self cross-linked oxidized alginate–gelatin hydrogels for muscle tissue engineering. The effect of oxidation degree (OD) and oxidized alginate/gelatin (OA/GEL) weight ratio were examined and the results showed that in the constant OA/GEL weight ratio, both cross-linking density and Young’s modulus enhanced by increasing OD due to increment of aldehyde groups. Furthermore, the degradation rate was increased with increasing OD probably due to decrement in alginate molecular weight during oxidation reaction facilitated degradation of alginate chains. MTT cytotoxicity assays performed on Wharton's Jelly-derived umbilical cord mesenchymal stem cells cultured on hydrogels with OD of 30% showed that the highest rate of cell proliferation belong to hydrogel with OA/GEL weight ratio of 30/70. Overall, it can be concluded from all obtained results that the prepared hydrogel with OA/GEL weight ratio and OD of 30/70 and 30%, respectively, could be proper candidate for use in muscle tissue engineering.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Samira Fadaoddini
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
32
|
Dearth CL, Slivka PF, Stewart SA, Keane TJ, Tay JK, Londono R, Goh Q, Pizza FX, Badylak SF. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury. Acta Biomater 2016; 31:50-60. [PMID: 26612417 DOI: 10.1016/j.actbio.2015.11.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022]
Abstract
Extracellular matrix (ECM) has been used as a biologic scaffold material to both reinforce the surgical repair of soft tissue and serve as an inductive template to promote a constructive tissue remodeling response. Success of such an approach is dependent on macrophage-mediated degradation and remodeling of the biologic scaffold. Macrophage phenotype during these processes is a predictive factor of the eventual remodeling outcome. ECM scaffolds have been shown to promote an anti-inflammatory or M2-like macrophage phenotype in vitro that includes secretion of downstream products of cycolooxygenases 1 and 2 (COX1/2). The present study investigated the effect of a common COX1/2 inhibitor (Aspirin) on macrophage phenotype and tissue remodeling in a rodent model of ECM scaffold treated skeletal muscle injury. Inhibition of COX1/2 reduced the constructive remodeling response by hindering myogenesis and collagen deposition in the defect area. The inhibited response was correlated with a reduction in M2-like macrophages in the defect area. The effects of Aspirin on macrophage phenotype were corroborated using an established in vitro macrophage model which showed a reduction in both ECM induced prostaglandin secretion and expression of a marker of M2-like macrophages (CD206). These results raise questions regarding the common peri-surgical administration of COX1/2 inhibitors when biologic scaffold materials are used to facilitate muscle repair/regeneration. STATEMENT OF SIGNIFICANCE COX1/2 inhibitors such as nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely administered post-surgically for analgesic purposes. While COX1/2 inhibitors are important in pain management, they have also been shown to delay or diminish the healing process, which calls to question their clinical use for treating musculotendinous injuries. The present study aimed to investigate the influence of a common NSAID, Aspirin, on the constructive remodeling response mediated by an ECM scaffold (UBM) in a rat skeletal muscle injury model. The COX1/2 inhibitor, Aspirin, was found to mitigate the ECM scaffold-mediated constructive remodeling response both in an in vitro co-culture system and an in vivo rat model of skeletal muscle injury. The results presented herein provide data showing that NSAIDs may significantly alter tissue remodeling outcomes when a biomaterial is used in a regenerative medicine/tissue engineering application. Thus, the decision to prescribe NSAIDs to manage the symptoms of inflammation post-ECM scaffold implantation should be carefully considered.
Collapse
|
33
|
Mautner K, Malanga GA, Smith J, Shiple B, Ibrahim V, Sampson S, Bowen JE. A call for a standard classification system for future biologic research: the rationale for new PRP nomenclature. PM R 2016; 7:S53-S59. [PMID: 25864661 DOI: 10.1016/j.pmrj.2015.02.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 10/23/2022]
Abstract
Autologous cell therapies including platelet-rich plasma (PRP) and bone marrow concentrate (BMC) are increasingly popular options for soft tissue and joint-related diseases. Despite increased clinical application, conflicting research has been published regarding the efficacy of PRP, and few clinical publications pertaining to BMC are available. Preparations of PRP (and BMC) can vary in many areas, including platelet concentration, number of white blood cells, presence or absence of red blood cells, and activation status of the preparation. The potential effect of PRP characteristics on PRP efficacy is often not well understood by the treating clinician, and PRP characteristics, as well as the volume of PRP delivered, are unfortunately not included in the methods of many published research articles. It is essential to establish a standard reporting system for PRP that facilitates communication and the interpretation and synthesis of scientific investigations. Herein, the authors propose a new PRP classification system reflecting important PRP characteristics based on contemporary literature and recommend adoption of minimal standards for PRP reporting in scientific investigations. Widespread adoption of these recommendations will facilitate interpretation and comparison of clinical studies and promote scientifically based progress in the field of regenerative medicine.
Collapse
Affiliation(s)
- Kenneth Mautner
- Department of PM&R and Orthopedics, Emory Orthopedics and Spine Center, Atlanta, GA
| | - Gerard A Malanga
- New Jersey Regenerative Institute LLC, Cedar Knolls, NJ; Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Jay Smith
- Departments of PM&R, Radiology, and Anatomy, Mayo Clinic Sports Medicine Center, Mayo Clinic College of Medicine, Rochester, MN
| | - Brian Shiple
- Department of Family Medicine, The Center for Sports Medicine and Wellness, Temple University School of Medicine, Philadelphia, PA
| | - Victor Ibrahim
- Performance and Musculoskeletal Regeneration Center, Washington, DC
| | - Steven Sampson
- Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA; The Orthohealing Center and The Orthobiologic Institute (TOBI), Los Angeles, CA
| | - Jay E Bowen
- Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ; New Jersey Regenerative Institute, Cedar Knolls, NJ
| |
Collapse
|
34
|
The Development of Macrophage-Mediated Cell Therapy to Improve Skeletal Muscle Function after Injury. PLoS One 2015; 10:e0145550. [PMID: 26717325 PMCID: PMC4696731 DOI: 10.1371/journal.pone.0145550] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/04/2015] [Indexed: 01/24/2023] Open
Abstract
Skeletal muscle regeneration following acute injury is a multi-step process involving complex changes in tissue microenvironment. Macrophages (MPs) are one of the key cell types involved in orchestration and modulation of the repair process. Multiple studies highlight the essential role of MPs in the control of the myogenic program and inflammatory response during skeletal muscle regeneration. A variety of MP phenotypes have been identified and characterized in vitro as well as in vivo. As such, MPs hold great promise for cell-based therapies in the field of regenerative medicine. In this study we used bone-marrow derived in vitro LPS/IFN-y-induced M1 MPs to enhance functional muscle recovery after tourniquet-induced ischemia/reperfusion injury (TK-I/R). We detected a 15% improvement in specific tension and force normalized to mass after M1 (LPS/IFN-γ) MP transplantation 24 hours post-reperfusion. Interestingly, we found that M0 bone marrow-derived unpolarized MPs significantly impaired muscle function highlighting the complexity of temporally coordinated skeletal muscle regenerative program. Furthermore, we show that delivery of M1 (LPS/IFN-γ) MPs early in regeneration accelerates myofiber repair, decreases fibrotic tissue deposition and increases whole muscle IGF-I expression.
Collapse
|
35
|
Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol 2015; 94:140-5. [PMID: 26526620 DOI: 10.1038/icb.2015.97] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022]
Abstract
Increase in the practice of sport by more and more numerous people in the Western countries is associated with an increase in muscle injuries, and in demand for improving muscle function and acceleration of muscle recovery after damage. Most of the treatments used target inflammation. Indeed, several lines of experimental evidence in animal models that are supported by human studies identify inflammatory cells, and particularly macrophages, as essential players in skeletal muscle regeneration. Macrophages act not only through their immune functions, but also control myogenesis and extracellular matrix remodeling by directly acting on myogenic precursors and fibro-adipogenic precursors. In light of these recent biological advances, the question of early treatment aiming at blunting inflammation after exercise-induced muscle injury is discussed.
Collapse
|
36
|
Si Y, Kim S, Cui X, Zheng L, Oh SJ, Anderson T, AlSharabati M, Kazamel M, Volpicelli-Daley L, Bamman MM, Yu S, King PH. Transforming Growth Factor Beta (TGF-β) Is a Muscle Biomarker of Disease Progression in ALS and Correlates with Smad Expression. PLoS One 2015; 10:e0138425. [PMID: 26375954 PMCID: PMC4574401 DOI: 10.1371/journal.pone.0138425] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022] Open
Abstract
We recently identified Smads1, 5 and 8 as muscle biomarkers in human ALS. In the ALS mouse, these markers are elevated and track disease progression. Smads are signal transducers and become activated upon receptor engagement of ligands from the TGF-β superfamily. Here, we sought to characterize ligands linked to activation of Smads in ALS muscle and their role as biomarkers of disease progression. RNA sequencing data of ALS muscle samples were mined for TGF-β superfamily ligands. Candidate targets were validated by qRT-PCR in a large cohort of human ALS muscle biopsy samples and in the G93A SOD1 mouse. Protein expression was evaluated by Western blot, ELISA and immunohistochemistry. C2C12 muscle cells were used to assess Smad activation and induction. TGF-β1, 2 and 3 mRNAs were increased in ALS muscle samples compared to controls and correlated with muscle strength and Smads1, 2, 5 and 8. In the G93A SOD1 mouse, the temporal pattern of TGF-β expression paralleled the Smads and increased with disease progression. TGF-β1 immunoreactivity was detected in mononuclear cells surrounding muscle fibers in ALS samples. In muscle cells, TGF-β ligands were capable of activating Smads. In conclusion, TGF-β1, 2 and 3 are novel biomarkers of ALS in skeletal muscle. Their correlation with weakness in human ALS and their progressive increase with advancing disease in the ALS mouse suggest that they, as with the Smads, can track disease progression. These ligands are capable of upregulating and activating Smads and thus may contribute to the Smad signaling pathway in ALS muscle.
Collapse
Affiliation(s)
- Ying Si
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham VA Medical Center, Birmingham, Alabama, United States of America
| | - Soojin Kim
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lei Zheng
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham VA Medical Center, Birmingham, Alabama, United States of America
| | - Shin J. Oh
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tina Anderson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mohammad AlSharabati
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laura Volpicelli-Daley
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shaohua Yu
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham VA Medical Center, Birmingham, Alabama, United States of America
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
37
|
Brewer CB, Bentley JP, Day LB, Waddell DE. Resistance exercise and naproxen sodium: effects on a stable PGF2α metabolite and morphological adaptations of the upper body appendicular skeleton. Inflammopharmacology 2015; 23:319-27. [PMID: 26289996 DOI: 10.1007/s10787-015-0248-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/01/2015] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Exercise-induced inflammation has been shown to be necessary for successful skeletal muscle regeneration post-injury. Accordingly, numerous investigations have demonstrated consequences of COX-inhibitors, anti-inflammatory drugs which prevent prostaglandin formation. In addition to its roles in inflammation, prostaglandin F2α (PGF2α) also mediates vital regenerative processes The majority of research to report consequences of suppressing inflammation has utilized acute injury models in combination with acute COX-inhibitor administration. To address the limited research investigating regular consumption of COX-inhibitors over time in exercising humans, the purpose of this study was to determine effects of a non-selective COX-inhibitor on a PGF2α metabolite and morphological adaptations of the upper body appendicular skeleton during periodized resistance training. Twenty-three (N = 23) recreationally trained college-aged males were randomly assigned to receive placebo (n = 11) or naproxen sodium (n = 12). Treatments were prophylactically administered in double-blind fashion with supervised upper body resistance exercise performed twice per week for 6 weeks. Venous blood was sampled pre- and post-exercise and analyzed for 13, 14-dihydro-15-keto PGF2α using enzyme immunoassay. Factorial mixed-design repeated-measures ANOVAs were utilized to examine relative changes in the plasma PGF2α metabolite and upper body appendicular morphology over the training period. RESULTS Naproxen sodium significantly reduced the acute PGF2α metabolite response to exercise (p = 0.013); however, this effect diminished over time (p = 0.02), and both treatment groups exhibited significant increases in dominant arm skeletal muscle tissue (p = 0.037). CONCLUSION Despite acute inhibition of the PGF2α metabolite at early time points, naproxen sodium did not hinder positive morphological adaptations of the upper body in response to resistance training.
Collapse
Affiliation(s)
- Christi B Brewer
- Physical Education, Health, and Recreation, Eastern Washington University, 200 Physical Education Building, Cheney, WA, 99004, USA.
| | - John P Bentley
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, Oxford, MS, USA.
| | - Lainy B Day
- Department of Biology, University of Mississippi, Oxford, MS, USA.
| | - Dwight E Waddell
- Department of Electrical Engineering, University of Mississippi, 308 Anderson Hall, Oxford, MS, USA.
| |
Collapse
|
38
|
Jiang SK, Zhang M, Tian ZL, Wang M, Zhao R, Wang LL, Li SS, Liu M, Li JY, Zhang MZ, Guan DW. The monoacylglycerol lipase inhibitor JZL184 decreases inflammatory response in skeletal muscle contusion in rats. Eur J Pharmacol 2015; 761:1-10. [PMID: 25912803 DOI: 10.1016/j.ejphar.2015.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022]
Abstract
Muscle wound healing process is a typical inflammation-evoked event. The monoacylglycerol lipase (MAGL) inhibitor (4-nitrophenyl)4-[bis(1,3-benzodioxol -5-yl)-hydroxymethyl]piperidine-1-carboxylate (JZL184) has been previously reported to reduce inflammation in colitis and acute lung injury in mice, which provide a new strategy for primary care of skeletal muscle injury. We investigated the effect of JZL184 on inflammation in rat muscle contusion model, and found decreased neutrophil and macrophage infiltration and pro-inflammatory cytokine expression. With extension of post-traumatic interval, myofiber regeneration was significantly hindered with increased collagen types I and ІІІ mRNAfibroblast infiltration as well as promoted fibrosis. Furthermore, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-morpholin-4-ylpyrazole-3-carboxamide (AM281, a selective cannabinoid CB1 receptor antagonist) and [6-iodo-2-methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone (AM630, a selective cannabinoid CB2 receptor antagonist) treatment alleviated the anti-inflammatory effect of JZL184. Our findings demonstrate that JZL184 is able to inhibit the inflammatory response and interfere with contused muscle healing, in which the anti-inflammatory action may be mediated through cannabinoid CB1 and CB2 receptors.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Benzodioxoles/pharmacology
- Cannabinoid Receptor Antagonists/pharmacology
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Contusions/drug therapy
- Contusions/enzymology
- Contusions/genetics
- Contusions/immunology
- Contusions/pathology
- Cytokines/metabolism
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibrosis
- Inflammation Mediators/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/immunology
- Muscle, Skeletal/pathology
- Myositis/enzymology
- Myositis/genetics
- Myositis/immunology
- Myositis/pathology
- Myositis/prevention & control
- Neutrophil Infiltration/drug effects
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Piperidines/pharmacology
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
- Time Factors
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Shu-Kun Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Zhi-Ling Tian
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Meng Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Lin-Lin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Shan-Shan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Min Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Jiao-Yong Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Meng-Zhou Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Da-Wei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
39
|
Lu Y, Cai S, Tan H, Fu W, Zhang H, Xu H. Inhibitory effect of oblongifolin C on allergic inflammation through the suppression of mast cell activation. Mol Cell Biochem 2015; 406:263-271. [PMID: 25968068 DOI: 10.1007/s11010-015-2444-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
Oblongifolin C (OC), a natural small molecule compound extracted from Garcinia yunnanensis Hu, has been previously shown to have anti-cancer effect, but the anti-allergic effect of OC has not yet been investigated. The aim of the present study is to determine the anti-allergic effect of OC on IgE/Ag-induced mouse bone marrow-derived mast cells (BMMCs) and on the passive systemic anaphylaxis (PSA) reaction in mice. OC clearly suppressed cyclooxygenase-2 (COX-2)-dependent prostaglandin D2 (PGD2) generation as well as leukotriene C4 (LTC4) generation and the degranulation reaction in IgE/Ag-stimulated BMMCs. Biochemical analyses of the IgE/Ag-mediated signaling pathways showed that OC suppressed the phosphorylation of phospholipase Cγ1 (PLCγ1)-mediated intracellular Ca(2+) influx and the nuclear factor-κB (NF-κB) pathway, as well as the phosphorylation of mitogen-activated protein (MAP) kinases. Although OC did not inhibit the phosphorylation of Fyn, Lyn, and Syk, it directly inhibited the tyrosine kinase activity in vitro. Moreover, oral administration of OC inhibited the IgE-induced PSA reaction in a dose-dependent manner. Taken together, the present study provides new insights into the anti-allergic activity of OC, which could be a promising candidate for allergic therapy.
Collapse
Affiliation(s)
- Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Seidel EJ, Rother M, Regenspurger K, Rother I. A randomised trial comparing the efficacy and safety of topical ketoprofen in Transfersome® gel (IDEA-033) with oral ketoprofen and drug-free ultra-deformable Sequessome™ vesicles (TDT 064) for the treatment of muscle soreness following exercise. J Sports Sci 2015; 34:88-95. [DOI: 10.1080/02640414.2015.1035667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Egbert J. Seidel
- Department of Physical and Rehabilitation Medicine, Sophien- and Hufeland-Clinic, Weimar, Germany
| | | | - Katja Regenspurger
- Department of Physical and Rehabilitation Medicine, Sophien- and Hufeland-Clinic, Weimar, Germany
| | | |
Collapse
|
41
|
Oyster N, Witt M, Gharaibeh B, Poddar M, Schneppendahl J, Huard J. Characterization of a compartment syndrome-like injury model. Muscle Nerve 2015; 51:750-8. [PMID: 25242666 DOI: 10.1002/mus.24461] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/23/2014] [Accepted: 09/17/2014] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Acute compartment syndrome (CS) is caused by an elevation of pressure within a muscular compartment that can be caused by numerous factors, including blunt trauma. In this study, we characterized a rodent model of CS-like injury. METHODS Forty male athymic rats received a standardized injury of ischemia and compression to their hindlimbs, while the intracompartmental pressure (ICP) was measured using an implantable transmitter. Tetanic muscle function was evaluated, and histology was performed on the tibialis anterior (TA) muscle. RESULTS ICPs were held at 260.70 ± 2.70 mm Hg during injury. Injured muscles recovered 59% of their total function 4 weeks after injury, and histology showed high levels of edema, inflammation (CD68(+) ), angiogenesis (CD31(+) ), and fibrosis within 72 hours after injury. CONCLUSIONS We describe a novel CS-like injury model and a novel method to measure ICP, which could potentially be used to develop innovative therapies to manage CS injury in patients.
Collapse
Affiliation(s)
- Nick Oyster
- Stem Cell Research Center, University of Pittsburgh, Suite 206, Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania, 15219, USA
| | | | | | | | | | | |
Collapse
|
42
|
Effects of low-level laser therapy on skeletal muscle repair: a systematic review. Am J Phys Med Rehabil 2015; 93:1073-85. [PMID: 25122099 DOI: 10.1097/phm.0000000000000158] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A review of the literature was performed to demonstrate the most current applicability of low-level laser therapy (LLLT) for the treatment of skeletal muscle injuries, addressing different lasers, irradiation parameters, and treatment results in animal models. Searches were performed in the PubMed/MEDLINE, SCOPUS, and SPIE Digital Library databases for studies published from January 2006 to August 2013 on the use of LLLT for the repair of skeletal muscle in any animal model. All selected articles were critically appraised by two independent raters. Seventeen of the 36 original articles on LLLT and muscle injuries met the inclusion criteria and were critically evaluated. The main effects of LLLT were a reduction in the inflammatory process, the modulation of growth factors and myogenic regulatory factors, and increased angiogenesis. The studies analyzed demonstrate the positive effects of LLLT on the muscle repair process, which are dependent on irradiation and treatment parameters. The findings suggest that LLLT is an excellent therapeutic resource for the treatment of skeletal muscle injuries in the short-term.
Collapse
|
43
|
Meng FW, Slivka PF, Dearth CL, Badylak SF. Solubilized extracellular matrix from brain and urinary bladder elicits distinct functional and phenotypic responses in macrophages. Biomaterials 2015; 46:131-40. [PMID: 25678122 DOI: 10.1016/j.biomaterials.2014.12.044] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/10/2014] [Accepted: 12/20/2014] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) derived from a variety of source tissues has been successfully used to facilitate tissue reconstruction. The recent development of solubilized forms of ECM advances the therapeutic potential of these biomaterials. Isolated, soluble components of ECM and matricryptic peptides have been shown to bias macrophages toward a regulatory and constructive (M2-like) phenotype. However, the majority of studies described thus far have utilized anatomically and morphologically similar gastrointestinal derived ECMs (small intestine, esophagus, urinary bladder, etc.) and a small subset of macrophage markers (CD206, CD86, CCR7) to describe them. The present study evaluated the effect of solubilized ECM derived from molecularly diverse source tissues (brain and urinary bladder) upon primary macrophage phenotype and function. Results showed that solubilized urinary bladder ECM (U-ECM) up-regulated macrophage PGE2 secretion and suppressed traditional pro-inflammatory factor secretion, consistent with an M2-like phenotype. The hyaluronic acid (HA) component in solubilized U-ECM played an important role in mediating this response. Brain ECM (B-ECM) elicited a pro-inflammatory (M1-like) macrophage response and contained almost no HA. These findings suggest that the molecular composition of the source tissue ECM plays an important role in influencing macrophage function and phenotype.
Collapse
Affiliation(s)
- Fan Wei Meng
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 PA, USA
| | - Peter F Slivka
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 PA, USA
| | - Christopher L Dearth
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, 15219 PA, USA; DoD-VA Extremity Trauma & Amputation Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219 PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, 15219 PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, 15219 PA, USA.
| |
Collapse
|
44
|
Oak NR, Gumucio JP, Flood MD, Saripalli AL, Davis ME, Harning JA, Lynch EB, Roche SM, Bedi A, Mendias CL. Inhibition of 5-LOX, COX-1, and COX-2 increases tendon healing and reduces muscle fibrosis and lipid accumulation after rotator cuff repair. Am J Sports Med 2014; 42:2860-8. [PMID: 25245131 PMCID: PMC4246014 DOI: 10.1177/0363546514549943] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The repair and restoration of function after chronic rotator cuff tears are often complicated by muscle atrophy, fibrosis, and fatty degeneration of the diseased muscle. The inflammatory response has been implicated in the development of fatty degeneration after cuff injuries. Licofelone is a novel anti-inflammatory drug that inhibits 5-lipoxygenase (5-LOX), as well as cyclooxygenase (COX)-1 and COX-2 enzymes, which play important roles in inducing inflammation after injuries. While previous studies have demonstrated that nonsteroidal anti-inflammatory drugs and selective inhibitors of COX-2 (coxibs) may prevent the proper healing of muscles and tendons, studies about bone and cartilage have demonstrated that drugs that inhibit 5-LOX concurrently with COX-1 and COX-2 may enhance tissue regeneration. HYPOTHESIS After the repair of a chronic rotator cuff tear in rats, licofelone would increase the load to failure of repaired tendons and increase the force production of muscle fibers. STUDY DESIGN Controlled laboratory study. METHODS Rats underwent supraspinatus release followed by repair 28 days later. After repair, rats began a treatment regimen of either licofelone or a vehicle for 14 days, at which time animals were euthanized. Supraspinatus muscles and tendons were then subjected to contractile, mechanical, histological, and biochemical analyses. RESULTS Compared with controls, licofelone-treated rats had a grossly apparent decrease in inflammation and increased fibrocartilage formation at the enthesis, along with a 62% increase in the maximum load to failure and a 51% increase in peak stress to failure. Licofelone resulted in a marked reduction in fibrosis and lipid content in supraspinatus muscles as well as reduced expression of several genes involved in fatty infiltration. Despite the decline in fibrosis and fat accumulation, muscle fiber specific force production was reduced by 23%. CONCLUSION The postoperative treatment of cuff repair with licofelone may reduce fatty degeneration and enhance the development of a stable bone-tendon interface, although decreases in muscle fiber specific force production were observed, and force production in fact declined. CLINICAL RELEVANCE This study demonstrates that the inhibition of 5-LOX, COX-1, and COX-2 modulates the healing process of repaired rotator cuff tendons. Although further studies are necessary, the treatment of patients with licofelone after cuff repair may improve the development of a stable enthesis and enhance postoperative outcomes.
Collapse
Affiliation(s)
- Nikhil R. Oak
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jonathan P. Gumucio
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael D. Flood
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anjali L. Saripalli
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Max E. Davis
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Julie A. Harning
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Evan B. Lynch
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stuart M. Roche
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christopher L. Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Address correspondence to Christopher L. Mendias, PhD, ATC, Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Ml 48109-2200, USA ()
| |
Collapse
|
45
|
Gumucio J, Flood M, Harning J, Phan A, Roche S, Lynch E, Bedi A, Mendias C. T lymphocytes are not required for the development of fatty degeneration after rotator cuff tear. Bone Joint Res 2014; 3:262-72. [PMID: 25185444 PMCID: PMC4220170 DOI: 10.1302/2046-3758.39.2000294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objectives Rotator cuff tears are among the most common and debilitating
upper extremity injuries. Chronic cuff tears result in atrophy and
an infiltration of fat into the muscle, a condition commonly referred
to as ‘fatty degeneration’. While stem cell therapies hold promise
for the treatment of cuff tears, a suitable immunodeficient animal
model that could be used to study human or other xenograft-based
therapies for the treatment of rotator cuff injuries had not previously
been identified. Methods A full-thickness, massive supraspinatus and infraspinatus tear
was induced in adult T-cell deficient rats. We hypothesised that,
compared with controls, 28 days after inducing a tear we would observe
a decrease in muscle force production, an accumulation of type IIB
fibres, and an upregulation in the expression of genes involved
with muscle atrophy, fibrosis and inflammation. Results Chronic cuff tears in nude rats resulted in a 30% to 40% decrease
in muscle mass, a 23% reduction in production of muscle force, and
an induction of genes that regulate atrophy, fibrosis, lipid accumulation,
inflammation and macrophage recruitment. Marked large lipid droplet
accumulation was also present. Conclusions The extent of degenerative changes in nude rats was similar to
what was observed in T-cell competent rats. T cells may not play
an important role in regulating muscle degeneration following chronic
muscle unloading. The general similarities between nude and T-cell
competent rats suggest the nude rat is likely an appropriate preclinical
model for the study of xenografts that have the potential to enhance
the treatment of chronically torn rotator cuff muscles. Cite this article: Bone Joint Res 2014;3:262–72.
Collapse
Affiliation(s)
- J Gumucio
- University of Michigan, Department of Orthopaedic Surgery, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan, 48109-2200, USA
| | - M Flood
- University of Michigan, Department of Orthopaedic Surgery, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan, 48109-2200, USA
| | - J Harning
- University of Michigan, Department of Orthopaedic Surgery, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan, 48109-2200, USA
| | - A Phan
- University of Michigan, Department of Orthopaedic Surgery, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan, 48109-2200, USA
| | - S Roche
- University of Michigan, Department of Orthopaedic Surgery, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan, 48109-2200, USA
| | - E Lynch
- University of Michigan, Department of Orthopaedic Surgery, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan, 48109-2200, USA
| | - A Bedi
- University of Michigan, Department of Orthopaedic Surgery, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan, 48109-2200, USA
| | - C Mendias
- University of Michigan, Department of Orthopaedic Surgery, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan, 48109-2200, USA
| |
Collapse
|
46
|
Derman EW, Schwellnus MP. Pain management in sports medicine: Use and abuse of anti-inflammatory and other agents. S Afr Fam Pract (2004) 2014. [DOI: 10.1080/20786204.2010.10873927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
47
|
Markworth JF, Vella LD, Figueiredo VC, Cameron-Smith D. Ibuprofen treatment blunts early translational signaling responses in human skeletal muscle following resistance exercise. J Appl Physiol (1985) 2014; 117:20-8. [PMID: 24833778 DOI: 10.1152/japplphysiol.01299.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclooxygenase-1 and -2 pathway-derived prostaglandins (PGs) have been implicated in adaptive muscle responses to exercise, but the role of PGs in contraction-induced muscle signaling has not been determined. We investigated the effect of inhibition of cyclooxygenase-1 and -2 activities with the nonsteroidal anti-inflammatory drug ibuprofen on human muscle signaling responses to resistance exercise. Subjects orally ingested 1,200 mg ibuprofen (or placebo control) in three 400-mg doses administered ∼30 min before and ∼6 h and ∼12 h following a bout of unaccustomed resistance exercise (80% one repetition maximum). Muscle biopsies were obtained at rest (preexercise), immediately postexercise (0 h), 3 h postexercise, and at 24 h of recovery. In the placebo (PLA) group, phosphorylation of ERK1/2 (Thr202/Tyr204), ribosomal protein S6 kinase (RSK, Ser380), mitogen-activated kinase 1 (Mnk1, Thr197/202), and p70S6 kinase (p70S6K, Thr421/Ser424) increased at both 0 and 3 h postexercise, with delayed elevation of phospho (p)-p70S6K (Thr389) and p-rpS6 (Ser235/S36 and Ser240/244) at 3 h postexercise. Only p-ERK1/2 (Thr202/Tyr204) remained significantly elevated in the 24-h postexercise biopsy. Ibuprofen treatment prevented sustained elevation of MEK-ERK signaling at 3 h (p-ERK1/2, p-RSK, p-Mnk1, p-p70S6K Thr421/Ser424) and 24 h (p-ERK1/2) postexercise, and this was associated with suppressed phosphorylation of ribosomal protein S6 (Ser235/236 and Ser240/244). Early contraction-induced p-Akt (Ser473) and p-p70S6K (Thr389) were not influenced by ibuprofen, but p-p70S6K (Thr389) remained elevated 24 h postexercise only in those receiving ibuprofen treatment. Early muscle signaling responses to resistance exercise are, in part, ibuprofen sensitive, suggesting that PGs are important signaling molecules during early postexercise recovery.
Collapse
Affiliation(s)
- James F Markworth
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia; and Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Luke D Vella
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia; and
| | | | | |
Collapse
|
48
|
Abstract
The extracellular matrix network of skeletal muscle and tendon connective tissue is primarily composed of collagen and connects the muscle contractile protein to the bones in the human body. The mechanical properties of the connective tissue are important for the effectiveness of which the muscle force is transformed into movement. Periods of unloading and exercise affect the synthesis rate of connective tissue collagen protein, whereas only sparse information exits regarding collagen protein degradation. It is likely, though, that changes in both collagen protein synthesis and degradation are required for remodeling of the connective tissue internal structure that ultimately results in altered mechanical properties of the connective tissue. Both unloading and exercise lead to increased production of growth factors and inflammatory mediators that are involved in connective tissue remodeling. Despite the fact that non-steroidal anti-inflammatory drugs seem to inhibit the healing process of connective tissue and the stimulating effect of exercise on connective tissue protein synthesis, these drugs are often consumed in relation to connective tissue injury and soreness. However, the potential effect of non-steroidal anti-inflammatory drugs on connective tissue needs further investigation.
Collapse
Affiliation(s)
- Kasper Dideriksen
- Department of Orthopaedic Surgery M 81, Bispebjerg Hospital, Institute of Sports Medicine Copenhagen , Copenhagen , Denmark and
| |
Collapse
|
49
|
Novak ML, Weinheimer-Haus EM, Koh TJ. Macrophage activation and skeletal muscle healing following traumatic injury. J Pathol 2014; 232:344-55. [PMID: 24255005 DOI: 10.1002/path.4301] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/29/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022]
Abstract
Following injury to different tissues, macrophages can contribute to both regenerative and fibrotic healing. These seemingly contradictory roles of macrophages may be related to the markedly different phenotypes that macrophages can assume upon exposure to different stimuli. We hypothesized that fibrotic healing after traumatic muscle injury would be dominated by a pro-fibrotic M2a macrophage phenotype, with M1 activation limited to the very early stages of repair. We found that macrophages accumulated in lacerated mouse muscle for at least 21 days, accompanied by limited myofibre regeneration and persistent collagen deposition. However, muscle macrophages did not exhibit either of the canonical M1 or M2a phenotypes, but instead up-regulated both M1- and M2a-associated genes early after injury, followed by down-regulation of most markers examined. Particularly, IL-10 mRNA and protein were markedly elevated in macrophages from 3-day injured muscle. Additionally, though flow cytometry identified distinct subpopulations of macrophages based on high or low expression of TNFα, these subpopulations did not clearly correspond to M1 or M2a phenotypes. Importantly, cell therapy with exogenous M1 macrophages but not non-activated macrophages reduced fibrosis and enhanced muscle fibre regeneration in lacerated muscles. These data indicate that manipulation of macrophage function has potential to improve healing following traumatic injury.
Collapse
Affiliation(s)
- Margaret L Novak
- Department of Kinesiology and Nutrition, University of Illinois at Chicago
| | | | | |
Collapse
|
50
|
Abstract
Acute muscle belly injuries to the semitendinosus, semimembranosus and biceps femoris (the 'hamstring' muscles) remain a common problem in the sporting population. Physiotherapy-led rehabilitation remains the mainstay of treatment, and the physician's input is often minimal. Anecdotally, many different topical, oral and injectable therapies are used around the world in an effort to accelerate the healing of these injuries and to prevent their recurrence. This article reviews the evidence available to support some of the most commonly used medical therapies and the pathophysiological basis for their use. It also presents the evidence behind some of the more promising future treatments for muscle injury, including stem cell therapy, growth factor delivery and potential novel uses of current medication not traditionally used in the musculoskeletal setting.
Collapse
|