1
|
Contreras-Zentella ML, Alatriste-Contreras MG, Suárez-Cuenca JA, Hernández-Muñoz R. Gender effect of glucose, insulin/glucagon ratio, lipids, and nitrogen-metabolites on serum HGF and EGF levels in patients with diabetes type 2. Front Mol Biosci 2024; 11:1362305. [PMID: 38654922 PMCID: PMC11035728 DOI: 10.3389/fmolb.2024.1362305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocyte growth factor (HGF) exhibits potent growth-inducing properties across various tissues, while epidermal growth factor (EGF) acts as a molecular integration point for diverse stimuli. HGF plays a crucial role in hepatic metabolism, tissue repair, and offers protective effects on epithelial and non-epithelial organs, in addition to its involvement in reducing apoptosis and inflammation, underscoring its anti-inflammatory capabilities. The HGF-Met system is instrumental in hepatic metabolism and enhancing insulin sensitivity in animal diabetes models. Similarly, the EGF and its receptor tyrosine kinase family (EGFR) are critical in regulating cell growth, proliferation, migration, and differentiation in both healthy and diseased states, with EGF also contributing to insulin sensitivity. In this observational study, we aimed to identify correlations between serum levels of HGF and EGF, insulin, glucagon, glucose, and primary serum lipids in patients with type 2 diabetes mellitus (DM), taking into account the impact of gender. We noted differences in the management of glucose, insulin, and glucagon between healthy men and women, potentially due to the distinct influences of sexual hormones on the development of type 2 DM. Additionally, metabolites such as glucose, albumin, direct bilirubin, nitrites, and ammonia might influence serum levels of growth factors and hormones. In summary, our results highlight the regulatory role of insulin and glucagon in serum glucose and lipids, along with variations in HGF and EGF levels, which are affected by gender. This link is especially significant in DM, where impaired cell proliferation or repair mechanisms lead to metabolic changes. The gender-based differences in growth factors point to their involvement in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Martha Lucinda Contreras-Zentella
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Gabriela Alatriste-Contreras
- Departamento de Métodos Cuantitativos, División de Estudios Profesionales, Facultad de Economía, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Juan Antonio Suárez-Cuenca
- Departamento de Medicina Interna, Hospital General “Xoco”, Secretaría de Salud (SS), Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
2
|
Kulkarni S, Saha M, Slosberg J, Singh A, Nagaraj S, Becker L, Zhang C, Bukowski A, Wang Z, Liu G, Leser JM, Kumar M, Bakhshi S, Anderson MJ, Lewandoski M, Vincent E, Goff LA, Pasricha PJ. Age-associated changes in lineage composition of the enteric nervous system regulate gut health and disease. eLife 2023; 12:RP88051. [PMID: 38108810 PMCID: PMC10727506 DOI: 10.7554/elife.88051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The enteric nervous system (ENS), a collection of neural cells contained in the wall of the gut, is of fundamental importance to gastrointestinal and systemic health. According to the prevailing paradigm, the ENS arises from progenitor cells migrating from the neural crest and remains largely unchanged thereafter. Here, we show that the lineage composition of maturing ENS changes with time, with a decline in the canonical lineage of neural-crest derived neurons and their replacement by a newly identified lineage of mesoderm-derived neurons. Single cell transcriptomics and immunochemical approaches establish a distinct expression profile of mesoderm-derived neurons. The dynamic balance between the proportions of neurons from these two different lineages in the post-natal gut is dependent on the availability of their respective trophic signals, GDNF-RET and HGF-MET. With increasing age, the mesoderm-derived neurons become the dominant form of neurons in the ENS, a change associated with significant functional effects on intestinal motility which can be reversed by GDNF supplementation. Transcriptomic analyses of human gut tissues show reduced GDNF-RET signaling in patients with intestinal dysmotility which is associated with reduction in neural crest-derived neuronal markers and concomitant increase in transcriptional patterns specific to mesoderm-derived neurons. Normal intestinal function in the adult gastrointestinal tract therefore appears to require an optimal balance between these two distinct lineages within the ENS.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical CenterBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Monalee Saha
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Jared Slosberg
- Department of Genetic Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Alpana Singh
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Sushma Nagaraj
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Laren Becker
- Division of Gastroenterology, Stanford University – School of MedicineStanfordUnited States
| | - Chengxiu Zhang
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Alicia Bukowski
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Zhuolun Wang
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Guosheng Liu
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Jenna M Leser
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Mithra Kumar
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Shriya Bakhshi
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Matthew J Anderson
- Center for Cancer Research, National Cancer InstituteFrederickUnited States
| | - Mark Lewandoski
- Center for Cancer Research, National Cancer InstituteFrederickUnited States
| | - Elizabeth Vincent
- Department of Genetic Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University – School of MedicineBaltimoreUnited States
- Kavli Neurodiscovery Institute, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | | |
Collapse
|
3
|
Sharma S, Behl T, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harassi A, Bungau S, Mostafavi E. Possible Role of Wnt Signaling Pathway in Diabetic Retinopathy. Curr Drug Targets 2022; 23:1372-1380. [PMID: 35232336 DOI: 10.2174/1389450123666220301110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 01/25/2023]
Abstract
The core of impaired vision in working people suffering from insulin-dependent and noninsulin- dependent diabetes mellitus is diabetic retinopathy (DR). The Wnt Protein Ligands family influences various processes; this ensures the cells are able to interact and co-ordinate various mobile functions, including cell growth, division, survival, apoptosis, migration, and cell destiny. The extracellular Wnt signal activates other signals. It is seen that Wnt pathways play an important role in inflammation, oxidative stress, and angiogenesis. It has been illustrated that the canonically preserved Wnt signaling system has a vital role in the homeostasis of adulthood. Developmental disorders in each of these stages will lead to serious eye problems and eventually blindness. There is, therefore, a need to specifically organize and regulate the growth of ocular tissues. In tissue specification and polarities, axonal exhaust, and maintenance of cells, especially in the central nervous system, Wnt/frizzled pathways play an important role. Thus, Wnt route antagonists may act as have been possible therapeutic options in DR by inhibiting aberrant Wnt signals. Elaborative and continued research in this area will help in the advancement of current knowledge in the field of DR, and eventually, this can lead to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Sheetu Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harassi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
López-Bermudo L, Luque-Sierra A, Maya-Miles D, Gallego-Durán R, Ampuero J, Romero-Gómez M, Berná G, Martín F. Contribution of Liver and Pancreatic Islet Crosstalk to β-Cell Function/Dysfunction in the Presence of Fatty Liver. Front Endocrinol (Lausanne) 2022; 13:892672. [PMID: 35651973 PMCID: PMC9148952 DOI: 10.3389/fendo.2022.892672] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-to-tissue crosstalk regulates organ function, according to growing data. This phenomenon is relevant for pancreatic β-cells and the liver, as both tissues are involved in glucose homeostasis and lipid metabolism. The ability to fine-tune regulation and adaptive responses is enabled through communication between pancreatic β-cells and the liver. However, the crosstalk between both tissues changes when metabolic dysregulation is present. Factors and cargo from extracellular vesicles (EVs) released by liver and pancreatic β-cells that reach the circulation form the words of this interaction. The molecules released by the liver are called hepatokines and are usually secreted in response to the metabolic state. When hepatokines reach the pancreatic islets several mechanisms are initiated for their protection or damage. In the case of the crosstalk between pancreatic β-cells and the liver, only one factor has been found to date. This protein, pancreatic derived factor (PANDER) has been proposed as a novel linker between insulin resistance (IR) and type 2 diabetes mellitus (T2D) and could be considered a biomarker for non-alcoholic fatty liver disease (NAFLD) and T2D. Furthermore, the cargo released by EVs, mainly miRNAs, plays a significant role in this crosstalk. A better knowledge of the crosstalk between liver and pancreatic β-cells is essential to understand both diseases and it could lead to better prevention and new therapeutic options.
Collapse
Affiliation(s)
- Lucía López-Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Amparo Luque-Sierra
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
| | - Douglas Maya-Miles
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Gallego-Durán
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Ampuero
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Genoveva Berná
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Franz Martín, ; Genoveva Berná,
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Franz Martín, ; Genoveva Berná,
| |
Collapse
|
5
|
Aggarwal R, Peng Z, Zeng N, Silva J, He L, Chen J, Debebe A, Tu T, Alba M, Chen CY, Stiles EX, Hong H, Stiles BL. Chronic Exposure to Palmitic Acid Down-Regulates AKT in Beta-Cells through Activation of mTOR. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:130-145. [PMID: 34619135 PMCID: PMC8759041 DOI: 10.1016/j.ajpath.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
High circulating lipids occurring in obese individuals and insulin-resistant patients are considered a contributing factor to type 2 diabetes. Exposure to high lipid concentration is proposed to both protect and damage beta-cells under different circumstances. Here, by feeding mice a high-fat diet (HFD) for 2 weeks to up to 14 months, the study showed that HFD initially causes the beta-cells to expand in population, whereas long-term exposure to HFD is associated with failure of beta-cells and the inability of animals to respond to glucose challenge. To prevent the failure of beta-cells and the development of type 2 diabetes, the molecular mechanisms that underlie this biphasic response of beta-cells to lipid exposure were explored. Using palmitic acid (PA) in cultured beta-cells and islets, the study demonstrated that chronic exposure to lipids leads to reduced viability and inhibition of cell cycle progression concurrent with down-regulation of a pro-growth/survival kinase AKT, independent of glucose. This AKT down-regulation by PA is correlated with the induction of mTOR/S6K activity. Inhibiting mTOR activity with rapamycin induced Raptor and restored AKT activity, allowing beta-cells to gain proliferation capacity that was lost after HFD exposure. In summary, a novel mechanism in which lipid exposure may cause the dipole effects on beta-cell growth was elucidated, where mTOR acts as a lipid sensor. These mechanisms can be novel targets for future therapeutic developments.
Collapse
Affiliation(s)
- Richa Aggarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Zhechu Peng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Ni Zeng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Joshua Silva
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Lina He
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Jingyu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Anketse Debebe
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Taojian Tu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Mario Alba
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Chien-Yu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Eileen X. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Handan Hong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Bangyan L. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California,Address correspondence to Bangyan L. Stiles, Ph.D., Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033.
| |
Collapse
|
6
|
Hicks ZM, Yates DT. Going Up Inflame: Reviewing the Underexplored Role of Inflammatory Programming in Stress-Induced Intrauterine Growth Restricted Livestock. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 34825243 PMCID: PMC8612632 DOI: 10.3389/fanim.2021.761421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The impact of intrauterine growth restriction (IUGR) on health in humans is well-recognized. It is the second leading cause of perinatal mortality worldwide, and it is associated with deficits in metabolism and muscle growth that increase lifelong risk for hypertension, obesity, hyperlipidemia, and type 2 diabetes. Comparatively, the barrier that IUGR imposes on livestock production is less recognized by the industry. Meat animals born with low birthweight due to IUGR are beset with greater early death loss, inefficient growth, and reduced carcass merit. These animals exhibit poor feed-to-gain ratios, less lean mass, and greater fat deposition, which increase production costs and decrease value. Ultimately, this reduces the amount of meat produced by each animal and threatens the economic sustainability of livestock industries. Intrauterine growth restriction is most commonly the result of fetal programming responses to placental insufficiency, but the exact mechanisms by which this occurs are not well-understood. In uncompromised pregnancies, inflammatory cytokines are produced at modest rates by placental and fetal tissues and play an important role in fetal development. However, unfavorable intrauterine conditions can cause cytokine activity to be excessive during critical windows of fetal development. Our recent evidence indicates that this impacts developmental programming of muscle growth and metabolism and contributes to the IUGR phenotype. In this review, we outline the role of inflammatory cytokine activity in the development of normal and IUGR phenotypes. We also highlight the contributions of sheep and other animal models in identifying mechanisms for IUGR pathologies.
Collapse
Affiliation(s)
- Zena M Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dustin T Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
7
|
Matsuda E, Obama Y, Kosai KI. Safe and low-dose but therapeutically effective adenovirus-mediated hepatocyte growth factor gene therapy for type 1 diabetes in mice. Life Sci 2021; 268:119014. [PMID: 33412216 DOI: 10.1016/j.lfs.2020.119014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022]
Abstract
AIMS Hepatocyte growth factor (HGF) is a multifunctional cytokine that plays important roles in pancreatic physiology. Approvals of gene therapy drugs have highlighted gene therapy as an innovative new drug modality, but the very recent reports of deaths in clinical trials have provided a warning that high-dose gene therapy can cause dangerous liver toxicity. The present study aimed to develop a safe and low-dose but therapeutically effective adenovirus-mediated HGF gene therapy for streptozotocin (STZ)-induced type 1 diabetes (T1D) in mice. MAIN METHODS A single intravenous injection of a low dose (3 × 108 plaque forming units) of adenoviral vector expressing the HGF gene under the transcriptional control of a strong promoter, i.e., the cytomegalovirus immediate-early enhancer and a modified chicken β-actin promoter (Ad.CA-HGF), was given to T1D mice. KEY FINDINGS Low-dose HGF gene therapy significantly attenuated the elevation of blood glucose concentrations at the acute phase of T1D, and this effect persisted for several weeks. Temporal upregulation of plasma insulin at the acute phase was maintained at a normal level in Ad.CA-HGF-treated mice, suggesting that the therapeutic mechanism may involve protection of the remaining β-cells by HGF. Liver enzymes in plasma were not elevated in any of the mice, including the Ad.CA-HGF-treated animals, all of which looked healthy, suggesting the absence of lethal adverse effects observed in patients receiving high intravenous doses of viral vectors. SIGNIFICANCE A low dose of intravenous Ad-mediated HGF gene therapy is clinically feasible and safe, and thus represents a new therapeutic strategy for treating T1D.
Collapse
Affiliation(s)
- Eriko Matsuda
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Yuki Obama
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Ken-Ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan; Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan; South Kyushu Center for Innovative Medical Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan; Translational Research Center, Kagoshima University Hospital, Kagoshima 890-8544, Japan.
| |
Collapse
|
8
|
Nalbach L, Roma LP, Schmitt BM, Becker V, Körbel C, Wrublewsky S, Pack M, Später T, Metzger W, Menger MM, Frueh FS, Götz C, Lin H, EM Fox J, MacDonald PE, Menger MD, Laschke MW, Ampofo E. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol Med 2021; 13:e12616. [PMID: 33135383 PMCID: PMC7799357 DOI: 10.15252/emmm.202012616] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic islet transplantation still represents a promising therapeutic strategy for curative treatment of type 1 diabetes mellitus. However, a limited number of organ donors and insufficient vascularization with islet engraftment failure restrict the successful transfer of this approach into clinical practice. To overcome these problems, we herein introduce a novel strategy for the generation of prevascularized islet organoids by the fusion of pancreatic islet cells with functional native microvessels. These insulin-secreting organoids exhibit a significantly higher angiogenic activity compared to freshly isolated islets, cultured islets, and non-prevascularized islet organoids. This is caused by paracrine signaling between the β-cells and the microvessels, mediated by insulin binding to its corresponding receptor on endothelial cells. In vivo, the prevascularized islet organoids are rapidly blood-perfused after transplantation by the interconnection of their autochthonous microvasculature with surrounding blood vessels. As a consequence, a lower number of islet grafts are required to restore normoglycemia in diabetic mice. Thus, prevascularized islet organoids may be used to improve the success rates of clinical islet transplantation.
Collapse
Affiliation(s)
- Lisa Nalbach
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Leticia P Roma
- Biophysics DepartmentCenter for Human and Molecular BiologySaarland UniversityHomburg/SaarGermany
| | - Beate M Schmitt
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Vivien Becker
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Christina Körbel
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Mandy Pack
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Thomas Später
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive SurgerySaarland UniversityHomburgGermany
| | - Maximilian M Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
- Departement of Trauma and Reconstructive SurgeryEberhar Karls University TuebingenTuebingenGermany
| | - Florian S Frueh
- Division of Plastic Surgery and Hand SurgeryUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Claudia Götz
- Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
| | - Haopeng Lin
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Joseline EM Fox
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Patrick E MacDonald
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Michael D Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Matthias W Laschke
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| |
Collapse
|
9
|
HGF/c-Met Signalling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:31-44. [PMID: 33123991 DOI: 10.1007/978-3-030-47189-7_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, it has become clearer that tumor plasticity increases the chance that cancer cells could acquire new mechanisms to escape immune surveillance, become resistant to conventional drugs, and spread to distant sites.Effectively, tumor plasticity drives adaptive response of cancer cells to hypoxia and nutrient deprivation leading to stimulation of neoangionesis or tumor escape. Therefore, tumor plasticity is believed to be a great contributor in recurrence and metastatic dissemination of cancer cells. Importantly, it could be an Achilles' heel of cancer if we could identify molecular mechanisms dictating this phenotype.The reactivation of stem-like signalling pathways is considered a great determinant of tumor plasticity; in addition, a key role has been also attributed to tumor microenvironment (TME). Indeed, it has been proved that cancer cells interact with different cells in the surrounding extracellular matrix (ECM). Interestingly, well-established communication represents a potential allied in maintenance of a plastic phenotype in cancer cells supporting tumor growth and spread. An important signalling pathway mediating cancer cell-TME crosstalk is represented by the HGF/c-Met signalling.Here, we review the role of the HGF/c-Met signalling in tumor-stroma crosstalk focusing on novel findings underlying its role in tumor plasticity, immune escape, and development of adaptive mechanisms.
Collapse
|
10
|
Boehmer BH, Wesolowski SR, Brown LD, Rozance PJ. Chronic Fetal Leucine Infusion Does Not Potentiate Glucose-Stimulated Insulin Secretion or Affect Pancreatic Islet Development in Late-Gestation Growth-Restricted Fetal Sheep. J Nutr 2020; 151:312-319. [PMID: 33326574 PMCID: PMC7850025 DOI: 10.1093/jn/nxaa357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Growth-restricted fetuses have attenuated glucose-stimulated insulin secretion (GSIS), smaller pancreatic islets, less pancreatic β-cells, and less pancreatic vascularization compared with normally growing fetuses. Infusion of leucine into normal late-gestation fetal sheep potentiates GSIS, as well as increases pancreatic islet size, the proportion of the pancreas and islet comprising β-cells, and pancreatic and islet vascularity. In addition, leucine stimulates hepatocyte growth factor (HGF ) mRNA expression in islet endothelial cells isolated from normal fetal sheep. OBJECTIVE We hypothesized that a 9-d leucine infusion would potentiate GSIS and increase pancreatic islet size, β-cells, and vascularity in intrauterine fetal growth restriction (IUGR) fetal sheep. We also hypothesized that leucine would stimulate HGF mRNA in islet endothelial cells isolated from IUGR fetal sheep. METHODS Late-gestation Columbia-Rambouillet IUGR fetal sheep (singleton or twin) underwent surgeries to place vascular sampling and infusion catheters. Fetuses were randomly allocated to receive a 9-d leucine infusion to achieve a 50-100% increase in leucine concentrations or a control saline infusion. GSIS was measured and pancreas tissue was processed for histologic analysis. Pancreatic islet endothelial cells were isolated from IUGR fetal sheep and incubated with supplemental leucine. Data were analyzed by mixed-models ANOVA; Student, Mann-Whitney, or a paired t test; or a test of equality of proportions. RESULTS Chronic leucine infusion in IUGR fetuses did not affect GSIS, islet size, the proportion of the pancreas comprising β-cells, or pancreatic or pancreatic islet vascularity. In isolated islet endothelial cells from IUGR fetuses, HGF mRNA expression was not affected by supplemental leucine. CONCLUSIONS IUGR fetal sheep islets are not responsive to a 9-d leucine infusion with respect to insulin secretion or any histologic features measured. This is in contrast to the response in normally growing fetuses. These results are important when considering nutritional strategies to prevent the adverse islet and β-cell consequences in IUGR fetuses.
Collapse
Affiliation(s)
- Brit H Boehmer
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, CO, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, CO, USA
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, CO, USA
| | | |
Collapse
|
11
|
Qiang J, Tao F, Bao W, He J, Li X, Chen J, Xu P. Responses of functional miRNA-mRNA regulatory modules to a high-fat diet in the liver of hybrid yellow catfish (Pelteobagrus fulvidraco × P. vachelli). Genomics 2020; 113:1207-1220. [PMID: 33309769 DOI: 10.1016/j.ygeno.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 12/06/2020] [Indexed: 01/28/2023]
Abstract
Fatty liver disease is common in cultured yellow catfish as a result of high fat contents in feeds. However, little is known about the mechanism by which the excessive deposition of liver fat causes fatty liver disease. Hybrid yellow catfish (Pelteobagrus fulvidraco♀ × P. vachelli♂) were fed a high-fat diet (HFD) or a normal-fat diet (NFD) for 60 days. Compared with the NFD group, the HFD group showed lower growth performance, higher hepatosomatic and viscerosomatic indexes, increased hepatic triglyceride and cholesterol contents, and more and larger lipid droplets in liver tissue. Whole transcriptome mRNA libraries and microRNA libraries from fish in the NFD and HFD groups were constructed by high-throughput sequencing. Twelve miRNAs were differentially expressed (DE) between the HFD and NFD groups. Seven negatively correlated DE miRNA-DE mRNA pairs were selected, and the expression patterns of both were confirmed using qRT-PCR. Hybrid yellow catfish showed mediated oxidative degradation of liver glucose and fatty acid peroxidation, regulation of antioxidant enzyme activity, and various immune and inflammatory responses to fat deposition and stress. These findings have important biological significance for protecting the liver against stress, as well as economic significance for establishing healthy aquaculture conditions.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Fanyi Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Wenjin Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Xiahong Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Jude Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
12
|
Yang SY, Yang KC, Sumi S. Prevascularization-free Primary Subcutaneous Transplantation of Xenogeneic Islets Coencapsulated With Hepatocyte Growth Factor. Transplant Direct 2020; 6:e620. [PMID: 33134496 PMCID: PMC7587419 DOI: 10.1097/txd.0000000000001078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023] Open
Abstract
Subcutaneous pouch is a potential site for islet transplantation. However, insufficient oxygen supply remains challenging. Pretreatment of neovascularization using basic fibroblast growth factor can solve this, but it needs 2× operations. We developed a device that contains rat islets in chitosan gel packed in a bag made of highly biocompatible ethylene vinyl alcohol copolymer porous membrane. This study investigated whether coencapsulation of hepatocyte growth factor (HGF) with islets in the device enables novel method of prevascularization-free primary subcutaneous transplantation. METHODS In vitro experiments examined slow release of HGF from the chitosan gel and islet-protection effect of HGF against hypoxia. In the latter, rat islets with/without HGF (200 ng/mL) was cultured in 1% oxygen. In in vivo experiment, fabricated device with/without HGF (10 μg/device) containing rat islets was primarily transplanted to streptozotocin-induced diabetic mice subcutaneously. RESULTS In vitro experiments showed sustained release of HGF for 28 d and alleviating effect of HGF on cell death and glucose-responsive insulin release after hypoxic culture. Islet + HGF mice, but not islet-alone mice, showed decreased nonfasting blood glucose and regained body weight after transplantation. In intraperitoneal glucose tolerance test, islet + HGF mice exhibited decreased fasting blood glucose (200 ± 55 mg/dL) and good blood glucose disappearance rate (K value) (0.817 ± 0.101) comparing to normal mice (123 ± 28 mg/dL and 1.074 ± 0.374, respectively). However, in islet-alone mice, fasting blood glucose was high (365 ± 172 mg/dL) and K value was indeterminable. Serum insulin in islet + HGF mice (1.58 ± 0.94 μg/L) was close to normal mice (1.66 ± 0.55 μg/L), whereas those in islet-alone mice (0.279 ± 0.076 μg/L) and diabetic mice (0.165 ± 0.079 μg/L) were low. Immunohistochemical examination showed intact insulin- and glucagon-positive islets in retrieved devices with HGF, but no intact islet was found in the device without HGF. CONCLUSIONS HGF could enhance islet survival in hypoxia and enhance in vivo function of encapsulated islets after primary subcutaneous transplantation.
Collapse
Affiliation(s)
- Sin-Yu Yang
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kai-Chiang Yang
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Sato H, Imamura R, Suga H, Matsumoto K, Sakai K. Cyclic Peptide-Based Biologics Regulating HGF-MET. Int J Mol Sci 2020; 21:ijms21217977. [PMID: 33121208 PMCID: PMC7662982 DOI: 10.3390/ijms21217977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Using a random non-standard peptide integrated discovery system, we obtained cyclic peptides that bind to hepatocyte growth factor (HGF) or mesenchymal-epithelial transition factor. (MET) HGF-inhibitory peptide-8 (HiP-8) selectively bound to two-chain active HGF, but not to single-chain precursor HGF. HGF showed a dynamic change in its molecular shape in atomic force microscopy, but HiP-8 inhibited dynamic change in the molecular shape into a static status. The inhibition of the molecular dynamics of HGF by HiP-8 was associated with the loss of the ability to bind MET. HiP-8 could selectively detect active HGF in cancer tissues, and active HGF probed by HiP-8 showed co-localization with activated MET. Using HiP-8, cancer tissues with active HGF could be detected by positron emission tomography. HiP-8 seems to be applicable for the diagnosis and treatment of cancers. In contrast, based on the receptor dimerization as an essential process for activation, the cross-linking of the cyclic peptides that bind to the extracellular region of MET successfully generated an artificial ligand to MET. The synthetic MET agonists activated MET and exhibited biological activities which were indistinguishable from the effects of HGF. MET agonists composed of cyclic peptides can be manufactured by chemical synthesis but not recombinant protein expression, and thus are expected to be new biologics that are applicable to therapeutics and regenerative medicine.
Collapse
Affiliation(s)
- Hiroki Sato
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Correspondence:
| |
Collapse
|
14
|
Boehmer BH, Brown LD, Wesolowski SR, Hay WW, Rozance PJ. A Chronic Fetal Leucine Infusion Potentiates Fetal Insulin Secretion and Increases Pancreatic Islet Size, Vascularity, and β Cells in Late-Gestation Sheep. J Nutr 2020; 150:2061-2069. [PMID: 32470982 PMCID: PMC7398779 DOI: 10.1093/jn/nxaa138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Infusion of a complete amino acid mixture into normal late-gestation fetal sheep potentiates glucose-stimulated insulin secretion (GSIS). Leucine acutely stimulates insulin secretion in late-gestation fetal sheep and isolated fetal sheep islets in vitro. OBJECTIVES We hypothesized that a 9-d leucine infusion would potentiate GSIS in fetal sheep. METHODS Columbia-Rambouillet fetal sheep at 126 days of gestation received a 9-d leucine infusion to achieve a 50%-100% increase in leucine concentrations or a control infusion. At the end of the infusion we measured GSIS, pancreatic morphology, and expression of pancreatic mRNAs. Pancreatic islet endothelial cells (ECs) were isolated from fetal sheep and incubated with supplemental leucine or vascular endothelial growth factor A (VEGFA) followed by collection of mRNA. Data measured at multiple time points were compared with a repeated-measures 2-factor ANOVA. Data measured at 1 time point were compared using Student's t test or the Mann-Whitney test. RESULTS Glucose-stimulated insulin concentrations were 80% higher in leucine-infused (LEU) fetuses than in controls (P < 0.05). In the pancreas, LEU fetuses had a higher proportion of islets >5000 μm2 than controls (75% more islets >5000 μm2; P < 0.05) and a larger proportion of the pancreas that stained for β cells (12% greater; P < 0.05). Pancreatic and pancreatic islet vascularity were both 25% greater in LEU fetuses (P < 0.05). Pancreatic VEGFA and hepatocyte growth factor (HGF) mRNA expressions were 38% and 200% greater in LEU fetuses than in controls (P < 0.05), respectively. In isolated islet ECs, HGF mRNA was 20% and 50% higher after incubation in supplemental leucine (P < 0.05) or VEGFA (P < 0.01), respectively. CONCLUSIONS A 9-d leucine infusion potentiates fetal GSIS, demonstrating that glucose and leucine act synergistically to stimulate insulin secretion in fetal sheep. A greater proportion of the pancreas being comprised of β cells and higher pancreatic vascularity contributed to the higher GSIS.
Collapse
Affiliation(s)
- Brit H Boehmer
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Address correspondence to PJR (e-mail: )
| |
Collapse
|
15
|
Abstract
Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.
Collapse
Affiliation(s)
- Xinchun Pi
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Liang Xie
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock (C.P.)
| |
Collapse
|
16
|
Townsend SE, Gannon M. Extracellular Matrix-Associated Factors Play Critical Roles in Regulating Pancreatic β-Cell Proliferation and Survival. Endocrinology 2019; 160:1885-1894. [PMID: 31271410 PMCID: PMC6656423 DOI: 10.1210/en.2019-00206] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes formation of the islet basement membrane and the function of extracellular matrix (ECM) components in β-cell proliferation and survival. Implications for islet transplantation are discussed. The insulin-producing β-cell is key for maintaining glucose homeostasis. The islet microenvironment greatly influences β-cell survival and proliferation. Within the islet, β-cells contact the ECM, which is deposited primarily by intraislet endothelial cells, and this interaction has been shown to modulate proliferation and survival. ECM-localized growth factors, such as vascular endothelial growth factor and cellular communication network 2, signal through specific receptors and integrins on the β-cell surface. Further understanding of how the ECM functions to influence β-cell proliferation and survival will provide targets for enhancing functional β-cell mass for the treatment of diabetes.
Collapse
Affiliation(s)
- Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Correspondence: Maureen Gannon, PhD, Vanderbilt University Medical Center, 2213 Garland Avenue, MRB IV 7465, Nashville, Tennessee 37232. E-mail:
| |
Collapse
|
17
|
Jing Y, Sun Q, Xiong X, Meng R, Tang S, Cao S, Bi Y, Zhu D. Hepatocyte growth factor alleviates hepatic insulin resistance and lipid accumulation in high-fat diet-fed mice. J Diabetes Investig 2019; 10:251-260. [PMID: 30070033 PMCID: PMC6400203 DOI: 10.1111/jdi.12904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 01/06/2023] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is frequently accompanied by fatty liver disease. Lipid accumulation within the liver is considered as one of the risk factors for insulin resistance. Hepatocyte growth factor (HGF) is used to treat liver dysfunction; however, the effect and mechanism of HGF on hepatic lipid metabolism are still not fully understood. MATERIALS AND METHODS Male C57BL/6 mice were induced with a high-fat diet for 12 weeks, followed by a 4-week treatment of HGF or vehicle saline. The levels of fasting blood glucose, fasting insulin and homeostatic model assessment of insulin resistance were calculated for insulin sensitivity. Biochemical plasma parameters were also measured to assess the effect of HGF on lipid accumulation. Additionally, genes in the lipid metabolism pathway were evaluated in palmitic acid-treated HepG2 cells and high-fat diet mice. RESULTS HGF treatment significantly decreased the levels of fasting blood glucose, hepatic triglyceride and cholesterol contents. Additionally, HGF-regulated expression levels of sterol regulatory element-binding protein-1c/fatty acid synthase, peroxidase proliferator-activated receptor-α, and upstream nuclear receptors, such as farnesoid X receptor and small heterodimer partner. Furthermore, c-Met inhibitor could partially reverse the effects of HGF. CONCLUSIONS HGF treatment can ameliorate hepatic insulin resistance and steatosis through regulation of lipid metabolism. These effects might occur through farnesoid X receptor-small heterodimer partner axis-dependent transcriptional activity.
Collapse
Affiliation(s)
- Yali Jing
- Department of EndocrinologyDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingChina
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Qingmin Sun
- Department of PharmacyThe Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Xiaolu Xiong
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Ran Meng
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Sunyinyan Tang
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Shu Cao
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Yan Bi
- Department of EndocrinologyDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingChina
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| | - Dalong Zhu
- Department of EndocrinologyDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingChina
- Department of EndocrinologyDrum Tower HospitalAffiliated to Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
18
|
Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr Top Dev Biol 2019; 132:221-256. [DOI: 10.1016/bs.ctdb.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Palestino-Dominguez M, Pelaez-Luna M, Lazzarini-Lechuga R, Rodriguez-Ochoa I, Souza V, Miranda RU, Perez-Aguilar B, Bucio L, Marquardt JU, Gomez-Quiroz LE, Gutierrez-Ruiz MC. Recombinant human hepatocyte growth factor provides protective effects in cerulein-induced acute pancreatitis in mice. J Cell Physiol 2018; 233:9354-9364. [PMID: 29341114 DOI: 10.1002/jcp.26444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 12/26/2022]
Abstract
Acute pancreatitis is a multifactorial disease associated with profound changes of the pancreas induced by release of digestive enzymes that lead to increase in proinflammatory cytokine production, excessive tissue necrosis, edema, and bleeding. Elevated levels of hepatocyte growth factor (HGF) and its receptor c-Met have been observed in different chronic and acute pancreatic diseases including experimental models of acute pancreatitis. In the present study, we investigated the protective effects induced by the recombinant human HGF in a mouse model of cerulein-induced acute pancreatitis. Pancreatitis was induced by 8 hourly administrations of supramaximal cerulein injections (50 µg/kg, ip). HGF treatment (20 µg/kg, iv), significantly attenuated lipase content and amylase activity in serum as well as the degree inflammation and edema overall leading to less severe histologic changes such as necrosis, induced by cerulein. Protective effects of HGF were associated with activation of pro-survival pathways such as Akt, Erk1/2, and Nrf2 and increase in executor survival-related proteins and decrease in pro-apoptotic proteins. In addition, ROS content and lipid peroxidation were diminished, and glutathione synthesis increased in pancreas. Systemic protection was observed by lung histology. In conclusion, our data indicate that HGF exerts an Nrf2 and glutathione-mediated protective effect on acute pancreatitis reflected by a reduction in inflammation, edema, and oxidative stress.
Collapse
Affiliation(s)
- Mayrel Palestino-Dominguez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Mario Pelaez-Luna
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Roberto Lazzarini-Lechuga
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Ignacio Rodriguez-Ochoa
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Veronica Souza
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas UNAM/ Instituto nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Roxana U Miranda
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas UNAM/ Instituto nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Benjamín Perez-Aguilar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Leticia Bucio
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas UNAM/ Instituto nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Jens U Marquardt
- 1st Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Mainz, Germany
| | - Luis Enrique Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas UNAM/ Instituto nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Maria Concepcion Gutierrez-Ruiz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas UNAM/ Instituto nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| |
Collapse
|
20
|
Oliveira AG, Araújo TG, Carvalho BDM, Rocha GZ, Santos A, Saad MJA. The Role of Hepatocyte Growth Factor (HGF) in Insulin Resistance and Diabetes. Front Endocrinol (Lausanne) 2018; 9:503. [PMID: 30214428 PMCID: PMC6125308 DOI: 10.3389/fendo.2018.00503] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
In obesity, insulin resistance (IR) and diabetes, there are proteins and hormones that may lead to the discovery of promising biomarkers and treatments for these metabolic disorders. For example, these molecules may impair the insulin signaling pathway or provide protection against IR. Thus, identifying proteins that are upregulated in IR states is relevant to the diagnosis and treatment of the associated disorders. It is becoming clear that hepatocyte growth factor (HGF) is an important component of the pathophysiology of IR, with increased levels in most common IR conditions, including obesity. HGF has a role in the metabolic flux of glucose in different insulin sensitive cell types; plays a key role in β-cell homeostasis; and is capable of modulating the inflammatory response. In this review, we discuss how, and to what extent HGF contributes to IR and diabetes pathophysiology, as well as its role in cancer which is more prevalent in obesity and diabetes. Based on the current literature and knowledge, it is clear that HGF plays a central role in these metabolic disorders. Thus, HGF levels could be employed as a biomarker for disease status/progression, and HGF/c-Met signaling pathway modulators could effectively regulate IR and treat diabetes.
Collapse
Affiliation(s)
- Alexandre G. Oliveira
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
- *Correspondence: Alexandre G. Oliveira
| | - Tiago G. Araújo
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Bruno de Melo Carvalho
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Mario J. A. Saad
| |
Collapse
|
21
|
Kato T. Biological roles of hepatocyte growth factor-Met signaling from genetically modified animals. Biomed Rep 2017; 7:495-503. [PMID: 29188052 DOI: 10.3892/br.2017.1001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/26/2017] [Indexed: 12/29/2022] Open
Abstract
Hepatocyte growth factor (HGF) is produced by stromal and mesenchymal cells, and it stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its cognate receptor, Met. The HGF-Met signaling pathway contributes in a paracrine manner to the development of epithelial organs, exerts regenerative effects on the epithelium, and promotes the regression of fibrosis in numerous organs. Additionally, the HGF-Met signaling pathway is correlated with the biology of cancer types, neurons and immunity. In vivo analyses using genetic modification have markedly increased the profound understanding of the HGF-Met system in basic biology and its clinical applications. HGF and Met knockout (KO) mice are embryonically lethal. Therefore, amino acids in multifunctional docking sites of Met have been exchanged with specific binding motifs for downstream adaptor molecules in order to investigate the signaling potential of the HGF-Met signaling pathway. Conditional Met KO mice were generated using Cre-loxP methodology and characterization of these mice indicated that the HGF-Met signaling pathway is essential in regeneration, protection, and homeostasis in various tissue types and cells. Furthermore, the results of studies using HGF-overexpressing mice have indicated the therapeutic potential of HGF for various types of disease and injury. In the present review, the phenotypes of Met gene-modified mice are summarized.
Collapse
Affiliation(s)
- Takashi Kato
- Urologic Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Chitosan-assisted differentiation of porcine adipose tissue-derived stem cells into glucose-responsive insulin-secreting clusters. PLoS One 2017; 12:e0172922. [PMID: 28253305 PMCID: PMC5333835 DOI: 10.1371/journal.pone.0172922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/11/2017] [Indexed: 12/25/2022] Open
Abstract
The unique advantage of easy access and abundance make the adipose-derived stem cells (ADSCs) a promising system of multipotent cells for transplantation and regenerative medicine. Among the available sources, porcine ADSCs (pADSCs) deserve especial attention due to the close resemblance of human and porcine physiology, as well as for the upcoming availability of humanized porcine models. Here, we report on the isolation and conversion of pADSCs into glucose-responsive insulin-secreting cells. We used the stromal-vascular fraction of the dorsal subcutaneous adipose from 9-day-old male piglets to isolate pADSCs, and subjected the cells to an induction scheme for differentiation on chitosan-coated plates. This one-step procedure promoted differentiation of pADSCs into pancreatic islet-like clusters (PILC) that are characterized by the expression of a repertoire of pancreatic proteins, including pancreatic and duodenal homeobox (Pdx-1), insulin gene enhancer protein (ISL-1) and insulin. Upon glucose challenge, these PILC secreted high amounts of insulin in a dose-dependent manner. Our data also suggest that chitosan plays roles not only to enhance the differentiation potential of pADSCs, but also to increase the glucose responsiveness of PILCs. Our novel approach is, therefore, of great potential for transplantation-based amelioration of type 1 diabetes.
Collapse
|
23
|
Imamura R, Matsumoto K. Hepatocyte growth factor in physiology and infectious diseases. Cytokine 2017; 98:97-106. [PMID: 28094206 DOI: 10.1016/j.cyto.2016.12.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 01/14/2023]
Abstract
Hepatocyte growth factor (HGF) is a pleiotropic cytokine composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. The receptor for HGF was identified as the c-met proto-oncogene product of transmembrane receptor tyrosine kinase. HGF-induced signaling through the receptor Met provokes dynamic biological responses that support morphogenesis, regeneration, and the survival of various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Characterization of tissue-specific Met knockout mice has further indicated that the HGF-Met system modulates immune cell functions and also plays an inhibitory role in the progression of chronic inflammation and fibrosis. However, the biological actions that are driven by the HGF-Met pathway all play a role in the acquisition of the malignant characteristics in tumor cells, such as invasion, metastasis, and drug resistance in the tumor microenvironment. Even though oncogenic Met signaling remains the major research focus, the HGF-Met axis has also been implicated in infectious diseases. Many pathogens try to utilize host HGF-Met system to establish comfortable environment for infection. Their strategies are not only simply change the expression level of HGF or Met, but also actively hijack HGF-Met system and deregulating Met signaling using their pathogenic factors. Consequently, the monitoring of HGF and Met expression, along with real-time detection of Met activation, can be a beneficial biomarker of these infectious diseases. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. Likewise, manipulating the HGF-Met system with complete control will lead to a tailor made treatment for those infectious diseases.
Collapse
Affiliation(s)
- Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
24
|
Rozance PJ, Hay WW. Pancreatic islet hepatocyte growth factor and vascular endothelial growth factor A signaling in growth restricted fetuses. Mol Cell Endocrinol 2016; 435:78-84. [PMID: 26820125 PMCID: PMC4959995 DOI: 10.1016/j.mce.2016.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 12/31/2022]
Abstract
Placental insufficiency leads to intrauterine growth restriction (IUGR) and a lifelong risk of developing type 2 diabetes. Impaired islet development in the growth restricted fetus, including decreased β-cell replication, mass, and insulin secretion, is strongly implicated in the pathogenesis of later life type 2 diabetes. Currently, standard medical management of a woman with a pregnancy complicated by placental insufficiency and fetal IUGR is increased fetal surveillance and indicated preterm delivery. This leads to the dual complications of IUGR and preterm birth - both of which may increase the lifelong risk for type 2 diabetes. In order to develop therapeutic interventions in IUGR pregnancies complicated by placental insufficiency and decrease the risk of later development of type 2 diabetes in the offspring, the mechanisms responsible for impaired islet development in these cases must be determined. This review focuses on current investigations testing the hypothesis that decreased nutrient supply to the IUGR fetus inhibits an intra-islet hepatocyte growth factor - vascular endothelial growth factor A (HGF - VEGFA) feed forward signaling pathway and that this is responsible for developmental islet defects.
Collapse
Affiliation(s)
- Paul J Rozance
- Perinatal Research Center, University of Colorado Denver School of Medicine, Department of Pediatrics, USA.
| | - William W Hay
- Perinatal Research Center, University of Colorado Denver School of Medicine, Department of Pediatrics, USA
| |
Collapse
|
25
|
The MET Receptor Tyrosine Kinase Confers Repair of Murine Pancreatic Acinar Cells following Acute and Chronic Injury. PLoS One 2016; 11:e0165485. [PMID: 27798657 PMCID: PMC5087859 DOI: 10.1371/journal.pone.0165485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/12/2016] [Indexed: 01/07/2023] Open
Abstract
Acinar cells represent the primary target in necroinflammatory diseases of the pancreas, including pancreatitis. The signaling pathways guiding acinar cell repair and regeneration following injury remain poorly understood. The purpose of this study was to determine the importance of Hepatocyte Growth Factor Receptor/MET signaling as an intrinsic repair mechanism for acinar cells following acute damage and chronic alcohol-associated injury. Here, we generated mice with targeted deletion of MET in adult acinar cells (MET-/-). Acute and repetitive pancreatic injury was induced in MET-/- and control mice with cerulein, and chronic injury by feeding mice Lieber-DeCarli diets containing alcohol with or without enhancement of repetitive pancreatic injury. We examined the exocrine pancreas of these mice histologically for acinar death, edema, inflammation and collagen deposition and changes in the transcriptional program. We show that MET expression is relatively low in normal adult pancreas. However, MET levels were elevated in ductal and acinar cells in human pancreatitis specimens, consistent with a role for MET in an adaptive repair mechanism. We report that genetic deletion of MET in adult murine acinar cells was linked to increased acinar cell death, chronic inflammation and delayed recovery (regeneration) of pancreatic exocrine tissue. Notably, increased pancreatic collagen deposition was detected in MET knockout mice following repetitive injury as well alcohol-associated injury. Finally, we identified specific alterations of the pancreatic transcriptome associated with MET signaling during injury, involved in tissue repair, inflammation and endoplasmic reticulum stress. Together, these data demonstrate the importance of MET signaling for acinar repair and regeneration, a novel finding that could attenuate the symptomology of pancreatic injury.
Collapse
|
26
|
Zhou Y, Hu Q, Chen F, Zhang J, Guo J, Wang H, Gu J, Ma L, Ho G. Human umbilical cord matrix-derived stem cells exert trophic effects on β-cell survival in diabetic rats and isolated islets. Dis Model Mech 2015; 8:1625-33. [PMID: 26398949 PMCID: PMC4728317 DOI: 10.1242/dmm.021857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human umbilical cord matrix-derived stem cells (uMSCs), owing to their cellular and procurement advantages compared with mesenchymal stem cells derived from other tissue sources, are in clinical trials to treat type 1 (T1D) and type 2 diabetes (T2D). However, the therapeutic basis remains to be fully understood. The immunomodulatory property of uMSCs could explain the use in treating T1D; however, the mere immune modulation might not be sufficient to support the use in T2D. We thus tested whether uMSCs could exert direct trophic effects on β-cells. Infusion of uMSCs into chemically induced diabetic rats prevented hyperglycemic progression with a parallel preservation of islet size and cellularity, demonstrating the protective effect of uMSCs on β-cells. Mechanistic analyses revealed that uMSCs engrafted long-term in the injured pancreas and the engraftment markedly activated the pancreatic PI3K pathway and its downstream anti-apoptotic machinery. The pro-survival pathway activation was associated with the expression and secretion of β-cell growth factors by uMSCs, among which insulin-like growth factor 1 (IGF1) was highly abundant. To establish the causal relationship between the uMSC-secreted factors and β-cell survival, isolated rat islets were co-cultured with uMSCs in the transwell system. Co-culturing improved the islet viability and insulin secretion. Furthermore, reduction of uMSC-secreted IGF1 via siRNA knockdown diminished the protective effects on islets in the co-culture. Thus, our data support a model whereby uMSCs exert trophic effects on islets by secreting β-cell growth factors such as IGF1. The study reveals a novel therapeutic role of uMSCs and suggests that multiple mechanisms are employed by uMSCs to treat diabetes.
Collapse
Affiliation(s)
- Yunting Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Qi Hu
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Fuyi Chen
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Juan Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jincheng Guo
- Department of Molecular Pathology, Shantou University Medical College, Shantou 515041, China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jiang Gu
- Department of Molecular Pathology, Shantou University Medical College, Shantou 515041, China
| | - Lian Ma
- Department of Pediatrics, The Women and Children's Hospital of Shenzhen University, Shenzhen 518122, China
| | - Guyu Ho
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
27
|
Sakai K, Aoki S, Matsumoto K. Hepatocyte growth factor and Met in drug discovery. J Biochem 2015; 157:271-84. [PMID: 25770121 DOI: 10.1093/jb/mvv027] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022] Open
Abstract
Activation of the hepatocyte growth factor (HGF)-Met pathway evokes dynamic biological responses that support the morphogenesis, regeneration and survival of cells and tissues. A characterization of conditional Met knockout mice indicates that the HGF-Met pathway plays important roles in the regeneration, protection and homeostasis of cells such as hepatocytes, renal tubular cells and neurons. Preclinical studies in disease models have indicated that recombinant HGF protein and expression plasmid for HGF are biological drug candidates for the treatment of patients with diseases or injuries that involve impaired tissue function. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing. Biological actions of HGF that promote the dynamic movement, morphogenesis and survival of cells also closely participate in invasion-metastasis and resistance to the molecular-targeted drugs in tumour cells. Different types of HGF-Met pathway inhibitors are now in clinical trials for treatment of malignant tumours. Basic research on HGF and Met has lead to drug discoveries in regenerative medicine and tumour biology.
Collapse
Affiliation(s)
- Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; and Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan
| | - Shunsuke Aoki
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; and Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; and Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan
| |
Collapse
|
28
|
Rozance PJ, Anderson M, Martinez M, Fahy A, Macko AR, Kailey J, Seedorf GJ, Abman SH, Hay WW, Limesand SW. Placental insufficiency decreases pancreatic vascularity and disrupts hepatocyte growth factor signaling in the pancreatic islet endothelial cell in fetal sheep. Diabetes 2015; 64:555-64. [PMID: 25249573 PMCID: PMC4303968 DOI: 10.2337/db14-0462] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and β-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and β-cell. Vessel density was less in IUGR pancreata than in controls. HGF concentrations were also lower in islet EC-conditioned media (ECCM) from IUGR, and islets incubated with control islet ECCM responded by increasing insulin content, which was absent with IUGR ECCM. The effect of ECCM on islet insulin content was blocked with an inhibitory anti-HGF antibody. The HGF receptor was not different between control and IUGR islets, but VEGFA was lower and the high-affinity VEGF receptor was higher in IUGR islets and ECs, respectively. These findings show that paracrine actions from ECs increase islet insulin content, and in IUGR ECs, secretion of HGF was diminished. Given the potential feed-forward regulation of β-cell VEGFA and islet EC HGF, these two growth factors are highly integrated in normal pancreatic islet development, and this regulation is decreased in IUGR fetuses, resulting in lower pancreatic islet insulin concentrations and insulin secretion.
Collapse
Affiliation(s)
- Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO
| | - Miranda Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Marina Martinez
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Anna Fahy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Jenai Kailey
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO
| | - Gregory J Seedorf
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO Pediatric Heart Lung Center, University of Colorado School of Medicine, Aurora, CO
| | - Steven H Abman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO Pediatric Heart Lung Center, University of Colorado School of Medicine, Aurora, CO
| | - William W Hay
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO Pediatric Heart Lung Center, University of Colorado School of Medicine, Aurora, CO
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| |
Collapse
|
29
|
Modali SD, Parekh VI, Kebebew E, Agarwal SK. Epigenetic regulation of the lncRNA MEG3 and its target c-MET in pancreatic neuroendocrine tumors. Mol Endocrinol 2015; 29:224-37. [PMID: 25565142 DOI: 10.1210/me.2014-1304] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biallelic inactivation of MEN1 encoding menin in pancreatic neuroendocrine tumors (PNETs) associated with the multiple endocrine neoplasia type 1 (MEN1) syndrome is well established, but how menin loss/inactivation initiates tumorigenesis is not well understood. We show that menin activates the long noncoding RNA maternally expressed gene 3 (Meg3) by histone-H3 lysine-4 trimethylation and CpG hypomethylation at the Meg3 promoter CRE site, to allow binding of the transcription factor cAMP response element-binding protein. We found that Meg3 has tumor-suppressor activity in PNET cells because the overexpression of Meg3 in MIN6 cells (insulin-secreting mouse PNET cell line) blocked cell proliferation and delayed cell cycle progression. Gene expression microarray analysis showed that Meg3 overexpression in MIN6 mouse insulinoma cells down-regulated the expression of the protooncogene c-Met (hepatocyte growth factor receptor), and these cells showed significantly reduced cell migration/invasion. Compared with normal islets, mouse or human MEN1-associated PNETs expressed less MEG3 and more c-MET. Therefore, a tumor-suppressor long noncoding RNA (MEG3) and suppressed protooncogene (c-MET) combination could elicit menin's tumor-suppressor activity. Interestingly, MEG3 and c-MET expression was also altered in human sporadic insulinomas (insulin secreting PNETs) with hypermethylation at the MEG3 promoter CRE-site coinciding with reduced MEG3 expression. These data provide insights into the β-cell proliferation mechanisms that could retain their functional status. Furthermore, in MIN6 mouse insulinoma cells, DNA-demethylating drugs blocked cell proliferation and activated Meg3 expression. Our data suggest that the epigenetic activation of lncRNA MEG3 and/or inactivation of c-MET could be therapeutic for treating PNETs and insulinomas.
Collapse
Affiliation(s)
- Sita D Modali
- Metabolic Diseases Branch (S.D.M., V.I.P., S.K.A.), National Institute of Diabetes and Digestive and Kidney Diseases, and Endocrine Oncology Branch (E.K.), National Cancer Institute, National Institutes of Health, Bethesda Maryland 20892
| | | | | | | |
Collapse
|
30
|
Araújo TG, Oliveira AG, Saad MJA. Partial-Hepatectomized (70%) Model Shows a Correlation between Hepatocyte Growth Factor Levels and Beta-Cell Mass. Front Endocrinol (Lausanne) 2015; 6:20. [PMID: 25762981 PMCID: PMC4329873 DOI: 10.3389/fendo.2015.00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/03/2015] [Indexed: 12/29/2022] Open
Affiliation(s)
- Tiago G. Araújo
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco (UFPE), Recife, Brazil
- *Correspondence: ;
| | - Alexandre G. Oliveira
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, Brazil
- Department of Physical Education, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: ;
| |
Collapse
|
31
|
Wu Y, Cheng M, Shi Z, Feng Z, Guan X. Dynamic expression and localization of c-MET isoforms in the developing rat pancreas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8563-8572. [PMID: 25674220 PMCID: PMC4313954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Pancreata from Sprague Dawley rats of different developmental stages were studied to determine the expression and cellular localization of different c-MET isoforms in the developing rat pancreas. Pancreatic mRNA and protein expression levels of c-MET at different developmental stages from embryo to adult were detected by reverse transcription-polymerase chain reaction and by western blotting. To identify the cellular localization of c-MET protein in the developing rat pancreas, double immunofluorescent staining was performed using antibodies for cell type-specific markers and for c-MET. The expression of two isoforms of c-MET (190 kDa and 170 kDa) coincided with the development of the pancreas. The 190 kDa isoform of c-MET is expressed during embryonic stages, and its expression is replaced by the expression of the 170 kDa isoform as the pancreas develops. Only the 170 kDa isoform is expressed in the adult rat pancreas. Throughout all stages of pancreatic development, c-MET is expressed by vimentin-positive cells. In contrast, c-MET staining was stronger in rat pancreata from newborn to adult stages and overlapped with insulin-positive beta-cells. The dynamic expression and localization of different c-MET isoforms in the rat pancreas during different developmental stages indicates that distinct c-MET isoform might be involved in different aspects of pancreatic development.
Collapse
Affiliation(s)
- Yulong Wu
- Key Lab of Antibody Technique of Health Ministry, Nanjing Medical UniversityNanjing, Jiangsu, P.R. China
- School of Basic Medical Science, Binzhou Medical UniversityBinzhou, Shandong, P.R. China
| | - Mei Cheng
- School of Nursing, Binzhou Medical UniversityBinzhou, Shandong, P.R. China
| | - Zhen Shi
- School of Basic Medical Science, Binzhou Medical UniversityBinzhou, Shandong, P.R. China
| | - Zhenqing Feng
- Key Lab of Antibody Technique of Health Ministry, Nanjing Medical UniversityNanjing, Jiangsu, P.R. China
| | - Xiaohong Guan
- Key Lab of Antibody Technique of Health Ministry, Nanjing Medical UniversityNanjing, Jiangsu, P.R. China
| |
Collapse
|
32
|
Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. Prog Neurobiol 2014; 125:26-46. [PMID: 25455861 DOI: 10.1016/j.pneurobio.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's (AD) and Parkinson's (PD) diseases are neurodegenerative diseases presently without effective drug treatments. AD is characterized by general cognitive impairment, difficulties with memory consolidation and retrieval, and with advanced stages episodes of agitation and anger. AD is increasing in frequency as life expectancy increases. Present FDA approved medications do little to slow disease progression and none address the underlying progressive loss of synaptic connections and neurons. New drug design approaches are needed beyond cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists. Patients with PD experience the symptomatic triad of bradykinesis, tremor-at-rest, and rigidity with the possibility of additional non-motor symptoms including sleep disturbances, depression, dementia, and autonomic nervous system failure. This review summarizes available information regarding the role of the brain renin-angiotensin system (RAS) in learning and memory and motor functions, with particular emphasis on research results suggesting a link between angiotensin IV (AngIV) interacting with the AT4 receptor subtype. Currently there is controversy over the identity of this AT4 receptor protein. Albiston and colleagues have offered convincing evidence that it is the insulin-regulated aminopeptidase (IRAP). Recently members of our laboratory have presented evidence that the brain AngIV/AT4 receptor system coincides with the brain hepatocyte growth factor/c-Met receptor system. In an effort to resolve this issue we have synthesized a number of small molecule AngIV-based compounds that are metabolically stable, penetrate the blood-brain barrier, and facilitate compromised memory and motor systems. These research efforts are described along with details concerning a recently synthesized molecule, Dihexa that shows promise in overcoming memory and motor dysfunctions by augmenting synaptic connectivity via the formation of new functional synapses.
Collapse
Affiliation(s)
- John W Wright
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| | - Joseph W Harding
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| |
Collapse
|
33
|
HGF-Met Pathway in Regeneration and Drug Discovery. Biomedicines 2014; 2:275-300. [PMID: 28548072 PMCID: PMC5344275 DOI: 10.3390/biomedicines2040275] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/15/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) is composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. Activation of the HGF–Met pathway evokes dynamic biological responses that support morphogenesis (e.g., epithelial tubulogenesis), regeneration, and the survival of cells and tissues. Characterizations of conditional Met knockout mice have indicated that the HGF–Met pathway plays important roles in regeneration, protection, and homeostasis in various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. The promotion of cell growth, survival, migration, and morphogenesis that is associated with extracellular matrix proteolysis are the biological activities that underlie the therapeutic actions of HGF. Recombinant HGF protein and the expression vectors for HGF are biological drug candidates for the treatment of patients with diseases and injuries that are associated with impaired tissue function. The intravenous/systemic administration of recombinant HGF protein has been well tolerated in phase I/II clinical trials. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing.
Collapse
|
34
|
Delitto D, Vertes-George E, Hughes SJ, Behrns KE, Trevino JG. c-Met signaling in the development of tumorigenesis and chemoresistance: Potential applications in pancreatic cancer. World J Gastroenterol 2014; 20:8458-8470. [PMID: 25024602 PMCID: PMC4093697 DOI: 10.3748/wjg.v20.i26.8458] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/18/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is the 4th leading cause of cancer deaths in the United States. The majority of patients are candidates only for palliative chemotherapy, which has proven largely ineffective in halting tumor progression. One proposed mechanism of chemoresistance involves signaling via the mesenchymal-epithelial transition factor protein (MET), a previously established pathway critical to cell proliferation and migration. Here, we review the literature to characterize the role of MET in the development of tumorigenesis, metastasis and chemoresistance, highlighting the potential of MET as a therapeutic target in pancreatic cancer. In this review, we characterize the role of c-Met in the development of tumorigenesis, metastasis and chemoresistance, highlighting the potential of c-Met as a therapeutic target in pancreatic cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/secondary
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drug Design
- Drug Resistance, Neoplasm/genetics
- Humans
- Molecular Targeted Therapy
- Neoplastic Stem Cells/enzymology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- Signal Transduction/drug effects
Collapse
|
35
|
Yang KT, Bayan JA, Zeng N, Aggarwal R, He L, Peng Z, Kassa A, Kim M, Luo Z, Shi Z, Medina V, Boddupally K, Stiles BL. Adult-onset deletion of Pten increases islet mass and beta cell proliferation in mice. Diabetologia 2014; 57:352-61. [PMID: 24162585 PMCID: PMC3918745 DOI: 10.1007/s00125-013-3085-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/27/2013] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Adult beta cells have a diminished ability to proliferate. Phosphatase and tensin homologue (PTEN) is a lipid phosphatase that antagonises the function of the mitogenic phosphatidylinositol 3-kinase (PI3K) pathway. The objective of this study was to understand the role of PTEN and PI3K signalling in the maintenance of beta cells postnatally. METHODS We developed a Pten (lox/lox); Rosa26 (lacZ); RIP-CreER (+) model that permitted us to induce Pten deletion by treatment with tamoxifen in mature animals. We evaluated islet mass and function as well as beta cell proliferation in 3- and 12-month-old mice treated with tamoxifen (Pten deleted) vs mice treated with vehicle (Pten control). RESULTS Deletion of Pten in juvenile (3-month-old) beta cells significantly induced their proliferation and increased islet mass. The expansion of islet mass occurred concomitantly with the enhanced ability of the Pten-deleted mice to maintain euglycaemia in response to streptozotocin treatment. In older mice (>12 months of age), deletion of Pten similarly increased islet mass and beta cell proliferation. This novel finding suggests that PTEN-regulated mechanisms may override the age-onset diminished ability of beta cells to respond to mitogenic stimulation. We also found that proteins regulating G1/S cell-cycle transition, such as cyclin D1, cyclin D2, p27 and p16, were altered when PTEN was lost, suggesting that they may play a role in PTEN/PI3K-regulated beta cell proliferation in adult tissue. CONCLUSIONS/INTERPRETATION The signals regulated by the PTEN/PI3K pathway are important for postnatal maintenance of beta cells and regulation of their proliferation in adult tissues.
Collapse
Affiliation(s)
- Kai-Ting Yang
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zeng N, Yang KT, Bayan JA, He L, Aggarwal R, Stiles JW, Hou X, Medina V, Abad D, Palian BM, Al-Abdullah I, Kandeel F, Johnson DL, Stiles BL. PTEN controls β-cell regeneration in aged mice by regulating cell cycle inhibitor p16ink4a. Aging Cell 2013; 12:1000-11. [PMID: 23826727 DOI: 10.1111/acel.12132] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 12/31/2022] Open
Abstract
Tissue regeneration diminishes with age, concurrent with declining hormone levels including growth factors such as insulin-like growth factor-1 (IGF-1). We investigated the molecular basis for such decline in pancreatic β-cells where loss of proliferation occurs early in age and is proposed to contribute to the pathogenesis of diabetes. We studied the regeneration capacity of β-cells in mouse model where PI3K/AKT pathway downstream of insulin/IGF-1 signaling is upregulated by genetic deletion of Pten (phosphatase and tensin homologue deleted on chromosome 10) specifically in insulin-producing cells. In this model, PTEN loss prevents the decline in proliferation capacity in aged β-cells and restores the ability of aged β-cells to respond to injury-induced regeneration. Using several animal and cell models where we can manipulate PTEN expression, we found that PTEN blocks cell cycle re-entry through a novel pathway leading to an increase in p16(ink4a), a cell cycle inhibitor characterized for its role in cellular senescence/aging. A downregulation in p16(ink4a) occurs when PTEN is lost as a result of cyclin D1 induction and the activation of E2F transcription factors. The activation of E2F transcriptional factors leads to methylation of p16(ink4a) promoter, an event that is mediated by the upregulation of polycomb protein, Ezh2. These analyses establish a novel PTEN/cyclin D1/E2F/Ezh2/p16(ink4a) signaling network responsible for the aging process and provide specific evidence for a molecular paradigm that explain how decline in growth factor signals such as IGF-1 (through PTEN/PI3K signaling) may control regeneration and the lack thereof in aging cells.
Collapse
Affiliation(s)
- Ni Zeng
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Kai-Ting Yang
- Department of Biochemistry; Keck School of Medicine; University of Southern California; Los Angeles CA 90033 USA
| | - Jennifer-Ann Bayan
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Lina He
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Richa Aggarwal
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Joseph W. Stiles
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Xiaogang Hou
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Vivian Medina
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Danny Abad
- Islet Transplant Center; City of Hope; Duarte CA 91010 USA
| | - Beth M. Palian
- Department of Biochemistry; Keck School of Medicine; University of Southern California; Los Angeles CA 90033 USA
| | | | - Fouad Kandeel
- Islet Transplant Center; City of Hope; Duarte CA 91010 USA
| | - Deborah L. Johnson
- Department of Biochemistry; Keck School of Medicine; University of Southern California; Los Angeles CA 90033 USA
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
- Department of Pathology; Keck School of Medicine; University of Southern California; Los Angeles CA 90033 USA
| |
Collapse
|
37
|
Liu Y, Liu JH, Chai K, Tashiro SI, Onodera S, Ikejima T. Inhibition of c-Met promoted apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced A549 lung cancer cells. ACTA ACUST UNITED AC 2013; 65:1622-42. [PMID: 24102522 DOI: 10.1111/jphp.12140] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/02/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Herein, inhibition of hepatocyte growth factor receptor, c-Met, significantly increased cytochrome c release and Bax/Bcl-2 ratio, indicating that c-Met played an anti-apoptotic role. The following experiments are to elucidate this anti-apoptotic mechanism, then the effect of c-Met on autophagy has also been discussed. METHODS Investigated was the influence of c-Met on apoptosis, autophagy and loss of mitochondrial transmembrane potential (Δψm), and the relevant proteins were examined. KEY FINDINGS First, we found that activation of extracellular signal-regulated kinase (ERK), p53 was promoted by c-Met interference. Subsequent studies indicated that ERK was the upstream effector of p53, and this ERK-p53 pathway mediated release of cytochrome c and up-regulation of Bax/Bcl-2 ratio. Secondly, the inhibition of c-Met augmented oridonin-induced loss of mitochondrial transmembrane potential (Δψm), resulting apoptosis. Finally, the inhibition of c-Met increased oridonin-induced A549 cell autophagy accompanied by Beclin-1 activation and conversion from microtubule-associated protein light chain 3 (LC3)-I to LC3-II. Activation of ERK-p53 was also detected in autophagy process and could be augmented by inhibition of c-Met. Moreover, suppression of autophagy by 3-methyladenine (3-MA) or small interfering RNA against Beclin-1 or Atg5 decreased oridonin-induced apoptosis. Inhibition of apoptosis by pan-caspase inhibitor (z-VAD-fmk) decreased oridonin-induced autophagy as well and Loss of Δψm also occurred during autophagic process. CONCLUSION Thus, inhibiting c-Met enhanced oridonin-induced apoptosis, autophagy and loss of Δψm in A549 cells.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China; China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
38
|
Zhou D, Tan RJ, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int 2013; 84:509-20. [PMID: 23715119 PMCID: PMC3758808 DOI: 10.1038/ki.2013.102] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 12/16/2022]
Abstract
Hepatocyte growth factor is a pleiotrophic protein that promotes injury repair and regeneration in multiple organs. Here, we show that after acute kidney injury (AKI), the HGF receptor, c-met, was induced predominantly in renal tubular epithelium. To investigate the role of tubule-specific induction of c-met in AKI, we generated conditional knockout mice, in which the c-met gene was specifically disrupted in renal tubules. These Ksp-met−/−mice were phenotypically normal and had no appreciable defect in kidney morphology and function. However, in AKI induced by cisplatin or ischemia-reperfusion injury, the loss of tubular c-met substantially aggravated renal injury. Compared with controls, Ksp-met−/−mice displayed higher serum creatinine, more severe morphologic lesions, and increased apoptosis, which was accompanied by an increased expression of Bax and Fas ligand and decreased phosphorylation-activation of Akt. In addition, ablation of c-met in renal tubules promoted chemokine expression and renal inflammation after AKI. Consistently, ectopic expression of hepatocyte growth factor in vivo protected the kidneys against AKI in control mice, but not in Ksp-met−/−counterparts. Thus, our results suggest that tubule-specific c-met signaling is crucial in conferring renal protection after AKI, primarily by its anti-apoptotic and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
39
|
Araújo TG, Oliveira AG, Carvalho BM, Guadagnini D, Protzek AOP, Carvalheira JBC, Boschero AC, Saad MJA. Hepatocyte growth factor plays a key role in insulin resistance-associated compensatory mechanisms. Endocrinology 2012; 153:5760-9. [PMID: 23024263 DOI: 10.1210/en.2012-1496] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin resistance is present in obesity and in type 2 diabetes and is associated with islet cell hyperplasia and hyperinsulinemia, but the driving forces behind this compensatory mechanism are incompletely understood. Previous data have suggested the involvement of an unknown circulating insulin resistance-related β-cell growth factor. In this context, looking for candidates to be a circulating factor, we realized that hepatocyte growth factor (HGF) is a strong candidate as a link between insulin resistance and increased mass of islets/hyperinsulinemia. Our approach aimed to show a possible cause-effect relationship between increase in circulating HGF levels and compensatory islet hyperplasia/hyperinsulinemia by showing the strength of the association, whether or not is a dose-dependent response, the temporality, consistency, plausibility, and reversibility of the association. In this regard, our data showed: 1) a strong and consistent correlation between HGF and the compensatory mechanism in three animal models of insulin resistance; 2) HGF increases β-cell mass in a dose-dependent manner; 3) blocking HGF shuts down the compensatory mechanisms; and 4) an increase in HGF levels seems to precede the compensatory response associated with insulin resistance, indicating that these events occur in a sequential mode. Additionally, blockages of HGF receptor (Met) worsen the impaired insulin-induced insulin signaling in liver of diet-induced obesity rats. Overall, our data indicate that HGF is a growth factor playing a key role in islet mass increase and hyperinsulinemia in diet-induced obesity rats and suggest that the HGF-Met axis may have a role on insulin signaling in the liver.
Collapse
Affiliation(s)
- Tiago G Araújo
- Department of Internal Medicine, State University of Campinas, Campinas, 13081-970 São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Demirci C, Ernst S, Alvarez-Perez JC, Rosa T, Valle S, Shridhar V, Casinelli GP, Alonso LC, Vasavada RC, García-Ocana A. Loss of HGF/c-Met signaling in pancreatic β-cells leads to incomplete maternal β-cell adaptation and gestational diabetes mellitus. Diabetes 2012; 61:1143-52. [PMID: 22427375 PMCID: PMC3331762 DOI: 10.2337/db11-1154] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatocyte growth factor (HGF) is a mitogen and insulinotropic agent for the β-cell. However, whether HGF/c-Met has a role in maternal β-cell adaptation during pregnancy is unknown. To address this issue, we characterized glucose and β-cell homeostasis in pregnant mice lacking c-Met in the pancreas (PancMet KO mice). Circulating HGF and islet c-Met and HGF expression were increased in pregnant mice. Importantly, PancMet KO mice displayed decreased β-cell replication and increased β-cell apoptosis at gestational day (GD)15. The decreased β-cell replication was associated with reductions in islet prolactin receptor levels, STAT5 nuclear localization and forkhead box M1 mRNA, and upregulation of p27. Furthermore, PancMet KO mouse β-cells were more sensitive to dexamethasone-induced cytotoxicity, whereas HGF protected human β-cells against dexamethasone in vitro. These detrimental alterations in β-cell proliferation and death led to incomplete maternal β-cell mass expansion in PancMet KO mice at GD19 and early postpartum periods. The decreased β-cell mass was accompanied by increased blood glucose, decreased plasma insulin, and impaired glucose tolerance. PancMet KO mouse islets failed to upregulate GLUT2 and pancreatic duodenal homeobox-1 mRNA, insulin content, and glucose-stimulated insulin secretion during gestation. These studies indicate that HGF/c-Met signaling is essential for maternal β-cell adaptation during pregnancy and that its absence/attenuation leads to gestational diabetes mellitus.
Collapse
Affiliation(s)
- Cem Demirci
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sara Ernst
- Division of Endocrinology and Metabolism Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan C. Alvarez-Perez
- Division of Endocrinology and Metabolism Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Taylor Rosa
- Division of Endocrinology and Metabolism Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shelley Valle
- Division of Endocrinology and Metabolism Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Varsha Shridhar
- Division of Endocrinology and Metabolism Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gabriella P. Casinelli
- Division of Endocrinology and Metabolism Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura C. Alonso
- Division of Endocrinology and Metabolism Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rupangi C. Vasavada
- Division of Endocrinology and Metabolism Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adolfo García-Ocana
- Division of Endocrinology and Metabolism Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Corresponding author: Adolfo Garcia-Ocaña,
| |
Collapse
|
41
|
Kim SJ, Choi YS, Ko ES, Lim SM, Lee CW, Kim DI. Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation. J Biosci Bioeng 2012; 113:771-7. [PMID: 22425523 DOI: 10.1016/j.jbiosc.2012.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) are capable of crossing germinative layer borders and are obtainable in high numbers via in vitro cultures. Therefore, many researchers have searched for diverse sources of MSCs. Recently the generation of glucose-responsive insulin-producing cells (IPCs) from MSCs has shown immense potential for the treatment of type 1 diabetes mellitus (T1DM) due to a lack of pancreas donors. In this study, we compared the growth potency of four kinds of MSCs derived from bone marrow, Wharton's jelly, adipose tissue, and the periosteum. In addition, in vitro differentiation of these MSCs into IPCs was also investigated. After 2weeks of IPCs differentiation, we compared the expression of the insulin gene and protein using RT-qPCR and immunofluorescence staining. Only IPCs derived from periosteum-derived progenitor cells (PDPCs) showed a response to glucose concentration. Glucose stimulated insulin secretion was conclusive evidence of the potential functionality of IPCs. Therefore, PDPCs are a promising alternative stem cell source for IPCs differentiation.
Collapse
Affiliation(s)
- Su-Jung Kim
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | | | | | | | | | | |
Collapse
|
42
|
Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V, Tabruyn SP, You WK, Chapman HA, Christensen JG, Aftab DT, McDonald DM. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2012; 2:270-87. [PMID: 22585997 DOI: 10.1158/2159-8290.cd-11-0240] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Invasion and metastasis increase after the inhibition of VEGF signaling in some preclinical tumor models. In the present study we asked whether selective VEGF inhibition is sufficient to increase invasion and metastasis and whether selective c-Met inhibition is sufficient to block this effect. Treatment of pancreatic neuroendocrine tumors in RIP-Tag2 mice with a neutralizing anti-VEGF antibody reduced tumor burden but increased tumor hypoxia, hypoxia-inducible factor-1α, and c-Met activation and also increased invasion and metastasis. However, invasion and metastasis were reduced by concurrent inhibition of c-Met by PF-04217903 or PF-02341066 (crizotinib). A similar benefit was found in orthotopic Panc-1 pancreatic carcinomas treated with sunitinib plus PF-04217903 and in RIP-Tag2 tumors treated with XL184 (cabozantinib), which simultaneously blocks VEGF and c-Met signaling. These findings document that invasion and metastasis are promoted by selective inhibition of VEGF signaling and can be reduced by the concurrent inhibition of c-Met. SIGNIFICANCE This report examines the mechanism of increased tumor aggressiveness after anti-VEGF therapy and presents evidence for roles of vascular pruning, hypoxia, and c-Met activation. The results show that simultaneous inhibition of c-Met and VEGF signaling not only slows tumor growth but also reduces invasion and metastasis.
Collapse
Affiliation(s)
- Barbara Sennino
- Comprehensive Cancer Center, Department of Anatomy, University of California-San Francisco (UCSF), San Francisco, CA 94143-0452, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mellado-Gil J, Rosa TC, Demirci C, Gonzalez-Pertusa JA, Velazquez-Garcia S, Ernst S, Valle S, Vasavada RC, Stewart AF, Alonso LC, Garcia-Ocaña A. Disruption of hepatocyte growth factor/c-Met signaling enhances pancreatic beta-cell death and accelerates the onset of diabetes. Diabetes 2011; 60:525-36. [PMID: 20980460 PMCID: PMC3028352 DOI: 10.2337/db09-1305] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine the role of hepatocyte growth factor (HGF)/c-Met on β-cell survival in diabetogenic conditions in vivo and in response to cytokines in vitro. RESEARCH DESIGN AND METHODS We generated pancreas-specific c-Met-null (PancMet KO) mice and characterized their response to diabetes induced by multiple low-dose streptozotocin (MLDS) administration. We also analyzed the effect of HGF/c-Met signaling in vitro on cytokine-induced β-cell death in mouse and human islets, specifically examining the role of nuclear factor (NF)-κB. RESULTS Islets exposed in vitro to cytokines or from MLDS-treated mice displayed significantly increased HGF and c-Met levels, suggesting a potential role for HGF/c-Met in β-cell survival against diabetogenic agents. Adult PancMet KO mice displayed normal glucose and β-cell homeostasis, indicating that pancreatic c-Met loss is not detrimental for β-cell growth and function under basal conditions. However, PancMet KO mice were more susceptible to MLDS-induced diabetes. They displayed higher blood glucose levels, marked hypoinsulinemia, and reduced β-cell mass compared with wild-type littermates. PancMet KO mice showed enhanced intraislet infiltration, islet nitric oxide (NO) and chemokine production, and β-cell apoptosis. c-Met-null β-cells were more sensitive to cytokine-induced cell death in vitro, an effect mediated by NF-κB activation and NO production. Conversely, HGF treatment decreased p65/NF-κB activation and fully protected mouse and, more important, human β-cells against cytokines. CONCLUSIONS These results show that HGF/c-Met is critical for β-cell survival by attenuating NF-κB signaling and suggest that activation of the HGF/c-Met signaling pathway represents a novel strategy for enhancing β-cell protection.
Collapse
Affiliation(s)
- Jose Mellado-Gil
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Taylor C. Rosa
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cem Demirci
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jose A. Gonzalez-Pertusa
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Silvia Velazquez-Garcia
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sara Ernst
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shelley Valle
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rupangi C. Vasavada
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew F. Stewart
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura C. Alonso
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adolfo Garcia-Ocaña
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
- Corresponding author: Adolfo Garcia-Ocaña,
| |
Collapse
|
44
|
Nakamura T, Sakai K, Nakamura T, Matsumoto K. Hepatocyte growth factor twenty years on: Much more than a growth factor. J Gastroenterol Hepatol 2011; 26 Suppl 1:188-202. [PMID: 21199531 DOI: 10.1111/j.1440-1746.2010.06549.x] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver regeneration depends on the proliferation of mature hepatocytes. In the 1980s, the method for the cultivation of mature hepatocytes provided an opportunity for the discovery of hepatocyte growth factor (HGF) as a protein that is structurally and functionally different from other growth factors. In 1991, the scatter factor, tumor cytotoxic factor, and 3-D epithelial morphogen were identified as HGF, and Met tyrosine kinase was identified as the receptor for HGF. Thus, the connection of apparently unrelated research projects rapidly enriched the research on HGF in different fields. The HGF-Met pathway plays important roles in the embryonic development of the liver and the placenta, in the migration of myogenic precursor cells, and in epithelial morphogenesis. The use of tissue-specific knockout mice demonstrated that in mature tissues the HGF-Met pathway plays a critical role in tissue protection and regeneration, and in providing less susceptibility to chronic inflammation and fibrosis. In various injury and disease models, HGF promotes cell survival, regeneration of tissues, and suppresses and improves chronic inflammation and fibrosis. Drug development using HGF has been challenging, but extensive preclinical studies to address its therapeutic effects have provided significant results sufficient for the development of HGF as a biological drug in the regeneration-based therapy of diseases. Clinical trials using recombinant human HGF protein, or HGF genes, are in progress for the treatment of diseases.
Collapse
|
45
|
Towner RA, Smith N, Asano Y, Doblas S, Saunders D, Silasi-Mansat R, Lupu F. Molecular magnetic resonance imaging approaches used to aid in the understanding of the tissue regeneration marker Met in vivo: implications for tissue engineering. Tissue Eng Part A 2010; 16:365-71. [PMID: 19905873 DOI: 10.1089/ten.tea.2009.0234] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The levels of Met, a tyrosine kinase receptor for the hepatocyte growth factor or scatter factor, are elevated during tissue regeneration, and can be used to assess tissue regeneration associated with engineered tissue grafts. This study involved the development and assessment of a novel magnetic resonance imaging (MRI) molecular probe for the in vivo detection of Met in an experimental rodent (rat) model of disease (C6 glioma). The implication of using these probes in tissue engineering is discussed. The molecular targeting agent we used in our study incorporated a magnetite-based dextran-coated nanoparticle backbone covalently bound to an anti-Met antibody. We used molecular MRI with an anti-Met probe to detect in vivo Met levels as a molecular marker for gliomas. Tumor regions were compared to normal tissue, and found to significantly (p < 0.05) decrease MR signal intensity and T(2) relaxation in tumors. Nonimmune nonspecific normal rat IgG coupled to the dextran-coated nanoparticles was used as a control. Met levels in tumor tissues were confirmed in Western blots. Based on our results, in vivo evaluation of tissue regeneration using molecular MRI is possible in tissue engineering applications.
Collapse
Affiliation(s)
- Rheal A Towner
- 1 Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation , Oklahoma City, Oklahoma
| | | | | | | | | | | | | |
Collapse
|
46
|
Li XY, Zhan XR, Lu C, Liu XM, Wang XC. Mechanisms of hepatocyte growth factor-mediated signaling in differentiation of pancreatic ductal epithelial cells into insulin-producing cells. Biochem Biophys Res Commun 2010; 398:389-94. [DOI: 10.1016/j.bbrc.2010.06.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
|
47
|
Hepatocyte growth factor signaling ameliorates podocyte injury and proteinuria. Kidney Int 2010; 77:962-73. [PMID: 20375988 DOI: 10.1038/ki.2010.40] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hepatocyte growth factor (HGF) is a potent antifibrotic protein that inhibits kidney fibrosis through several mechanisms. To study its role in podocyte homeostasis, injury, and repair in vivo, we generated conditional knockout mice in which the HGF receptor, c-met, was specifically deleted in podocytes using the Cre-LoxP system. Mice with podocyte-specific ablation of c-met (podo-met(-/-)) developed normally. No albuminuria or overt pathologic lesions were detected up to 6 months of age, suggesting that HGF signaling is dispensable for podocyte maturation, survival, and function under normal physiologic conditions. However, after adriamycin treatment, podo-met(-/-) mice developed more severe podocyte injury and albuminuria than their control littermates. Ablation of c-met also resulted in more profound suppression of Wilms tumor 1 (WT1) and nephrin expression, and podocyte apoptosis after injury. When HGF was expressed ectopically in vivo, it ameliorated adriamycin-induced albuminuria, preserved WT1 and nephrin expression, and inhibited podocyte apoptosis. However, exogenous HGF failed to significantly reduce albuminuria in podo-met(-/-) mice, suggesting that podocyte-specific c-met activation by HGF confers renal protection. In vitro, HGF was able to preserve WT1 and nephrin expression in cultured podocytes after adriamycin treatment. HGF also protected podocytes from apoptosis induced by a lethal dose of adriamycin primarily through a phosphoinositide 3-kinase (PI3K)/Akt-dependent pathway. Collectively, these results indicate that HGF/c-met signaling has an important role in protecting podocytes from injury, thereby reducing proteinuria.
Collapse
|
48
|
Ungefroren H, Fändrich F. The Programmable Cell of Monocytic Origin (PCMO): A Potential Adult Stem/Progenitor Cell Source for the Generation of Islet Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:667-82. [DOI: 10.1007/978-90-481-3271-3_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Basement membrane in pancreatic islet function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:217-34. [PMID: 20217500 DOI: 10.1007/978-90-481-3271-3_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Clinical treatment of diabetic patients by islet transplantation faces various complications. At present, in vitro expansion of islets occurs at the cost of their essential features, which are insulin production and release. However, the recent discovery of blood vessel/beta-cell interactions as an important aspect of insulin transcription, secretion, and proliferation might point us to ways of how this problem could be overcome. The correct function of beta-cells depends on the presence of a basement membrane, a specialized extracellular matrix located around the blood vessel wall in mouse and human pancreatic islets. In this chapter, we summarize how the vascular basement membrane influences insulin transcription, insulin secretion, and beta-cell proliferation. In addition, a brief overview about basement membrane components and their interactions with cell surface receptors is given.
Collapse
|
50
|
Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:588-610. [PMID: 20551596 PMCID: PMC3081175 DOI: 10.2183/pjab.86.588] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It has been more than 25 years since HGF was discovered as a mitogen of hepatocytes. HGF is produced by stromal cells, and stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its receptor, c-Met. In fetal stages, HGF-neutralization, or c-Met gene destruction, leads to hypoplasia of many organs, indicating that HGF signals are essential for organ development. Endogenous HGF is required for self-repair of injured livers, kidneys, lungs and so on. In addition, HGF exerts protective effects on epithelial and non-epithelial organs (including the heart and brain) via anti-apoptotic and anti-inflammatory signals. During organ diseases, plasma HGF levels significantly increased, while anti-HGF antibody infusion accelerated tissue destruction in rodents. Thus, endogenous HGF is required for minimization of diseases, while insufficient production of HGF leads to organ failure. This is the reason why HGF supplementation produces therapeutic outcomes under pathological conditions. Moreover, emerging studies delineated key roles of HGF during tumor metastasis, while HGF-antagonism leads to anti-tumor outcomes. Taken together, HGF-based molecules, including HGF-variants, HGF-fragments and c-Met-binders are available as regenerative or anti-tumor drugs. Molecular analysis of the HGF-c-Met system could provide bridges between basic biology and clinical medicine.
Collapse
Affiliation(s)
- Toshikazu Nakamura
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, Osaka, Japan.
| | | |
Collapse
|