1
|
Pereira De Oliveira R, Droillard C, Devouassoux G, Rosa-Calatrava M. In vitro models to study viral-induced asthma exacerbation: a short review for a key issue. FRONTIERS IN ALLERGY 2025; 6:1530122. [PMID: 40224321 PMCID: PMC11987631 DOI: 10.3389/falgy.2025.1530122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Asthma is a heterogenous inflammatory bronchial disease involving complex mechanisms, several inflammatory pathways, and multiples cell-type networks. Bronchial inflammation associated to asthma is consecutive to multiple aggressions on epithelium, such as microbiologic, pollutant, and antigenic agents, which are responsible for both T2 and non-T2 inflammatory responses and further airway remodeling. Because asthma physiopathology involves multiple crosstalk between several cell types from different origins (epithelial, mesenchymal, and immune cells) and numerous cellular effectors, no single and/or representative in vitro model is suitable to study the overall of this disease. In this short review, we present and discuss the advantages and limitations of different in vitro models to decipher different aspects of virus-related asthma physiopathology and exacerbation.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Clément Droillard
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Gilles Devouassoux
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Respiratory Diseases, CIERA, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon et CRISALIS/F-CRIN INSERM Network, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec - Université Laval, Faculté de Médecine, Département de Pédiatrie de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Barrera-Lopez JF, Cumplido-Laso G, Olivera-Gomez M, Garrido-Jimenez S, Diaz-Chamorro S, Mateos-Quiros CM, Benitez DA, Centeno F, Mulero-Navarro S, Roman AC, Carvajal-Gonzalez JM. Early Atf4 activity drives airway club and goblet cell differentiation. Life Sci Alliance 2024; 7:e202302284. [PMID: 38176727 PMCID: PMC10766780 DOI: 10.26508/lsa.202302284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
Activating transcription factor 4 (Atf4), which is modulated by the protein kinase RNA-like ER kinase (PERK), is a stress-induced transcription factor responsible for controlling the expression of a wide range of adaptive genes, enabling cells to withstand stressful conditions. However, the impact of the Atf4 signaling pathway on airway regeneration remains poorly understood. In this study, we used mouse airway epithelial cell culture models to investigate the role of PERK/Atf4 in respiratory tract differentiation. Through pharmacological inhibition and silencing of ATF4, we uncovered the crucial involvement of PERK/Atf4 in the differentiation of basal stem cells, leading to a reduction in the number of secretory cells. ChIP-seq analysis revealed direct binding of ATF4 to regulatory elements of genes associated with osteoblast differentiation and secretory cell function. Our findings provide valuable insights into the role of ATF4 in airway epithelial differentiation and its potential involvement in innate immune responses and cellular adaptation to stress.
Collapse
Affiliation(s)
- Juan F Barrera-Lopez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Marcos Olivera-Gomez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jimenez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Selene Diaz-Chamorro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Clara M Mateos-Quiros
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Dixan A Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Centeno
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Angel C Roman
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Jose M Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
3
|
Pechous RD, Malaviarachchi PA, Xing Z, Douglas A, Crane SD, Theriot HM, Zhang Z, Ghaffarieh A, Huang L, Yu YE, Zhang X. SARS-CoV-2 Infection Causes Heightened Disease Severity and Mortality in a Mouse Model of Down Syndrome. Biomedicines 2024; 12:543. [PMID: 38540156 PMCID: PMC10967796 DOI: 10.3390/biomedicines12030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 11/03/2024] Open
Abstract
Recent epidemiological studies suggest that individuals with Down syndrome are more susceptible to SARS-CoV-2 infection and have higher rates of hospitalization and mortality than the general population. However, the main drivers behind these disparate health outcomes remain unknown. Herein, we performed experimental infections with SARS-CoV-2 in a well-established mouse model of Down syndrome. We observed similar SARS-CoV-2 replication kinetics and dissemination in the primary and secondary organs between mice with and without Down syndrome, suggesting that both groups have similar susceptibilities to SARS-CoV-2 infection. However, Down syndrome mice exhibited more severe disease as defined by clinical features including symptoms, weight loss, pulmonary function, and survival of mice. We found that increased disease severity in Down syndrome mice could not be attributed solely to increased infectivity or a more dramatic pro-inflammatory response to infection. Rather, results from RNA sequencing suggested that differences in the expression of genes from other physiological pathways, such as deficient oxidative phosphorylation, cardiopulmonary dysfunction, and deficient mucociliary clearance in the lungs may also contribute to heightened disease severity and mortality in Down syndrome mice following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roger D. Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Priyangi A. Malaviarachchi
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhuo Xing
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Avrium Douglas
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Samantha D. Crane
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hayley M. Theriot
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zijing Zhang
- Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alireza Ghaffarieh
- Departments of Ophthalmology and Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Pattaroni C, Begka C, Cardwell B, Jaffar J, Macowan M, Harris NL, Westall GP, Marsland BJ. Multi-omics integration reveals a nonlinear signature that precedes progression of lung fibrosis. Clin Transl Immunology 2024; 13:e1485. [PMID: 38269243 PMCID: PMC10807351 DOI: 10.1002/cti2.1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a devastating progressive interstitial lung disease with poor outcomes. While decades of research have shed light on pathophysiological mechanisms associated with the disease, our understanding of the early molecular events driving IPF and its progression is limited. With this study, we aimed to model the leading edge of fibrosis using a data-driven approach. Methods Multiple omics modalities (transcriptomics, metabolomics and lipidomics) of healthy and IPF lung explants representing different stages of fibrosis were combined using an unbiased approach. Multi-Omics Factor Analysis of datasets revealed latent factors specifically linked with established fibrotic disease (Factor1) and disease progression (Factor2). Results Features characterising Factor1 comprised well-established hallmarks of fibrotic disease such as defects in surfactant, epithelial-mesenchymal transition, extracellular matrix deposition, mitochondrial dysfunction and purine metabolism. Comparatively, Factor2 identified a signature revealing a nonlinear trajectory towards disease progression. Molecular features characterising Factor2 included genes related to transcriptional regulation of cell differentiation, ciliogenesis and a subset of lipids from the endocannabinoid class. Machine learning models, trained upon the top transcriptomics features of each factor, accurately predicted disease status and progression when tested on two independent datasets. Conclusion This multi-omics integrative approach has revealed a unique signature which may represent the inflection point in disease progression, representing a promising avenue for the identification of therapeutic targets aimed at addressing the progressive nature of the disease.
Collapse
Affiliation(s)
- Céline Pattaroni
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Christina Begka
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Bailey Cardwell
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Jade Jaffar
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Matthew Macowan
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Nicola L Harris
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Glen P Westall
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
- Department of Respiratory MedicineAlfred HospitalMelbourneVICAustralia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| |
Collapse
|
5
|
Koch CM, Prigge AD, Setar L, Anekalla KR, Do-Umehara HC, Abdala-Valencia H, Politanska Y, Shukla A, Chavez J, Hahn GR, Coates BM. Cilia-related gene signature in the nasal mucosa correlates with disease severity and outcomes in critical respiratory syncytial virus bronchiolitis. Front Immunol 2022; 13:924792. [PMID: 36211387 PMCID: PMC9540395 DOI: 10.3389/fimmu.2022.924792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) can cause life-threatening respiratory failure in infants. We sought to characterize the local host response to RSV infection in the nasal mucosa of infants with critical bronchiolitis and to identify early admission gene signatures associated with clinical outcomes. Methods Nasal scrape biopsies were obtained from 33 infants admitted to the pediatric intensive care unit (PICU) with critical RSV bronchiolitis requiring non-invasive respiratory support (NIS) or invasive mechanical ventilation (IMV), and RNA sequencing (RNA-seq) was performed. Gene expression in participants who required shortened NIS (</= 3 days), prolonged NIS (> 3 days), and IMV was compared. Findings Increased expression of ciliated cell genes and estimated ciliated cell abundance, but not immune cell abundance, positively correlated with duration of hospitalization in infants with critical bronchiolitis. A ciliated cell signature characterized infants who required NIS for > 3 days while a basal cell signature was present in infants who required NIS for </= 3 days, despite both groups requiring an equal degree of respiratory support at the time of sampling. Infants who required invasive mechanical ventilation had increased expression of genes involved in neutrophil activation and cell death. Interpretation Increased expression of cilia-related genes in clinically indistinguishable infants with critical RSV may differentiate between infants who will require prolonged hospitalization and infants who will recover quickly. Validation of these findings in a larger cohort is needed to determine whether a cilia-related gene signature can predict duration of illness in infants with critical bronchiolitis. The ability to identify which infants with critical RSV bronchiolitis may require prolonged hospitalization using non-invasive nasal samples would provide invaluable prognostic information to parents and medical providers.
Collapse
Affiliation(s)
- Clarissa M. Koch
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew D. Prigge
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Leah Setar
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | | | | | | | - Yuliya Politanska
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Avani Shukla
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Jairo Chavez
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Grant R. Hahn
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Bria M. Coates
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- *Correspondence: Bria M. Coates,
| |
Collapse
|
6
|
Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection. Int J Mol Sci 2022; 23:ijms231710019. [PMID: 36077417 PMCID: PMC9456005 DOI: 10.3390/ijms231710019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Canine distemper virus (CDV), a morbillivirus within the family Paramyxoviridae, is a highly contagious infectious agent causing a multisystemic, devastating disease in a broad range of host species, characterized by severe immunosuppression, encephalitis and pneumonia. The present study aimed at investigating pulmonary immune responses of CDV-infected dogs in situ using immunohistochemistry and whole transcriptome analyses by bulk RNA sequencing. Spatiotemporal analysis of phenotypic changes revealed pulmonary immune responses primarily driven by MHC-II+, Iba-1+ and CD204+ innate immune cells during acute and subacute infection phases, which paralleled pathologic lesion development and coincided with high viral loads in CDV-infected lungs. CD20+ B cell numbers initially declined, followed by lymphoid repopulation in the advanced disease phase. Transcriptome analysis demonstrated an increased expression of transcripts related to innate immunity, antiviral defense mechanisms, type I interferon responses and regulation of cell death in the lung of CDV-infected dogs. Molecular analyses also revealed disturbed cytokine responses with a pro-inflammatory M1 macrophage polarization and impaired mucociliary defense in CDV-infected lungs. The exploratory study provides detailed data on CDV-related pulmonary immune responses, expanding the list of immunologic parameters potentially leading to viral elimination and virus-induced pulmonary immunopathology in canine distemper.
Collapse
|
7
|
Hamele CE, Russell AB, Heaton NS. In Vivo Profiling of Individual Multiciliated Cells during Acute Influenza A Virus Infection. J Virol 2022; 96:e0050522. [PMID: 35867557 PMCID: PMC9327675 DOI: 10.1128/jvi.00505-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/03/2022] [Indexed: 01/09/2023] Open
Abstract
Influenza virus infections are thought to be initiated in a small number of cells; however, the heterogeneity across the cellular responses of the epithelial cells during establishment of disease is incompletely understood. Here, we used an H1N1 influenza virus encoding a fluorescent reporter gene, a cell lineage-labeling transgenic mouse line, and single-cell RNA sequencing to explore the range of responses in a susceptible epithelial cell population during an acute influenza A virus (IAV) infection. Focusing on multiciliated cells, we identified a subpopulation that basally expresses interferon-stimulated genes (ISGs), which we hypothesize may be important for the early response to infection. We subsequently found that a population of infected ciliated cells produce most of the ciliated cell-derived inflammatory cytokines, and nearly all bystander ciliated cells induce a broadly antiviral state. From these data together, we propose that variable preexisting gene expression patterns in the initial cells targeted by the virus may ultimately affect the establishment of viral disease. IMPORTANCE Influenza A virus poses a significant threat to public health, and each year, millions of people in the United States alone are exposed to the virus. We do not currently, however, fully understand why some individuals clear the infection asymptomatically and others become severely ill. Understanding how these divergent phenotypes arise could eventually be leveraged to design therapeutics that prevent severe disease. As a first step toward understanding these different infection states, we used a technology that allowed us to determine how thousands of individual murine lung epithelial cells behaved before and during IAV infection. We found that small subsets of epithelial cells exhibited an antiviral state prior to infection, and similarly, some cells made high levels of inflammatory cytokines during infection. We propose that different ratios of these individual cellular responses may contribute to the broader antiviral state of the lung and may ultimately affect disease severity.
Collapse
Affiliation(s)
- Cait E. Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alistair B. Russell
- Division of Biological Sciences, University of California, San Diego, San Diego, California, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
8
|
Schreiner T, Allnoch L, Beythien G, Marek K, Becker K, Schaudien D, Stanelle-Bertram S, Schaumburg B, Mounogou Kouassi N, Beck S, Zickler M, Gabriel G, Baumgärtner W, Armando F, Ciurkiewicz M. SARS-CoV-2 Infection Dysregulates Cilia and Basal Cell Homeostasis in the Respiratory Epithelium of Hamsters. Int J Mol Sci 2022; 23:5124. [PMID: 35563514 PMCID: PMC9102945 DOI: 10.3390/ijms23095124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Similar to many other respiratory viruses, SARS-CoV-2 targets the ciliated cells of the respiratory epithelium and compromises mucociliary clearance, thereby facilitating spread to the lungs and paving the way for secondary infections. A detailed understanding of mechanism involved in ciliary loss and subsequent regeneration is crucial to assess the possible long-term consequences of COVID-19. The aim of this study was to characterize the sequence of histological and ultrastructural changes observed in the ciliated epithelium during and after SARS-CoV-2 infection in the golden Syrian hamster model. We show that acute infection induces a severe, transient loss of cilia, which is, at least in part, caused by cilia internalization. Internalized cilia colocalize with membrane invaginations, facilitating virus entry into the cell. Infection also results in a progressive decline in cells expressing the regulator of ciliogenesis FOXJ1, which persists beyond virus clearance and the termination of inflammatory changes. Ciliary loss triggers the mobilization of p73+ and CK14+ basal cells, which ceases after regeneration of the cilia. Although ciliation is restored after two weeks despite the lack of FOXJ1, an increased frequency of cilia with ultrastructural alterations indicative of secondary ciliary dyskinesia is observed. In summary, the work provides new insights into SARS-CoV-2 pathogenesis and expands our understanding of virally induced damage to defense mechanisms in the conducting airways.
Collapse
Affiliation(s)
- Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany
| | - Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
| | - Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hanover, Germany;
| | - Stephanie Stanelle-Bertram
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Berfin Schaumburg
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Nancy Mounogou Kouassi
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Martin Zickler
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, 30559 Hanover, Germany; (T.S.); (L.A.); (G.B.); (K.M.); (K.B.); (F.A.); (M.C.)
| |
Collapse
|
9
|
Ma C, Li S, Yang F, Cao W, Liu H, Feng T, Zhang K, Zhu Z, Liu X, Hu Y, Zheng H. FoxJ1 inhibits African swine fever virus replication and viral S273R protein decreases the expression of FoxJ1 to impair its antiviral effect. Virol Sin 2022; 37:445-454. [PMID: 35513267 PMCID: PMC9243675 DOI: 10.1016/j.virs.2022.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/30/2022] [Indexed: 11/04/2022] Open
Abstract
African swine fever (ASF) is a highly pathogenic swine infectious disease that affects domestic pigs and wild boar, which is caused by the African swine fever virus (ASFV). ASF has caused huge economic losses to the pig industry and seriously threatens global food security and livestock health. To date, there is no safe and effective commercial vaccine against ASF. Unveiling the underlying mechanisms of ASFV-host interplay is critical for developing effective vaccines and drugs against ASFV. In the present study, RNA-sequencing, RT-qPCR and Western blotting analysis revealed that the transcriptional and protein levels of the host factor FoxJ1 were significantly down-regulated in primary porcine alveolar macrophages (PAMs) infected by ASFV. RT-qPCR analysis showed that overexpression of FoxJ1 upregulated the transcription of type I interferon and interferon stimulating genes (ISGs) induced by poly(dA:dT). FoxJ1 revealed a function to positively regulate innate immune response, therefore, suppressing the replication of ASFV. In addition, Western blotting analysis indicated that FoxJ1 degraded ASFV MGF505-2R and E165R proteins through autophagy pathway. Meanwhile, RT-qPCR and Western blotting analysis showed that ASFV S273R inhibited the expression of FoxJ1. Altogether, we determined that FoxJ1 plays an antiviral role against ASFV replication, and ASFV protein impairs FoxJ1-mediated antiviral effect by degradation of FoxJ1. Our findings provide new insights into the antiviral function of FoxJ1, which might help design antiviral drugs or vaccines against ASFV infection. FoxJ1 inhibits ASFV replication by degrading ASFV MGF505-2R and E165R proteins via autophagy. FoxJ1 enhances type I IFN response, showing an essential antiviral role. ASFV S273R protein inhibits FoxJ1 expression to impair its antiviral effect.
Collapse
|
10
|
Ivanova N, Sotirova Y, Gavrailov G, Nikolova K, Andonova V. Advances in the Prophylaxis of Respiratory Infections by the Nasal and the Oromucosal Route: Relevance to the Fight with the SARS-CoV-2 Pandemic. Pharmaceutics 2022; 14:530. [PMID: 35335905 PMCID: PMC8953301 DOI: 10.3390/pharmaceutics14030530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022] Open
Abstract
In this time of COVID-19 pandemic, the strategies for prevention of the infection are a primary concern. Looking more globally on the subject and acknowledging the high degree of misuse of protective face masks from the population, we focused this review on alternative pharmaceutical developments eligible for self-defense against respiratory infections. In particular, the attention herein is directed to the nasal and oromucosal formulations intended to boost the local immunity, neutralize or mechanically "trap" the pathogens at the site of entry (nose or mouth). The current work presents a critical review of the contemporary methods of immune- and chemoprophylaxis and their suitability and applicability in topical mucosal dosage forms for SARS-CoV-2 prophylaxis.
Collapse
Affiliation(s)
- Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| | - Yoana Sotirova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| | - Georgi Gavrailov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria; (Y.S.); (G.G.); (V.A.)
| |
Collapse
|
11
|
Hyland RM, Brody SL. Impact of Motile Ciliopathies on Human Development and Clinical Consequences in the Newborn. Cells 2021; 11:125. [PMID: 35011687 PMCID: PMC8750550 DOI: 10.3390/cells11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Motile cilia are hairlike organelles that project outward from a tissue-restricted subset of cells to direct fluid flow. During human development motile cilia guide determination of the left-right axis in the embryo, and in the fetal and neonatal periods they have essential roles in airway clearance in the respiratory tract and regulating cerebral spinal fluid flow in the brain. Dysregulation of motile cilia is best understood through the lens of the genetic disorder primary ciliary dyskinesia (PCD). PCD encompasses all genetic motile ciliopathies resulting from over 60 known genetic mutations and has a unique but often underrecognized neonatal presentation. Neonatal respiratory distress is now known to occur in the majority of patients with PCD, laterality defects are common, and very rarely brain ventricle enlargement occurs. The developmental function of motile cilia and the effect and pathophysiology of motile ciliopathies are incompletely understood in humans. In this review, we will examine the current understanding of the role of motile cilia in human development and clinical considerations when assessing the newborn for suspected motile ciliopathies.
Collapse
Affiliation(s)
- Rachael M. Hyland
- Department of Pediatrics, Division of Newborn Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110,USA;
| | - Steven L. Brody
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
12
|
Faniyi AA, Hughes MJ, Scott A, Belchamber KBR, Sapey E. Inflammation, Ageing and Diseases of the Lung: Potential therapeutic strategies from shared biological pathways. Br J Pharmacol 2021; 179:1790-1807. [PMID: 34826882 DOI: 10.1111/bph.15759] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung diseases disproportionately affect elderly individuals. The lungs form a unique environment: a highly elastic organ with gaseous exchange requiring the closest proximity of inhaled air containing harmful agents and the circulating blood volume. The lungs are highly susceptible to senescence, with age and "inflammageing" creating a pro-inflammatory environment with a reduced capacity to deal with challenges. Whilst lung diseases may have disparate causes, the burden of ageing and inflammation provides a common process which can exacerbate seemingly unrelated pathologies. However, these shared pathways may also provide a common route to treatment, with increased interest in drugs which target ageing processes across respiratory diseases. In this review, we will examine the evidence for the increased burden of lung disease in older adults, the structural and functional changes seen with advancing age and assess what our expanding knowledge of inflammation and ageing pathways could mean for the treatment of lung disease.
Collapse
Affiliation(s)
- A A Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - M J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - A Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - K B R Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - E Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| |
Collapse
|
13
|
Robinot R, Hubert M, de Melo GD, Lazarini F, Bruel T, Smith N, Levallois S, Larrous F, Fernandes J, Gellenoncourt S, Rigaud S, Gorgette O, Thouvenot C, Trébeau C, Mallet A, Duménil G, Gobaa S, Etournay R, Lledo PM, Lecuit M, Bourhy H, Duffy D, Michel V, Schwartz O, Chakrabarti LA. SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nat Commun 2021; 12:4354. [PMID: 34272374 PMCID: PMC8285531 DOI: 10.1038/s41467-021-24521-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Understanding how SARS-CoV-2 spreads within the respiratory tract is important to define the parameters controlling the severity of COVID-19. Here we examine the functional and structural consequences of SARS-CoV-2 infection in a reconstructed human bronchial epithelium model. SARS-CoV-2 replication causes a transient decrease in epithelial barrier function and disruption of tight junctions, though viral particle crossing remains limited. Rather, SARS-CoV-2 replication leads to a rapid loss of the ciliary layer, characterized at the ultrastructural level by axoneme loss and misorientation of remaining basal bodies. Downregulation of the master regulator of ciliogenesis Foxj1 occurs prior to extensive cilia loss, implicating this transcription factor in the dedifferentiation of ciliated cells. Motile cilia function is compromised by SARS-CoV-2 infection, as measured in a mucociliary clearance assay. Epithelial defense mechanisms, including basal cell mobilization and interferon-lambda induction, ramp up only after the initiation of cilia damage. Analysis of SARS-CoV-2 infection in Syrian hamsters further demonstrates the loss of motile cilia in vivo. This study identifies cilia damage as a pathogenic mechanism that could facilitate SARS-CoV-2 spread to the deeper lung parenchyma.
Collapse
Grants
- Institut Pasteur
- This work was supported by : Institut Pasteur TASK FORCE SARS COV2 (TROPICORO and COROCHIP projects), DIM ELICIT Region Ile-de-France, and Agence Nationale de Recherche sur le SIDA et les Maladies Infectieuses Emergentes (ANRS; project 19052) (L.A.C.); the Vaccine Research Institute (ANR-10-LABX-77), ANRS, Labex IBEID (ANR-10-LABX-62-IBEID), the French National Research Agency (ANR; projects “TIMTAMDEN” ANR-14-CE14-0029, “CHIKV-Viro-Immuno” ANR-14-CE14-0015-01), the Gilead HIV cure program, ANR/Fondation pour la Recherche Médicale (FRM) Flash Covid PROTEO-SARS-CoV-2 and IDISCOVR (O.S.); Institut Pasteur TASK FORCE SARS COV2 and ANR Flash Covid CoVarImm (D.D.); Institut Pasteur TASK FORCE SARS COV2 (Neuro-Covid project) (H.B.). The Lledo lab is supported by the life insurance company "AG2R-La-Mondiale". The UtechS Photonic BioImaging (Imagopole) and the UtechS Ultrastructural BioImaging (UBI) are supported by the ANR (France BioImaging; ANR-10–INSB–04; Investments for the Future). R.R. is the recipient of a Sidaction fellowship, N.S. of a Pasteur-Roux-Cantarini fellowship, and St.G. of a MESR/Ecole Doctorale B3MI, Université de Paris fellowship. S.L. is supported by FRM (fellowship ECO201906009119) and by “Ecole Doctorale FIRE – Programme Bettencourt”.
Collapse
Affiliation(s)
- Rémy Robinot
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569 CNRS, Paris, France
| | - Mathieu Hubert
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569 CNRS, Paris, France
| | | | - Françoise Lazarini
- Perception and Memory Unit, Institut Pasteur, Paris, France
- UMR 3571 CNRS, Paris, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569 CNRS, Paris, France
| | - Nikaïa Smith
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, Paris, France
| | - Sylvain Levallois
- Biology of Infection Unit, Institut Pasteur, Paris, France
- INSERM U1117, Paris, France
| | - Florence Larrous
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Paris, France
| | - Julien Fernandes
- UtechS Photonics BioImaging, C2RT, Institut Pasteur, Paris, France
| | - Stacy Gellenoncourt
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569 CNRS, Paris, France
| | | | - Olivier Gorgette
- UtechS Ultrastructural BioImaging UBI, C2RT, Institut Pasteur, Paris, France
| | - Catherine Thouvenot
- UtechS Ultrastructural BioImaging UBI, C2RT, Institut Pasteur, Paris, France
| | - Céline Trébeau
- Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Adeline Mallet
- UtechS Ultrastructural BioImaging UBI, C2RT, Institut Pasteur, Paris, France
| | - Guillaume Duménil
- UtechS Ultrastructural BioImaging UBI, C2RT, Institut Pasteur, Paris, France
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Paris, France
| | | | - Pierre-Marie Lledo
- Perception and Memory Unit, Institut Pasteur, Paris, France
- UMR 3571 CNRS, Paris, France
| | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, Paris, France
- INSERM U1117, Paris, France
- Université de Paris, Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Paris, France
| | - Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincent Michel
- Institut de l'Audition, Institut Pasteur, INSERM, Paris, France.
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.
- UMR 3569 CNRS, Paris, France.
- Vaccine Research Institute, Créteil, France.
| | - Lisa A Chakrabarti
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.
- UMR 3569 CNRS, Paris, France.
| |
Collapse
|
14
|
Arzola-Martínez L, Benavente R, Vega G, Ríos M, Fonseca W, Rasky AJ, Morris S, Lukacs NW, Villalón MJ. Blocking ATP-releasing channels prevents high extracellular ATP levels and airway hyperreactivity in an asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol 2021; 321:L466-L476. [PMID: 34231389 DOI: 10.1152/ajplung.00450.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Allergic asthma is a chronic airway inflammatory response to different triggers like inhaled allergens. Excessive ATP in fluids from patients with asthma is considered an inflammatory signal and an important autocrine/paracrine modulator of airway physiology. Here, we investigated the deleterious effect of increased extracellular ATP (eATP) concentration on the mucociliary clearance (MCC) effectiveness and determined the role of ATP releasing channels during airway inflammation in an ovalbumin (OVA)-sensitized mouse model. Our allergic mouse model exhibited high levels of eATP measured in the tracheal fluid with a luciferin-luciferase assay and reduced MCC velocity determined by microspheres tracking in the trachea ex vivo. Addition of ATP had a dual effect on MCC, where lower ATP concentration (µM) increased microspheres velocity, whereas higher concentration (mM) transiently stopped microspheres movement. Also, an augmented ethidium bromide uptake by the allergic tracheal airway epithelium suggests an increase in ATP release channel functionality during inflammatory conditions. The use of carbenoxolone, a nonspecific inhibitor of connexin and pannexin1 channels reduced the eATP concentration in the allergic mouse tracheal fluid and dye uptake by the airway epithelium, providing evidence that these ATP release channels are facilitating the net flux of ATP to the lumen during airway inflammation. However, only the specific inhibition of pannexin1 with 10Panx peptide significantly reduced eATP in bronchoalveolar lavage and decreased airway hyperresponsiveness in OVA-allergic mouse model. These data provide evidence that blocking eATP may be a pharmacological alternative to be explored in rescue therapy during episodes of airflow restriction in patients with asthma.
Collapse
Affiliation(s)
- Llilian Arzola-Martínez
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rebeca Benavente
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Génesis Vega
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Manuel J Villalón
- Department of Physiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary Respiratory Epithelium Integrity in Molecular Defense and Susceptibility to Pulmonary Viral Infections. BIOLOGY 2021; 10:95. [PMID: 33572760 PMCID: PMC7911113 DOI: 10.3390/biology10020095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
Mucociliary defense, mediated by the ciliated and goblet cells, is fundamental to respiratory fitness. The concerted action of ciliary movement on the respiratory epithelial surface and the pathogen entrapment function of mucus help to maintain healthy airways. Consequently, genetic or acquired defects in lung defense elicit respiratory diseases and secondary microbial infections that inflict damage on pulmonary function and may even be fatal. Individuals living with chronic and acute respiratory diseases are more susceptible to develop severe coronavirus disease-19 (COVID-19) illness and hence should be proficiently managed. In light of the prevailing pandemic, we review the current understanding of the respiratory system and its molecular components with a major focus on the pathophysiology arising due to collapsed respiratory epithelium integrity such as abnormal ciliary movement, cilia loss and dysfunction, ciliated cell destruction, and changes in mucus rheology. The review includes protein interaction networks of coronavirus infection-manifested implications on the molecular machinery that regulates mucociliary clearance. We also provide an insight into the alteration of the transcriptional networks of genes in the nasopharynx associated with the mucociliary clearance apparatus in humans upon infection by severe acute respiratory syndrome coronavirus-2.
Collapse
Affiliation(s)
- Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Manish Singh Kaushik
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India;
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| |
Collapse
|
16
|
Abstract
The lungs are constantly exposed to the external environment and are therefore vulnerable to insults that can cause infection and injury. Maintaining the integrity and barrier function of the lung epithelium requires complex interactions of multiple cell lineages. Elucidating the cellular players and their regulation mechanisms provides fundamental information to deepen understanding about the responses and contributions of lung stem cells. This Review focuses on advances in our understanding of mammalian alveolar epithelial stem cell subpopulations and discusses insights about the regeneration-specific cell status of alveolar epithelial stem cells. We also consider how these advances can inform our understanding of post-injury lung repair processes and lung diseases.
Collapse
Affiliation(s)
- Huijuan Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Wali S, Flores JR, Jaramillo AM, Goldblatt DL, Pantaleón García J, Tuvim MJ, Dickey BF, Evans SE. Immune Modulation to Improve Survival of Viral Pneumonia in Mice. Am J Respir Cell Mol Biol 2020; 63:758-766. [PMID: 32853024 PMCID: PMC7790135 DOI: 10.1165/rcmb.2020-0241oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Viral pneumonias remain global health threats, as exemplified in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, requiring novel treatment strategies both early and late in the disease process. We have reported that mice treated before or soon after infection with a combination of inhaled Toll-like receptor (TLR) 2/6 and 9 agonists (Pam2-ODN) are broadly protected against microbial pathogens including respiratory viruses, but the mechanisms remain incompletely understood. The objective of this study was to validate strategies for immune modulation in a preclinical model of viral pneumonia and determine their mechanisms. Mice were challenged with the Sendai paramyxovirus in the presence or absence of Pam2-ODN treatment. Virus burden and host immune responses were assessed to elucidate Pam2-ODN mechanisms of action and to identify additional opportunities for therapeutic intervention. Enhanced survival of Sendai virus pneumonia with Pam2-ODN treatment was associated with reductions in lung virus burden and with virus inactivation before internalization. We noted that mortality in sham-treated mice corresponded with CD8+ T-cell lung inflammation on days 11-12 after virus challenge, after the viral burden had declined. Pam2-ODN blocked this injurious inflammation by minimizing virus burden. As an alternative intervention, depleting CD8+ T cells 8 days after viral challenge also decreased mortality. Stimulation of local innate immunity within the lungs by TLR agonists early in disease or suppression of adaptive immunity by systemic CD8+ T-cell depletion late in disease improves outcomes of viral pneumonia in mice. These data reveal opportunities for targeted immunomodulation to protect susceptible human subjects.
Collapse
Affiliation(s)
- Shradha Wali
- UTHealth Graduate School of Biomedical Sciences and
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose R. Flores
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana M. Jaramillo
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David L. Goldblatt
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Michael J. Tuvim
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Burton F. Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott E. Evans
- UTHealth Graduate School of Biomedical Sciences and
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
18
|
In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19. Mod Pathol 2020; 33:2104-2114. [PMID: 32561849 PMCID: PMC7304376 DOI: 10.1038/s41379-020-0595-z] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 02/04/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has led to a global public health crisis. In elderly individuals and those with comorbidities, COVID-19 is associated with high mortality, frequently caused by acute respiratory distress syndrome. We examine in situ expression of SARS-CoV-2 in airways and lung obtained at autopsy of individuals with confirmed COVID-19 infection. Seven autopsy cases (male, N = 5; female, N = 2) with reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection and a median age of 66 years (range, 50-77 years) were evaluated using a rabbit polyclonal antibody against SARS Nucleocapsid protein in correlation with clinical parameters. The median time from symptom onset to death was 9 days (range, 6-31 days), from hospitalization 7 days (range, 1-21 days), from positive RT-PCR 7 days (range, 0-18 days), and from intensive care unit admission defining onset of respiratory failure 3 days (range, 1-18 days). Chest imaging identified diffuse airspace disease in all patients corresponding to acute and (N = 5) or organizing (N = 2) diffuse alveolar damage (DAD) on histologic examination. Among five patients with acute-phase DAD (≤7 days from onset of respiratory failure), SARS-CoV-2 was detected in pulmonary pneumocytes and ciliated airway cells (N = 5), and in upper airway epithelium (N = 2). In two patients with organizing DAD (>14 days from onset of respiratory failure), no virus was detected in lungs or airways. No endothelial cell infection was observed. The findings suggest that SARS-CoV-2 infection of epithelial cells in lungs and airways of patients with COVID-19 who developed respiratory failure can be detected during the acute phase of lung injury and is absent in the organizing phase.
Collapse
|
19
|
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319:L603-L619. [PMID: 32783615 PMCID: PMC7516383 DOI: 10.1152/ajplung.00283.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory cilia are the driving force of the mucociliary escalator, working in conjunction with secreted airway mucus to clear inhaled debris and pathogens from the conducting airways. Respiratory cilia are also one of the first contact points between host and inhaled pathogens. Impaired ciliary function is a common pathological feature in patients with chronic airway diseases, increasing susceptibility to respiratory infections. Common respiratory pathogens, including viruses, bacteria, and fungi, have been shown to target cilia and/or ciliated airway epithelial cells, resulting in a disruption of mucociliary clearance that may facilitate host infection. Despite being an integral component of airway innate immunity, the role of respiratory cilia and their clinical significance during airway infections are still poorly understood. This review examines the expression, structure, and function of respiratory cilia during pathogenic infection of the airways. This review also discusses specific known points of interaction of bacteria, fungi, and viruses with respiratory cilia function. The emerging biological functions of motile cilia relating to intracellular signaling and their potential immunoregulatory roles during infection will also be discussed.
Collapse
Affiliation(s)
- Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Wu K, Wang X, Keeler SP, Gerovac BJ, Agapov EV, Byers DE, Gilfillan S, Colonna M, Zhang Y, Holtzman MJ. Group 2 Innate Lymphoid Cells Must Partner with the Myeloid-Macrophage Lineage for Long-Term Postviral Lung Disease. THE JOURNAL OF IMMUNOLOGY 2020; 205:1084-1101. [PMID: 32641386 DOI: 10.4049/jimmunol.2000181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are implicated in host defense and inflammatory disease, but these potential functional roles need more precise definition, particularly using advanced technologies to better target ILC2s and engaging experimental models that better manifest both acute infection and chronic, even lifelong, disease. In this study, we use a mouse model that applies an improved genetic definition of ILC2s via IL-7r-conditional Rora gene targeting and takes advantage of a distinct progression from acute illness to chronic disease, based on a persistent type 2 immune response to respiratory infection with a natural pathogen (Sendai virus). We first show that ILC2s are activated but are not required to handle acute illness after respiratory viral infection. In contrast, we find that this type of infection also activates ILC2s chronically for IL-13 production and consequent asthma-like disease traits that peak and last long after active viral infection is cleared. However, to manifest this type of disease, the Csf1-dependent myeloid-macrophage lineage is also active at two levels: first, at a downstream level, this lineage provides lung tissue macrophages (interstitial macrophages and tissue monocytes) that represent a major site of Il13 gene expression in the diseased lung; and second, at an upstream level, this same lineage is required for Il33 gene induction that is necessary to activate ILC2s for participation in disease at all, including IL-13 production. Together, these findings provide a revised scheme for understanding and controlling the innate immune response leading to long-term postviral lung diseases with features of asthma and related progressive conditions.
Collapse
Affiliation(s)
- Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xinyu Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin J Gerovac
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene V Agapov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
21
|
Goldblatt DL, Flores JR, Valverde Ha G, Jaramillo AM, Tkachman S, Kirkpatrick CT, Wali S, Hernandez B, Ost DE, Scott BL, Chen J, Evans SE, Tuvim MJ, Dickey BF. Inducible epithelial resistance against acute Sendai virus infection prevents chronic asthma-like lung disease in mice. Br J Pharmacol 2020; 177:2256-2273. [PMID: 31968123 DOI: 10.1111/bph.14977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Respiratory viral infections play central roles in the initiation, exacerbation and progression of asthma in humans. An acute paramyxoviral infection in mice can cause a chronic lung disease that resembles human asthma. We sought to determine whether reduction of Sendai virus lung burden in mice by stimulating innate immunity with aerosolized Toll-like receptor (TLR) agonists could attenuate the severity of chronic asthma-like lung disease. EXPERIMENTAL APPROACH Mice were treated by aerosol with 1-μM oligodeoxynucleotide (ODN) M362, an agonist of the TLR9 homodimer, and 4-μM Pam2CSK4 (Pam2), an agonist of the TLR2/6 heterodimer, within a few days before or after Sendai virus challenge. KEY RESULTS Treatment with ODN/Pam2 caused ~75% reduction in lung Sendai virus burden 5 days after challenge. The reduction in acute lung virus burden was associated with marked reductions 49 days after viral challenge in eosinophilic and lymphocytic lung inflammation, airway mucous metaplasia, lumenal mucus occlusion and hyperresponsiveness to methacholine. Mechanistically, ODN/Pam2 treatment attenuated the chronic asthma phenotype by suppressing IL-33 production by type 2 pneumocytes, both by reducing the severity of acute infection and by down-regulating Type 2 (allergic) inflammation. CONCLUSION AND IMPLICATIONS These data suggest that treatment of susceptible human hosts with aerosolized ODN and Pam2 at the time of a respiratory viral infection might attenuate the severity of the acute infection and reduce initiation, exacerbation and progression of asthma.
Collapse
Affiliation(s)
- David L Goldblatt
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose R Flores
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriella Valverde Ha
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana M Jaramillo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sofya Tkachman
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carson T Kirkpatrick
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shradha Wali
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Belinda Hernandez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David E Ost
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Ito S, Yamamoto Y, Kimura K. Analysis of ciliogenesis process in the bovine oviduct based on immunohistochemical classification. Mol Biol Rep 2019; 47:1003-1012. [PMID: 31741261 DOI: 10.1007/s11033-019-05192-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
Abstract
The oviductal epithelium is composed of ciliated and non-ciliated cells. The proportions of these cells change during the estrous cycle. However, the mechanism underlying this cyclic change in the cell proportions remains unclear. Our previous study indicated that ciliated cells are derived from non-ciliated cells. Here, we aimed to investigate the mechanism regulating the changes in the populations of ciliated and non-ciliated cells during the estrous cycle. To this end, we examined the numbers of cells that were positive for acetylated-α-tubulin (cilia marker), Ki67 (proliferation marker), PAX8 (non-ciliated cell marker), and FOXJ1 and MYB (ciliogenesis markers) in the epithelial cells at four different estrous stages (Stage I: days 1-4 after ovulation, Stage II: days 5-10, Stage III: days 11-17, and Stage IV: days 18-20) by immunohistochemistry. The oviductal epithelial cells expressed either FOXJ1 or PAX8. All the acetylated-α-tubulin+ cells were positive for FOXJ1, although there were a few acetylated-α-tubulin-/FOXJ1+ cells. MYB was expressed in both the FOXJ1+ and PAX8+ cells, but it was not expressed in the Ki67+ cells. The numbers of Ki67+ and MYB+ cells were the highest in Stage IV, while the numbers of FOXJ1+ and acetylated-α-tubulin+ cells were the highest in the following Stage I, suggesting that ciliogenesis is associated with the estrous cycle. Thus, based on immunological classification, the oviductal epithelium contains at least seven types of cells at different translational/transcriptional states, and their number is regulated by the estrous cycle. This cyclic event might provide an optimal environment for gamete transport, fertilization, and embryonic development.
Collapse
Affiliation(s)
- Sayaka Ito
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-Ku, Okayama, 700-8530, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuki Yamamoto
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-Ku, Okayama, 700-8530, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-Ku, Okayama, 700-8530, Japan.
| |
Collapse
|
23
|
Zi XX, Guan WJ, Peng Y, Tan KS, Liu J, He TT, Ong YK, Thong M, Shi L, Wang DY. An Integrated Analysis of Radial Spoke Head and Outer Dynein Arm Protein Defects and Ciliogenesis Abnormality in Nasal Polyps. Front Genet 2019; 10:1083. [PMID: 31798623 PMCID: PMC6863926 DOI: 10.3389/fgene.2019.01083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/09/2019] [Indexed: 01/25/2023] Open
Abstract
Background: Nasal polyp (NP) is a chronic upper airway inflammatory disease that is frequently triggered by defective host-defense. However, the mechanisms underlying the impaired barrier function such as cilia-mediated mucociliary clearance remain poorly understood. Objective: To assess ciliary ultrastructural and ciliogenesis marker expression and the phenotypes of ciliated cells in NP. Methods: NP biopsy samples were obtained from 97 NP patients and inferior turbinate from 32 healthy controls. Immunofluorescence staining, quantitative polymerase chain reaction, and single-cell cytospin staining were performed. We classified the patterns of radial spoke head protein (RSPH) 1, 4A (RSPH4A), 9 (RSPH9), and dynein axonemal heavy chain 5 (DNAH5) localization. A semi-quantitative scoring system was developed to assess their expression patterns and associations with ciliogenesis markers [centrosomal protein 110 (CP110) and forkhead box j1 (FOXJ1)]. Results: Median scores of RSPH1, RSPH4A, RSPH9, and DNAH5 were significantly higher in NP than in healthy controls, particularly in eosinophilic NPs. Expression pattern scores of RSPH1, RSPH4A, RSPH9, and DNAH5 correlated positively with each other in both groups. In primary-cell specimens, abnormal expression patterns were significantly more common in NP. The total fluorescence intensity of CP110 and FOXJ1 was significantly higher in NPs and correlated positively with expression pattern scores of RSPH1, RSPH4A, RSPH9, and DNAH5. A trend towards lengthened cilia was observed in NP. Conclusion: In the chronic airway inflammatory milieu, the up-regulated ciliogenesis correlates with the abnormal expression of ciliary ultrastructural markers (i.e., DNAH5) in NP (particularly eosinophilic NP).
Collapse
Affiliation(s)
- Xiao-Xue Zi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Jie Guan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yang Peng
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ting-Ting He
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yew-Kwang Ong
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital System (NUHS), Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital System (NUHS), Singapore, Singapore
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Zhang Y, Mao D, Keeler SP, Wang X, Wu K, Gerovac BJ, Shornick LL, Agapov EV, Holtzman MJ. Respiratory Enterovirus (like Parainfluenza Virus) Can Cause Chronic Lung Disease if Protection by Airway Epithelial STAT1 Is Lost. THE JOURNAL OF IMMUNOLOGY 2019; 202:2332-2347. [PMID: 30804041 DOI: 10.4049/jimmunol.1801491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
Epithelial barrier cells are proposed to be critical for host defense, and airway epithelial cell capacity for IFN signal transduction is presumed to protect against respiratory viral infection. However, it has been difficult to fully test these concepts given the absence of tools to analyze IFN signaling specific to airway epithelial cells in vivo. To address these issues, we generated a new line of transgenic mice with Cre-driver genes (Foxj1 and Scgb1a1) for a floxed-Stat1 allele (designated Foxj1-Scgb1a1-Cre-Stat1f/f mice) to target the master IFN signal regulator STAT1 in airway epithelial cells and tested these mice for control of infection because of mouse parainfluenza (Sendai) virus and human enterovirus D68 (EV-D68). Indeed, both types of infections showed increases in viral titers and severity of acute illness in Foxj1-Scgb1a1-Cre-Stat1f/f mice and conventional Stat1-/- mice compared with wild-type mice. In concert, the chronic lung disease that develops after Sendai virus infection was also increased in Foxj1-Scgb1a1-Cre-Stat1f/f and Stat1-/ - mice, marked by airway and adjacent parenchymal immune cell infiltration and mucus production for at least 7 wk postinfection. Unexpectedly, relatively mild EV-D68 infection also progressed to chronic lung disease in Foxj1-Scgb1a1-Cre-Stat1f/f and Stat1 -/- mice but was limited (like viral replication) to airways. The results thereby provide proof-of-concept for a critical role of barrier epithelial cells in protection from acute illness and chronic disease after viral infection and suggest a specific role for airway epithelial cells given the limitation of EV-D68 replication and acute and chronic manifestations of disease primarily to airway tissue.
Collapse
Affiliation(s)
- Yong Zhang
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xinyu Wang
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin J Gerovac
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Laurie L Shornick
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene V Agapov
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
25
|
Mucociliary Clearance in Mice Measured by Tracking Trans-tracheal Fluorescence of Nasally Aerosolized Beads. Sci Rep 2018; 8:14744. [PMID: 30282981 PMCID: PMC6170422 DOI: 10.1038/s41598-018-33053-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
Abstract
Mucociliary clearance (MCC) is the first line of defense in clearing airways. In genetically engineered mice, each component of this system (ciliary beat, mucus, airway surface hydration) can be studied separately to determine its contribution to MCC. Because MCC is difficult to measure in mice, MCC measurements are often omitted from these studies. We report a simple method to measure MCC in mice involving nasal inhalation of aerosolized fluorescent beads and trans-tracheal bead tracking. This method has a number of advantages over existing methods: (1) a small volume of liquid is deposited thus minimally disturbing the airway surface; (2) bead behavior on airways can be visualized; (3) useful for adult or neonatal mice; (4) the equipment is relatively inexpensive and easily obtainable. The type of anesthetic had no significant effect on the rate of MCC, but overloading the airways with beads significantly decreased MCC. In addition, the rate of bead transport was not different in alive (3.11 mm/min) vs recently euthanized mice (3.10 mm/min). A 5-min aerosolization of beads in a solution containing UTP significantly increased the rate of MCC, demonstrating that our method would be of value in testing the role of various pharmacological agents on MCC.
Collapse
|
26
|
Nikolić MZ, Sun D, Rawlins EL. Human lung development: recent progress and new challenges. Development 2018; 145:145/16/dev163485. [PMID: 30111617 PMCID: PMC6124546 DOI: 10.1242/dev.163485] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed biologically significant differences between human and mouse lung development, and have reported new in vitro systems that allow experimental manipulation of human lung models. At the same time, emerging clinical data suggest that the origins of some adult lung diseases are found in embryonic development and childhood. The convergence of these research themes has fuelled a resurgence of interest in human lung developmental biology. In this Review, we discuss our current understanding of human lung development, which has been profoundly influenced by studies in mice and, more recently, by experiments using in vitro human lung developmental models and RNA sequencing of human foetal lung tissue. Together, these approaches are helping to shed light on the mechanisms underlying human lung development and disease, and may help pave the way for new therapies. Summary: This Review describes how recent technological advances have shed light on the mechanisms underlying human lung development and disease, and outlines the future challenges in this field.
Collapse
Affiliation(s)
- Marko Z Nikolić
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK.,University of Cambridge School of Clinical Medicine, Department of Medicine, Cambridge CB2 0QQ, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
27
|
Matsuyama M, Martins AJ, Shallom S, Kamenyeva O, Kashyap A, Sampaio EP, Kabat J, Olivier KN, Zelazny AM, Tsang JS, Holland SM. Transcriptional Response of Respiratory Epithelium to Nontuberculous Mycobacteria. Am J Respir Cell Mol Biol 2018; 58:241-252. [PMID: 28915071 DOI: 10.1165/rcmb.2017-0218oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The incidence of pulmonary nontuberculous mycobacteria (NTM) disease is increasing, but host responses in respiratory epithelium infected with NTM are not fully understood. In this work, we aimed to identify infection-relevant gene expression signatures of NTM infection of the respiratory epithelium. We infected air-liquid interface (ALI) primary respiratory epithelial cell cultures with Mycobacterium avium subsp. avium (MAC) or Mycobacterium abscessus subsp. abscessus (MAB). We used cells from four different donors to obtain generalizable data. Differentiated respiratory epithelial cells at the ALI were infected with MAC or MAB at a multiplicity of infection of 100:1 or 1,000:1, and RNA sequencing was performed at Days 1 and 3 after infection. In response to infection, we found down-regulation of ciliary genes but upregulation of genes associated with cytokines/chemokines, such as IL-32, and cholesterol biosynthesis. Inflammatory response genes tended to be more upregulated by MAB than by MAC infection. Primary respiratory epithelial cell infection with NTM at the ALI identified ciliary function, cholesterol biosynthesis, and cytokine/chemokine production as major host responses to infection. Some of these pathways may be amenable to therapeutic manipulation.
Collapse
Affiliation(s)
| | - Andrew J Martins
- 2 Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, and
| | - Shamira Shallom
- 3 Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Olena Kamenyeva
- 4 Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | - Juraj Kabat
- 4 Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kenneth N Olivier
- 5 Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Adrian M Zelazny
- 3 Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - John S Tsang
- 2 Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, and
| | | |
Collapse
|
28
|
Bustamante-Marin XM, Ostrowski LE. Cilia and Mucociliary Clearance. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028241. [PMID: 27864314 DOI: 10.1101/cshperspect.a028241] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucociliary clearance (MCC) is the primary innate defense mechanism of the lung. The functional components are the protective mucous layer, the airway surface liquid layer, and the cilia on the surface of ciliated cells. The cilia are specialized organelles that beat in metachronal waves to propel pathogens and inhaled particles trapped in the mucous layer out of the airways. In health this clearance mechanism is effective, but in patients with primary cilia dyskinesia (PCD) the cilia are abnormal, resulting in deficient MCC and chronic lung disease. This demonstrates the critical importance of the cilia for human health. In this review, we summarize the current knowledge of the components of the MCC apparatus, focusing on the role of cilia in MCC.
Collapse
Affiliation(s)
- Ximena M Bustamante-Marin
- Marsico Lung Institute, Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lawrence E Ostrowski
- Marsico Lung Institute, Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
29
|
Janssen WJ, Stefanski AL, Bochner BS, Evans CM. Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions. Eur Respir J 2016; 48:1201-1214. [PMID: 27587549 DOI: 10.1183/13993003.00120-2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/12/2016] [Indexed: 12/14/2022]
Abstract
Owing to the need to balance the requirement for efficient respiration in the face of tremendous levels of exposure to endogenous and environmental challenges, it is crucial for the lungs to maintain a sustainable defence that minimises damage caused by this exposure and the detrimental effects of inflammation to delicate gas exchange surfaces. Accordingly, epithelial and macrophage defences constitute essential first and second lines of protection that prevent the accumulation of potentially harmful agents in the lungs, and under homeostatic conditions do so effectively without inducing inflammation. Though epithelial and macrophage-mediated defences are seemingly distinct, recent data show that they are linked through their shared reliance on airway mucins, in particular the polymeric mucin MUC5B. This review highlights our understanding of novel mechanisms that link mucus and macrophage defences. We discuss the roles of phagocytosis and the effects of factors contained within mucus on phagocytosis, as well as newly identified roles for mucin glycoproteins in the direct regulation of leukocyte functions. The emergence of this nascent field of glycoimmunobiology sets forth a new paradigm for considering how homeostasis is maintained under healthy conditions and how it is restored in disease.
Collapse
Affiliation(s)
- William J Janssen
- Dept of Medicine, National Jewish Health, Denver, CO, USA Dept of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Bruce S Bochner
- Dept of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher M Evans
- Dept of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
30
|
Wei Q, Chen ZH, Wang L, Zhang T, Duan L, Behrens C, Wistuba II, Minna JD, Gao B, Luo JH, Liu ZP. LZTFL1 suppresses lung tumorigenesis by maintaining differentiation of lung epithelial cells. Oncogene 2015; 35:2655-63. [PMID: 26364604 PMCID: PMC4791215 DOI: 10.1038/onc.2015.328] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related death in the United States, and metastatic behavior is largely responsible for this mortality. Mutations in multiple ‘driver' oncogenes and tumor suppressors are known to contribute to the lung tumorigenesis and in some cases represent therapeutic targets. Leucine Zipper Transcription Factor-like 1 (LZTFL1) is located in the chromosome region 3p21.3 where allelic loss and genetic alterations occur early and frequently in lung cancers. Previously, we found that LZTFL1 is downregulated in epithelial tumors, including lung cancer, and functions as a tumor suppressor in gastric cancers. However, the functional role of LZTFL1 in lung oncogenesis is undefined. We show here that downregulation of LZTFL1 expression in non-small cell lung cancer is associated with recurrence and poor survival, whereas re-expression of LZTFL1 in lung tumor cells inhibited extravasation/colonization of circulating tumor cells to the lung and inhibited tumor growth in vivo. Mechanistically, we found that LZTFL1 is expressed in ciliated human bronchial epithelial cells (HBECs) and its expression correlates with HBEC differentiation. LZTFL1 inhibits transforming growth factor β-activated mitogen-activated protein kinase and hedgehog signaling. Alteration of intracellular levels of LZTFL1 resulted in changes of expression of genes associated with epithelial-to-mesenchymal transition (EMT). We conclude that LZTFL1 inhibits lung tumorigenesis, possibly by maintaining epithelial cell differentiation and/or inhibition of signalings that lead to EMT and suggest that reactivation of LZTFL1 expression in tumor cells may be a novel lung cancer therapeutic approach.
Collapse
Affiliation(s)
- Q Wei
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Surgical Oncology and Institute of Clinical Medicine, Sir Run Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou, China
| | - Z-H Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - L Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - T Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - L Duan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Behrens
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.,Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - I I Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.,Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - J D Minna
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - B Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J-H Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Z P Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
31
|
Sears PR, Yin WN, Ostrowski LE. Continuous mucociliary transport by primary human airway epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 2015; 309:L99-108. [PMID: 25979076 DOI: 10.1152/ajplung.00024.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated.
Collapse
Affiliation(s)
- Patrick R Sears
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Wei-Ning Yin
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Zhang L, Li W, Ni J, Wu J, Liu J, Zhang Z, Zhang Y, Li H, Shi Y, Teves ME, Song S, Strauss JF, Zhang Z. RC/BTB2 is essential for formation of primary cilia in mammalian cells. Cytoskeleton (Hoboken) 2015; 72:171-81. [PMID: 25762510 DOI: 10.1002/cm.21214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/19/2023]
Abstract
RC/BTB2 is a binding partner of sperm associated antigen 16S (SPAG16S), which is a regulator of spermiogenesis in mice, a process during which sperm flagella are formed. The expression of Rc/btb2 is also regulated by multicilin, a protein that controls ciliogenesis. Given that mouse Rc/btb2 mRNA is not only expressed in tissues bearing motile cilia, but also in tissues without motile cilia, we investigated whether RC/BTB2 plays a role in the general process of ciliogenesis by studying two cell lines that have primary cilia, NIH3T3, and IMCD3. We discovered that the subcellular localization of RC/BTB2 in the NIH3T3 and IMCD3 cells encompasses the pathway for ciliogenesis. RC/BTB2 was found in the Golgi bodies and centrosomes, two key structures essential for normal ciliogenesis. Knockdown of Rc/btb2 gene expression in these cell lines disrupted ciliogenesis. The percentage of cells with primary cilia was significantly reduced in stable cell lines transduced with specific Rc/btb2 shRNA viruses as compared to the control cells. When cilia were formed in the knockdown cells, they were significantly shorter than those in the control cells. Knockdown of Rc/btb2 expression did not affect cell proliferation and the cell cycle. Exogenous expression of RC/BTB2 in these stable knockdown cells restored ciliogenesis. These findings suggest that RC/BTB2 is a necessary component of the process of formation of primary cilia in somatic cells, perhaps through the transportation of cargos from Golgi bodies to centrosomes for cilia assembling.
Collapse
Affiliation(s)
- Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Wei Li
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Jin Ni
- Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Jinghua Wu
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Junping Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhengang Zhang
- Department of Infectious Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
- Department of Dermatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongfei Li
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Yuqin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Maria E Teves
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Shizheng Song
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jerome F Strauss
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
33
|
Zinman GE, Naiman S, O'Dee DM, Kumar N, Nau GJ, Cohen HY, Bar-Joseph Z. ModuleBlast: identifying activated sub-networks within and across species. Nucleic Acids Res 2015; 43:e20. [PMID: 25428368 PMCID: PMC4330341 DOI: 10.1093/nar/gku1224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 10/11/2014] [Accepted: 11/09/2014] [Indexed: 11/18/2022] Open
Abstract
Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions). Finding an active sub-network is a hard problem and applying it across species requires further considerations (e.g. orthology information, expression data and networks from different sources). To address these challenges we devised ModuleBlast, which uses both expression and network topology to search for highly relevant sub-networks. We have applied ModuleBlast to expression and interaction data from mouse, macaque and human to study immune response and aging. The immune response analysis identified several relevant modules, consistent with recent findings on apoptosis and NFκB activation following infection. Temporal analysis of these data revealed cascades of modules that are dynamically activated within and across species. We have experimentally validated some of the novel hypotheses resulting from the analysis of the ModuleBlast results leading to new insights into the mechanisms used by a key mammalian aging protein.
Collapse
Affiliation(s)
- Guy E Zinman
- Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Shoshana Naiman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dawn M O'Dee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Nishant Kumar
- Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Gerard J Nau
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Haim Y Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ziv Bar-Joseph
- Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
34
|
Abstract
A characteristic feature of the human airway epithelium is the presence of ciliated cells bearing motile cilia, specialized cell surface projections containing axonemes composed of microtubules and dynein arms, which provide ATP-driven motility. In the airways, cilia function in concert with airway mucus to mediate the critical function of mucociliary clearance, cleansing the airways of inhaled particles and pathogens. The prototypical disorder of respiratory cilia is primary ciliary dyskinesia, an inherited disorder that leads to impaired mucociliary clearance, to repeated chest infections, and to the progressive destruction of lung architecture. Numerous acquired lung diseases are also marked by abnormalities in both cilia structure and function. In this review we summarize current knowledge regarding airway ciliated cells and cilia, how they function to maintain a healthy epithelium, and how disorders of cilia structure and function contribute to inherited and acquired lung disease.
Collapse
|
35
|
Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice. J Virol 2014; 89:337-49. [PMID: 25320315 DOI: 10.1128/jvi.02110-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED ISG15 is a diubiquitin-like modifier and one of the most rapidly induced genes upon type I interferon stimulation. Hundreds of host proteins and a number of viral proteins have been shown to be ISGylated, and understanding how these modifications affect the interferon response and virus replication has been of considerable interest. ISG15(-/-) mice exhibit increased susceptibility to viral infection, and in the case of influenza B virus and vaccinia virus, ISG15 conjugation has been shown to restrict virus replication in vivo. A number of studies have also found that ISG15 is capable of antagonizing replication of some viruses in tissue culture. However, recent findings have demonstrated that ISG15 can protect mice from Chikungunya virus infection without affecting the virus burden. In order to better understand the function of ISG15 in vivo, we characterized the pathogenesis of influenza A virus and Sendai virus in ISG15(-/-) mice. We found that ISG15 protects mice from virus induced lethality by a conjugation-dependent mechanism in both of these models. However, surprisingly, we found that ISG15 had minimal effect on virus replication and did not have an obvious role in the modulation of the acute immune response to infection. Instead, we observed an increase in the number of diseased small airways in mice lacking ISG15. This ability of ISG15 to protect mice in a conjugation-dependent, but nonantiviral, manner from respiratory virus infection represents a previously undescribed role for ISG15 and demonstrates the importance of further characterization of ISG15 in vivo. IMPORTANCE It has previously been demonstrated that ISG15(-/-) mice are more susceptible to a number of viral infections. Since ISG15 is one of the most strongly induced genes after type I interferon stimulation, analysis of ISG15 function has largely focused on its role as an antiviral molecule during acute infection. Although a number of studies have shown that ISG15 does have a small effect on virus replication in tissue culture, few studies have confirmed this mechanism of protection in vivo. In these studies we have found that while ISG15(-/-) mice are more susceptible to influenza A virus and Sendai virus infections, ISGylation does not appear to mediate this protection through the direct inhibition of virus replication or the modulation of the acute immune response. Thus, in addition to showing a novel mode of ISG15 mediated protection from virus infection, this study demonstrates the importance of studying the role of ISG15 in vivo.
Collapse
|
36
|
Roflumilast inhibits respiratory syncytial virus infection in human differentiated bronchial epithelial cells. PLoS One 2013; 8:e69670. [PMID: 23936072 PMCID: PMC3720563 DOI: 10.1371/journal.pone.0069670] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes acute exacerbations in COPD and asthma. RSV infects bronchial epithelial cells (HBE) that trigger RSV associated lung pathology. This study explores whether the phosphodiesterase 4 (PDE4) inhibitor Roflumilast N-oxide (RNO), alters RSV infection of well-differentiated HBE (WD-HBE) in vitro. WD-HBE were RSV infected in the presence or absence of RNO (0.1-100 nM). Viral infection (staining of F and G proteins, nucleoprotein RNA level), mRNA of ICAM-1, ciliated cell markers (digital high speed videomicroscopy, β-tubulin immunofluorescence, Foxj1 and Dnai2 mRNA), Goblet cells (PAS), mRNA of MUC5AC and CLCA1, mRNA and protein level of IL-13, IL-6, IL-8, TNFα, formation of H2O2 and the anti-oxidative armamentarium (mRNA of Nrf2, HO-1, GPx; total antioxidant capacity (TAC) were measured at day 10 or 15 post infection. RNO inhibited RSV infection of WD-HBE, prevented the loss of ciliated cells and markers, reduced the increase of MUC5AC and CLCA1 and inhibited the increase of IL-13, IL-6, IL-8, TNFα and ICAM-1. Additionally RNO reversed the reduction of Nrf2, HO-1 and GPx mRNA levels and consequently restored the TAC and reduced the H2O2 formation. RNO inhibits RSV infection of WD-HBE cultures and mitigates the cytopathological changes associated to this virus.
Collapse
|
37
|
Didon L, Zwick RK, Chao IW, Walters MS, Wang R, Hackett NR, Crystal RG. RFX3 modulation of FOXJ1 regulation of cilia genes in the human airway epithelium. Respir Res 2013; 14:70. [PMID: 23822649 PMCID: PMC3710277 DOI: 10.1186/1465-9921-14-70] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022] Open
Abstract
Background Ciliated cells play a central role in cleansing the airways of inhaled contaminants. They are derived from basal cells that include the airway stem/progenitor cells. In animal models, the transcription factor FOXJ1 has been shown to induce differentiation to the ciliated cell lineage, and the RFX transcription factor-family has been shown to be necessary for, but not sufficient to induce, correct cilia development. Methods To test the hypothesis that FOXJ1 and RFX3 cooperatively induce expression of ciliated genes in the differentiation process of basal progenitor cells toward a ciliated cell linage in the human airway epithelium, primary human airway basal cells were assessed under conditions of in vitro differentiation induced by plasmid-mediated gene transfer of FOXJ1 and/or RFX3. TaqMan PCR was used to quantify mRNA levels of basal, secretory, and cilia-associated genes. Results Basal cells, when cultured in air-liquid interface, differentiated into a ciliated epithelium, expressing FOXJ1 and RFX3. Transfection of FOXJ1 into resting basal cells activated promoters and induced expression of ciliated cell genes as well as both FOXJ1 and RFX3, but not basal cell genes. Transfection of RFX3 induced expression of RFX3 but not FOXJ1, nor the expression of cilia-related genes. The combination of FOXJ1 + RFX3 enhanced ciliated gene promoter activity and mRNA expression beyond that due to FOXJ1 alone. Corroborating immunoprecipitation studies demonstrated an interaction between FOXJ1 and RFX3. Conclusion FOXJ1 is an important regulator of cilia gene expression during ciliated cell differentiation, with RFX3 as a transcriptional co-activator to FOXJ1, helping to induce the expression of cilia genes in the process of ciliated cell differentiation of basal/progenitor cells.
Collapse
Affiliation(s)
- Lukas Didon
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Milara J, Armengot M, Bañuls P, Tenor H, Beume R, Artigues E, Cortijo J. Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br J Pharmacol 2012; 166:2243-62. [PMID: 22385203 DOI: 10.1111/j.1476-5381.2012.01929.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Mucociliary malfunction occurs in chronic obstructive pulmonary disease (COPD) and compromised functions of ciliated bronchial epithelial cells may contribute to this. Cigarette smoke, a major risk factor for COPD, impairs ciliary beat frequency (CBF). cAMP augments CBF. This in vitro study addressed, in differentiated, primary human bronchial epithelial cells, whether roflumilast N-oxide, a PDE4 inhibitor, (i) augments CBF; (ii) prevents the reduction in CBF induced by cigarette smoke extract (CSE); and (iii) protects against the loss of the ciliated phenotype following long-term CSE exposure. EXPERIMENTAL APPROACH Air-liquid interface cultured human bronchial epithelial cells were incubated with roflumilast N-oxide and exposed to CSE. CBF was assessed by digital high speed video microscopy (DHSV). Ciliated cells were characterized by β-tubulin IV staining and analyses of Foxj1 and Dnai2 mRNA and protein (real-time quantitative PCR, Western blotting). KEY RESULTS Roflumilast N-oxide concentration-dependently triggered a rapid and persistent increase in CBF and reversed the decrease in CBF following CSE. Long-term incubation of bronchial epithelial cells with CSE resulted in a loss in ciliated cells associated with reduced expression of the ciliated cell markers Foxj1 and Dnai2. The PDE4 inhibitor prevented this loss in the ciliated cell phenotype and the compromised Foxj1 and Dnai2 expression. The enhanced release of IL-13 following CSE, a cytokine that diminishes the proportion of ciliated cells and in parallel, reduces Foxj1 and Dnai2, was reversed by roflumilast N-oxide. CONCLUSION AND IMPLICATIONS Roflumilast N-oxide protected differentiated human bronchial epithelial cells from reduced CBF and loss of ciliated cells following CSE.
Collapse
Affiliation(s)
- J Milara
- Research Unit, University General Hospital Consortium, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
James KM, Peebles RS, Hartert TV. Response to infections in patients with asthma and atopic disease: an epiphenomenon or reflection of host susceptibility? J Allergy Clin Immunol 2012; 130:343-51. [PMID: 22846746 PMCID: PMC3410318 DOI: 10.1016/j.jaci.2012.05.056] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/12/2012] [Accepted: 05/15/2012] [Indexed: 01/22/2023]
Abstract
Associations between respiratory tract infections and asthma inception and exacerbations are well established. Infant respiratory syncytial virus and rhinovirus infections are known to be associated with an increased risk of asthma development, and among children with prevalent asthma, 85% of asthma exacerbations are associated with viral infections. However, the exact nature of this relationship remains unclear. Is the increase in severity of infections an epiphenomenon, meaning respiratory tract infections just appear to be more severe in patients with underlying respiratory disease, or instead a reflection of altered host susceptibility among persons with asthma and atopic disease? The main focus of this review is to summarize the available levels of evidence supporting or refuting the notion that patients with asthma or atopic disease have an altered susceptibility to selected pathogens, as well as discussing the biological mechanism or mechanisms that might explain such associations. Finally, we will outline areas in need of further research because understanding the relationships between infections and asthma has important implications for asthma prevention and treatment, including potential new pathways that might target the host immune response to select pathogens.
Collapse
Affiliation(s)
- Kristina M James
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-8300, USA
| | | | | |
Collapse
|
40
|
Matsumoto S, Konishi H, Maeda R, Kiryu-Seo S, Kiyama H. Expression analysis of the regenerating gene (Reg) family members Reg-IIIβ and Reg-IIIγ in the mouse during development. J Comp Neurol 2012; 520:479-94. [PMID: 21681751 DOI: 10.1002/cne.22705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The regenerating gene/regenerating islet-derived (Reg) family is a group of small secretory proteins. Within this family, Reg type-III (Reg-III) consists of: Reg-IIIα, -β, -γ, and -δ. To elucidate the physiological relevance of Reg-III, we examined the localization and ontogeny of Reg-IIIβ and Reg-IIIγ in mice at different time points spanning from embryonic day 13.5 to 7 weeks old, using in situ hybridization and immunohistochemistry. Our results showed that Reg-IIIβ was expressed in specific subsets of primary sensory neurons and motor neurons, and that expression was transient during the embryonic and perinatal periods. Reg-IIIβ expression was also observed in absorptive epithelial cells of the intestine. In contrast, Reg-IIIγ expression was mainly observed in epithelial cells of the airways and intestine, but not in the nervous system, and expression levels showed a gradually increasing pattern along with development. In the airways Reg-IIIγ was expressed in goblet and Clara-like cells, whereas in the intestine Reg-IIIγ was expressed in the absorptive epithelial cells and Paneth cells, and was found to be expressed in development before these organs had been exposed to the outside world. The present findings imply that Reg-IIIβ and Reg-IIIγ expression is regulated along divergent pathways. Furthermore, we also suggest that expression of Reg-IIIγ in the airway and intestinal epithelia may occur to protect these organs from exposure to antigens or other factors (e.g., microbes) in the outer world, whereas the transient expression of Reg-IIIβ in the nervous system may be associated with the development of the peripheral nervous system including such processes as myelination.
Collapse
Affiliation(s)
- Sakiko Matsumoto
- Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | | | | | | | | |
Collapse
|
41
|
Hanaue M, Miwa N, Uebi T, Fukuda Y, Katagiri Y, Takamatsu K. Characterization of S100A11, a suppressive factor of fertilization, in the mouse female reproductive tract. Mol Reprod Dev 2011; 78:91-103. [DOI: 10.1002/mrd.21273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/15/2010] [Indexed: 12/15/2022]
|
42
|
Miao H, Hollenbaugh JA, Zand MS, Holden-Wiltse J, Mosmann TR, Perelson AS, Wu H, Topham DJ. Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus. J Virol 2010; 84:6687-98. [PMID: 20410284 PMCID: PMC2903284 DOI: 10.1128/jvi.00266-10] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/08/2010] [Indexed: 01/12/2023] Open
Abstract
Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is approximately 1.2 days, and the half-life of free infectious IAV is approximately 4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is approximately 0.5 days, and the average half-life of free infectious virus is approximately 1.8 min. During the adaptive phase, model fitting confirms that CD8(+) CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity.
Collapse
Affiliation(s)
- Hongyu Miao
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Joseph A. Hollenbaugh
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Martin S. Zand
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Tim R. Mosmann
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Alan S. Perelson
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Hulin Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - David J. Topham
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| |
Collapse
|
43
|
Beigelman A, Mikols CL, Gunsten SP, Cannon CL, Brody SL, Walter MJ. Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis. Respir Res 2010; 11:90. [PMID: 20591166 PMCID: PMC2906448 DOI: 10.1186/1465-9921-11-90] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/30/2010] [Indexed: 01/11/2023] Open
Abstract
Background Viral bronchiolitis is the leading cause of hospitalization in young infants. It is associated with the development of childhood asthma and contributes to morbidity and mortality in the elderly. Currently no therapies effectively attenuate inflammation during the acute viral infection, or prevent the risk of post-viral asthma. We hypothesized that early treatment of a paramyxoviral bronchiolitis with azithromycin would attenuate acute and chronic airway inflammation. Methods Mice were inoculated with parainfluenza type 1, Sendai Virus (SeV), and treated daily with PBS or azithromycin for 7 days post-inoculation. On day 8 and 21 we assessed airway inflammation in lung tissue, and quantified immune cells and inflammatory mediators in bronchoalveolar lavage (BAL). Results Compared to treatment with PBS, azithromycin significantly attenuated post-viral weight loss. During the peak of acute inflammation (day 8), azithromycin decreased total leukocyte accumulation in the lung tissue and BAL, with the largest fold-reduction in BAL neutrophils. This decreased inflammation was independent of changes in viral load. Azithromycin significantly attenuated the concentration of BAL inflammatory mediators and enhanced resolution of chronic airway inflammation evident by decreased BAL inflammatory mediators on day 21. Conclusions In this mouse model of paramyxoviral bronchiolitis, azithromycin attenuated acute and chronic airway inflammation. These findings demonstrate anti-inflammatory effects of azithromycin that are not related to anti-viral activity. Our findings support the rationale for future prospective randomized clinical trials that will evaluate the effects of macrolides on acute viral bronchiolitis and their long-term consequences.
Collapse
Affiliation(s)
- Avraham Beigelman
- Division of Allergy, Immunology & Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St, Louis, MO; USA.
| | | | | | | | | | | |
Collapse
|
44
|
Zander DS, Popper HH, Jagirdar J, Haque AK, Cagle PT, Barrios R. Epithelial Repair and Regeneration. MOLECULAR PATHOLOGY OF LUNG DISEASES 2010; 1. [PMCID: PMC7147447 DOI: 10.1007/978-0-387-72430-0_45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Contact with the environment positions the respiratory epithelium at risk for acute and chronic injury from infectious pathogens, noxious agents, and inflammatory processes. Thus, to protect gas transfer within the lung the epithelium is programmed for routine maintenance and repair. Programs for repair are directed by epithelial, mesenchymal, and inflammatory signals that collectively constitute highly regulated networks. Principal components of the repair network are developmental morphogens, integrin and growth factor signaling molecules, and transcription factors. The epithelium responds to these signals with a remarkable plasticity and is bulwarked by a population of lung progenitor cells to ensure maintenance and repair for fluid balance and host defense functions.
Collapse
Affiliation(s)
- Dani S. Zander
- grid.240473.60000000405439901Department of Pathology, Penn State Milton S. Hershey Medical Center, Hershey, PA USA
| | - Helmut H. Popper
- grid.11598.340000000089882476Institute of Pathology, Laboratories for Molecular Cytogenetics, Medical University of Graz, Graz, Austria
| | - Jaishree Jagirdar
- grid.267309.90000000106295880Department of Pathology, University of Texas Health Science Center, San Antonio, TX USA
| | - Abida K. Haque
- grid.5386.8000000041936877XWeill Medical College of Cornell University, New York, NY ,grid.415073.4Department of Pathology, San Jacinto Methodist Hospital, Baytown, TX USA
| | - Philip T. Cagle
- grid.5386.8000000041936877XPathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY ,grid.63368.380000000404450041The Methodist Hospital, Houston, TX USA
| | - Roberto Barrios
- grid.5386.8000000041936877XPathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY ,grid.63368.380000000404450041The Methodist Hospital, Houston, TX USA
| |
Collapse
|
45
|
Jain R, Pan J, Driscoll JA, Wisner JW, Huang T, Gunsten SP, You Y, Brody SL. Temporal relationship between primary and motile ciliogenesis in airway epithelial cells. Am J Respir Cell Mol Biol 2010; 43:731-9. [PMID: 20118219 DOI: 10.1165/rcmb.2009-0328oc] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cilia are traditionally classified as motile or primary. Motile cilia are restricted to specific populations of well-differentiated epithelial cells, including those in the airway, brain ventricles, and oviducts. Primary cilia are nonmotile, solitary structures that are present in many cell types, and often have sensory functions such as in the retina and renal tubules. Primary cilia were also implicated in the regulation of fundamental processes in development. Rare depictions of primary cilia in embryonic airways led us to hypothesize that primary cilia in airway cells are temporally related to motile ciliogenesis. We identified primary cilia in undifferentiated, cultured airway epithelial cells from mice and humans and in developing lungs. The solitary cilia in the airways express proteins considered unique to primary cilia, including polycystin-1 and polycystin-2. A temporal analysis of airway epithelial cell differentiation showed that cells with primary cilia acquire markers of motile ciliogenesis, suggesting that motile ciliated cells originate from primary ciliated cells. Whereas motile ciliogenesis requires Foxj1, primary ciliogenesis does not, and the expression of Foxj1 was associated with a loss of primary cilia, just before the appearance of motile cilia. Primary cilia were not found in well-differentiated airway epithelial cells. However, after injury, they appear in the luminal layer of epithelium and in basal cells. The transient nature of primary cilia, together with the temporal and spatial patterns of expression in the development and repair of airway epithelium, suggests a critical role of primary cilia in determining outcomes during airway epithelial cell differentiation.
Collapse
Affiliation(s)
- Raksha Jain
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Leopold PL, O'Mahony MJ, Lian XJ, Tilley AE, Harvey BG, Crystal RG. Smoking is associated with shortened airway cilia. PLoS One 2009; 4:e8157. [PMID: 20016779 PMCID: PMC2790614 DOI: 10.1371/journal.pone.0008157] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 09/23/2009] [Indexed: 12/03/2022] Open
Abstract
Background Whereas cilia damage and reduced cilia beat frequency have been implicated as causative of reduced mucociliary clearance in smokers, theoretically mucociliary clearance could also be affected by cilia length. Based on models of mucociliary clearance predicting that cilia length must exceed the 6–7 µm airway surface fluid depth to generate force in the mucus layer, we hypothesized that cilia height may be decreased in airway epithelium of normal smokers compared to nonsmokers. Methodology/Principal Findings Cilia length in normal nonsmokers and smokers was evaluated in aldehyde-fixed, paraffin-embedded endobronchial biopsies, and air-dried and hydrated samples were brushed from human airway epithelium via fiberoptic bronchoscopy. In 28 endobronchial biopsies, healthy smoker cilia length was reduced by 15% compared to nonsmokers (p<0.05). In 39 air-dried samples of airway epithelial cells, smoker cilia length was reduced by 13% compared to nonsmokers (p<0.0001). Analysis of the length of individual, detached cilia in 27 samples showed that smoker cilia length was reduced by 9% compared to nonsmokers (p<0.05). Finally, in 16 fully hydrated, unfixed samples, smoker cilia length was reduced 7% compared to nonsmokers (p<0.05). Using genome-wide analysis of airway epithelial gene expression we identified 6 cilia-related genes whose expression levels were significantly reduced in healthy smokers compared to healthy nonsmokers. Conclusions/Significance Models predict that a reduction in cilia length would reduce mucociliary clearance, suggesting that smoking-associated shorter airway epithelial cilia play a significant role in the pathogenesis of smoking-induced lung disease.
Collapse
Affiliation(s)
- Philip L. Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Michael J. O'Mahony
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - X. Julie Lian
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ann E. Tilley
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ben-Gary Harvey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Ostrowski LE, Yin W, Rogers TD, Busalacchi KB, Chua M, O'Neal WK, Grubb BR. Conditional deletion of dnaic1 in a murine model of primary ciliary dyskinesia causes chronic rhinosinusitis. Am J Respir Cell Mol Biol 2009; 43:55-63. [PMID: 19675306 DOI: 10.1165/rcmb.2009-0118oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies of primary ciliary dyskinesia (PCD) have been hampered by the lack of a suitable animal model because disruption of essential ciliary genes in mice results in a high incidence of lethal hydrocephalus. To develop a viable mouse model for long-term studies of PCD, we have generated a transgenic mouse line in which two conserved exons of the mouse intermediate dynein chain gene, Dnaic1, are flanked by loxP sites (Dnaic1(flox/flox)). Dnaic1 is the murine homolog of human DNAI1, which is mutated in approximately 10% of human PCD cases. These mice have been crossed with mice expressing a tamoxifen-inducible Cre recombinase (CreER). Treatment of adult Dnaic1(flox/flox)/CreER(+/-) mice with tamoxifen results in an almost complete deletion of Dnaic1 with no evidence of hydrocephalus. Treated animals have reduced levels of full-length Dnaic1 mRNA, and electron micrographs of cilia demonstrate a loss of outer dynein arm structures. In treated Dnaic1(flox/flox)/CreER(+/-) animals, mucociliary clearance (MCC) was reduced over time. After approximately 3 months, no MCC was observed in the nasopharynx, whereas in the trachea, MCC was observed for up to 6 months, likely reflecting a difference in the turnover of ciliated cells in these tissues. All treated animals developed severe rhinosinusitis, demonstrating the importance of MCC to the health of the upper airways. However, no evidence of lung disease was observed up to 11 months after Dnaic1 deletion, suggesting that other mechanisms are able to compensate for the lack of MCC in the lower airways of mice. This model will be useful for the study of the pathogenesis and treatment of PCD.
Collapse
Affiliation(s)
- Lawrence E Ostrowski
- The University of North Carolina at Chapel Hill School of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, CB# 7248, 6123A Thurston-Bowles Bldg., Chapel Hill, NC 27599-7248, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2009; 42:450-60. [PMID: 19520922 DOI: 10.1165/rcmb.2007-0417oc] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Influenza virus infections increase susceptibility to secondary bacterial infections, such as pneumococcal pneumonia, resulting in increased morbidity and mortality. Influenza-induced tissue damage is hypothesized to increase susceptibility to Streptococcus pneumoniae infection by increasing adherence to the respiratory epithelium. Using a mouse model of influenza infection followed by S. pneumoniae infection, we found that an influenza infection does not increase the number of pneumococci initially present within the trachea, but does inhibit pneumococcal clearance by 2 hours after infection. To determine whether influenza damage increases pneumococcal adherence, we developed a novel murine tracheal explant system to determine influenza-induced tissue damage and subsequent pneumococcal adherence. Murine tracheas were kept viable ex vivo as shown by microscopic examination of ciliary beating and cellular morphology using continuous media flow for up to 8 days. Tracheas were infected with influenza virus for 0.5-5 days ex vivo, and influenza-induced tissue damage and the early stages of repair to the epithelium were assessed histologically. A prior influenza infection did not increase pneumococcal adherence, even when the basement membrane was maximally denuded or during the repopulation of the basement membrane with undifferentiated epithelial cells. We measured mucociliary clearance in vivo and found it was decreased in influenza-infected mice. Together, our results indicate that exposure of the tracheal basement membrane contributes minimally to pneumococcal adherence. Instead, an influenza infection results in decreased tracheal mucociliary velocity and initial clearance of pneumococci, leading to an increased pneumococcal burden as early as 2 hours after pneumococcal infection.
Collapse
Affiliation(s)
- Lynnelle A Pittet
- The Pulmonary Center, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
49
|
Ramaswamy M, Groskreutz DJ, Look DC. Recognizing the importance of respiratory syncytial virus in chronic obstructive pulmonary disease. COPD 2009; 6:64-75. [PMID: 19229710 DOI: 10.1080/15412550902724024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute exacerbations of chronic obstructive pulmonary disease (COPD) are responsible for a large proportion of the health care dollar expenditure, morbidity, and mortality related to COPD. Respiratory infections are the most common cause of acute exacerbations, but recent evidence indicates that the importance of respiratory syncytial virus (RSV) infection in COPD is under-appreciated. Improved detection of RSV using techniques based on the polymerase chain reaction accounts for much of the increased recognition of the importance of this virus in COPD patients. Furthermore, COPD patients may be more susceptible to RSV infection, possibly due to RSV-or immune response-induced pulmonary effects that are altered by age, environmental exposures, genetics, COPD itself, or a combination of these. However, although RSV infection occurs throughout life, viral and host factors that place COPD patients at increased risk are unclear. The complexities of RSV effects in COPD present opportunities for research with the goal of developing approaches to selectively modify damaging viral effects (e.g., altered airway function), while retaining beneficial immunity (e.g., clearance of virus) in COPD patients. This review explores the role RSV plays in acute exacerbations of COPD, the potential for RSV disease in chronic stable COPD, and newer concepts in RSV diagnosis, epidemiology, and host defense.
Collapse
Affiliation(s)
- Murali Ramaswamy
- VA San Diego Healthcare System, University of California at San Diego, San Diego, CA, USA.
| | | | | |
Collapse
|
50
|
Francis RJB, Chatterjee B, Loges NT, Zentgraf H, Omran H, Lo CW. Initiation and maturation of cilia-generated flow in newborn and postnatal mouse airway. Am J Physiol Lung Cell Mol Physiol 2009; 296:L1067-75. [PMID: 19346437 DOI: 10.1152/ajplung.00001.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mucociliary clearance in the adult trachea is well characterized, but there are limited data in newborns. Cilia-generated flow was quantified across longitudinal sections of mouse trachea from birth through postnatal day (PND) 28 by tracking fluorescent microsphere speed and directionality. The percentage of ciliated tracheal epithelial cells, as determined by immunohistochemistry, was shown to increase linearly between PND 0 and PND 21 (R(2) = 0.94). While directionality measurements detected patches of flow starting at PND 3, uniform flow across the epithelia was not observed until PND 7 at a approximately 35% ciliated cell density. Flow became established at a maximal rate at PND 9 and beyond. A linear correlation was observed between the percentage of ciliated cells versus flow speed (R(2) = 0.495) and directionality (R(2) = 0.975) between PND 0 and PND 9. Cilia beat frequency (CBF) was higher at PND 0 than at all subsequent time points, but cilia beat waveform was not noticeably different. Tracheal epithelia from a mouse model of primary ciliary dyskinesia (PCD) harboring a Mdnah5 mutation showed that ciliated cell density was unaffected, but no cilia-generated flow was detected. Cilia in mutant airways were either immotile or with slow dyssynchronous beat and abnormal ciliary waveform. Overall, our studies showed that the initiation of cilia-generated flow is directly correlated with an increase in epithelial ciliation, with the measurement of directionality being more sensitive than speed for detecting flow. The higher CBF observed in newborn epithelia suggests unique physiology in the newborn trachea, indicating possible clinical relevance to the pathophysiology of respiratory distress seen in newborn PCD patients.
Collapse
Affiliation(s)
- Richard J B Francis
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|