1
|
Zhang L, Liu K, Duan X, Zhou S, Jia H, You Y, Han B. CXCL12/CXCR4 axis mediates CD8 + T cell overactivation in the progression of viral myocarditis. J Transl Med 2025; 23:399. [PMID: 40186195 PMCID: PMC11969836 DOI: 10.1186/s12967-025-06394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Myocarditis is a common inflammatory heart disease in children and young adults, with fulminant myocarditis (FM) being the most severe form due to its rapid onset and high mortality rate. However, the precise pathological immune subsets and molecular change in myocarditis, particularly FM, remain unknown. METHODS We performed single-cell RNA sequencing of pediatric peripheral blood mononuclear cells during the acute and recovery phases of FM. A viral myocarditis (MC) mouse model was established using CVB3. Deletion and adoptive transfer of CD8+T cells, as well as blockade of CXCR4, were conducted in vivo. CD8+T cells were sorted and cultivated in vitro, then stimulated with CXCL12 and CXCR4 antagonists to investigate the mechanism of CD8+T cell overactivation. RESULTS CD8+T cells show significant activation, amplification, enhanced cytotoxicity, and increased chemotactic ability in FM. Deletion of CD8+T cells alleviates myocardial injury and improves cardiac function in MC mice, while adoptive transfer of CD8+T cells from MC mice aggravates myocardial inflammation and injury. The transcriptomic analysis reveals elevated CXCR4 expression in CD8+T cells in acute FM. In vitro experiments demonstrate that the CXCL12/CXCR4 axis drives the overactivation and cytotoxicity of CD8+T cells. In vivo treatment with a CXCR4 antagonist effectively reduces CD8+T cell accumulation in the heart, alleviates myocardial inflammation, and improves cardiac function in MC mice. CONCLUSIONS These findings provide deeper insights into the immune landscape of pediatric FM, uncovering a novel role of the CXCL12/CXCR4 axis in driving CD8+T cell responses in myocarditis. Furthermore, they highlight the CXCL12/CXCR4 axis as a promising therapeutic target for myocarditis treatment.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease office, Shandong Provincial Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Keyu Liu
- Department of Pediatric Cardiology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiuyun Duan
- Department of Pediatric Cardiology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shan Zhou
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hailin Jia
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease office, Shandong Provincial Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yingnan You
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease office, Shandong Provincial Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Department of Pediatric Cardiology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Children's Health and Disease office, Shandong Provincial Hospital, Jinan, Shandong, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Nappi F. Myocarditis and Inflammatory Cardiomyopathy in Dilated Heart Failure. Viruses 2025; 17:484. [PMID: 40284927 PMCID: PMC12031395 DOI: 10.3390/v17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory cardiomyopathy is a condition that is characterised by the presence of inflammatory cells in the myocardium, which can lead to a significant deterioration in cardiac function. The etiology of this condition involves multiple factors, both infectious and non-infectious causes. While it is primarily associated with viral infections, other potential causes include bacterial, protozoal, or fungal infections, as well as a wide variety of toxic substances and drugs, and systemic immune-mediated pathological conditions. In spite of comprehensive investigation, the presence of inflammatory cardiomyopathy accompanied by left ventricular dysfunction, heart failure or arrhythmia is indicative of an unfavourable outcome. The reasons for the occurrence of either favourable outcomes, characterised by the absence of residual myocardial injury, or unfavourable outcomes, marked by the development of dilated cardiomyopathy, in patients afflicted by the condition remain to be elucidated. The relative contributions of pathogenic agents, genomic profiles of the host, and environmental factors in disease progression and resolution remain subjects of ongoing discourse. This includes the determination of which viruses function as active inducers and which merely play a bystander role. It remains unknown which changes in the host immune profile are critical in determining the outcome of myocarditis caused by various viruses, including coxsackievirus B3 (CVB3), adenoviruses, parvoviruses B19 and SARS-CoV-2. The objective of this review is unambiguous: to provide a concise summary and comprehensive assessment of the extant evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy. Its focus is exclusively on virus-induced and virus-associated myocarditis. In addition, the extant lacunae of knowledge in this field are identified and the extant experimental models are evaluated, with the aim of proposing future directions for the research domain. This includes differential gene expression that regulates iron and lipid and metabolic remodelling. Furthermore, the current state of knowledge regarding the cardiovascular implications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is also discussed, along with the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
3
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
4
|
Liu K, Han B. Role of immune cells in the pathogenesis of myocarditis. J Leukoc Biol 2024; 115:253-275. [PMID: 37949833 DOI: 10.1093/jleuko/qiad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that mostly affects young people. Myocarditis involves a complex immune network; however, its detailed pathogenesis is currently unclear. The diversity and plasticity of immune cells, either in the peripheral blood or in the heart, have been partially revealed in a number of previous studies involving patients and several kinds of animal models with myocarditis. It is the complexity of immune cells, rather than one cell type that is the culprit. Thus, recognizing the individual intricacies within immune cells in the context of myocarditis pathogenesis and finding the key intersection of the immune network may help in the diagnosis and treatment of this condition. With the vast amount of cell data gained on myocarditis and the recent application of single-cell sequencing, we summarize the multiple functions of currently recognized key immune cells in the pathogenesis of myocarditis to provide an immune background for subsequent investigations.
Collapse
Affiliation(s)
- Keyu Liu
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, 250021, Jinan, China
- Shandong Provincial Hospital, Shandong Provincial Clinical Research Center for Children' s Health and Disease office, No. 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
5
|
He W, Zhou L, Xu K, Li H, Wang JJ, Chen C, Wang D. Immunopathogenesis and immunomodulatory therapy for myocarditis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2112-2137. [PMID: 37002488 PMCID: PMC10066028 DOI: 10.1007/s11427-022-2273-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 04/03/2023]
Abstract
Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - James Jiqi Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - DaoWen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
6
|
Feng G, Zhu C, Lin CY, Bredemeyer A, Förster I, Kreisel D, Lavine KJ. CCL17 Protects Against Viral Myocarditis by Suppressing the Recruitment of Regulatory T Cells. J Am Heart Assoc 2023; 12:e028442. [PMID: 36752267 PMCID: PMC10111487 DOI: 10.1161/jaha.122.028442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Background Viral myocarditis is characterized by leukocyte infiltration of the heart and cardiomyocyte death. We recently identified C-C chemokine ligand (CCL) 17 as a proinflammatory effector of C-C chemokine receptor 2-positive macrophages and dendritic cells that are recruited to the heart and contribute to adverse left ventricular remodeling following myocardial infarction and pressure overload. Methods and Results Mouse encephalomyocarditis virus was used to investigate the function of CCL17 in a viral myocarditis model. Ccl17Gfp reporter and knockout mice were used to identify the cell types that express CCL17 and delineate the functional importance of CCL17 in encephalomyocarditis virus clearance and myocardial inflammation. Cardiac CCL17 was expressed in C-C chemokine receptor 2-positive macrophages and dendritic cells following encephalomyocarditis virus infection. Colony-stimulating factor 2 (granulocyte-macrophage colony-stimulating factor) signaling was identified as a key regulator of CCL17 expression. Ccl17 deletion resulted in impaired encephalomyocarditis virus clearance, increased cardiomyocyte death, and higher mortality during infection early stage, and aggravated hypertrophy and fibrotic responses in infection long-term stage. An increased abundance of regulatory T cells was detected in the myocardium of injured Ccl17-deficient mice. Depletion of regulatory T cells in Ccl17-deficient mice abrogated the detrimental role of CCL17 deletion by restoring interferon signaling. Conclusions Collectively, these findings identify CCL17 as an important mediator of the host immune response during cardiac viral infection early stage and suggest that CCL17 targeted therapies should be avoided in acute viral myocarditis.
Collapse
Affiliation(s)
- Guoshuai Feng
- Cardiovascular Division, Department of Medicine Washington University School of Medicine St. Louis MO
| | - Cuige Zhu
- Division of Oncology Washington University School of Medicine St. Louis MO
| | - Chieh-Yu Lin
- Department of Pathology and Immunology Washington University St. Louis MO
| | - Andrea Bredemeyer
- Cardiovascular Division, Department of Medicine Washington University School of Medicine St. Louis MO
| | - Irmgard Förster
- Immunology and Environment, LIMES Institute University of Bonn Germany
| | - Daniel Kreisel
- Department of Surgery Washington University St. Louis MO
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine Washington University School of Medicine St. Louis MO.,Department of Pathology and Immunology Washington University St. Louis MO.,Department of Developmental Biology Washington University St. Louis MO
| |
Collapse
|
7
|
Beydoun N, Feinstein MJ. Heart Failure in Chronic Infectious and Inflammatory Conditions: Mechanistic Insights from Clinical Heterogeneity. Curr Heart Fail Rep 2022; 19:267-278. [PMID: 35838874 PMCID: PMC9283814 DOI: 10.1007/s11897-022-00560-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The balance between inflammation and its resolution plays an important and increasingly appreciated role in heart failure (HF) pathogenesis. In humans, different chronic inflammatory conditions and immune-inflammatory responses to infection can lead to diverse HF manifestations. Reviewing the phenotypic and mechanistic diversity of these HF presentations offers useful clinical and scientific insights. RECENT FINDINGS HF risk is increased in patients with chronic inflammatory and autoimmune disorders and relates to disease severity. Inflammatory condition-specific HF manifestations exist and underlying pathophysiologic causes may differ across conditions. Although inflammatory disease-specific presentations of HF differ, chronic excess in inflammation and auto-inflammation relative to resolution of this inflammation is a common underlying contributor to HF. Further studies are needed to phenotypically refine inflammatory condition-specific HF pathophysiologies and prognoses, as well as potential targets for intervention.
Collapse
Affiliation(s)
- Nour Beydoun
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J Feinstein
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Pathology, Northwestern University, Chicago, IL, USA.
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern University Feinberg School of Medicine, 300 E. Superior St, Tarry 3-703, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Müller I, Janson L, Sauter M, Pappritz K, Linthout SV, Tschöpe C, Klingel K. Myeloid-Derived Suppressor Cells Restrain Natural Killer Cell Activity in Acute Coxsackievirus B3-Induced Myocarditis. Viruses 2021; 13:v13050889. [PMID: 34065891 PMCID: PMC8151145 DOI: 10.3390/v13050889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Murine models of coxsackievirus B3 (CVB3)-induced myocarditis well represent the different outcomes of this inflammatory heart disease. Previously, we found that CVB3-infected A.BY/SnJ mice, susceptible for severe acute and chronic myocarditis, have lower natural killer (NK) cell levels than C57BL/6 mice, with mild acute myocarditis. There is evidence that myeloid-derived suppressor cells (MDSC) may inhibit NK cells, influencing the course of myocarditis. To investigate the MDSC/NK interrelationship in acute myocarditis, we used CVB3-infected A.BY/SnJ mice. Compared to non-infected mice, we found increased cell numbers of MDSC in the spleen and heart of CVB3-infected A.BY/SnJ mice. In parallel, S100A8 and S100A9 were increased in the heart, spleen, and especially in splenic MDSC cells compared to non-infected mice. In vitro experiments provided evidence that MDSC disrupt cytotoxic NK cell function upon co-culturing with MDSC. MDSC-specific depletion by an anti-Ly6G antibody led to a significant reduction in the virus load and injury in hearts of infected animals. The decreased cardiac damage in MDSC-depleted mice was associated with fewer Mac3+ macrophages and CD3+ T lymphocytes and a reduced cardiac expression of S100A8, S100A9, IL-1β, IL-6, and TNF-α. In conclusion, impairment of functional NK cells by MDSC promotes the development of chronic CVB3 myocarditis in A.BY/SnJ mice.
Collapse
Affiliation(s)
- Irene Müller
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
| | - Lisa Janson
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (L.J.); (M.S.)
| | - Martina Sauter
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (L.J.); (M.S.)
| | - Kathleen Pappritz
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
| | - Carsten Tschöpe
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
- Department of Cardiology, Campus Virchow Clinic, Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (L.J.); (M.S.)
- Correspondence: ; Tel.: +49-7071-2980205
| |
Collapse
|
9
|
Kang JS, Yang YR. Circulating plasma factors involved in rejuvenation. Aging (Albany NY) 2020; 12:23394-23408. [PMID: 33197235 PMCID: PMC7746393 DOI: 10.18632/aging.103933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
Aging is defined as a time-dependent functional decline that occurs in many physiological systems. This decline is the primary risk factor for prominent human pathologies such as cancer, metabolic disorders, cardiovascular disorders, and neurodegenerative diseases. Aging and age-related diseases have multiple causes. Parabiosis experiments, in which the circulatory systems of young and old mice were surgically joined, revealed that young plasma counteracts aging and rejuvenates organs in old mice, suggesting the existence of rejuvenating factors that become less abundant with aging. Diverse approaches have identified a large number of plasma proteins whose levels differ significantly between young and old mice, as well as numerous rejuvenating factors that reverse aged-related impairments in multiple tissues. These observations suggest that increasing the levels of key rejuvenating factors could promote restorative biological processes or inhibit pathological degeneration. Inspired by such findings, several companies have begun selling “young blood transfusions,” and others have tested young plasma as a treatment for Alzheimer’s disease. Here, we summarize the current findings regarding rejuvenating factors.
Collapse
Affiliation(s)
- Jae Sook Kang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Abstract
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.
Collapse
|
11
|
Lasrado N, Reddy J. An overview of the immune mechanisms of viral myocarditis. Rev Med Virol 2020; 30:1-14. [PMID: 32720461 DOI: 10.1002/rmv.2131] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Viral myocarditis has been identified as a major cause of dilated cardiomyopathy (DCM) that can lead to heart failure. Historically, Coxsackieviruses and adenoviruses have been commonly suspected in myocarditis/DCM patients in North America and Europe. However, this notion is changing as other viruses such as Parvovirus B19 and human herpesvirus-6 are increasingly reported as causes of myocarditis in the United States, with the most recent example being the severe acute respiratory syndrome coronavirus 2, causing the Coronavirus Disease-19. The mouse model of Coxsackievirus B3 (CVB3)-induced myocarditis, which may involve mediation of autoimmunity, is routinely used in the study of immune pathogenesis of viral infections as triggers of DCM. In this review, we discuss the immune mechanisms underlying the development of viral myocarditis with an emphasis on autoimmunity in the development of post-infectious myocarditis induced with CVB3.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
12
|
Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X, Godwin J, Rosenthal N, Kovacic JC. The Macrophage in Cardiac Homeostasis and Disease: JACC Macrophage in CVD Series (Part 4). J Am Coll Cardiol 2019; 72:2213-2230. [PMID: 30360829 DOI: 10.1016/j.jacc.2018.08.2149] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022]
Abstract
Macrophages are integral components of cardiac tissue and exert profound effects on the healthy and diseased heart. Paradigm shifting studies using advanced molecular techniques have revealed significant complexity within these macrophage populations that reside in the heart. In this final of a 4-part review series covering the macrophage in cardiovascular disease, the authors review the origins, dynamics, cell surface markers, and respective functions of each cardiac macrophage subset identified to date, including in the specific scenarios of myocarditis and after myocardial infarction. Looking ahead, a deeper understanding of the diverse and often dichotomous functions of cardiac macrophages will be essential for the development of targeted therapies to mitigate injury and orchestrate recovery of the diseased heart. Moreover, as macrophages are critical for cardiac healing, they are an emerging focus for therapeutic strategies aimed at minimizing cardiomyocyte death, ameliorating pathological cardiac remodeling, and for treating heart failure and after myocardial infarction.
Collapse
Affiliation(s)
- Kory J Lavine
- Division of Cardiovascular Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri; Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Alexander R Pinto
- Baker Heart and Diabetes Research Institute, Melbourne, Australia; Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, Toronto, Ontario, Canada
| | - Benjamin J Kopecky
- Division of Cardiovascular Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xavier Clemente-Casares
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - James Godwin
- The Jackson Laboratory, Bar Harbor, Maine; Mt. Desert Island Biological Laboratory, Bar Harbor, Maine
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
13
|
Beling A, Kespohl M. Proteasomal Protein Degradation: Adaptation of Cellular Proteolysis With Impact on Virus-and Cytokine-Mediated Damage of Heart Tissue During Myocarditis. Front Immunol 2018; 9:2620. [PMID: 30546359 PMCID: PMC6279938 DOI: 10.3389/fimmu.2018.02620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Viral myocarditis is an inflammation of the heart muscle triggered by direct virus-induced cytolysis and immune response mechanisms with most severe consequences during early childhood. Acute and long-term manifestation of damaged heart tissue and disturbances of cardiac performance involve virus-triggered adverse activation of the immune response and both immunopathology, as well as, autoimmunity account for such immune-destructive processes. It is a matter of ongoing debate to what extent subclinical virus infection contributes to the debilitating sequela of the acute disease. In this review, we conceptualize the many functions of the proteasome in viral myocarditis and discuss the adaptation of this multi-catalytic protease complex together with its implications on the course of disease. Inhibition of proteasome function is already highly relevant as a strategy in treating various malignancies. However, cardiotoxicity and immune-related adverse effects have proven significant hurdles, representative of the target's wide-ranging functions. Thus, we further discuss the molecular details of proteasome-mediated activity of the immune response for virus-mediated inflammatory heart disease. We summarize how the spatiotemporal flexibility of the proteasome might be tackled for therapeutic purposes aiming to mitigate virus-mediated adverse activation of the immune response in the heart.
Collapse
Affiliation(s)
- Antje Beling
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| | - Meike Kespohl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
14
|
Sesti-Costa R, Françozo MCS, Silva GK, Proenca-Modena JL, Silva JS. TLR3 is required for survival following Coxsackievirus B3 infection by driving T lymphocyte activation and polarization: The role of dendritic cells. PLoS One 2017; 12:e0185819. [PMID: 28973047 PMCID: PMC5626506 DOI: 10.1371/journal.pone.0185819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 09/20/2017] [Indexed: 11/21/2022] Open
Abstract
Type B coxsackievirus (CVB) is a common cause of acute and chronic myocarditis, meningitis and pancreatitis, often leading to heart failure and pancreatic deficiency. The polarization of CD4+ T lymphocytes and their cytokine milieu are key factors in the outcome of CVB-induced diseases. Thus, sensing the virus and driving the adaptive immune response are essential for the establishment of a protective immune response. TLR3 is a crucial virus recognition receptor that confers the host with resistance to CVB infection. In the current study, we found that TLR3 expression in dendritic cells plays a role in their activation upon CVB3 infection in vitro, as TLR3-deficient dendritic cells up-regulate CD80 and CD86 to a less degree than WT cells. Instead, they up-regulated the inhibitory molecule PD-L1 and secreted considerably lower levels of TNF-α and IL-10 and a higher level of IL-23. T lymphocyte proliferation in co-culture with CVB3-infected dendritic cells was increased by TLR3-expressing DCs and other cells. Furthermore, in the absence of TLR3, the T lymphocyte response was shifted toward a Th17 profile, which was previously reported to be deleterious for the host. TLR3-deficient mice were very susceptible to CVB3 infection, with increased pancreatic injury and extensive inflammatory infiltrate in the heart that was associated with uncontrolled viral replication. Adoptive transfer of TLR3+ dendritic cells slightly improved the survival of TLR-deficient mice following CVB3 infection. Therefore, our findings highlight the importance of TLR3 signaling in DCs and in other cells to induce activation and polarization of the CD4+ T lymphocyte response toward a Th1 profile and consequently for a better outcome of CVB3 infection. These data provide new insight into the immune-mediated mechanisms by which CVBs are recognized and cleared in order to prevent the development of myocarditis and pancreatitis and may contribute to the design of therapies for enteroviral infections.
Collapse
Affiliation(s)
- Renata Sesti-Costa
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcela Cristina Santiago Françozo
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research GmbH, Hannover, Germany
| | - Grace Kelly Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Luiz Proenca-Modena
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
15
|
Argyropoulos CP, Chen SS, Ng YH, Roumelioti ME, Shaffi K, Singh PP, Tzamaloukas AH. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front Med (Lausanne) 2017; 4:73. [PMID: 28664159 PMCID: PMC5471312 DOI: 10.3389/fmed.2017.00073] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022] Open
Abstract
There is currently an unmet need for better biomarkers across the spectrum of renal diseases. In this paper, we revisit the role of beta-2 microglobulin (β2M) as a biomarker in patients with chronic kidney disease and end-stage renal disease. Prior to reviewing the numerous clinical studies in the area, we describe the basic biology of β2M, focusing in particular on its role in maintaining the serum albumin levels and reclaiming the albumin in tubular fluid through the actions of the neonatal Fc receptor. Disorders of abnormal β2M function arise as a result of altered binding of β2M to its protein cofactors and the clinical manifestations are exemplified by rare human genetic conditions and mice knockouts. We highlight the utility of β2M as a predictor of renal function and clinical outcomes in recent large database studies against predictions made by recently developed whole body population kinetic models. Furthermore, we discuss recent animal data suggesting that contrary to textbook dogma urinary β2M may be a marker for glomerular rather than tubular pathology. We review the existing literature about β2M as a biomarker in patients receiving renal replacement therapy, with particular emphasis on large outcome trials. We note emerging proteomic data suggesting that β2M is a promising marker of chronic allograft nephropathy. Finally, we present data about the role of β2M as a biomarker in a number of non-renal diseases. The goal of this comprehensive review is to direct attention to the multifaceted role of β2M as a biomarker, and its exciting biology in order to propose the next steps required to bring this recently rediscovered biomarker into the twenty-first century.
Collapse
Affiliation(s)
- Christos P Argyropoulos
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Shan Shan Chen
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Yue-Harn Ng
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Maria-Eleni Roumelioti
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Kamran Shaffi
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Pooja P Singh
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Antonios H Tzamaloukas
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States.,Raymond G. Murphy VA Medical Center Albuquerque, Albuquerque, NM, United States
| |
Collapse
|
16
|
PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection. PLoS One 2017; 12:e0173259. [PMID: 28278207 PMCID: PMC5344377 DOI: 10.1371/journal.pone.0173259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/17/2017] [Indexed: 11/19/2022] Open
Abstract
The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.
Collapse
|
17
|
Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis. J Immunol Res 2017; 2017:6590609. [PMID: 28352641 PMCID: PMC5352897 DOI: 10.1155/2017/6590609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/01/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.
Collapse
|
18
|
Long-term immunogenicity studies of formalin-inactivated enterovirus 71 whole-virion vaccine in macaques. PLoS One 2014; 9:e106756. [PMID: 25197967 PMCID: PMC4157806 DOI: 10.1371/journal.pone.0106756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/31/2014] [Indexed: 01/28/2023] Open
Abstract
Enterovirus 71 (EV71) has caused epidemics of hand, foot and mouth diseases in Asia during the past decades and no vaccine is available. A formalin-inactivated EV71 candidate vaccine (EV71vac) based on B4 subgenotype has previously been developed and found to elicit strong neutralizing antibody responses in mice and humans. In this study, we evaluated the long-term immunogenicity and safety of this EV71vac in a non-human primate model. Juvenile macaques were immunized at 0, 3 and 6 weeks either with 10 or 5 µg doses of EV71vac formulated with AlPO4 adjuvant, or PBS as control. During the 56 weeks of studies, no fever nor local redness and swelling at sites of injections was observed in the immunized macaques. After single immunization, 100% seroconversion based on 4-fold increased in neutralization titer (Nt) was detected in EV71vac immunized monkeys but not PBS controls. A dose-dependent IgG antibody response was observed in monkeys receiving EV71vac immunization. The Nt of EV71vac immunized macaques had reached the peak after 3 vaccinations, then decreased gradually; however, the GMT of neutralizing antibody in the EV71vac immunized macaques were still above 100 at the end of the study. Correspondingly, both dose- and time-dependent interferon-γ and CD4+ T cell responses were detected in monkeys receiving EV71vac. Interestingly, similar to human responses, the dominant T cell epitopes of macaques were identified mainly in VP2 and VP3 regions. In addition, strong cross-neutralizing antibodies against most EV71 subgenotypes except some C2 and C4b strains, and Coxsackievirus A16 were observed. In summary, our results indicate that EV71vac elicits dose-dependent T-cell and antibody responses in macaques that could be a good animal model for evaluating the long-term immune responses elicited by EV71 vaccines.
Collapse
|
19
|
Klingel K, Fabritius C, Sauter M, Göldner K, Stauch D, Kandolf R, Ettischer N, Gahlen S, Schönberger T, Ebner S, Makrigiannis AP, Bélanger S, Diefenbach A, Polić B, Pratschke J, Kotsch K. The activating receptor NKG2D of natural killer cells promotes resistance against enterovirus-mediated inflammatory cardiomyopathy. J Pathol 2014; 234:164-77. [PMID: 24797160 DOI: 10.1002/path.4369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 04/08/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022]
Abstract
In enterovirus-induced cardiomyopathy, information regarding the detailed impact of natural killer (NK) cells on the outcome of the disease is limited. We therefore hypothesized that NK cells and certain NK cell receptors determine the different outcome of coxsackievirus B3 (CVB3) myocarditis. Here, we demonstrate in murine models that resistance to chronic CVB3 myocarditis in immunocompetent C57BL/6 mice is characterized by significantly more mature CD11b(high) NK cells, the presence of NKG2D on NK cells, and enhanced NKG2D-dependent cytotoxicity compared to CVB3-susceptible A.BY/SnJ mice. The highly protective role of NKG2D in myocarditis was further proven by in vivo neutralization of NKG2D as well as in NKG2D-deficient mice but was shown to be independent of CD8(+) T-cell-dependent immunity. Moreover, the adoptive transfer of immunocompetent C57BL/6 NK cells pre- (day -1) as well as post-infectionem (day +2) displayed the potential to prevent permissive A.BY/SnJ mice from a progressive outcome of CVB3 myocarditis reflected by significantly improved cardiopathology and heart function. Altogether, our results provide firm evidence for a protective role of NKG2D-activated NK cells in CVB3 myocarditis leading to an effective virus clearance, thus offering novel therapeutic options in the treatment of virus-induced myocarditis.
Collapse
Affiliation(s)
- Karin Klingel
- Department of Molecular Pathology, University Hospital Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Development of a small animal peripheral challenge model of Japanese encephalitis virus using interferon deficient AG129 mice and the SA14-14-2 vaccine virus strain. Vaccine 2013; 32:258-64. [PMID: 24252694 DOI: 10.1016/j.vaccine.2013.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/28/2013] [Accepted: 11/06/2013] [Indexed: 12/25/2022]
Abstract
Japanese encephalitis virus (JEV) is the most common cause of viral encephalitis in Asia, and it is increasingly a global public health concern due to its recent geographic expansion. While commercial vaccines are available and used in some endemic countries, JEV continues to be a public health problem, with 50,000 cases reported annually. Research with virulent JEV in mouse models to develop new methods of prevention and treatment is restricted to BSL-3 containment facilities, confining these studies to investigators with access to these facilities. We have developed an adult small animal peripheral challenge model using interferon-deficient AG129 mice and the JEV live-attenuated vaccine SA14-14-2, thus requiring only BSL-2 containment. A low dose of virus (10PFU/0.1ml) induced 100% morbidity in infected mice. Increased body temperatures measured by implantable temperature transponders correlated with an increase in infectious virus and viral RNA in serum, spleen and brain as well as an increase in pro-inflammatory markers measured by a 58-biomarker multi-analyte profile (MAP) constructed during the course of infection. In the future, the MAP measurements can be used as a baseline for comparison in order to better assess the inhibition of disease progression by other prophylactic and therapeutic agents. The use of the AG129/JEV SA14-14-2 animal model makes vaccine and therapeutic studies feasible for laboratories with limited biocontainment facilities.
Collapse
|
21
|
Abstract
Cardiotropic viruses have been implicated as major pathogenetic agents in acute and chronic forms of myocarditis. By the introduction of molecular tools, such as (RT-) polymerase chain reaction ((RT-) PCR) and in situ hybridization in the diagnosis of inflammatory heart disease, genomes of various RNA and DNA viruses comprising enteroviruses, adenoviruses, parvovirus B19 (B19V) and herpesviruses (EBV, HHV6, HCMV) were detected in endomyocardial biopsies of patients with myocarditis and dilated cardiomyopathy. Meanwhile, it is known that the outcome of a virus infection in the heart resulting in myocarditis is determined by genetic host factors as well as by the viral pathogenicity which considerably varies in the different virus infections. A considerable portion of our knowledge about the etiopathogenetic mechanisms in viral heart disease is derived from animal studies. Whereas the evolvement of cardiac inflammation in enterovirus infections is guided by viral cytotoxicity and virus persistence, in herpesvirus infections, the pathophysiology is rather determined by primary immune-mediated pathogenicity. By investigation of immunocompetent and gene-targeted mice, valuable new insights into host and virus factors relevant for the control of cardiac viral infection and inflammation were gained which are reviewed in this paper.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/pathogenicity
- Animals
- Biopsy, Needle
- DNA, Viral/analysis
- Disease Models, Animal
- Enterovirus/genetics
- Enterovirus/pathogenicity
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 6, Human/genetics
- Herpesvirus 6, Human/pathogenicity
- Humans
- Immunohistochemistry
- Mice
- Mice, Transgenic
- Molecular Diagnostic Techniques/methods
- Myocarditis/genetics
- Myocarditis/pathology
- Myocarditis/virology
- Parvovirus B19, Human/genetics
- Parvovirus B19, Human/pathogenicity
- RNA, Viral/analysis
- Real-Time Polymerase Chain Reaction/methods
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Sabine Pankuweit
- Department of Cardiology, University Hospital Gießen & Marburg, 35043, Marburg, Germany,
| | | |
Collapse
|
22
|
An inactivated cell culture Japanese encephalitis vaccine (JE-ADVAX) formulated with delta inulin adjuvant provides robust heterologous protection against West Nile encephalitis via cross-protective memory B cells and neutralizing antibody. J Virol 2013; 87:10324-33. [PMID: 23864620 DOI: 10.1128/jvi.00480-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV), currently the cause of a serious U.S. epidemic, is a mosquito-borne flavivirus and member of the Japanese encephalitis (JE) serocomplex. There is currently no approved human WNV vaccine, and treatment options remain limited, resulting in significant mortality and morbidity from human infection. Given the availability of approved human JE vaccines, this study asked whether the JE-ADVAX vaccine, which contains an inactivated cell culture JE virus antigen formulated with Advax delta inulin adjuvant, could provide heterologous protection against WNV infection in wild-type and β2-microglobulin-deficient (β2m(-/-)) murine models. Mice immunized twice or even once with JE-ADVAX were protected against lethal WNV challenge even when mice had low or absent serum cross-neutralizing WNV titers prior to challenge. Similarly, β2m(-/-) mice immunized with JE-ADVAX were protected against lethal WNV challenge in the absence of CD8(+) T cells and prechallenge WNV antibody titers. Protection against WNV could be adoptively transferred to naive mice by memory B cells from JE-ADVAX-immunized animals. Hence, in addition to increasing serum cross-neutralizing antibody titers, JE-ADVAX induced a memory B-cell population able to provide heterologous protection against WNV challenge. Heterologous protection was reduced when JE vaccine antigen was administered alone without Advax, confirming the importance of the adjuvant to induction of cross-protective immunity. In the absence of an approved human WNV vaccine, JE-ADVAX could provide an alternative approach for control of a major human WNV epidemic.
Collapse
|
23
|
JE-ADVAX vaccine protection against Japanese encephalitis virus mediated by memory B cells in the absence of CD8(+) T cells and pre-exposure neutralizing antibody. J Virol 2013; 87:4395-402. [PMID: 23388724 DOI: 10.1128/jvi.03144-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
JE-ADVAX is a new, delta inulin-adjuvanted, Japanese encephalitis (JE) candidate vaccine with a strong safety profile and potent immunogenicity that confers efficient immune protection not only against JE virus but also against related neurotropic flaviviruses such as West Nile virus. In this study, we investigated the immunological mechanism of protection by JE-ADVAX vaccine using knockout mice deficient in B cells or CD8(+) T cells and poor persistence of neutralizing antibody or by adoptive transfer of immune splenocyte subpopulations. We show that memory B cells induced by JE-ADVAX provide long-lived protection against JE even in the absence of detectable pre-exposure serum neutralizing antibodies and without the requirement of CD8(+) T cells. Upon virus encounter, these vaccine-induced memory B cells were rapidly triggered to produce neutralizing antibodies that then protected immunized mice from morbidity and mortality. The findings suggest that the extent of the B-cell memory compartment might be a better immunological correlate for clinical efficacy of JE vaccines than the currently recommended measure of serum neutralizing antibody. This may explain the paradox where JE protection is observed in some subjects even in the absence of detectable serum neutralizing antibody. Our investigation also established the suitability of a novel flavivirus challenge model (β(2)-microglobulin-knockout mice) for studies of the role of B-cell memory responses in vaccine protection.
Collapse
|
24
|
Li M, Wang X, Xie Y, Xie Y, Zhang X, Zou Y, Ge J, Chen R. Initial weight and virus dose: two factors affecting the onset of acute coxsackievirus B3 myocarditis in C57BL/6 mouse—a histopathology-based study. Cardiovasc Pathol 2013; 22:96-101. [DOI: 10.1016/j.carpath.2012.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/04/2012] [Accepted: 06/04/2012] [Indexed: 11/28/2022] Open
|
25
|
Corsten MF, Schroen B, Heymans S. Inflammation in viral myocarditis: friend or foe? Trends Mol Med 2012; 18:426-37. [DOI: 10.1016/j.molmed.2012.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
26
|
Experimental SSM-CVB3 infection in macaques. Exp Mol Pathol 2011; 92:131-9. [PMID: 22079478 DOI: 10.1016/j.yexmp.2011.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/01/2011] [Accepted: 10/24/2011] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To evaluate the pathogenicity of SSM-CVB3 in a macaque model. METHODS The clinical symptoms of macaques were recorded; hematological, biochemical and histopathological evaluations were completed; viral titers and neutralization titers (NT-titers) in sera were tested; and the mRNA levels of SSM-CVB3, coxsackievirus and adenovirus receptor (CAR) and decay accelerating factor (DAF) were determined. RESULTS After SSM-CVB3 infection, the macaques showed a lack of activity, a poor appetite, a higher body temperature, and severe diarrhea. The macaques also developed hematuria and albuminuria at 4 to 10 days post-inoculation. Virus titers (5.1-6.5 LogTCID(50)/mL) were higher at 6 to 10 days post-inoculation, and NT-titers (6.5-7.3 Log2) reached plateaus at 8 to 14 days post-inoculation. The infected macaques developed serious anemia with decreased RBC and WBC, but the percentages of LYM were increased. The levels of CK, CK-MB, AST and ALT in the sera were 84-169 U/L, 87.6-271.1 U/L, 43-87 U/L and 43-82 U/L, respectively, and all of those were higher than normal. Histological analysis showed obvious cardiac, hepatic and renal damages in the infected macaques and the mRNA contents of SSM-CVB3, CAR and DAF in the heart, liver and kidneys of infected macaques were higher (P<0.05). CONCLUSION This was the first report on experimental SSM-CVB3 infections in macaques with serious hepatic and renal damage, except for myocarditis. The information obtained from this study suggests that the SSM-CVB3 strain and this macaque model could be used for studying CVB3-induced cardiac, hepatic or renal diseases.
Collapse
|
27
|
Opitz E, Koch A, Klingel K, Schmidt F, Prokop S, Rahnefeld A, Sauter M, Heppner FL, Völker U, Kandolf R, Kuckelkorn U, Stangl K, Krüger E, Kloetzel PM, Voigt A. Impairment of immunoproteasome function by β5i/LMP7 subunit deficiency results in severe enterovirus myocarditis. PLoS Pathog 2011; 7:e1002233. [PMID: 21909276 PMCID: PMC3164653 DOI: 10.1371/journal.ppat.1002233] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 07/07/2011] [Indexed: 12/18/2022] Open
Abstract
Proteasomes recognize and degrade poly-ubiquitinylated proteins. In infectious disease, cells activated by interferons (IFNs) express three unique catalytic subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 forming an alternative proteasome isoform, the immunoproteasome (IP). The in vivo function of IPs in pathogen-induced inflammation is still a matter of controversy. IPs were mainly associated with MHC class I antigen processing. However, recent findings pointed to a more general function of IPs in response to cytokine stress. Here, we report on the role of IPs in acute coxsackievirus B3 (CVB3) myocarditis reflecting one of the most common viral disease entities among young people. Despite identical viral load in both control and IP-deficient mice, IP-deficiency was associated with severe acute heart muscle injury reflected by large foci of inflammatory lesions and severe myocardial tissue damage. Exacerbation of acute heart muscle injury in this host was ascribed to disequilibrium in protein homeostasis in viral heart disease as indicated by the detection of increased proteotoxic stress in cytokine-challenged cardiomyocytes and inflammatory cells from IP-deficient mice. In fact, due to IP-dependent removal of poly-ubiquitinylated protein aggregates in the injured myocardium IPs protected CVB3-challenged mice from oxidant-protein damage. Impaired NFκB activation in IP-deficient cardiomyocytes and inflammatory cells and proteotoxic stress in combination with severe inflammation in CVB3-challenged hearts from IP-deficient mice potentiated apoptotic cell death in this host, thus exacerbating acute tissue damage. Adoptive T cell transfer studies in IP-deficient mice are in agreement with data pointing towards an effective CD8 T cell immune. This study therefore demonstrates that IP formation primarily protects the target organ of CVB3 infection from excessive inflammatory tissue damage in a virus-induced proinflammatory cytokine milieu.
Collapse
Affiliation(s)
- Elisa Opitz
- Medizinische Klinik für Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annett Koch
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Klingel
- Abteilung Molekulare Pathologie, Institut für Pathologie und Neuropathologie, Eberhard-Karls-Universität, Tuebingen, Germany
| | - Frank Schmidt
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Stefan Prokop
- Institut für Neuropathologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Rahnefeld
- Medizinische Klinik für Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Sauter
- Abteilung Molekulare Pathologie, Institut für Pathologie und Neuropathologie, Eberhard-Karls-Universität, Tuebingen, Germany
| | - Frank L. Heppner
- Institut für Neuropathologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Reinhard Kandolf
- Abteilung Molekulare Pathologie, Institut für Pathologie und Neuropathologie, Eberhard-Karls-Universität, Tuebingen, Germany
| | - Ulrike Kuckelkorn
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karl Stangl
- Medizinische Klinik für Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elke Krüger
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter M. Kloetzel
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antje Voigt
- Medizinische Klinik für Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
28
|
Rahnefeld A, Ebstein F, Albrecht N, Opitz E, Kuckelkorn U, Stangl K, Rehm A, Kloetzel PM, Voigt A. Antigen-presentation capacity of dendritic cells is impaired in ongoing enterovirus myocarditis. Eur J Immunol 2011; 41:2774-81. [DOI: 10.1002/eji.201041039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 04/12/2011] [Accepted: 05/23/2011] [Indexed: 12/20/2022]
|
29
|
Chen H, Kshirsagar S, Jensen I, Lau K, Simonson C, Schluter SF. Characterization of arrangement and expression of the beta-2 microglobulin locus in the sandbar and nurse shark. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:189-195. [PMID: 19782101 DOI: 10.1016/j.dci.2009.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/18/2009] [Indexed: 05/28/2023]
Abstract
Beta 2 microglobulin (beta2m) is an essential subunit of major histocompatibility complex (MHC) type I molecules. In this report, beta2m cDNAs were identified and sequenced from sandbar shark spleen cDNA library. Sandbar shark beta2m gene encodes one amino acid less than most teleost beta2m genes, and 3 amino acids less than mammal beta2m genes. Although sandbar shark beta2m protein contains one beta sheet less than that of human in the predicted protein structure, the overall structure of beta2m proteins is conserved during evolution. Germline gene for the beta2m in sandbar and nurse shark is present as a single locus. It contains three exons and two introns. CpG sites are evenly distributed in the shark beta2m loci. Several DNA repeat elements were also identified in the shark beta2m loci. Sequence analysis suggests that the beta2m locus is not linked to the MHC I loci in the shark genome.
Collapse
Affiliation(s)
- Hao Chen
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85719, USA
| | | | | | | | | | | |
Collapse
|
30
|
Generation of in silico predicted coxsackievirus B3-derived MHC class I epitopes by proteasomes. Amino Acids 2009; 39:243-55. [PMID: 19997756 DOI: 10.1007/s00726-009-0434-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/19/2009] [Indexed: 12/19/2022]
Abstract
Proteasomes are known to be the main suppliers of MHC class I (MHC-I) ligands. In an attempt to identify coxsackievirus B3 (CVB3)-MHC-I epitopes, a combined approach of in silico MHC-I/transporters associated with antigen processing (TAP)-binding and proteasomal cleavage prediction was applied. Accordingly, 13 potential epitopes originating from the structural and non-structural protein region of CVB3 were selected for further in vitro processing analysis by proteasomes. Mass spectrometry demonstrated the generation of seven of the 13 predicted MHC-I ligands or respective ligand precursors by proteasomes. Detailed processing analysis of three adjacent MHC-I ligands with partially overlapping sequences, i.e. VP2(273-281), VP2(284-292) and VP2(285-293), revealed the preferential generation predominantly of the VP2(285-293) epitope by immunoproteasomes due to altered cleavage site preferences. The VP2(285-293) peptide was identified to be a high affinity binder, rendering VP2(285-293) a likely candidate for CD8 T cell immunity in CVB3 infection. In conclusion, the concerted usage of different in silico prediction methods and in vitro epitope processing/presentation studies was supportive in the identification of CVB3 MHC-I epitopes.
Collapse
|
31
|
Jäkel S, Kuckelkorn U, Szalay G, Plötz M, Textoris-Taube K, Opitz E, Klingel K, Stevanovic S, Kandolf R, Kotsch K, Stangl K, Kloetzel PM, Voigt A. Differential interferon responses enhance viral epitope generation by myocardial immunoproteasomes in murine enterovirus myocarditis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:510-8. [PMID: 19590042 DOI: 10.2353/ajpath.2009.090033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Murine models of coxsackievirus B3 (CVB3)-induced myocarditis mimic the divergent human disease course of cardiotropic viral infection, with host-specific outcomes ranging from complete recovery in resistant mice to chronic disease in susceptible hosts. To identify susceptibility factors that modulate the course of viral myocarditis, we show that type-I interferon (IFN) responses are considerably impaired in acute CVB3-induced myocarditis in susceptible mice, which have been linked to immunoproteasome (IP) formation. Here we report that in concurrence with distinctive type-I IFN kinetics, myocardial IP formation peaked early after infection in resistant mice and was postponed with maximum IP expression concomitant to massive inflammation and predominant type-II IFN responses in susceptible mice. IP activity is linked to a strong enhancement of antigenic viral peptide presentation. To investigate the impact of myocardial IPs in CVB3-induced myocarditis, we identified two novel CVB3 T cell epitopes, virus capsid protein 2 [285-293] and polymerase 3D [2170-2177]. Analysis of myocardial IPs in CVB3-induced myocarditis revealed that myocardial IP expression resulted in efficient epitope generation. As opposed to the susceptible host, myocardial IP expression at early stages of disease corresponded to enhanced CVB3 epitope generation in the hearts of resistant mice. We propose that this process may precondition the infected heart for adaptive immune responses. In conclusion, type-I IFN-induced myocardial IP activity at early stages coincides with less severe disease manifestation in CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Sandra Jäkel
- Charité-Universitätsmedizin Berlin, Institut für Biochemie CC2, Monbijoustrasse 2, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Weinzierl AO, Rudolf D, Maurer D, Wernet D, Rammensee HG, Stevanović S, Klingel K. Identification of HLA-A*01- and HLA-A*02-restricted CD8+ T-cell epitopes shared among group B enteroviruses. J Gen Virol 2008; 89:2090-2097. [PMID: 18753217 DOI: 10.1099/vir.0.2008/000711-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute enteroviral infections ranging from meningitis, pancreatitis to myocarditis are common and normally well controlled by the host immune system comprising virus-specific CD8+ cytotoxic T lymphocytes (CTL). However, in some patients enteroviruses and especially coxsackieviruses of group B are capable of inducing severe chronic forms of diseases such as chronic myocarditis. Currently, it is not known whether divergences in the CTL-related immune response may contribute to the different outcome and course of enterovirus myocarditis. A pre-requisite for the study of CTL reactions in patients with acute and chronic myocarditis is the identification of CTL epitopes. In order to define dominant enterovirus CTL epitopes, we have screened, by using gamma interferon (IFN-gamma) ELISPOT, 62 HLA-A*01- and 59 HLA-A*02-positive healthy blood donors for pre-existing CTL reactions against 12 HLA-A*01 and 20 HLA-A*02 predicted CTL epitopes derived from coxsackieviruses of group B. Positive CTL reactions were verified by FACS analysis in a combined major histocompatibility complex-tetramer IFN-gamma staining. A total of 14.8% of all donors reacted against one of the three identified epitopes MLDGHLIAFDY, YGDDVIASY or GIIYIIYKL. The HLA-A*02-restricted epitope ILMNDQEVGV was recognized by 25% of all tested blood donors. For this peptide, we could demonstrate specific granzyme B secretion, a strong cytolytic potential and endogenous processing. All four epitopes were homologous in 36-92% of group B enteroviruses, providing a strong basis for monitoring the divergence of T-cell-based immune responses in enterovirus-induced acute and chronic diseases.
Collapse
Affiliation(s)
- Andreas O Weinzierl
- Department of Molecular Pathology, University of Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Despina Rudolf
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Dominik Maurer
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Dorothee Wernet
- Institute of Clinical and Experimental Transfusion Medicine, University of Tübingen, Otfried-Müller-Str. 4/1, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Karin Klingel
- Department of Molecular Pathology, University of Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
| |
Collapse
|
33
|
|
34
|
Effective chemokine secretion by dendritic cells and expansion of cross-presenting CD4-/CD8+ dendritic cells define a protective phenotype in the mouse model of coxsackievirus myocarditis. J Virol 2008; 82:8149-60. [PMID: 18550677 DOI: 10.1128/jvi.00047-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Enteroviruses such as coxsackievirus B3 (CVB3) are able to induce lethal acute and chronic myocarditis. In resistant C57BL/6 mice, CVB3 myocarditis is abrogated by T-cell-dependent mechanisms, whereas major histocompatibility complex (MHC)-matched permissive A.BY/SnJ mice develop chronic myocarditis based on virus persistence. To define the role of T-cell-priming dendritic cells (DCs) in the outcome of CVB3 myocarditis, DCs were analyzed in this animal model in the course of CVB3 infection. In both mouse strains, DCs were found to be infectible with CVB3; however, formation of infectious virions was impaired. In DCs derived from C57BL/6 mice, significantly higher quantities of interleukin-10 (IL-10) and the proinflammatory cytokines IL-6 and tumor necrosis factor alpha were measured compared to those from A.BY/SnJ mice. Additionally, the chemokines interferon-inducible protein 10 (IP-10) and RANTES were secreted by DCs from resistant C57BL/6 mice earlier in infection and at significantly higher levels. The protective role of IP-10 in CVB3 myocarditis was confirmed in IP-10(-/-) mice, which had increased myocardial injury compared to the immunocompetent control animals. Also, major differences in resistant and permissive mice were found in DC subsets, with C57BL/6 mice harboring more cross-priming CD4(-) CD8(+) DCs. As CD4(-) CD8(+) DCs are known to express 10 times more Toll-like receptor 3 (TLR3) than other DC subsets, we followed the course of CVB3 infection in TLR3(-/-) mice. These mice developed a fulminant acute myocarditis and secreted sustained low amounts of type I interferons; secretion of IP-10 and RANTES was nearly abrogated in DCs. We conclude that MHC-independent genetic factors involving DC-related IP-10 secretion and TLR3 expression are beneficial in the prevention of chronic coxsackievirus myocarditis.
Collapse
|
35
|
Smith AD, Botero S, Levander OA. Copper deficiency increases the virulence of amyocarditic and myocarditic strains of coxsackievirus B3 in mice. J Nutr 2008; 138:849-55. [PMID: 18424590 DOI: 10.1093/jn/138.5.849] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deficiency in several trace elements, including copper and selenium, is associated with increased levels of oxidative stress. Copper deficiency also has been shown to impair immune function. Previous work by others demonstrated that passage of an amyocarditic or myocarditic strain of coxsackievirus B3 (CVB3) through selenium- or vitamin E-deficient mice led to increased cardiac pathology. To determine whether a copper deficiency would similarly alter the pathogenesis of CVB3 infections, Swiss outbred dams and their litters were fed copper-deficient diets from birth and received either deionized water or water with 0.315 mmol/L copper as copper sulfate. At 4 wk of age, copper-adequate or -deficient male and female offspring were infected with an amyocarditic or myocarditic strain of CVB3. Heart titers were elevated at d 3 and 7 postinfection in copper-deficient mice infected with the myocarditic CVB3 strain (CVB3/20) but only at d 7 in deficient mice infected with the amyocarditic CVB3 strain (CVB3/0) compared with copper-adequate controls. Copper-deficient mice infected with either strain of CVB3 had increased cardiac pathology compared with copper-adequate controls. Genomic sequences of viruses isolated from copper-adequate and -deficient mice were identical. Heart cytokine expression was elevated in copper-deficient CVB3-infected mice compared with infected controls. Circulating CVB3-specific IgG2a but not IgM levels were decreased in copper-deficient mice. Thus, copper deficiency is associated with an increased inflammatory response but decreased acquired immune response to CVB3 infection that results in increased cardiac pathology, presumably due to increased viral load.
Collapse
Affiliation(s)
- Allen D Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
36
|
Szalay G, Sauter M, Hald J, Weinzierl A, Kandolf R, Klingel K. Sustained nitric oxide synthesis contributes to immunopathology in ongoing myocarditis attributable to interleukin-10 disorders. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:2085-93. [PMID: 17148671 PMCID: PMC1762471 DOI: 10.2353/ajpath.2006.060350] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ongoing coxsackievirus B3 (CVB3) myocarditis is characterized by persistence of viral RNA and chronic inflammation primarily mediated by macrophages and T cells. Activated macrophages produce anti-viral effector molecules comprising reactive nitrogen intermediates; however, reactive nitrogen intermediates also contribute to host tissue damage. Controlled activation of macrophages depends on interferon (IFN)-gamma and interleukin (IL)-10. To evaluate mechanisms involved in CVB3-induced pathogenesis of myocarditis, we determined the relationship of inducible nitric-oxide synthase (iNOS) mRNA expression with IFN-gamma and IL-10 secretion during CVB3 infection in different mouse strains. We found in susceptible A.BY/SnJ mice that develop ongoing myocarditis, a low and delayed IFN-gamma secretion and highly diminished IL-10 production compared with resistant C57BL/6 mice. Consequently, iNOS mRNA synthesis was delayed but clearly prolonged in susceptible mice. IL-10 gene-deficient mice confirmed the regulatory role of IL-10 in the outcome of CVB3 myocarditis. These mice did not establish a persistent cardiac infection and revealed IFN-gamma secretion kinetics similar to resistant mice but showed a slightly elongated cardiac iNOS mRNA expression resulting in extended myocarditis. We conclude that coordinated secretion of IFN-gamma and IL-10 is crucial for the effective resolution of CVB3 myocarditis. Moreover, lack of regulatory IL-10 leads to uncontrolled iNOS mRNA production, thus contributing to ongoing myocardial injury.
Collapse
Affiliation(s)
- Gudrun Szalay
- Dept. of Molecular Pathology, Institute for Pathology, University Hospital Tübingen, Liebermeisterstr. 8, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Dace DS, Chen PW, Alizadeh H, Niederkorn JY. Ocular immune privilege is circumvented by CD4+ T cells, leading to the rejection of intraocular tumors in an IFN-{gamma}-dependent manner. J Leukoc Biol 2006; 81:421-9. [PMID: 17077163 DOI: 10.1189/jlb.0806489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although intraocular tumors reside in an immune-privileged site, they can circumvent immune privilege and undergo rejection, which typically follows one of two pathways. One pathway involves CD4(+) T cells, delayed-type hypersensitivity (DTH), and the culmination in ischemic necrosis of the tumor and phthisis (atrophy) of the eye. The second pathway is DTH-independent and does not inflict collateral injury to ocular tissues, and the eye is preserved. In this study, we used a well-characterized tumor, Ad5E1, to analyze the role of IFN-gamma in the nonphthisical form of intraocular tumor rejection. The results showed that IFN-gamma induced tumor cell apoptosis, inhibited tumor cell proliferation, and promoted rejection by inhibiting angiogenesis. Microarray analysis revealed that IFN-gamma induced up-regulation of five antiangiogenic genes and down-regulation of four proangiogenic genes in Ad5E1 tumor cells. Although IFN-gamma knockout (KO) mice have progressively growing intraocular tumors, IFN-gamma was not needed for the elimination of extraocular tumors, as all IFN-gamma KO mice rejected s.c. tumor inocula. This represents a heretofore unrecognized role for IFN-gamma in circumventing ocular immune privilege and eliminating intraocular tumors. The findings also reveal that some IFN-gamma-independent tumor rejection processes are excluded from the eye and may represent a new facet of ocular immune privilege.
Collapse
Affiliation(s)
- Dru S Dace
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA
| | | | | | | |
Collapse
|
38
|
Szalay G, Meiners S, Voigt A, Lauber J, Spieth C, Speer N, Sauter M, Kuckelkorn U, Zell A, Klingel K, Stangl K, Kandolf R. Ongoing coxsackievirus myocarditis is associated with increased formation and activity of myocardial immunoproteasomes. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1542-52. [PMID: 16651621 PMCID: PMC1606581 DOI: 10.2353/ajpath.2006.050865] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A growing body of evidence indicates that viral infections of the heart contribute to ongoing myocarditis and dilated cardiomyopathy. Murine models of coxsackievirus B3 (CVB3)-induced myocarditis mimic the human disease and allow identification of susceptibility factors that modulate the course of viral myocarditis. Susceptible mouse strains develop chronic myocarditis on the basis of restricted viral replication, whereas resistant strains recover after successful virus elimination. In comparative whole-genome microarray analyses of infected hearts, several genes involved in the processing and presentation of viral epitopes were found to be uniformly up-regulated in acutely CVB3-infected susceptible mice compared with resistant animals. In particular, expression of the catalytic subunits LMP2, LMP7, and MECL-1, immunoproteasome proteins important in the generation of major histocom-patibility complex (MHC) class I-restricted peptides, was clearly enhanced in the susceptible host. Increased expression resulted in enhanced formation of immunoproteasomes and altered proteolytic activities of proteasomes in the heart. This was accompanied by a concerted up-regulation of the antigen-presenting machinery in susceptible mice. Thus, we propose that increased formation of immunoproteasomes in susceptible mice affects the generation of antigenic peptides and the subsequent T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Gudrun Szalay
- Department of Molecular Pathology, University Hospital Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Richards SM, Jensen RV, Liu M, Sullivan BD, Lombardi MJ, Rowley P, Schirra F, Treister NS, Suzuki T, Steagall RJ, Yamagami H, Sullivan DA. Influence of sex on gene expression in the mouse lacrimal gland. Exp Eye Res 2005; 82:13-23. [PMID: 15979613 DOI: 10.1016/j.exer.2005.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 04/08/2005] [Accepted: 04/21/2005] [Indexed: 11/28/2022]
Abstract
Significant, sex-associated differences exist in the physiology and pathophysiology of the lacrimal gland. We hypothesize that many of these differences are due to fundamental variations in gene expression. The purpose of this study was to determine the extent to which sex-related differences in gene expression are present in the lacrimal gland. Lacrimal glands were obtained from adult male and female BALB/c mice (n=5-10mice/sex/experiment), pooled according to sex and processed for the isolation of RNA. Samples were analyzed for differentially expressed mRNAs by using Atlas Mouse cDNA Expression Arrays, cDNA amplification techniques, GEM 1 and 2 gene chips, CodeLink bioarrays and quantitative real-time PCR (qPCR) procedures. Quantitative evaluation of Atlas Array gene expression was performed with an image analysis system developed in our laboratory, whereas gene chip data were analyzed with Rosetta Resolver and GeneSifter.Net software. Statistical significance was determined by using Student's t-test. Our results with CodeLink bioarrays show that sex has a significant influence on the expression of over 490 genes in the mouse lacrimal gland. These genes are involved in a wide range of biological processes, molecular functions and cellular components, including such activities as development, growth, transcription, metabolism, signal transduction, transport, receptor activity and protein and nucleic acid binding. The expression of selected genes was confirmed by the use of GEM gene chips and qPCR. Our findings also demonstrate that certain methodological approaches are less useful in attempting to assess the magnitude of sex-associated differences in the lacrimal gland. These results support our hypothesis that sex-related differences in gene expression play a role in the sexual dimorphism of the lacrimal gland.
Collapse
Affiliation(s)
- Stephen M Richards
- Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Choy JC, Lui AH, Moien-Afshari F, Wei K, Yanagawa B, McManus BM, Laher I. Coxsackievirus B3 infection compromises endothelial-dependent vasodilation of coronary resistance arteries. J Cardiovasc Pharmacol 2004; 43:39-47. [PMID: 14668566 DOI: 10.1097/00005344-200401000-00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mechanisms of coronary artery dysfunction in coxsackievirus B3 (CVB3)-mediated viral myocarditis are poorly understood. We used pressure myography of mouse septal coronary arteries to determine the early and late effects of CVB3 infection on vascular function. Male CD-1 mice (age 6-7 weeks) were infected with CVB3 (1.75 x 10(10) pfu, i.p.). Control mice were injected with PBS. Mice were killed at 3, 7, and 42 days post infection, and the ventricular septal artery was dissected and mounted on a pressure myograph. Pressure-induced myogenic tone was similar in CVB3-infected and sham-infected mice at 3 and 7 days post infection. However, at 42 days post infection constriction of septal arteries to pressures equal to or less than 60 mm Hg was enhanced in CVB3-infected mice compared with sham controls. Agonist-induced vasodilation, as assessed by response to acetylcholine (1 nM-3 microM), was unaltered at early time points (days 3 and 7) in CVB3-infected mice. At later time points (day 42), there was a significant decrease in ACh-induced vasodilation in CVB3-infected mice. Bosentan, an ET-1 (ETA and ETB) receptor antagonist, did not completely ameliorate the reduced ACh-induced vasodilation in 42-day infected mice, indicating that ET-1 does not contribute to vascular dysfunction. Smooth muscle function, as measured by constriction to KCl or dilation to sodium nitroprusside, was unchanged in infected mice at early and late time points. Immunohistochemistry and ET-1 immunoassay were then performed to assess ET-1 levels in CVB3- and sham-infected hearts. There were no differences in ET-1 protein localization or levels at 42 days post infection in sham- and CVB3-infected animals. Finally, in situ hybridization and TUNEL staining were performed to assess viral localization and cell death in CVB3-infected hearts. There was no detectable CVB3 or TUNEL positivity in the endothelium of coronary arteries. Therefore, late impairment of endothelial-dependent vasorelaxation of coronary resistance vessels in CVB3-induced myocarditis does not appear to involve altered ET-1 expression but may be secondary to decreased stimulated NO secretion by the endothelium.
Collapse
Affiliation(s)
- Jonathan C Choy
- UBC McDonald Research Laboratories/The iCAPTUR4E Centre, Department of Pathology and Laboratory Medicine, St. Paul's Hospital/Providence Health Care-University of British Columbia, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|