1
|
Zieleniewska NA, Kazberuk M, Chlabicz M, Eljaszewicz A, Kamiński K. Trained Immunity as a Trigger for Atherosclerotic Cardiovascular Disease-A Literature Review. J Clin Med 2022; 11:jcm11123369. [PMID: 35743439 PMCID: PMC9224533 DOI: 10.3390/jcm11123369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis remains the leading cause of cardiovascular diseases and represents a primary public health challenge. This chronic state may lead to a number of life-threatening conditions, such as myocardial infarction and stroke. Lipid metabolism alterations and inflammation remain at the forefront of the pathogenesis of atherosclerotic cardiovascular disease, but the overall mechanism is not yet fully understood. Recently, significant effects of trained immunity on atherosclerotic plaque formation and development have been reported. An increased reaction to restimulation with the same stimulator is a hallmark of the trained innate immune response. The impact of trained immunity is a prominent factor in both acute and chronic coronary syndrome, which we outline in this review.
Collapse
Affiliation(s)
- Natalia Anna Zieleniewska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
| | - Małgorzata Kazberuk
- Scientific Group of Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland;
| | - Małgorzata Chlabicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Invasive Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, 15-259 Bialystok, Poland;
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
- Correspondence:
| |
Collapse
|
2
|
Ortega MA, Asúnsolo Á, Pekarek L, Alvarez-Mon MA, Delforge A, Sáez MA, Coca S, Sainz F, Mon MÁ, Buján J, García-Honduvilla N. Histopathological study of JNK in venous wall of patients with chronic venous insufficiency related to osteogenesis process. Int J Med Sci 2021; 18:1921-1934. [PMID: 33850461 PMCID: PMC8040408 DOI: 10.7150/ijms.54052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic venous insufficiency (CVI) is one of the most common vascular pathologies worldwide. One of the risk factors for the development of CVI is aging, which is why it is related to senile changes. The main trigger of the changes that occur in the venous walls in CVI is blood flow reflux, which produces increased hydrostatic pressure, leading to valve incompetence. The cellular response is one of the fundamental processes in vascular diseases, causing the activation of cell signalling pathways such as c-Jun N-terminal kinase (JNK). Metabolic changes and calcifications occur in vascular pathology as a result of pathophysiological processes. The aim of this study was to determine the expression of JNK in venous disease and its relationship with the role played by the molecules involved in the osteogenic processes in venous tissue calcification. This was a cross-sectional study that analyzed the greater saphenous vein wall in 110 patients with (R) and without venous reflux (NR), classified according to age. Histopathological techniques were used and protein expression was analysed using immunohistochemistry techniques for JNK and markers of osteogenesis (RUNX2, osteocalcin (OCN), osteopontin (OPN)). Significantly increased JNK, RUNX2, OCN, OPN and pigment epithelium-derived factor (PEDF) protein expression and the presence of osseous metaplasia and amorphous calcification were observed in younger patients (<50 years) with venous reflux. This study shows for the first time the existence of an osteogenesis process related to the expression of JNK in the venous wall.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Miguel A Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Arnaud Delforge
- UFR of pharmacy, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Miguel A Sáez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Felipe Sainz
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Angiology and Vascular Surgery Service, Central University Hospital of Defence-UAH Madrid, Spain
| | - Melchor Álvarez- Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, Alcalá de Henares, Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
3
|
Role of c-Jun N-terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells 2020; 9:cells9030706. [PMID: 32183037 PMCID: PMC7140703 DOI: 10.3390/cells9030706] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been described as a global epidemic and is a low-grade chronic inflammatory disease that arises as a consequence of energy imbalance. Obesity increases the risk of type 2 diabetes (T2D), by mechanisms that are not entirely clarified. Elevated circulating pro-inflammatory cytokines and free fatty acids (FFA) during obesity cause insulin resistance and ß-cell dysfunction, the two main features of T2D, which are both aggravated with the progressive development of hyperglycemia. The inflammatory kinase c-jun N-terminal kinase (JNK) responds to various cellular stress signals activated by cytokines, free fatty acids and hyperglycemia, and is a key mediator in the transition between obesity and T2D. Specifically, JNK mediates both insulin resistance and ß-cell dysfunction, and is therefore a potential target for T2D therapy.
Collapse
|
4
|
Nair J, Kakkar VV, Shanker J. Comparative analysis of inflammatory gene expression levels in metabolic syndrome & coronary artery disease. Indian J Med Res 2018; 145:777-785. [PMID: 29067980 PMCID: PMC5674548 DOI: 10.4103/ijmr.ijmr_1678_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND & OBJECTIVES Metabolic syndrome (MetS) increases the likelihood of developing coronary artery disease (CAD), and inflammation is involved in the pathogenesis of both these conditions. The present work was conducted to examine the relative expression of 18 key inflammatory genes associated with MetS and incident CAD in a representative group of patients. METHODS A total of 178 male patients, including 57 with CAD and 121 without CAD, were enrolled in the study. The participants without CAD were characterized for the presence of MetS using modified criteria specific for Asian Indians, which included a lower cut-off for waist circumference (≥90 cm for men). The expression of 18 inflammatory genes was evaluated in peripheral whole blood by quantitative polymerase chain reaction method. RESULTS Of the 121 participants without CAD, 53 (43.8%) had three or more risk factors (MetS group), 50 (41.3%) had one or two risk factors (non-MetS group), while 18 (14.8%) did not have any risk factors (control group). High nuclear factor-kappa B (NF-κB) expression levels and low interleukin-10 (IL-10) levels were observed in MetS patients. Linear association was seen between NF-κB and vascular endothelial growth factor A (VEGFA) expression and with increase in MetS components. Comparison of gene expression pattern between CAD and MetS revealed significantly higher expression of leukotriene genes - arachidonate 5-lipoxygenase (ALOX5), arachidonate 5-lipoxygenase activating protein (ALOX5 AP), leukotriene A4 hydrolase (LTA4H) and leukotriene C4 synthase (LTC4S), and lower expression of NF-κB, interleukin 1 beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1/CCL2) and signal transducer and activator of transcription 3 (STAT3) genes in CAD. There was linear increase in expression of LTA4H, LTC4S, IL-8 and VEGFA genes across the four groups, namely from controls, non-MetS, MetS and CAD. INTERPRETATION & CONCLUSIONS A distinct gene expression pattern was seen in MetS and CAD implying a well-orchestrated inflammatory and immune activity. Specifically, NF-κB might be playing an active role in MetS, allowing further expansion of the inflammatory process with resolution of inflammation in full-blown CAD, wherein other gene players such as leukotrienes may dominate.
Collapse
Affiliation(s)
- Jiny Nair
- Mary & Garry Weston Functional Genomics Unit, Bengaluru, India
| | - Vijay V Kakkar
- Chairman, Thrombosis Research Institute, Bengaluru, Narayana Hrudayalaya, Bengaluru, India; President, Thrombosis Research Institute, London, UK
| | | |
Collapse
|
5
|
Oh J, Riek AE, Zhang RM, Williams SAS, Darwech I, Bernal-Mizrachi C. Deletion of JNK2 prevents vitamin-D-deficiency-induced hypertension and atherosclerosis in mice. J Steroid Biochem Mol Biol 2018; 177:179-186. [PMID: 28951226 PMCID: PMC5826746 DOI: 10.1016/j.jsbmb.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
Abstract
The c-Jun N-terminal kinase 2 (JNK2) signaling pathway contributes to inflammation and plays a key role in the development of obesity-induced insulin resistance and cardiovascular disease. Macrophages are key cells implicated in these metabolic abnormalities. Active vitamin D downregulates macrophage JNK activation, suppressing oxidized LDL cholesterol uptake and foam cell formation and promoting an anti-inflammatory phenotype. To determine whether deletion of JNK2 prevents high blood pressure and atherosclerosis known to be induced by vitamin D deficiency in mice, we generated mice with knockout of JNK2 in a background susceptible to diet-induced atherosclerosis (LDLR-/-). JNK2-/- LDLR-/- and LDLR-/- control mice were fed vitamin D-deficient chow for 8 weeks followed by vitamin D-deficient high fat diet (HFD) for 10 weeks and assessed before and after HFD. There was no difference in fasting glucose, cholesterol, triglycerides, or free fatty acid levels. However, JNK2-/- mice, despite vitamin D-deficient diet, had 20-30mmHg lower systolic (SBP) and diastolic (DBP) blood pressure before HFD compared to control mice fed vitamin D-deficient diets, with persistent SBP differences after HFD. Moreover, deletion of JNK2 reduced HFD-induced atherosclerosis by 30% in the proximal aorta when compared to control mice fed vitamin D-deficient diets. We have previously shown that peritoneal macrophages obtained from LDLR-/- mice fed vitamin D-deficient HFD diets have higher foam cell formation compared to those from mice on vitamin D-sufficient HFD. The increased total cellular cholesterol and modified cholesterol uptake in macrophages from mice on vitamin D-deficient HFD were blunted by deletion of JNK2. These data suggest that JNK2 signaling activation is necessary for the atherosclerosis and hypertension induced by vitamin D deficiency.
Collapse
Affiliation(s)
- Jisu Oh
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA
| | - Amy E Riek
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA
| | - Rong M Zhang
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA
| | - Samantha A S Williams
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA
| | - Isra Darwech
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA
| | - Carlos Bernal-Mizrachi
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA; Division of Endocrinology, Metabolism, and Lipid Research, Department of Cell Biology and Physiology, Washington University, 660 South Euclid Ave., Campus Box 8127, St. Louis, MO 63110, USA; Division of Endocrinology, Saint Louis VA Medical Center, 915 N Grant Blvd, Saint Louis, MO 63106, USA.
| |
Collapse
|
6
|
Ganeshan L, Jin XL, O'Neill C. The induction of tumour suppressor protein P53 limits the entry of cells into the pluripotent inner cell mass lineage in the mouse embryo. Exp Cell Res 2017; 358:227-233. [PMID: 28663058 DOI: 10.1016/j.yexcr.2017.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 11/28/2022]
Abstract
The early preimplantation embryo is susceptible to a range of exogenous stresses which result in their reduced long-term developmental potential. The P53 tumour suppressor protein is normally held at low levels in the preimplantation embryo and we show that culture stress induces the expression of a range of canonical P53-response genes (Mdm2, Bax and Cdkn1a). Culture stress caused a P53-dependent loss of cells from resulting blastocysts, and this was most evident within the inner cell mass population. Culture stress increased the proportion of cells expressing active caspase-3 and undergoing apoptosis, while inhibition of caspase-3 increased the number of cells within the inner cell mass. The P53-dependent loss of cells from the inner cell mass was accompanied by a loss of NANOG-positive epiblast progenitors. Pharmacological activation of P53 by the MDM2 inhibitor, Nutlin-3, also caused increased P53-dependent transcription and the loss of cells from the inner cell mass. This loss of cells could be ameliorated by simultaneous treatment with the P53 inhibitor, Pifithrin-α. Culture stress causes reduced signalling via the phosphatidylinositol-3-kinase signalling pathway, and blocking this pathway caused P53-dependent loss of cells from the inner cell mass. These results point to P53 acting to limit the accumulation and survival of cells within the pluripotent lineage of the blastocyst and provide a molecular framework for the further investigation of the factors determining the effects of stressors on the embryo's developmental potential.
Collapse
Affiliation(s)
- L Ganeshan
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - X L Jin
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia
| | - C O'Neill
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, NSW 2065, Australia.
| |
Collapse
|
7
|
Wang J, Liu K, Wang H, Li Z, Li Y, Ping S, Bardeesi ASA, Guo Y, Zhou Y, Pei T, Deng L, Sheng P, Liu S, Li C. Role of nifedipine and hydrochlorothiazide in MAPK activation and vascular smooth muscle cell proliferation and apoptosis. Herz 2016; 42:573-584. [DOI: 10.1007/s00059-016-4489-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/28/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022]
|
8
|
Sakamuri SSVP, Higashi Y, Sukhanov S, Siddesha JM, Delafontaine P, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice. Atherosclerosis 2016; 252:153-160. [PMID: 27237075 DOI: 10.1016/j.atherosclerosis.2016.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a major cause of heart attack and stroke. Inflammation plays a critical role in the development of atherosclerosis. Since the cytoplasmic adaptor molecule TRAF3IP2 (TRAF3-Interacting Protein 2) plays a causal role in various autoimmune and inflammatory diseases, we hypothesized that TRAF3IP2 mediates atherosclerotic plaque development. METHODS TRAF3IP2/ApoE double knockout (DKO) mice were generated by crossing TRAF3IP2(-/-) and ApoE(-/-) mice. ApoE(-/-) mice served as controls. Both DKO and control mice were fed a high-fat diet for 12 weeks. Plasma lipids were measured by ELISA, atherosclerosis by en face analysis of aorta and plaque cross-section measurements at the aortic valve region, plaque necrotic core area, collagen and smooth muscle cell (SMC) content by histomorphometry, and aortic gene expression by RT-qPCR. RESULTS The plasma lipoprotein profile was not altered by TRAF3IP2 gene deletion in ApoE(-/-) mice. While total aortic plaque area was decreased in DKO female, but not male mice, the plaque necrotic area was significantly decreased in DKO mice of both genders. Plaque collagen and SMC contents were increased significantly in both female and male DKO mice compared to respective controls. Aortic expression of proinflammatory cytokine (Tumor necrosis factor α, TNFα), chemokine (Chemokine (C-X-C motif) Ligand 1, CXCL1) and adhesion molecule (Vascular cell adhesion molecule 1, VCAM1; and Intercellular adhesion molecule 1, ICAM1) gene expression were decreased in both male and female DKO mice. In addition, the male DKO mice expressed markedly reduced levels of extracellular matrix (ECM)-related genes, including TIMP1 (Tissue inhibitor of metalloproteinase 1), RECK (Reversion-Inducing-Cysteine-Rich Protein with Kazal Motifs) and ADAM17 (A Disintegrin And Metalloproteinase 17). CONCLUSIONS TRAF3IP2 plays a causal role in atherosclerotic plaque development and vulnerability, possibly by inducing the expression of multiple proinflammatory mediators. TRAF3IP2 could be a potential therapeutic target in atherosclerotic vascular diseases.
Collapse
Affiliation(s)
| | - Yusuke Higashi
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Sergiy Sukhanov
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Jalahalli M Siddesha
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Ulrich Siebenlist
- Laboratory of Immunoregulation, NIAID/NIH, Bethesda, MD, 20892, United States
| | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States; HS Truman Memorial Veterans Hospital, 800 Hospital Drive, Columbia, MO, 75201, United States.
| |
Collapse
|
9
|
Babaev VR, Yeung M, Erbay E, Ding L, Zhang Y, May JM, Fazio S, Hotamisligil GS, Linton MF. Jnk1 Deficiency in Hematopoietic Cells Suppresses Macrophage Apoptosis and Increases Atherosclerosis in Low-Density Lipoprotein Receptor Null Mice. Arterioscler Thromb Vasc Biol 2016; 36:1122-31. [PMID: 27102962 DOI: 10.1161/atvbaha.116.307580] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The c-Jun NH2-terminal kinases (JNK) are regulated by a wide variety of cellular stresses and have been implicated in apoptotic signaling. Macrophages express 2 JNK isoforms, JNK1 and JNK2, which may have different effects on cell survival and atherosclerosis. APPROACH AND RESULTS To dissect the effect of macrophage JNK1 and JNK2 on early atherosclerosis, Ldlr(-/-) mice were reconstituted with wild-type, Jnk1(-/-), and Jnk2(-/-) hematopoietic cells and fed a high cholesterol diet. Jnk1(-/-)→Ldlr(-/-) mice have larger atherosclerotic lesions with more macrophages and fewer apoptotic cells than mice transplanted with wild-type or Jnk2(-/-) cells. Moreover, genetic ablation of JNK to a single allele (Jnk1(+/-)/Jnk2(-/-) or Jnk1(-/-)/Jnk2(+/-)) in marrow of Ldlr(-/-) recipients further increased atherosclerosis compared with Jnk1(-/-)→Ldlr(-/-) and wild-type→Ldlr(-/-) mice. In mouse macrophages, anisomycin-mediated JNK signaling antagonized Akt activity, and loss of Jnk1 gene obliterated this effect. Similarly, pharmacological inhibition of JNK1, but not JNK2, markedly reduced the antagonizing effect of JNK on Akt activity. Prolonged JNK signaling in the setting of endoplasmic reticulum stress gradually extinguished Akt and Bad activity in wild-type cells with markedly less effects in Jnk1(-/-) macrophages, which were also more resistant to apoptosis. Consequently, anisomycin increased and JNK1 inhibitors suppressed endoplasmic reticulum stress-mediated apoptosis in macrophages. We also found that genetic and pharmacological inhibition of phosphatase and tensin homolog abolished the JNK-mediated effects on Akt activity, indicating that phosphatase and tensin homolog mediates crosstalk between these pathways. CONCLUSIONS Loss of Jnk1, but not Jnk2, in macrophages protects them from apoptosis, increasing cell survival, and this accelerates early atherosclerosis.
Collapse
Affiliation(s)
- Vladimir R Babaev
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.).
| | - Michele Yeung
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - Ebru Erbay
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - Lei Ding
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - Youmin Zhang
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - James M May
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - Sergio Fazio
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - Gökhan S Hotamisligil
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.)
| | - MacRae F Linton
- From the Departments of Medicine (V.R.B., M.Y., L.D., Y.Z., J.M.M., M.F.L.) and Pharmacology (M.F.L.), Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey (E.E.); Department of Medicine, Oregon Health & Science University, Portland, OR (S.F.); and Department of Genetics & Complex Diseases & Sabri Ulker Center, Harvard School of Public Health, Boston, MA (G.S.H.).
| |
Collapse
|
10
|
Hwang HJ, Jung TW, Hong HC, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH, Yoo HJ. LECT2 induces atherosclerotic inflammatory reaction via CD209 receptor-mediated JNK phosphorylation in human endothelial cells. Metabolism 2015; 64:1175-82. [PMID: 26123523 DOI: 10.1016/j.metabol.2015.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/12/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Leukocyte cell-derived chemotaxin 2 (LECT2) is a recently discovered novel hepatokine, leading to skeletal muscle insulin resistance by activating c-Jun N-terminal kinase (JNK). However, its role in atherosclerotic inflammatory reactions has not been examined. Therefore, we investigated the function of LECT2 on the expression of vascular adhesion molecules and inflammatory cytokines in human endothelial cells. METHODS Human umbilical vein endothelial cells (HUVECs) and THP-1 cells were treated with various doses of LECT2 and the functions and signaling pathways were analyzed through Western blot and quantitative real-time PCR (qPCR). RESULTS The level of phosphorylated c-Jun N-terminal kinases (JNK) was significantly increased by LECT2 treatment in HUVECs and THP-1 cells, an effect that was not seen in cells treated with CD209 siRNA, a known LECT2 receptor. LECT2 treatment efficiently increased the expression of intercellular adhesion molecule-1 (ICAM-1) and pro-inflammatory cytokines tumor necrosis factor α (TNFα), monocyte chemo-attractant protein-1 (MCP-1), and interleukin-1β (IL-1β) in HUVECs and THP-1 cells. However, all these reactions were significantly reduced in response to treatment with JNK inhibitor. Furthermore, LECT2 treatment significantly exacerbated the adhesion of monocytic cells to human endothelial cells, which was also efficiently attenuated by JNK inhibitor. CONCLUSIONS LECT2 significantly induced adhesion molecules and pro-inflammatory cytokines in HUVECs via CD209-mediated JNK phosphorylation, suggesting that liver-derived novel hepatokine, LECT2, might directly mediate in the atherosclerotic inflammatory reactions in human endothelial cells.
Collapse
Affiliation(s)
- Hwan-Jin Hwang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Tae Woo Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Ho Cheol Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Dong Seop Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea.
| |
Collapse
|
11
|
Hwang JS, Eun SY, Ham SA, Yoo T, Lee WJ, Paek KS, Do JT, Lim DS, Seo HG. PPARδ modulates oxLDL-induced apoptosis of vascular smooth muscle cells through a TGF-β/FAK signaling axis. Int J Biochem Cell Biol 2015; 62:54-61. [PMID: 25732738 DOI: 10.1016/j.biocel.2015.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/24/2022]
Abstract
The peroxisome proliferator-activated receptor delta (PPARδ) has been implicated in the modulation of vascular homeostasis. However, its roles in the apoptotic cell death of vascular smooth muscle cells (VSMCs) are poorly understood. Here, we demonstrate that PPARδ modulates oxidized low-density lipoprotein (oxLDL)-induced apoptosis of VSMCs through the transforming growth factor-β (TGF-β) and focal adhesion kinase (FAK) signaling pathways. Activation of PPARδ by GW501516, which is a specific ligand, significantly inhibited oxLDL-induced cell death and generation of reactive oxygen species in VSMCs. These inhibitory effects were significantly reversed in the presence of small interfering (si)RNA against PPARδ, or by blockade of the TGF-β or FAK signaling pathways. Furthermore, PPARδ-mediated recovery of FAK phosphorylation suppressed by oxLDL was reversed by SB431542, a specific ALK5 receptor inhibitor, indicating that a TGF-β/FAK signaling axis is involved in the action of PPARδ. Among the protein kinases activated by oxLDL, p38 mitogen-activated protein kinase was suppressed by ligand-activated PPARδ. In addition, oxLDL-induced expression and translocation of pro-apoptotic or anti-apoptotic factors were markedly affected in the presence of GW501516. Those effects were reversed by PPARδ siRNA, or inhibitors of TGF-β or FAK, which also suggests that PPARδ exerts its anti-apoptotic effect via a TGF-β/FAK signaling axis. Taken together, these findings indicate that PPARδ plays an important role in the pathophysiology of disease associated with apoptosis of VSMC, such as atherosclerosis and restanosis.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - So Young Eun
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Sun Ah Ham
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Taesik Yoo
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Won Jin Lee
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Kyung Shin Paek
- Department of Nursing, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Dae-Seog Lim
- Department of Applied Bioscience, CHA University, 355 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 463-400, Republic of Korea
| | - Han Geuk Seo
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
12
|
Amini N, Boyle JJ, Moers B, Warboys CM, Malik TH, Zakkar M, Francis SE, Mason JC, Haskard DO, Evans PC. Requirement of JNK1 for endothelial cell injury in atherogenesis. Atherosclerosis 2014; 235:613-8. [PMID: 24956536 PMCID: PMC4104040 DOI: 10.1016/j.atherosclerosis.2014.05.950] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/11/2014] [Accepted: 05/22/2014] [Indexed: 12/24/2022]
Abstract
Objective The c-Jun N-terminal kinase (JNK) family regulates fundamental physiological processes including apoptosis and metabolism. Although JNK2 is known to promote foam cell formation during atherosclerosis, the potential role of JNK1 is uncertain. We examined the potential influence of JNK1 and its negative regulator, MAP kinase phosphatase-1 (MKP-1), on endothelial cell (EC) injury and early lesion formation using hypercholesterolemic LDLR−/− mice. Methods and results To assess the function of JNK1 in early atherogenesis, we measured EC apoptosis and lesion formation in LDLR−/− or LDLR−/−/JNK1−/− mice exposed to a high fat diet for 6 weeks. En face staining using antibodies that recognise active, cleaved caspase-3 (apoptosis) or using Sudan IV (lipid deposition) revealed that genetic deletion of JNK1 reduced EC apoptosis and lesion formation in hypercholesterolemic mice. By contrast, although EC apoptosis was enhanced in LDLR−/−/MKP-1−/− mice compared to LDLR−/− mice, lesion formation was unaltered. Conclusion We conclude that JNK1 is required for EC apoptosis and lipid deposition during early atherogenesis. Thus pharmacological inhibitors of JNK may reduce atherosclerosis by preventing EC injury as well as by influencing foam cell formation. We studied the role of JNK1 MAP kinase in atherosclerosis. JNK1 was required for endothelial cell apoptosis and lesion formation. An interaction between flow, JNK1 activity and endothelial injury was detected. Targeting of JNK1 may have clinical utility to prevent atherosclerosis.
Collapse
Affiliation(s)
- Narges Amini
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Joseph J Boyle
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Britta Moers
- Department of Cardiovascular Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, Sheffield, UK
| | - Christina M Warboys
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Talat H Malik
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Mustafa Zakkar
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Sheila E Francis
- Department of Cardiovascular Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, Sheffield, UK
| | - Justin C Mason
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Dorian O Haskard
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Paul C Evans
- Department of Cardiovascular Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, Sheffield, UK.
| |
Collapse
|
13
|
Ienaga K, Sohn M, Naiki M, Jaffa AA. Creatinine metabolite, HMH (5-hydroxy-1-methylhydantoin; NZ-419), modulates bradykinin-induced changes in vascular smooth muscle cells. J Recept Signal Transduct Res 2014; 34:195-200. [DOI: 10.3109/10799893.2013.876039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Effect of HSP65 on the expression of adhesion molecules in mice heart endothelial cells. Inflammation 2012; 35:1049-57. [PMID: 22160869 DOI: 10.1007/s10753-011-9410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study aims to research the effect of HSP65 on the expression of adhesion molecules in activated mice heart endothelial cells (MHECs), which were from myocardial tissue of newborn animals. We used different concentrations of LPS as potent inducers to stimulate MHECs, adhesion molecule expression in vitro, including intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), E-, and P-selectins, then compared the mRNA and protein levels of adhesion molecules expression with or without HSP65 treatment at different levels. The optimal concentration of LPS to induce MHECs adhesion molecule expression is 100 ng/ml; HSP65 treatment significantly reduced the mRNA and protein levels of MHECs' ICAM-1, VCAM-1, E-, and P-selectins expression (p < 0.05), and the optimal concentration of HSP65 in inhibiting MHECs activation is 0.8 ng. HSP65 has the inhibitory effect on adhesion molecules expression in activated MHECs.
Collapse
|
15
|
Meijer CA, Le Haen PAA, van Dijk RA, Hira M, Hamming JF, van Bockel JH, Lindeman JH. Activator protein-1 (AP-1) signalling in human atherosclerosis: results of a systematic evaluation and intervention study. Clin Sci (Lond) 2012; 122:421-8. [PMID: 22092038 PMCID: PMC3259695 DOI: 10.1042/cs20110234] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/07/2011] [Accepted: 11/17/2011] [Indexed: 01/08/2023]
Abstract
Animal studies implicate the AP-1 (activator protein-1) pro-inflammatory pathway as a promising target in the treatment of atherosclerotic disease. It is, however, unclear whether these observations apply to human atherosclerosis. Therefore we evaluated the profile of AP-1 activation through histological analysis and tested the potential benefit of AP-1 inhibition in a clinical trial. AP-1 activation was quantified by phospho-c-Jun nuclear translocation (immunohistochemistry) on a biobank of aortic wall samples from organ donors. The effect of AP-1 inhibition on vascular parameters was tested through a double blind placebo-controlled cross-over study of 28 days doxycycline or placebo in patients with symptomatic peripheral artery disease. Vascular function was assessed by brachial dilation as well as by plasma samples analysed for hs-CRP (high-sensitivity C-reactive protein), IL-6 (interleukin-6), IL-8, ICAM-1 (intercellular adhesion molecule-1), vWF (von Willebrand factor), MCP-1 (monocyte chemoattractant protein-1), PAI-1 (plasminogen activator inhibitor-1) and fibrinogen. Histological evaluation of human atherosclerosis showed minimal AP-1 activation in non-diseased arterial wall (i.e. vessel wall without any signs of atherosclerotic disease). A gradual increase of AP-1 activation was found in non-progressive and progressive phases of atherosclerosis respectively (P<0.044). No significant difference was found between progressive and vulnerable lesions. The expression of phospho-c-Jun diminished as the lesion stabilized (P<0.016) and does not significantly differ from the normal aortic wall (P<0.33). Evaluation of the doxycycline intervention only revealed a borderline-significant reduction of circulating hs-CRP levels (-0.51 μg/ml, P=0.05) and did not affect any of the other markers of systemic inflammation and vascular function. Our studies do not characterize AP-1 as a therapeutic target for progressive human atherosclerotic disease.
Collapse
Key Words
- activator protein 1 (ap-1)
- atherosclerosis
- clinical trial
- doxycycline
- inflammation
- aaa, abdominal aortic aneurysm
- ap-1, activator protein-1
- cvd, cardiovascular disease
- hdl, high-density lipoprotein
- hs-crp, high-sensitivity c-reactive protein
- icam-1, intercellular adhesion molecule-1
- il, interleukin
- mcp-1, monocyte chemoattractant protein-1
- ntg, nitroglycerine
- pai-1, plasminogen activator inhibitor-1
- pad, peripheral arterial disease
- smc, smooth muscle cell
- vwf, von willebrand factor
Collapse
Affiliation(s)
- C. Arnoud Meijer
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Pum A. A. Le Haen
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Rogier A. van Dijk
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Mitsuhisa Hira
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Jaap F. Hamming
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - J. Hajo van Bockel
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Jan H. Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
16
|
Sung HY, Francis SE, Arnold ND, Holland K, Ernst V, Angyal A, Kiss-Toth E. Enhanced macrophage tribbles-1 expression in murine experimental atherosclerosis. BIOLOGY 2012; 1:43-57. [PMID: 24832046 PMCID: PMC4011034 DOI: 10.3390/biology1010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/13/2012] [Accepted: 03/31/2012] [Indexed: 02/04/2023]
Abstract
Development of the atherosclerotic plaque involves a complex interplay between a number of cell types and an extensive inter-cellular communication via cell bound as well as soluble mediators. The family of tribbles proteins has recently been identified as novel controllers of pro-inflammatory signal transduction. The objective of this study was to address the expression pattern of all three tribbles proteins in atherosclerotic plaques from a mouse model of atherosclerosis. Each tribbles were expressed in vascular smooth muscle cells, endothelial cells as well as in resident macrophages of mouse atherosclerotic plaques. The role of IL-1 mediated inflammatory events in controlling tribbles expression was also addressed by inducing experimental atherosclerosis in ApoE−/−IL1R1−/− (double knockout) mice. Immunohistochemical analysis of these mice showed a selective decrease in the percentage of trb-1 expressing macrophages, compared to the ApoE−/− cohort (14.7% ± 1.55 vs. 26.3% ± 1.19). The biological significance of this finding was verified in vitro where overexpression of trb-1 in macrophages led to a significant attenuation (~70%) of IL-6 production as well as a suppressed IL-12 expression induced by a proinflammatory stimulus. In this in vitro setting, expression of truncated trb-1 mutants suggests that the kinase domain of this protein is sufficient to exert this inhibitory action.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Sheila E Francis
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Nadine D Arnold
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Karen Holland
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Vanessa Ernst
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Adrienn Angyal
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Endre Kiss-Toth
- Department of Cardiovascular Science, University of Sheffield, Sheffield, S10 2RX, UK.
| |
Collapse
|
17
|
El-Shewy HM, Sohn M, Wilson P, Lee MH, Hammad SM, Luttrell LM, Jaffa AA. Low-density lipoprotein induced expression of connective tissue growth factor via transactivation of sphingosine 1-phosphate receptors in mesangial cells. Mol Endocrinol 2012; 26:833-45. [PMID: 22422617 DOI: 10.1210/me.2011-1261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pro-fibrotic connective tissue growth factor (CTGF) has been linked to the development and progression of diabetic vascular and renal disease. We recently reported that low-density lipoproteins (LDL) induced expression of CTGF in aortic endothelial cells. However, the molecular mechanisms are not fully defined. Here, we have studied the mechanism by which LDL regulates CTGF expression in renal mesangial cells. In these cells, treatment with pertussis toxin abolished LDL-stimulated activation of ERK1/2 and c-Jun N-terminal kinase (JNK), indicating the involvement of heterotrimeric G proteins in LDL signaling. Treatment with LDL promoted activation and translocation of endogenous sphingosine kinase 1 (SK1) from the cytosol to the plasma membrane concomitant with production of sphingosine-1-phosphate (S1P). Pretreating cells with SK inhibitor, dimethylsphinogsine or down-regulation of SK1 and SK2 revealed that LDL-dependent activation of ERK1/2 and JNK is mediated by SK1. Using a green fluorescent protein-tagged S1P₁ receptor as a biological sensor for the generation of physiologically relevant S1P levels, we found that LDL induced S1P receptor activation. Pretreating cells with S1P₁/S1P₃ receptor antagonist VPC23019 significantly inhibited activation of ERK1/2 and JNK by LDL, suggesting that LDL elicits G protein-dependent activation of ERK1/2 and JNK by stimulating SK1-dependent transactivation of S1P receptors. Furthermore, S1P stimulation induced expression of CTGF in a dose-dependent manner that was markedly inhibited by blocking the ERK1/2 and JNK signaling pathways. LDL-induced CTGF expression was pertussis toxin sensitive and inhibited by dimethylsphinogsine down-regulation of SK1 and VPC23019 treatment. Our data suggest that SK1-dependent S1P receptor transactivation is upstream of ERK1/2 and JNK and that all three steps are required for LDL-regulated expression of CTGF in mesangial cells.
Collapse
Affiliation(s)
- Hesham M El-Shewy
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
McCommis KS, McGee AM, Laughlin MH, Bowles DK, Baines CP. Hypercholesterolemia increases mitochondrial oxidative stress and enhances the MPT response in the porcine myocardium: beneficial effects of chronic exercise. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1250-8. [PMID: 21865543 PMCID: PMC3213933 DOI: 10.1152/ajpregu.00841.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 08/18/2011] [Indexed: 02/06/2023]
Abstract
Hypercholesterolemia has been suggested to have direct negative effects on myocardial function due to increased reactive oxygen species (ROS) generation and increased myocyte death. Mitochondrial permeability transition (MPT) is a significant mediator of cell death, which is enhanced by ROS generation and attenuated by exercise training. The purpose of this study was to investigate the effect of hypercholesterolemia on the MPT response of cardiac mitochondria. We tested the hypothesis that familial hypercholesterolemic (FH) pigs would have an enhanced MPT response and that exercise training could reverse this phenotype. MPT was assessed by mitochondrial swelling in response to 10-100 μM Ca(2+). FH pigs did show an increased MPT response to Ca(2+) that was associated with decreases in the expression of the putative MPT pore components mitochondrial phosphate carrier (PiC) and cyclophilin-D (CypD). FH also caused increased oxidative stress, depicted by increased protein nitrotyrosylation, as well as decreased levels of reduced GSH in cardiac mitochondria. Expression of the mitochondrial antioxidant enzymes manganese superoxide dismutase (MnSOD), thioredoxin-2 (Trx2), and peroxiredoxin-3 (Prx3) was greatly reduced in the FH pigs. In contrast, cytosolic catalase expression and activity were increased. However, chronic exercise training was able to normalize the MPT response in FH pigs, reduce mitochondrial oxidative stress, and return MnSOD, Trx2, Prx3, and catalase expression/activities to normal. We conclude that FH reduces mitochondrial antioxidants, increases mitochondrial oxidative stress, and enhances the MPT response in the porcine myocardium, and that exercise training can reverse these detrimental alterations.
Collapse
Affiliation(s)
- Kyle S McCommis
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
19
|
Takabe W, Jen N, Ai L, Hamilton R, Wang S, Holmes K, Dharbandi F, Khalsa B, Bressler S, Barr ML, Li R, Hsiai TK. Oscillatory shear stress induces mitochondrial superoxide production: implication of NADPH oxidase and c-Jun NH2-terminal kinase signaling. Antioxid Redox Signal 2011; 15:1379-88. [PMID: 20919940 PMCID: PMC3144427 DOI: 10.1089/ars.2010.3645] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fluid shear stress is intimately linked with vascular oxidative stress and atherosclerosis. We posited that atherogenic oscillatory shear stress (OSS) induced mitochondrial superoxide (mtO2•-) production via NADPH oxidase and c-Jun NH(2)-terminal kinase (JNK-1 and JNK-2) signaling. In bovine aortic endothelial cells, OSS (±3 dyn/cm2) induced JNK activation, which peaked at 1 h, accompanied by an increase in fluorescein isothiocyanate-conjugated JNK fluorescent and MitoSOX Red (specific for mtO2•- production) intensities. Pretreatment with apocynin (NADPH oxidase inhibitor) or N-acetyl cysteine (antioxidant) significantly attenuated OSS-induced JNK activation. Apocynin further reduced OSS-mediated dihydroethidium and MitoSOX Red intensities specific for cytosolic O2•- and mtO2•- production, respectively. As a corollary, transfecting bovine aortic endothelial cells with JNK siRNA (siJNK) and pretreating with SP600125 (JNK inhibitor) significantly attenuated OSS-mediated mtO2•- production. Immunohistochemistry on explants of human coronary arteries further revealed prominent phosphorylated JNK staining in OSS-exposed regions. These findings indicate that OSS induces mtO2•- production via NADPH oxidase and JNK activation relevant for vascular oxidative stress.
Collapse
Affiliation(s)
- Wakako Takabe
- Department of Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cuhlmann S, Van der Heiden K, Saliba D, Tremoleda JL, Khalil M, Zakkar M, Chaudhury H, Luong LA, Mason JC, Udalova I, Gsell W, Jones H, Haskard DO, Krams R, Evans PC. Disturbed blood flow induces RelA expression via c-Jun N-terminal kinase 1: a novel mode of NF-κB regulation that promotes arterial inflammation. Circ Res 2011; 108:950-9. [PMID: 21350211 DOI: 10.1161/circresaha.110.233841] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE The nuclear factor (NF)-κB pathway is involved in arterial inflammation. Although the signaling pathways that regulate transcriptional activation of NF-κB are defined, the mechanisms that regulate the expression levels of NF-κB transcription factors are uncertain. OBJECTIVE We studied the signaling mechanisms that regulate RelA NF-κB subunit expression in endothelial cells (ECs) and their role in arterial inflammation. METHODS AND RESULTS Gene silencing and chromatin immunoprecipitation revealed that RelA expression was positively regulated by c-Jun N-terminal kinase (JNK) and the downstream transcription factor ATF2 in ECs. We concluded that this pathway promotes focal arterial inflammation as genetic deletion of JNK1 reduced NF-κB expression and macrophage accumulation at an atherosusceptible site. We hypothesized that JNK signaling to NF-κB may be controlled by mechanical forces because atherosusceptibility is associated with exposure to disturbed blood flow. This was assessed by positron emission tomography imaging of carotid arteries modified with a constrictive cuff, a method that was developed to study the effects of disturbed flow on vascular physiology in vivo. This approach coupled to en face staining revealed that disturbed flow elevates NF-κB expression and inflammation in murine carotid arteries via JNK1. CONCLUSIONS We demonstrate that disturbed blood flow promotes arterial inflammation by inducing NF-κB expression in endothelial cells via JNK-ATF2 signaling. Thus, our findings illuminate a novel form of JNK-NF-κB crosstalk that may determine the focal nature of arterial inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Simon Cuhlmann
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Perales S, Alejandre MJ, Morales RP, Torres C, Linares A. Fish oil supplementation reverses the effect of cholesterol on apoptotic gene expression in smooth muscle cells. Lipids Health Dis 2010; 9:70. [PMID: 20630092 PMCID: PMC2914009 DOI: 10.1186/1476-511x-9-70] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/14/2010] [Indexed: 01/17/2023] Open
Abstract
Background Nutritional control of gene regulation guides the transformation of smooth muscle cells (SMC) into foam cells in atherosclerosis. Oxidative stress has been reported in areas of lipid accumulation, activating proliferation genes. Suppression of oxidative stress by antioxidant administration reduces this activation and the progression of lesions. We hypothesized that fish oil consumption may protect against atherosclerotic vascular disease. The study objective was to determine the effects of dietary cholesterol and fish-oil intake on the apoptotic pathways induced by 25-hydroxycholesterol (25-HC) in SMC cultures. Methods An in vivo/in vitro cell model was used, culturing SMC isolated from chicks exposed to an atherogenic cholesterol-rich diet with 5% of cholesterol (SMC-Ch) alone or followed by an anti-atherogenic fish oil-rich diet with 10% of menhaden oil (SMC-Ch-FO) and from chicks on standard diet (SMC-C). Cells were exposed to 25-HC, studying apoptosis levels by flow cytometry (Annexin V) and expressions of caspase-3, c-myc, and p53 genes by quantitative real-time reverse transcriptase-polymerase chain reaction. Results: Exposure to 25-HC produced apoptosis in all three SMC cultures, which was mediated by increases in caspase-3, c-myc, and p53 gene expression. Changes were more marked in SMC-Ch than in SMC-C, indicating that dietary cholesterol makes SMC more susceptible to 25-HC-mediated apoptosis. Expression of p53 gene was elevated in SMC-Ch-FO. This supports the proposition that endogenous levels of p53 protect SMC against apoptosis and possibly against the development of atherosclerosis. Fish oil attenuated the increase in c-myc levels observed in SMC-C and SMC-Ch, possibly through its influence on the expression of antioxidant genes. Conclusion Replacement of a cholesterol-rich diet with a fish oil-rich diet produces some reversal of the cholesterol-induced changes, increasing the resistance of SMC to apoptosis.
Collapse
Affiliation(s)
- Sonia Perales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, Campus Universitario de Fuentenueva Avenida Severo Ochoa s/n 18071 University of Granada, Spain
| | | | | | | | | |
Collapse
|
22
|
Abstract
Endothelial dysfunction/death is an initial event for the development of atherosclerosis occurring in the areas of arteries where blood flow is disturbed. Recent data indicated that rapid turnover of endothelial cells in atherosclerosis-prone areas is followed by endothelial repair. The mechanisms of endothelial death/proliferation in these areas related to altered blood flow involve different signal pathways, for example, endoplasmic reticulum stress-X-box binding protein 1-caspase for apoptosis and vascular endothelial growth factor receptor-histone deacetylase 3-Akt for the survival. The present review aims to update the progress in endothelial turnover in response to disturbed flow and to discuss the underlining mechanisms in the development of atherosclerosis.
Collapse
Affiliation(s)
- Qingbo Xu
- Cardiovascular Division, King's College London BHF Center, London, United Kingdom.
| |
Collapse
|
23
|
p53 expression in human carotid atheroma is significantly related to plaque instability and clinical manifestations. Atherosclerosis 2010; 210:392-9. [DOI: 10.1016/j.atherosclerosis.2009.11.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/09/2009] [Accepted: 11/27/2009] [Indexed: 02/07/2023]
|
24
|
Krischek B, Tajima A, Akagawa H, Narita A, Ruigrok Y, Rinkel G, Wijmenga C, Feigl GC, Kim CJ, Hori T, Tatagiba M, Kasuya H, Inoue I. Association of the Jun dimerization protein 2 gene with intracranial aneurysms in Japanese and Korean cohorts as compared to a Dutch cohort. Neuroscience 2010; 169:339-43. [PMID: 20452405 DOI: 10.1016/j.neuroscience.2010.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/08/2010] [Accepted: 05/01/2010] [Indexed: 01/15/2023]
Abstract
In a previous study a linkage region for association to IA patients was found on chromosome 14q22. In this study, we report the findings of a positional candidate gene, Jun dimerization Protein 2 (JDP2), and single nucleotide polymorphisms (SNP) of that gene that are associated with intracranial aneurysms in different ethnic populations. We screened the linkage region around chromosome 14q22 and narrowed it down to JDP2. We then genotyped case and control groups of three different ethnic populations: 403 Japanese intracranial aneurysm (IA) cases and 412 controls, 181 Korean IA cases and 181 controls, 379 Dutch cases and 642 Dutch controls. Genotyping was performed using polymerase chain reaction and direct sequencing technology. The allele distribution of three SNPs (two intronic: rs741846; P=0.0041 and rs175646; P=0.0014, and one in the untranslated region: rs8215; P=0.019) and their genotype distribution showed significant association in the Japanese IA patients. The allelic and genotypic frequency of one intronic SNP (rs175646; P=0.0135 and P=0.0137, respectively) and the genotypic frequency for the SNP in the UTR region (rs8215; P=0.049) was also significantly different between cases and controls of the Korean cohort. There was no difference in allelic or genotypic frequencies in the Dutch population. These SNPs in JDP2 are associated with intracranial aneurysms, suggesting that variation in or near JDP2 play a role in susceptibility to IAs in East Asian populations.
Collapse
Affiliation(s)
- B Krischek
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Takabe W, Li R, Ai L, Yu F, Berliner JA, Hsiai TK. Oxidized low-density lipoprotein-activated c-Jun NH2-terminal kinase regulates manganese superoxide dismutase ubiquitination: implication for mitochondrial redox status and apoptosis. Arterioscler Thromb Vasc Biol 2010; 30:436-41. [PMID: 20139358 DOI: 10.1161/atvbaha.109.202135] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Oxidized low-density lipoprotein (oxLDL) modulates intracellular redox status and induces apoptosis in endothelial cells. However, the signal pathways and molecular mechanism remain unknown. In this study, we investigated the role of manganese superoxide dismutase (Mn-SOD) on oxLDL-induced apoptosis via c-Jun NH2-terminal kinase (JNK)-mediated ubiquitin/proteasome pathway. METHODS AND RESULTS OxLDL induced JNK phosphorylation that peaked at 30 minutes in human aortic endothelial cells. Fluorescence-activated cell sorting analysis revealed that oxLDL increased mitochondrial superoxide production by 1.88+/-0.19-fold and mitochondrial membrane potential by 18%. JNK small interference RNA (siJNK) reduced oxLDL-induced mitochondrial superoxide production by 88.4% and mitochondrial membrane potential by 61.7%. OxLDL did not affect Mn-SOD mRNA expression, but it significantly reduced Mn-SOD protein level, which was restored by siJNK. Immunoprecipitation by ubiquitin antibody revealed that oxLDL increased ubiquitination of Mn-SOD, which was inhibited by siJNK. OxLDL-induced caspase-3 activities were also attenuated by siJNK but were enhanced by Mn-SOD small interfering RNA. Furthermore, overexpression of Mn-SOD abrogated oxLDL-induced caspase-3 activities. CONCLUSIONS OxLDL-induced JNK activation regulates mitochondrial redox status and Mn-SOD protein degradation via JNK-dependent ubiquitination, leading to endothelial cell apoptosis.
Collapse
Affiliation(s)
- Wakako Takabe
- Department of Biomedical Engineering and Division of Cardiovascular Medicine, School of Medicine and School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
26
|
Harangi M, Szodoray P, Paragh G. Atherosclerosis: a complex interplay of inflammatory processes. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Li R, Ning Z, Cui J, Khalsa B, Ai L, Takabe W, Beebe T, Majumdar R, Sioutas C, Hsiai T. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation. Free Radic Biol Med 2009; 46:775-82. [PMID: 19154785 PMCID: PMC3205928 DOI: 10.1016/j.freeradbiomed.2008.11.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 11/17/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.
Collapse
Affiliation(s)
- Rongsong Li
- Department of Biomedical Engineering and Division of Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Allen LB, Capps BE, Miller EC, Clemmons DR, Maile LA. Glucose-oxidized low-density lipoproteins enhance insulin-like growth factor I-stimulated smooth muscle cell proliferation by inhibiting integrin-associated protein cleavage. Endocrinology 2009; 150:1321-9. [PMID: 18974270 PMCID: PMC5393262 DOI: 10.1210/en.2008-1090] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prior published reports have demonstrated that glucose-oxidized low-density lipoproteins (g-OxLDL) enhance the proliferative response of vascular smooth muscle cells (SMC) to IGF-I. Our previous studies have determined that the regulation of cleavage of integrin-associated protein (IAP) by matrix-metalloprotease-2 (MMP-2) in diabetic mice in response to hyperglycemia is a key regulator of the response of SMC to IGF-I. Because chronic hyperglycemia enhances glucose-induced LDL oxidation, these studies were conducted to determine whether g-OxLDL modulates the response of SMC to IGF-I by regulating MMP-2-mediated cleavage of IAP. We determined that exposure of SMC to g-OxLDL, but not native LDL, was sufficient to facilitate an increase in cell proliferation in response to IGF-I. Exposure to an anti-CD36 antibody, which has been shown to inhibit g-OxLDL-mediated signaling, inhibited the effects of g-OxLDL on IGF-I-stimulated SMC proliferation. The effect of g-OxLDL could be attributed, in part, to an associated decrease in proteolytic cleavage of IAP leading to increase in the basal association between IAP and Src homology 2 domain-containing protein tyrosine phosphatase substrate-1, which is required for IGF-I-stimulated proliferation. The inhibitory effect of g-OxLDL on IAP cleavage appeared to be due to its ability to decrease the amount of activated MMP-2, the protease responsible for IAP cleavage. In conclusion, these data provide a molecular mechanism to explain previous studies that have reported an enhancing effect of g-OxLDL on IGF-I-stimulated SMC proliferation.
Collapse
Affiliation(s)
- Lee B Allen
- Department of Medicine, Division of Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7170, USA
| | | | | | | | | |
Collapse
|
29
|
Mazière C, Mazière JC. Activation of transcription factors and gene expression by oxidized low-density lipoprotein. Free Radic Biol Med 2009; 46:127-37. [PMID: 18996472 DOI: 10.1016/j.freeradbiomed.2008.10.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/26/2008] [Accepted: 10/01/2008] [Indexed: 11/25/2022]
Abstract
It is well recognized that oxidized LDL (OxLDL) plays a crucial role in the initiation and progression of atherosclerosis. Many biological effects of OxLDL are mediated through signaling pathways, especially via the activation of transcription factors, which in turn stimulate the expression of genes involved in the inflammatory and oxidative stress response or in cell cycle regulation. In this review, we will discuss the various transcription factors activated by OxLDL, the studied cell types, the active compounds of the OxLDL particle, and the downstream genes when identified. Identification of the transcription factors and some of the downstream genes regulated by OxLDL has helped us understand the molecular mechanism involved in generation of the atherosclerotic plaque.
Collapse
Affiliation(s)
- Cécile Mazière
- Biochemistry Laboratory, North Hospital, University of Picardie-Jules Verne, and INSERM, ERI 12, Amiens F-80000, France.
| | | |
Collapse
|
30
|
Differential effects of cholesterol and phytosterols on cell proliferation, apoptosis and expression of a prostate specific gene in prostate cancer cell lines. ACTA ACUST UNITED AC 2009; 32:319-28. [DOI: 10.1016/j.cdp.2008.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 11/12/2008] [Accepted: 12/20/2008] [Indexed: 01/06/2023]
|
31
|
Harja E, Chang JS, Lu Y, Leitges M, Zou YS, Schmidt AM, Yan SF. Mice deficient in PKCbeta and apolipoprotein E display decreased atherosclerosis. FASEB J 2008; 23:1081-91. [PMID: 19036858 DOI: 10.1096/fj.08-120345] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial activation is a central initiating event in atheroma formation. Evidence from our laboratory and others has demonstrated links between activation of early growth response-1 (Egr-1) and atherosclerosis and also has demonstrated that activated protein kinase C (PKC) betaII is a critical upstream regulator of Egr-1 in response to vascular stress. We tested the role of PKCbeta in regulating key events linked to atherosclerosis and show that the aortas of apoE(-/-) mice display an age-dependent increase in PKCbetaII antigen in membranous fractions vs. C57BL/6 animals with a approximately 2-fold increase at age 6 wk and a approximately 4.5-fold increase at age 24 wk. Consistent with important roles for PKCbeta in atherosclerosis, a significant decrease in atherosclerotic lesion area was evident in PKCbeta(-/-)/apoE(-/-) vs. apoE(-/-) mice by approximately 5-fold, in parallel with significantly reduced vascular transcripts for Egr-1 and matrix metalloproteinase (MMP)-2 antigen and activity vs. apoE(-/-) mice. Significant reduction in atherosclerosis of approximately 2-fold was observed in apoE(-/-) mice fed ruboxistaurin chow (PKCbeta inhibitor) vs. vehicle. In primary murine and human aortic endothelial cells, the PKCbeta-JNK mitogen-activated protein kinase pathway importantly contributes to oxLDL-mediated induction of MMP2 expression. Blockade of PKCbeta may be beneficial in mitigating endothelial perturbation and atherosclerosis.
Collapse
Affiliation(s)
- Evis Harja
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
c-Jun N-Terminal Kinase 2
Deficiency Protects Against Hypercholesterolemia-Induced Endothelial Dysfunction and Oxidative Stress. Circulation 2008; 118:2073-80. [DOI: 10.1161/circulationaha.108.765032] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background—
Hypercholesterolemia-induced endothelial dysfunction due to excessive production of reactive oxygen species is a major trigger of atherogenesis. The c-Jun-N-terminal kinases (JNKs) are activated by oxidative stress and play a key role in atherogenesis and inflammation. We investigated whether
JNK2
deletion protects from hypercholesterolemia-induced endothelial dysfunction and oxidative stress.
Methods and Results—
Male
JNK2
knockout (
JNK2
−/−
) and wild-type (WT) mice (8 weeks old) were fed either a high-cholesterol diet (HCD; 1.25% total cholesterol) or a normal diet for 14 weeks. Aortic lysates of WT mice fed a HCD showed an increase in JNK phosphorylation compared with WT mice fed a normal diet (
P
<0.05). Endothelium-dependent relaxations to acetylcholine were impaired in WT HCD mice (
P
<0.05 versus WT normal diet). In contrast,
JNK2
−/−
HCD mice did not exhibit endothelial dysfunction (96±5% maximal relaxation in response to acetylcholine;
P
<0.05 versus WT HCD). Endothelium-independent relaxations were identical in all groups. A hypercholesterolemia-induced decrease in nitric oxide (NO) release of endothelial cells was found in WT but not in
JNK2
−/−
mice. In parallel, endothelial NO synthase expression was upregulated only in
JNK2
−/−
HCD animals, whereas the expression of antioxidant defense systems such as extracellular superoxide dismutase and manganese superoxide dismutase was decreased in WT but not in
JNK2
−/−
HCD mice. In contrast to
JNK2
−/−
mice, WT HCD displayed an increase in O
2
−
and ONOO
−
concentrations as well as nitrotyrosine staining and peroxidation.
Conclusions—
JNK2
plays a critical role as a mediator of hypercholesterolemia-induced endothelial dysfunction and oxidative stress. Thus,
JNK2
may provide a novel target for prevention of vascular disease and atherosclerosis.
Collapse
|
33
|
Abstract
Insulin resistance characterizes type 2 diabetes and the metabolic syndrome, disorders associated with an increased risk of death due to macrovascular disease. In the past few decades, research from both the basic science and clinical arenas has enabled evidence-based use of therapeutic modalities such as statins and angiotensin-converting enzyme inhibitors to reduce cardiovascular (CV) mortality in insulin-resistant patients. Recently, promising drugs such as the thiazolidinediones have come under scrutiny for possible deleterious CV effects. Ongoing research has broadened our understanding of the pathophysiology of atherosclerosis, implicating detrimental effects of inflammation and the cellular stress response on the vasculature. In this review, we address current thinking that is shaping our molecular understanding of insulin resistance and atherosclerosis.
Collapse
Affiliation(s)
- Babak Razani
- Fellow in Cardiovascular Medicine, Cardiovascular Division, Department of Medicine, Washington University School of Medicine
| | - Manu V. Chakravarthy
- Instructor in Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine
| | - Clay F. Semenkovich
- Herbert S. Gasser Professor and Chief, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine
| |
Collapse
|
34
|
Nelson L, Anderson S, Archibald AL, Rhind S, Lu ZH, Condie A, McIntyre N, Thompson J, Nenutil R, Vojtesek B, Whitelaw CBA, Little TJ, Hupp T. An animal model to evaluate the function and regulation of the adaptively evolving stress protein SEP53 in oesophageal bile damage responses. Cell Stress Chaperones 2008; 13:375-85. [PMID: 18465210 PMCID: PMC2673944 DOI: 10.1007/s12192-008-0037-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/04/2008] [Accepted: 03/12/2008] [Indexed: 01/19/2023] Open
Abstract
Squamous epithelium in mammals has evolved an atypical stress response involving down-regulation of the classic HSP70 protein and induction of sets of proteins including one named SEP53. This atypical stress response might be due to the unusual environmental pressures placed on squamous tissue. In fact, SEP53 plays a role as an anti-apoptotic factor in response to DNA damage induced by deoxycholic acid stresses implicated in oesophageal reflux disease. SEP53 also has a genetic signature characteristic of an adaptively and rapidly evolving gene, and this observation has been used to imply a role for SEP53 in immunity. Physiological models of squamous tissue are required to further define the regulation and function of SEP53. We examined whether porcine squamous epithelium would be a good model to study SEP53, since this animal suffers from a bile-reflux disease in squamous oesophageal tissue. We have (1) cloned and sequenced the porcine SEP53 locus from porcine bacterial artificial chromosome genomic DNA, (2) confirmed the strikingly divergent nature of the C-terminal portion of the SEP53 gene amongst mammals, (3) discovered that a function of the conserved N-terminal domain of the gene is to maintain cytoplasmic localisation, and (4) examined SEP53 expression in normal and diseased porcine pars oesophagea. SEP53 expression in porcine tissue was relatively confined to gastric squamous epithelium, consistent with its expression in normal human squamous epithelium. Immunohistochemical staining for SEP53 protein in normal and damaged pars oesophagea demonstrated significant stabilisation of SEP53 protein in the injured tissue. These results suggest that porcine squamous epithelium would be a robust physiological model to examine the evolution and function of the SEP53 stress pathway in modulating stress-induced responses in squamous tissue.
Collapse
Affiliation(s)
- Lenny Nelson
- CRUK p53 Signal Transduction Group, University of Edinburgh, South Crewe Road, Edinburgh, EH4 2XR UK
| | - Susan Anderson
- Division of Genomics and Genetics, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9PS UK
| | - Alan L. Archibald
- Division of Genomics and Genetics, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9PS UK
| | - Susan Rhind
- Division of Animal Health and Welfare, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG UK
| | - Zen H. Lu
- Division of Genomics and Genetics, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9PS UK
| | - Alison Condie
- Wellcome Trust Clinical Research Facility, South Crewe Road, Edinburgh, EH4 2XU UK
| | - Neal McIntyre
- Division of Animal Health and Welfare, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG UK
| | - Jill Thompson
- SAC Veterinary Services (Edinburgh), Bush Estate, Penicuik, Midlothian, EH26 0QE UK
| | | | | | - C. Bruce A. Whitelaw
- Division of Genomics and Genetics, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, EH25 9PS UK
| | - Tom J. Little
- Institute of Evolutionary Biology, University of Edinburgh, School of Biology, Kings Buildings, EH9 3JT Edinburgh, UK
| | - Ted Hupp
- CRUK p53 Signal Transduction Group, University of Edinburgh, South Crewe Road, Edinburgh, EH4 2XR UK
| |
Collapse
|
35
|
Au-Yeung KK, O K, Choy PC, Zhu DY, Siow YL. Magnesium tanshinoate B protects endothelial cells against oxidized lipoprotein-induced apoptosisThis article is one of a selection of papers published in this special issue (part 2 of 2) on the Safety and Efficacy of Natural Health Products. Can J Physiol Pharmacol 2007; 85:1053-62. [DOI: 10.1139/y07-096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The activation of c-Jun N-terminal kinase (JNK) signaling pathway plays an important role in the induction of cell apoptosis. We previously reported that magnesium tanshinoate B (MTB), a compound purified from a Chinese herb danshen ( Salvia miltiorrhiza ), could inhibit ischemia/reperfusion-induced myocyte apoptosis in the heart. The objective of the present study was to investigate whether MTB can prevent oxidized lipoprotein-induced apoptosis in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were incubated with copper-oxidized very low density lipoprotein (Cu-OxVLDL) or copper-oxidized low density lipoprotein (Cu-OxLDL). Treatment of cells with Cu-OxVLDL or Cu-OxLDL resulted in a 3-fold increase in the JNK activity. The amount of cytochrome c released and the activity of caspase-3 in cells treated with Cu-OxVLDL or Cu-OxLDL were significantly elevated, indicating the occurrence of apoptosis. The presence of MTB was able to abolish the JNK activation, cytochrome c release, and caspase-3 activation induced by Cu-OxVLDL or Cu-OxLDL, resulting in a marked reduction in apoptosis in endothelial cells. The data from this study indicate that oxidized lipoproteins induce apoptosis in endothelial cells. We postulate that the inhibition of the JNK signaling pathway by MTB is a key mechanism that protects these cells from oxidized lipoprotein-induced apoptosis.
Collapse
Affiliation(s)
- Kathy K.W. Au-Yeung
- Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine and Departments of Physiology and Animal Science, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry & Medical Genetics, and Centre for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- State Key Laboratory for Drug Research, Shanghai Institute of Material Medica, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Canadian Centre for Agri-Food Research in Health and Medicine, Departments of Physiology and Biochemistry & Medical Genetics, Faculty of Medicine and Centre for Research and Treatment of Atherosclerosis, University of Manitoba, R2010, Innovative Therapy Research Laboratory, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Karmin O
- Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine and Departments of Physiology and Animal Science, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry & Medical Genetics, and Centre for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- State Key Laboratory for Drug Research, Shanghai Institute of Material Medica, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Canadian Centre for Agri-Food Research in Health and Medicine, Departments of Physiology and Biochemistry & Medical Genetics, Faculty of Medicine and Centre for Research and Treatment of Atherosclerosis, University of Manitoba, R2010, Innovative Therapy Research Laboratory, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Patrick C. Choy
- Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine and Departments of Physiology and Animal Science, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry & Medical Genetics, and Centre for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- State Key Laboratory for Drug Research, Shanghai Institute of Material Medica, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Canadian Centre for Agri-Food Research in Health and Medicine, Departments of Physiology and Biochemistry & Medical Genetics, Faculty of Medicine and Centre for Research and Treatment of Atherosclerosis, University of Manitoba, R2010, Innovative Therapy Research Laboratory, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Da-yuan Zhu
- Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine and Departments of Physiology and Animal Science, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry & Medical Genetics, and Centre for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- State Key Laboratory for Drug Research, Shanghai Institute of Material Medica, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Canadian Centre for Agri-Food Research in Health and Medicine, Departments of Physiology and Biochemistry & Medical Genetics, Faculty of Medicine and Centre for Research and Treatment of Atherosclerosis, University of Manitoba, R2010, Innovative Therapy Research Laboratory, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Yaw L. Siow
- Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine and Departments of Physiology and Animal Science, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry & Medical Genetics, and Centre for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- State Key Laboratory for Drug Research, Shanghai Institute of Material Medica, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Canadian Centre for Agri-Food Research in Health and Medicine, Departments of Physiology and Biochemistry & Medical Genetics, Faculty of Medicine and Centre for Research and Treatment of Atherosclerosis, University of Manitoba, R2010, Innovative Therapy Research Laboratory, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
36
|
Hui DY. A No-No for NonO and JNK in Extracellular Matrix Homeostasis and Vascular Stability. Arterioscler Thromb Vasc Biol 2007; 27:1677-8. [PMID: 17634520 DOI: 10.1161/atvbaha.107.146894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Drosatos K, Sanoudou D, Kypreos KE, Kardassis D, Zannis VI. A dominant negative form of the transcription factor c-Jun affects genes that have opposing effects on lipid homeostasis in mice. J Biol Chem 2007; 282:19556-64. [PMID: 17456467 PMCID: PMC2745720 DOI: 10.1074/jbc.m700986200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Jun is a transcription factor activated by phosphorylation by the stress-activated protein kinase/c-Jun N-terminal kinase pathway in response to extracellular signals and cytokines. We show that adenovirus-mediated gene transfer of the dominant negative form of c-Jun (dn-c-Jun) in C57BL/6 mice increased greatly apoE hepatic mRNA and plasma levels, increased plasma cholesterol, triglyceride, and very low density lipoprotein levels, and resulted in the accumulation of discoidal high density lipoprotein particles. A similar but more severe phenotype was generated by overexpression of the mouse apoE in C57BL/6 mice, suggesting that dyslipidemia induced by dn-c-Jun was the result of apoE overexpression. Unexpectedly, infection of apoE(-/-) mice with adenovirus expressing dn-c-Jun reduced plasma cholesterol by 70%, suggesting that dn-c-Jun affected other genes that control plasma cholesterol levels. To identify these genes, we performed whole genome expression analysis (34,000 genes) of isolated livers from two groups of five apoE(-/-) mice, infected with adenoviruses expressing either the dn-c-Jun or the green fluorescence protein. Bioinformatic analysis and Northern blotting validation revealed that dn-c-Jun increased 40-fold the apoE mRNA and reduced by 70% the Scd-1 (stearoyl-CoA-desaturase 1) mRNA. The involvement of Scd-1 in lowering plasma cholesterol was confirmed by restoration of high cholesterol levels of apoE(-/-) mice following coinfection with adenoviruses expressing dn-c-Jun and Scd-1. In conclusion, dn-c-Jun appears to trigger two opposing events in mice that affect plasma cholesterol and triglyceride levels as follows: one results in apoE overexpression and triggers dyslipidemia and the other results in inhibition of Scd-1 and offsets dyslipidemia.
Collapse
Affiliation(s)
- Konstantinos Drosatos
- Department of Basic Sciences, University of Crete Medical School, Heraklion GR-71110, Greece
- Molecular Genetics, Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Despina Sanoudou
- Molecular Biology Division, Center for Basic Research, Foundation for Biomedical Research of the Academy of Athens, Athens 11527, Greece
| | - Kyriakos E. Kypreos
- Molecular Genetics, Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Dimitris Kardassis
- Department of Basic Sciences, University of Crete Medical School, Heraklion GR-71110, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion GR-71110, Greece
| | - Vassilis I. Zannis
- Department of Basic Sciences, University of Crete Medical School, Heraklion GR-71110, Greece
- Molecular Genetics, Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
- To whom correspondence should be addressed: 700 Albany St., W509, Boston, MA 02118-2934. Tel.: 617-638-5085; Fax: 617-638-5141;
| |
Collapse
|
38
|
Su B, Yang YB, Tuo QH, Zhu BY, Lei XY, Yin W, Liao DF. Anti-apoptotic effects of probucol are associated with downregulation of Daxx expression in THP-1 macrophage. Cardiovasc Drugs Ther 2007; 21:37-45. [PMID: 17370120 DOI: 10.1007/s10557-007-6002-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Accepted: 12/15/2006] [Indexed: 01/21/2023]
Abstract
AIM To study the relationship between Daxx expression and the antiapoptotic effects of probucol in THP-1 macrophage. MATERIALS AND METHODS Apoptosis of THP-1 derived macrophages was induced by exposure to oxidized low density lipoprotein (oxLDL). The development of apoptosis was determined by flow cytometry analysis and nucleic acid-binding dye acridin orange. Reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting and indirect immunofluorescence were used to evaluate the expression of Daxx and caspase-3 at both mRNA and protein level. RESULTS As expected, THP-1 macrophages exposed to 100 mg/l oxLDL for 48 h exhibited typical morphologic changes of apoptosis, including condensed chromatin and shrunken nucleus. oxLDL treatment markedly increased Daxx expression in a time- and dose-dependent manner, and facilitated Daxx translocation from cytoplasm to nucleus. The percentage of cells with Daxx in nuclei was significantly increased from 8 to 59%. Treatment with probucol (50 micromol/l) for 4 h prior to exposure to oxLDL significantly inhibited Daxx expression and THP-1 macrophage apoptosis by 61.3%. Furthermore, oxLDL enhanced caspase-3 expression with increased mRNA and protein levels, but without obvious change in translocation of caspase-3 (the cells with nuclear Daxx: 14 vs 8%). In contrast, probucol attenuated oxLDL-stimulated caspase-3 expression in THP-1 macrophages. CONCLUSION OxLDL-induced apoptosis of THP-1 macrophage is associated with Daxx up-regulation; while inhibition of apoptosis by probucol is related to decreased Daxx expression and nuclear translocation.
Collapse
Affiliation(s)
- Bo Su
- Division of Pharmacoproteomics, Institute of Pharmacy & Pharmacology, Nanhua University, Changsheng Western Road 28#, Hengyang, 421001, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab 2006; 4:211-21. [PMID: 16950138 PMCID: PMC1855263 DOI: 10.1016/j.cmet.2006.06.007] [Citation(s) in RCA: 409] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 04/10/2006] [Accepted: 06/22/2006] [Indexed: 01/29/2023]
Abstract
Accumulation of macrophage foam cells in atherosclerotic blood vessel intima is a critical component of atherogenesis mediated by scavenger receptor-dependent internalization of oxidized LDL. We demonstrated by coimmunoprecipitation and pull-down assays that the macrophage scavenger receptor CD36 associates with a signaling complex containing Lyn and MEKK2. The MAP kinases JNK1 and JNK2 were specifically phosphorylated in macrophages exposed to oxLDL. Using cells isolated from SRA, TLR2, or CD36 null mice, and phospholipid ligands specific for either SRA or CD36, we showed that JNK activation was mediated by CD36. Both foam cell formation and activation of JNK2 in hyperlipidemic mice were diminished in the absence of CD36. Furthermore, inhibition of Src or JNK blocked oxLDL uptake and inhibited foam cell formation in vitro and in vivo. These findings show that a specific CD36-dependent signaling pathway initiated by oxLDL is necessary for foam cell formation and identify potential targets for antiatherosclerosis therapy.
Collapse
Affiliation(s)
- S Ohidar Rahaman
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
40
|
Slevin M, Elasbali AB, Miguel Turu M, Krupinski J, Badimon L, Gaffney J. Identification of differential protein expression associated with development of unstable human carotid plaques. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1004-21. [PMID: 16507914 PMCID: PMC1606543 DOI: 10.2353/ajpath.2006.050471] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rupture-prone unstable arterial plaques develop concomitantly with the appearance of intraplaque hemorrhage and tissue ulceration, in association with deregulation of smooth muscle cell mitogenesis and leakage of newly formed blood vessels. Using microarray technology, we have identified novel protein deregulation associated with unstable carotid plaque regions. Overexpression of proapoptotic proteins caspase-9 and TRAF4 was seen in endothelial cells and smooth muscle cells from unstable hemorrhagic and ulcerated plaque regions. Topoisomerase-II-alpha (TOPO-II-alpha), which is associated with DNA repair mechanisms, was also overexpressed by these cells. Cell signaling molecules c-src, G-protein-coupled receptor kinase-interacting protein (GIT1), and c-jun N-terminal kinase (JNK) were up-regulated in endothelial cells from the same areas, whereas an increase in expression of junctional adhesion molecule-1 (JAM-1) in blood vessels and infiltrating macrophages from inflammatory regions might form part of a leukocyte rolling response, increasing the plaque volume. Grb2-like adaptor protein (Gads), responsible for differentiation of monocytes into macrophages, was expressed by macrophages from unstable plaques, suggesting a potential mechanism through which increased scavenging could occur in rupture-prone areas. We conclude that modulation of novel cell signaling intermediates, such as those described here, could be useful in the therapy of angiogenesis and apoptosis, designed to reduce unstable plaque formation.
Collapse
Affiliation(s)
- Mark Slevin
- Department of Biological Sciences, Manchester Metropolitan University, Manchester, United Kingdom.
| | | | | | | | | | | |
Collapse
|
41
|
Dobreva I, Waeber G, Widmann C. Lipoproteins and mitogen-activated protein kinase signaling: a role in atherogenesis? Curr Opin Lipidol 2006; 17:110-21. [PMID: 16531746 DOI: 10.1097/01.mol.0000217891.92993.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Lipoproteins play a critical role in the development of atherosclerosis, which might result partly from their capacity to induce specific intracellular signaling pathways. The goal of this review is to summarize the signaling properties of lipoproteins, in particular, their capacity to induce activation of mitogen-activated protein kinase pathways and the resulting modulation of cellular responses in blood vessel cells. RECENT FINDINGS Lipoproteins activate the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in all blood vessel cell types. This may require lipoprotein docking to scavenger receptor B1, allowing transfer of cholesterol and sphingosine-1-phosphate to plasma membranes. Subsequent propagation of the signals probably requires the stimulation of G protein-coupled receptors, followed by the transactivation of receptor tyrosine kinases. Lipoprotein-induced extracellular signal-regulated kinase activity favors cell proliferation, whereas lipoprotein-induced p38 mitogen-activated protein kinase activity leads to cell hyperplasia and promotes cell migration. Some signaling pathways and cellular effects induced by lipoproteins have been observed in atherosclerotic plaques and therefore represent potential targets for the development of anti-atherosclerotic drugs. SUMMARY The main blood vessel cell types have the capacity to activate protein kinase pathways in the presence of lipoproteins. This induces cell proliferation, hyperplasia and migration, known to be dysregulated in atherosclerotic lesions.
Collapse
Affiliation(s)
- Iveta Dobreva
- Department of Cellular Biology and Morphology, Biology and Medicine Faculty, Lausanne University, Switzerland
| | | | | |
Collapse
|
42
|
Puddu GM, Cravero E, Arnone G, Muscari A, Puddu P. Molecular aspects of atherogenesis: new insights and unsolved questions. J Biomed Sci 2005; 12:839-53. [PMID: 16328782 DOI: 10.1007/s11373-005-9024-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022] Open
Abstract
The development of atherosclerotic disease results from the interaction between environment and genetic make up. A key factor in atherogenesis is the oxidative modification of lipids, which is involved in the recruitment of mononuclear leukocytes to the arterial intima--a process regulated by several groups of adhesion molecules and cytokines. Activated leukocytes, as well as endothelial mitochondria, can produce reactive oxygen species (ROS) that are associated with endothelial dysfunction, a cause of reduced nitric oxide (NO) bioactivity and further ROS production. Peroxisome proliferator-activated receptors (PPAR) and liver X receptors (LXR) are nuclear receptors significantly involved in the control of lipid metabolism, inflammation and insulin sensitivity. Also, an emerging role has been suggested for G protein coupled receptors and for the small Ras and Rho GTPases in the regulation of the expression of endothelial NO synthase (eNOS) and of tissue factor, which are involved in thrombus formation and modulation of vascular tone. Further, the interactions among eNOS, cholesterol, oxidated LDL and caveola membranes are probably involved in some molecular changes observed in vascular diseases. Despite the relevance of oxidative processes in atherogenesis, anti-oxidants have failed to significantly improve atherosclerosis (ATS) prevention, while statins have proved to be the most successful drugs.
Collapse
Affiliation(s)
- Giovanni Maria Puddu
- Department of Internal Medicine and Aging, S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | | | | |
Collapse
|
43
|
Tafolla E, Wang S, Wong B, Leong J, Kapila YL. JNK1 and JNK2 oppositely regulate p53 in signaling linked to apoptosis triggered by an altered fibronectin matrix: JNK links FAK and p53. J Biol Chem 2005; 280:19992-9. [PMID: 15778501 DOI: 10.1074/jbc.m500331200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular matrix regulates many cellular processes, including survival, and alterations in the matrix or in matrix survival signals can trigger apoptosis. Previously, we showed that an altered fibronectin matrix triggers apoptosis in primary cells via a novel pathway regulated by transcriptionally mediated decreases in p53 and c-Myc levels. Here we report that this apoptotic mechanism is propagated by decreased phosphorylation of focal adhesion kinase (FAK), which is linked to increased phosphorylation of c-Jun N-terminal kinase (JNK) and to decreased levels of p53. FAK is physically and spatially linked to JNK and p53, which relocalize from the nucleus to the cell membrane to mediate this interaction. Further, p53 participates in a feedback mechanism with JNK to regulate this apoptotic process and is oppositely regulated by JNK1 and JNK2.
Collapse
Affiliation(s)
- Elizabeth Tafolla
- Department of Stomatology, School of Dentistry, University of California, San Francisco, 94143-0512, USA
| | | | | | | | | |
Collapse
|
44
|
Bose C, Bhuvaneswaran C, Udupa KB. Age-related alteration in hepatic acyl-CoA: cholesterol acyltransferase and its relation to LDL receptor and MAPK. Mech Ageing Dev 2005; 126:740-51. [PMID: 15888329 DOI: 10.1016/j.mad.2005.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 11/17/2004] [Accepted: 02/08/2005] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate changes in the regulation of lipid metabolism and mitogen-activated protein kinases (MAPK) in the liver of C57BL/6 mice as they age. This was done by assessing the status of total cholesterol content and its enzyme, acyl-CoA: cholesterol acyltransferase (ACAT), in liver microsomal preparations and the low-density lipoprotein receptor (LDLr) mRNA expression in the livers of 4-24-month-old C57B/6 mice, without exogenous cholesterol feeding. With aging, there was an increase in cholesterol content and ACAT activity in liver microsomes. Northern blot analysis and real-time quantitative polymerase chain reaction data showed that ACAT-2 mRNA increased with age as well. LDLr expression decreased significantly in an age-dependent manner. In addition, we studied the basal and activated forms of MAPK, e.g. extracellular regulatory kinase (ERK-1/2), c-jun NH2-terminal kinase (JNK-1/2) and p38 MAPK. During aging, there was a considerable decrease in phosphorylated ERK-1/2 level while JNK-1/2 and p38 MAPK levels increased with age. Our studies showed an altered LDLr expression and altered phosphorylated MAPK in the liver of C57BL/6 mice during aging. These alterations might contribute to the development of atherosclerosis, hypercholesterolemia and other cholesterol-related conditions.
Collapse
Affiliation(s)
- Chhanda Bose
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences and Medical Research, Central Arkansas Veterans Healthcare System, Little Rock, 72205, USA
| | | | | |
Collapse
|
45
|
Sabatini N, Di Giacomo V, Rapino M, Rana R, Garaci G, Giuseppe F, Cataldi A. JNK/p53 mediated cell death response in K562 exposed to etoposide-ionizing radiation combined treatment. J Cell Biochem 2005; 95:611-9. [PMID: 15832344 DOI: 10.1002/jcb.20392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study of the ability of chemotherapeutic agents and/or ionizing radiation (IR) to induce cell death in tumor cells is essential for setting up new and more efficient therapies against human cancer. Since drug and ionizing radiation resistance is an impediment to successful chemotherapy against cancer, we wanted to check if etoposide/ionizing radiation combined treatment could have a synergic effect to improve cell death in K562, a well-known human erythroleukemia ionizing radiation resistant cell line. In this study, we examined the role played by JNK/SAPK, p53, and mitochondrial pathways in cell death response of K562 cells to etoposide and IR treatment. Our results let us suppose that the induction of cell death, already evident in 15 Gy exposed cells, mainly in 15 Gy plus etoposide, may be mediated by JNK/SAPK pathway. Moreover, p53 is a potential substrate for JNK and may act as a JNK target for etoposide and ionizing radiation. Thus further investigation on these and other molecular mechanisms underlying the cell death response following etoposide and ionizing radiation exposure could be useful to overcome resistance mechanisms in tumor cells.
Collapse
Affiliation(s)
- Nadia Sabatini
- Dipartimento di Biomorfologia, Università G. D' Annunzio, Chieti-Pescara, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The present review focuses on the concept that cellular and humoral immunity to the phylogenetically highly conserved antigen heat shock protein 60 (HSP60) is the initiating mechanism in the earliest stages of atherosclerosis. Subjecting arterial endothelial cells to classical atherosclerosis risk factors leads to the expression of HSP60 that then may serve as a target for pre-existent cross-reactive antimicrobial HSP60 immunity or bona fide autoimmune reactions induced by biochemically altered autologous HSP60. Endothelial cells can also bind microbial or autologous HSP60 via Toll-like receptors, providing another possibility for targetting adaptive or innate immunological effector mechanisms.
Collapse
Affiliation(s)
- Georg Wick
- Institute for Pathophysiology, University of Innsbruck, Medical School, Fritz-Pregl-Str. 3/IV, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
47
|
Dobreva I, Waeber G, Mooser V, James RW, Widmann C. LDLs induce fibroblast spreading independently of the LDL receptor via activation of the p38 MAPK pathway. J Lipid Res 2003; 44:2382-90. [PMID: 12951358 DOI: 10.1194/jlr.m300266-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because adventitial fibroblasts play an important role in the repair of blood vessels, we assessed whether elevation in LDL concentrations would affect fibroblast function and whether this depended on activation of intracellular signaling pathways. We show here that in primary human fibroblasts, LDLs induced transient activation of the p38 mitogen-activated protein kinase (MAPK) pathway, but not the c-Jun N-terminal kinase MAPK pathway. This activation did not require the recruitment of the LDL receptor (LDLR), because LDLs efficiently stimulated the p38 MAPK pathway in human and mouse fibroblasts lacking functional LDLR, and because receptor-associated protein, an LDLR family antagonist, did not block the LDL-induced p38 activation. LDL particles also induced lamellipodia formation and cell spreading. These effects were blocked by SB203580, a specific p38 inhibitor. Our data demonstrate that LDLs can regulate the shape of fibroblasts in a p38 MAPK-dependent manner, a mechanism that may participate in wound healing or vessel remodeling as in atherosclerosis.
Collapse
Affiliation(s)
- Iveta Dobreva
- Institut de Biologie Cellulaire et de Morphologie, Université de Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Wu ZL, Wang YC, Zhou Q, Ge YQ, Lan Y. Oxidized LDL induces transcription factor activator protein-1 in rat mesangial cells. Cell Biochem Funct 2003; 21:249-56. [PMID: 12910478 DOI: 10.1002/cbf.1015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been shown that oxidized low-density lipoprotein (ox-LDL), through the activation of glomerular cells, stimulates pathobiological processes involved in monocyte infiltration into the mesangium. The underlying molecular mechanisms are not fully understood. The present study showed that ox-LDL strongly induced AP-1 binding activity in rat mesangial cells (RMCs) in a dose- and time-dependent manner, reaching the maximal activation at 250 microg ml(-1) within 24 h. The results from mobility shift assays and Western blotting analysis revealed that this AP-1 binding increase involved c-Jun, but not c-Fos. Moreover, this ox-LDL-increased AP-1 binding was inhibited by several protein kinase (PK) inhibitors: the protein kinase C (PKC) inhibitor Bisindolylmaleimide I, the cAMP-dependent PK (PKA) inhibitor H89, and the tyrosine PK (PTK) inhibitor genistein. Protein phosphorylation represents mitogen-activated protein kinase (MAPK) activity. Therefore, we examined the role of ox-LDL on the activation of mesangial cell JNK/SAPK, the only recognized protein kinase that catalyses phosphorylation of c-Jun. The incubation of mesangial cells with ox-LDL induced phosphorylation of JNK1/SAPK dose dependently, with the maximal response at 150 microg ml(-1). This study demonstrates that multiple kinase activities are involved in the mechanism of ox-LDL-induced AP-1 activation in mesangial cells, and ox-LDL stimulates AP-1 through JNK-c-Jun other than MEK-c-Fos signalling pathway.
Collapse
Affiliation(s)
- Zhao-Long Wu
- Division of Nephrology, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China.
| | | | | | | | | |
Collapse
|
49
|
Kins S, Kurosinski P, Nitsch RM, Götz J. Activation of the ERK and JNK signaling pathways caused by neuron-specific inhibition of PP2A in transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:833-43. [PMID: 12937125 PMCID: PMC1868255 DOI: 10.1016/s0002-9440(10)63444-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A reduced activity of protein phosphatase 2A (PP2A) has been shown in brains of patients with Alzheimer's disease (AD), a neurodegenerative disorder characterized histopathologically by amyloid plaques and neurofibrillary tangles. Tau, as the principal component of neurofibrillary tangles, can be hyperphosphorylated by a reduced activity of PP2A in vitro and by pharmacological approaches, suggesting a crucial role of PP2A in tangle formation. To dissect the role of PP2A in vivo, we previously generated transgenic mice with chronically reduced PP2A activity by expressing a dominant-negative mutant form of the PP2A catalytic subunit Calpha, L199P, under the control of a neuron-specific promoter. In these mice, endogenous tau is phosphorylated at the epitopes Ser202/Thr205 and Ser422. In vitro, these tau phospho-epitopes can be phosphorylated by the kinases ERK and JNK, and the kinases themselves are negatively regulated by PP2A. In this study, we show that chronic inhibition of PP2A activity in L199P transgenic mice causes the activation of ERK and JNK as demonstrated by the phosphorylation and nuclear accumulation of the ERK and JNK substrates, Elk-1 and c-Jun. TUNEL staining revealed that activated JNK signaling was not associated with cell death. Our findings imply that PP2A is a negative regulator of the ERK and JNK signaling pathways in vivo, suggesting that in AD, tau hyperphosphorylation may be caused in part by PP2A dysfunction.
Collapse
Affiliation(s)
- Stefan Kins
- Division of Psychiatry Research, University of Zürich, August Forel Strasse 1, 8008 Zürich, Switzerland.
| | | | | | | |
Collapse
|
50
|
Metzler B, Abia R, Ahmad M, Wernig F, Pachinger O, Hu Y, Xu Q. Activation of heat shock transcription factor 1 in atherosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1669-76. [PMID: 12707051 PMCID: PMC1851193 DOI: 10.1016/s0002-9440(10)64301-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Previous work established that increased expression of heat shock proteins (HSPs) in the vessel wall might evoke proinflammatory and autoimmune reactions in the pathogenesis of atherosclerosis. The present study was designed to further scrutinize the molecular mechanisms of HSP expression involving activation of heat shock transcription factors (HSFs) in atherosclerotic lesions in animal models. Severe atherosclerotic lesions developed in the aortas of rabbits 16 weeks after feeding a 0.2% cholesterol diet. When protein extracts from the aortas were subjected to Western blot analysis, the level of HSF1 in proteins from atherosclerotic lesions of hypercholesterolemic rabbits were significantly higher than those of normal vessels. Gel mobility shift assays revealed the formation of protein-heat shock element complexes containing HSF1 in protein extracts from atherosclerotic lesion. Furthermore, triglyceride-rich lipoprotein, oxidized-triglyceride-rich lipoprotein, low-density lipoprotein, and oxidized low-density lipoprotein did not activate HSF1 in cultured smooth muscle cells, whereas HSF1 was highly activated in cells treated with tumor necrosis factor-alpha. Interestingly, mechanical stretching of smooth muscle cells resulted in HSF1 translocation from the cytoplasm to the nucleus and hyperphosphorylation followed by increased HSP70 expression. Thus, our findings provide the first evidence that HSF1 is activated and highly expressed in atherosclerotic lesions and that cytokine stimulation and disturbed mechanical stress to the vessel wall may be responsible for such activation.
Collapse
Affiliation(s)
- Bernhard Metzler
- Department of Internal Medicine, Division of Cardiology, University Hospital of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|