1
|
Ghade NS, Thappa DK, Lona J, Krishnan AR, Sonar SM. Comparative physicochemical and structural characterisation studies establish high biosimilarity between BGL-ASP and reference insulin aspart. Sci Rep 2024; 14:4224. [PMID: 38378730 PMCID: PMC10879530 DOI: 10.1038/s41598-024-54819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
Biosimilar insulin analogues are increasing market access for diabetic patients globally. Scientific establishment of biosimilarity is cornerstone of this key change in the medical landscape. BGL-ASP is a biosimilar insulin aspart developed by BioGenomics Limited, India. BioGenomics has considered a stepwise approach in generating the totality of evidence required to establish similarity with reference product. Insulin aspart is a recombinant rapid-acting human insulin analogue utilised in the treatment of type-1 and type-2 diabetes mellitus. The single amino acid substitution at position B28 where proline is replaced with aspartic acid results in a decreased propensity to form hexamers, thus increasing the absorption rate on subcutaneous administration compared to native insulin. In order to establish the safety and efficacy of BGL-ASP, the critical quality attributes (CQAs) of BGL-ASP are identified based on the impact created on biological activity, pharmacokinetic/pharmacodynamic (PK/PD), immunogenicity and safety. The CQAs of insulin aspart are related to product structure, purity and functionality and are characterised using a series of state-of-the-art orthogonal analytical tools. The primary protein sequence, the secondary, tertiary and quaternary structure are found to be highly similar for BGL-ASP and reference product. The product related impurities of insulin aspart and the assay content are determined using high performance liquid chromatography (HPLC) based analysis and is similar for BGL-ASP and reference insulin aspart sourced from United States of America (US), Europe Union (EU) and India. The safety, efficacy and immunogenicity of BGL-ASP is also found to be comparable with reference product and is confirmed through the clinical trials conducted as recommended by International Council for Harmonisation of Technical Requirements of Pharmaceuticals for Human Use (ICH) and European Medicines Agency (EMA) guidelines. The data encompassed in this study demonstrates that reference insulin aspart and BGL-ASP are highly similar in terms of structural, physicochemical, and biological properties, thus confirming its safety and efficacy for usage as potential alternative economical medicinal treatment for diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Jeseena Lona
- BioGenomics Limited, Thane, Maharashtra, 400610, India
| | | | | |
Collapse
|
2
|
Arai K, Okumura M, Lee YH, Katayama H, Mizutani K, Lin Y, Park SY, Sawada K, Toyoda M, Hojo H, Inaba K, Iwaoka M. Diselenide-bond replacement of the external disulfide bond of insulin increases its oligomerization leading to sustained activity. Commun Chem 2023; 6:258. [PMID: 37989850 PMCID: PMC10663622 DOI: 10.1038/s42004-023-01056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Seleno-insulin, a class of artificial insulin analogs, in which one of the three disulfide-bonds (S-S's) of wild-type insulin (Ins) is replaced by a diselenide-bond (Se-Se), is attracting attention for its unique chemical and physiological properties that differ from those of Ins. Previously, we pioneered the development of a [C7UA,C7UB] analog of bovine pancreatic insulin (SeIns) as the first example, and demonstrated its high resistance against insulin-degrading enzyme (IDE). In this study, the conditions for the synthesis of SeIns via native chain assembly (NCA) were optimized to attain a maximum yield of 72%, which is comparable to the in vitro folding efficiency for single-chain proinsulin. When the resistance of BPIns to IDE was evaluated in the presence of SeIns, the degradation rate of BPIns became significantly slower than that of BPIns alone. Furthermore, the investigation on the intermolecular association properties of SeIns and BPIns using analytical ultracentrifugation suggested that SeIns readily forms oligomers not only with its own but also with BPIns. The hypoglycemic effect of SeIns on diabetic rats was observed at a dose of 150 μg/300 g rat. The strategy of replacing the solvent-exposed S-S with Se-Se provides new guidance for the design of long-acting insulin formulations.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3, Aramakiaza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Korea
- Bio-Analytical Science, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
- Research Headquarters, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Korea
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Kenji Mizutani
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Korea
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Kaichiro Sawada
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 2-1-1, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| |
Collapse
|
3
|
A novel method for the chaperone aided and efficient production of human proinsulin in the prokaryotic system. J Biotechnol 2022; 346:35-46. [DOI: 10.1016/j.jbiotec.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
4
|
Siew YY, Zhang W. Downstream processing of recombinant human insulin and its analogues production from E. coli inclusion bodies. BIORESOUR BIOPROCESS 2021; 8:65. [PMID: 34336550 PMCID: PMC8313369 DOI: 10.1186/s40643-021-00419-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
The Global Diabetes Compact was launched by the World Health Organization in April 2021 with one of its important goals to increase the accessibility and affordability of life-saving medicine-insulin. The rising prevalence of diabetes worldwide is bound to escalate the demand for recombinant insulin therapeutics, and currently, the majority of recombinant insulin therapeutics are produced from E. coli inclusion bodies. Here, a comprehensive review of downstream processing of recombinant human insulin/analogue production from E. coli inclusion bodies is presented. All the critical aspects of downstream processing, starting from proinsulin recovery from inclusion bodies, inclusion body washing, inclusion body solubilization and oxidative sulfitolysis, cyanogen bromide cleavage, buffer exchange, purification by chromatography, pH precipitation and zinc crystallization methods, proinsulin refolding, enzymatic cleavage, and formulation, are explained in this review. Pertinent examples are summarized and the practical aspects of integrating every procedure into a multimodal purification scheme are critically discussed. In the face of increasing global demand for insulin product, there is a pressing need to develop a more efficient and economical production process. The information presented would be insightful to all the manufacturers and stakeholders for the production of human insulins, insulin analogues or biosimilars, as they strive to make further progresses in therapeutic recombinant insulin development and production.
Collapse
Affiliation(s)
- Yin Yin Siew
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
5
|
Cicaloni V, Trezza A, Pettini F, Spiga O. Applications of in Silico Methods for Design and Development of Drugs Targeting Protein-Protein Interactions. Curr Top Med Chem 2019; 19:534-554. [PMID: 30836920 DOI: 10.2174/1568026619666190304153901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Identification of Protein-Protein Interactions (PPIs) is a major challenge in modern molecular biology and biochemistry research, due to the unquestionable role of proteins in cells, biological process and pathological states. Over the past decade, the PPIs have evolved from being considered a highly challenging field of research to being investigated and examined as targets for pharmacological intervention. OBJECTIVE Comprehension of protein interactions is crucial to known how proteins come together to build signalling pathways, to carry out their functions, or to cause diseases, when deregulated. Multiplicity and great amount of PPIs structures offer a huge number of new and potential targets for the treatment of different diseases. METHODS Computational techniques are becoming predominant in PPIs studies for their effectiveness, flexibility, accuracy and cost. As a matter of fact, there are effective in silico approaches which are able to identify PPIs and PPI site. Such methods for computational target prediction have been developed through molecular descriptors and data-mining procedures. RESULTS In this review, we present different types of interactions between protein-protein and the application of in silico methods for design and development of drugs targeting PPIs. We described computational approaches for the identification of possible targets on protein surface and to detect of stimulator/ inhibitor molecules. CONCLUSION A deeper study of the most recent bioinformatics methodologies for PPIs studies is vital for a better understanding of protein complexes and for discover new potential PPI modulators in therapeutic intervention.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy.,Toscana Life Sciences Foundation, via Fiorentina 1, 53100 Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Francesco Pettini
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
6
|
Boross GN, Shimura S, Besenius M, Tennagels N, Rossen K, Wagner M, Bode JW. Facile folding of insulin variants bearing a prosthetic C-peptide prepared by α-ketoacid-hydroxylamine (KAHA) ligation. Chem Sci 2018; 9:8388-8395. [PMID: 30542587 PMCID: PMC6243641 DOI: 10.1039/c8sc03738h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 11/21/2022] Open
Abstract
The chemical synthesis of insulin is an enduring challenge due to the hydrophobic peptide chains and construction of the correct intermolecular disulfide pattern. We report a new approach to the chemical synthesis of insulin using a short, traceless, prosthetic C-peptide that facilitates the formation of the correct disulfide pattern during folding and its removal by basic treatment. The linear precursor is assembled by an ester forming α-ketoacid-hydroxylamine (KAHA) ligation that provides access to the linear insulin precursors in good yield from two readily prepared segments. This convergent and flexible route provides access to various human, mouse, and guinea pig insulins containing a single homoserine mutation that shows no detrimental effect on the biological activities.
Collapse
Affiliation(s)
- Gábor N Boross
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland . ; http://www.bode.ethz.ch/
| | - Satomi Shimura
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland . ; http://www.bode.ethz.ch/
| | - Melissa Besenius
- Sanofi-Aventis Deutschland GmbH Industriepark Hoechst , 65926 Frankfurt am Main , Germany . http://www.sanofi.com
| | - Norbert Tennagels
- Sanofi-Aventis Deutschland GmbH Industriepark Hoechst , 65926 Frankfurt am Main , Germany . http://www.sanofi.com
| | - Kai Rossen
- Sanofi-Aventis Deutschland GmbH Industriepark Hoechst , 65926 Frankfurt am Main , Germany . http://www.sanofi.com
| | - Michael Wagner
- Sanofi-Aventis Deutschland GmbH Industriepark Hoechst , 65926 Frankfurt am Main , Germany . http://www.sanofi.com
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland . ; http://www.bode.ethz.ch/
| |
Collapse
|
7
|
Jung SH, Kim CK, Lee G, Yoon J, Lee M. Structural Analysis of Recombinant Human Preproinsulins by Structure Prediction, Molecular Dynamics, and Protein-Protein Docking. Genomics Inform 2017; 15:142-146. [PMID: 29307140 PMCID: PMC5769858 DOI: 10.5808/gi.2017.15.4.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
More effective production of human insulin is important, because insulin is the main medication that is used to treat multiple types of diabetes and because many people are suffering from diabetes. The current system of insulin production is based on recombinant DNA technology, and the expression vector is composed of a preproinsulin sequence that is a fused form of an artificial leader peptide and the native proinsulin. It has been reported that the sequence of the leader peptide affects the production of insulin. To analyze how the leader peptide affects the maturation of insulin structurally, we adapted several in silico simulations using 13 artificial proinsulin sequences. Three-dimensional structures of models were predicted and compared. Although their sequences had few differences, the predicted structures were somewhat different. The structures were refined by molecular dynamics simulation, and the energy of each model was estimated. Then, protein-protein docking between the models and trypsin was carried out to compare how efficiently the protease could access the cleavage sites of the proinsulin models. The results showed some concordance with experimental results that have been reported; so, we expect our analysis will be used to predict the optimized sequence of artificial proinsulin for more effective production.
Collapse
Affiliation(s)
- Sung Hun Jung
- Department of Biological Science, Sangji University, Wonju 26339, Korea
- Theragen Etex Bio Institute, Suwon 16229, Korea
| | | | - Gunhee Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Jonghwan Yoon
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Minho Lee
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
8
|
Moroder L, Musiol HJ. Insulin - von seiner Entdeckung bis zur industriellen Synthese moderner Insulin-Analoga. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luis Moroder
- Bioorganische Chemie; Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Hans-Jürgen Musiol
- Bioorganische Chemie; Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| |
Collapse
|
9
|
Moroder L, Musiol HJ. Insulin-From its Discovery to the Industrial Synthesis of Modern Insulin Analogues. Angew Chem Int Ed Engl 2017; 56:10656-10669. [DOI: 10.1002/anie.201702493] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Luis Moroder
- Bioorganic Chemistry; Max-Planck Institute of Biochemistry; Am Klopferspitz 18 82152 Martinsried Germany
| | - Hans-Jürgen Musiol
- Bioorganic Chemistry; Max-Planck Institute of Biochemistry; Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|
10
|
Refolding of laccase from Trametes versicolor using aqueous two phase systems: Effect of different additives. J Chromatogr A 2017; 1507:25-31. [DOI: 10.1016/j.chroma.2017.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 01/10/2023]
|
11
|
Chen Y, Wang Q, Zhang C, Li X, Gao Q, Dong C, Liu Y, Su Z. Improving the refolding efficiency for proinsulin aspart inclusion body with optimized buffer compositions. Protein Expr Purif 2016; 122:1-7. [PMID: 26826314 DOI: 10.1016/j.pep.2016.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 01/22/2023]
Abstract
Successfully recovering proinsulin's native conformation from inclusion body is the crucial step to guarantee high efficiency for insulin's manufacture. Here, two by-products of disulfide-linked oligomers and disulfide-isomerized monomers were clearly identified during proinsulin aspart's refolding through multiple analytic methods. Arginine and urea are both used to assist in proinsulin refolding, however the efficacy and possible mechanism was found to be different. The oligomers formed with urea were of larger size than with arginine. With the urea concentrations increasing from 2 M to 4 M, the content of oligomers decreased greatly, but simultaneously the refolding yield at the protein concentration of 0.5 mg/mL decreased from 40% to 30% due to the increase of disulfide-isomerized monomers. In contrast, with arginine concentrations increasing up to 1 M, the refolding yield gradually increased to 50% although the content for oligomers also decreased. Moreover, it was demonstrated that not redox pairs but only oxidant was necessary to facilitate the native disulfide bonds formation for the reduced denatured proinsulin. An oxidative agent of selenocystamine could increase the yield up to 80% in the presence of 0.5 M arginine. Further study demonstrated that refolding with 2 M urea instead of 0.5 M arginine could achieve similar yield as protein concentration is slightly reduced to 0.3 mg/mL. In this case, refolded proinsulin was directly purified through one-step of anionic exchange chromatography, with a recovery of 32% and purity up to 95%. All the results could be easily adopted in insulin's industrial manufacture for improving the production efficiency.
Collapse
Affiliation(s)
- Ying Chen
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiunan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiang Gao
- Novo Nordisk Research Center China, Beijing 102206, PR China
| | - Changqing Dong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
12
|
Jaenecke F, Friedrich-Epler B, Parthier C, Stubbs MT. Membrane composition influences the activity of in vitro refolded human vitamin K epoxide reductase. Biochemistry 2015; 54:6454-61. [PMID: 26435421 DOI: 10.1021/acs.biochem.5b00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human vitamin K epoxide reductase (hVKOR) is an integral membrane protein responsible for the maintenance of reduced vitamin K pools, a prerequisite for the action of γ-glutamyl carboxylase and hence for hemostasis. Here we describe the recombinant expression of hVKOR as an insoluble fusion protein in Escherichia coli, followed by purification and chemical cleavage under denaturing conditions. In vitro renaturation and reconstitution of purified solubilized hVKOR in phospholipids could be established to yield active protein. Crucially, the renatured enzyme is inhibited by the powerful coumarin anticoagulant warfarin, and we demonstrate that enzyme activity depends on lipid composition. The completely synthetic system for protein production allows a rational investigation of the multiple variables in membrane protein folding and paves the way for the provision of pure, active membrane protein for structural studies.
Collapse
Affiliation(s)
- Frank Jaenecke
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany.,ZIK HALOmem , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Beatrice Friedrich-Epler
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Christoph Parthier
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Milton T Stubbs
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany.,ZIK HALOmem , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
13
|
Engineering batch and pulse refolding with transition of aggregation kinetics: An investigation using green fluorescent protein (GFP). Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Yuan J, Zhou H, Yang Y, Li W, Wan Y, Wang L. Refolding and simultaneous purification of recombinant human proinsulin from inclusion bodies on protein-folding liquid-chromatography columns. Biomed Chromatogr 2014; 29:777-82. [PMID: 25378200 DOI: 10.1002/bmc.3358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/09/2014] [Accepted: 09/10/2014] [Indexed: 11/07/2022]
Abstract
Protein-folding liquid chromatography (PFLC) is an effective and scalable method for protein renaturation with simultaneous purification. However, it has been a challenge to fully refold inclusion bodies in a PFLC column. In this work, refolding with simultaneous purification of recombinant human proinsulin (rhPI) from inclusion bodies from Escherichia coli were investigated using the surface of stationary phases in immobilized metal ion affinity chromatography (IMAC) and high-performance size-exclusion chromatography (HPSEC). The results indicated that both the ligand structure on the surface of the stationary phase and the composition of the mobile phase (elution buffer) influenced refolding of rhPI. Under optimized chromatographic conditions, the mass recoveries of IMAC column and HPSEC column were 77.8 and 56.8% with purifies of 97.6 and 93.7%, respectively. These results also indicated that the IMAC column fails to refold rhPI, and the HPSEC column enables efficient refolding of rhPI with a low-urea gradient-elution method. The refolded rhPI was characterized by circular dichroism spectroscopy. The molecular weight of the converted human insulin was further confirmed with SDS-18% PAGE, Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) and the biological activity assay by HP-RPLC.
Collapse
Affiliation(s)
- Jie Yuan
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Institute of Modern Separation Science, Shaanxi Key laboratory of Modern Separation Science, Northwest University, Xi'an, 710068, China
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Avital-Shmilovici M, Whittaker J, Weiss MA, Kent SBH. Deciphering a molecular mechanism of neonatal diabetes mellitus by the chemical synthesis of a protein diastereomer, [D-AlaB8]human proinsulin. J Biol Chem 2014; 289:23683-92. [PMID: 25002580 DOI: 10.1074/jbc.m114.572040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misfolding of proinsulin variants in the pancreatic β-cell, a monogenic cause of permanent neonatal-onset diabetes mellitus, provides a model for a disease of protein toxicity. A hot spot for such clinical mutations is found at position B8, conserved as glycine within the vertebrate insulin superfamily. We set out to investigate the molecular basis of the aberrant properties of a proinsulin clinical mutant in which residue Gly(B8) is replaced by Ser(B8). Modular total chemical synthesis was used to prepare the wild-type [Gly(B8)]proinsulin molecule and three analogs: [D-Ala(B8)]proinsulin, [L-Ala(B8)]proinsulin, and the clinical mutant [L-Ser(B8)]proinsulin. The protein diastereomer [D-Ala(B8)]proinsulin produced higher folding yields at all pH values compared with the wild-type proinsulin and the other two analogs, but showed only very weak binding to the insulin receptor. The clinical mutant [L-Ser(B8)]proinsulin impaired folding at pH 7.5 even in the presence of protein-disulfide isomerase. Surprisingly, although [L-Ser(B8)]proinsulin did not fold well under the physiological conditions investigated, once folded the [L-Ser(B8)]proinsulin protein molecule bound to the insulin receptor more effectively than wild-type proinsulin. Such paradoxical gain of function (not pertinent in vivo due to impaired secretion of the mutant insulin) presumably reflects induced fit in the native mechanism of hormone-receptor engagement. This work provides insight into the molecular mechanism of a clinical mutation in the insulin gene associated with diabetes mellitus. These results dramatically illustrate the power of total protein synthesis, as enabled by modern chemical ligation methods, for the investigation of protein folding and misfolding.
Collapse
Affiliation(s)
- Michal Avital-Shmilovici
- From the Departments of Chemistry, and Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 and
| | | | - Michael A Weiss
- the Departments of Biochemistry and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Stephen B H Kent
- From the Departments of Chemistry, and Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 and
| |
Collapse
|
17
|
Drazic A, Gebendorfer KM, Mak S, Steiner A, Krause M, Bepperling A, Winter J. Tetramers are the activation-competent species of the HOCl-specific transcription factor HypT. J Biol Chem 2013; 289:977-86. [PMID: 24275662 DOI: 10.1074/jbc.m113.521401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypochlorous acid (HOCl) is an important component of the immune system and is produced by neutrophils to kill invading microorganisms. The transcription factor HypT is specifically activated by HOCl by methionine oxidation and protects Escherichia coli cells from the detrimental effects of HOCl. HypT forms dodecameric ring-like oligomers. Binding of HypT to DNA induces dissociation of the dodecamers into dimers and tetramers, thus forming the DNA-binding species. To dissect HypT dissociation, binding to DNA, and activation, we aimed to dissociate the dodecamers independently of DNA and to analyze HOCl-dependent activation in vitro. We found that HypT dodecamers dissociated into tetramers in the presence of l-arginine and NaCl, which was reversible upon dilution of the additive. Making use of the reversible dissociation, we generated mixed assemblies consisting of wild-type and mutant HypT subunits and determined that mutant subunits with reduced thermal stability were stabilized by wild-type HypT in the mixed assembly. HypT tetramers, as present at high NaCl concentrations, were stabilized against thermal unfolding and aggregation triggered by high HOCl concentrations. Importantly, in vitro activation by HOCl of HypT tetramers was completed within 1 min, whereas activation of dodecamers required 1 h for completion. Furthermore, activation of HypT tetramers required stoichiometric amounts of HOCl instead of an excess of HOCl, as observed for dodecamers. This supports the idea that small HypT oligomers are the activation-competent species, whereas the dodecamers are a storage form. Our study reveals the importance of the dynamic oligomeric state for HypT activation by HOCl.
Collapse
Affiliation(s)
- Adrian Drazic
- From the Center for Integrated Protein Science Munich (CiPS), Department Chemie, Technische Universität München, 85747 Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Aslam F, Gardner QTAA, Zain H, Nadeem MS, Ali M, Rashid N, Akhtar M. Studies on the expression and processing of human proinsulin derivatives encoded by different DNA constructs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2116-23. [DOI: 10.1016/j.bbapap.2013.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 07/01/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
|
19
|
Avital-Shmilovici M, Mandal K, Gates ZP, Phillips NB, Weiss MA, Kent SBH. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography. J Am Chem Soc 2013; 135:3173-85. [PMID: 23343390 DOI: 10.1021/ja311408y] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described "ester insulin"--a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond--as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e., [Asp(B10), Lys(B28), Pro(B29)]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed.
Collapse
|
20
|
Winter J, Gleiter S, Klappa P, Lilie H. Protein disulfide isomerase isomerizes non-native disulfide bonds in human proinsulin independent of its peptide-binding activity. Protein Sci 2011; 20:588-96. [PMID: 21308844 DOI: 10.1002/pro.592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein disulfide isomerase (PDI) supports proinsulin folding as chaperone and isomerase. Here, we focus on how the two PDI functions influence individual steps in the complex folding process of proinsulin. We generated a PDI mutant (PDI-aba'c) where the b' domain was partially deleted, thus abolishing peptide binding but maintaining a PDI-like redox potential. PDI-aba'c catalyzes the folding of human proinsulin by increasing the rate of formation and the final yield of native proinsulin. Importantly, PDI-aba'c isomerizes non-native disulfide bonds in completely oxidized folding intermediates, thereby accelerating the formation of native disulfide bonds. We conclude that peptide binding to PDI is not essential for disulfide isomerization in fully oxidized proinsulin folding intermediates.
Collapse
Affiliation(s)
- Jeannette Winter
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, 85747 Garching, Germany.
| | | | | | | |
Collapse
|
21
|
Chen S, Adijanto L, Wang NHL. In vitro folding of methionine-arginine human lyspro-proinsulin S-sulfonate-disulfide formation pathways and factors controlling yield. Biotechnol Prog 2011; 26:1332-43. [PMID: 20540164 DOI: 10.1002/btpr.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the in vitro folding of an oxidized proinsulin (methionine-arginine human lyspro-proinsulin S-sulfonate), using cysteine as a reducing agent at 5°C and high pH (10.5-11). Folding intermediates were detected and characterized by means of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), reversed-phase chromatography (RPC), size-exclusion chromatography, and gel electrophoresis. The folding kinetics and yield depended on the protein and cysteine concentrations. RPC coupled with MALDI-MS analyses indicated a sequential formation of intermediates with one, two, and three disulfide bonds. The MALDI-MS analysis of Glu-C digested, purified intermediates indicated that an intra-A-chain disulfide bond formed first among A6, A7, and A11. Various non-native intra-A (A20 with A6, A7, or A11), intra-B (between B7 and B19), and inter-A-B disulfide bonds were observed in the intermediates with two disulfide bonds. The intermediates with three disulfide bonds had mainly the non-native intra-A and intra-B bonds. At a cysteine-to-proinsulin-SH ratio of 3.5, all intermediates with the non-native disulfide bonds were converted to properly folded proinsulin via disulfide bond reshuffling, which was the slowest step. Aggregation via the formation of intermolecular disulfide bonds of early intermediates was the major cause of yield loss. At a higher cysteine-to-proinsulin-SH ratio, some intermediates and folded MR-KPB-hPI were reduced to proteins with thiolate anions, which caused unfolding and even more yield loss than what resulted from aggregation of the early intermediates. Reducing protein concentration, while keeping an optimal cysteine-to-protein ratio, can improve folding yield significantly.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
| | | | | |
Collapse
|
22
|
Increased expression, folding and enzyme reaction rate of recombinant human insulin by selecting appropriate leader peptide. J Biotechnol 2011; 151:350-6. [PMID: 21219941 DOI: 10.1016/j.jbiotec.2010.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 11/20/2022]
Abstract
Five new expression vectors for recombinant human insulin production (pPT-B5Kpi, pPT-T10Rpi, pPT-T13Rpi, pPT-H27Rpi, pPT-B5Rpi), which have different sizes and leader peptide structure, were constructed and compared based on their expression level, yields of S-sulfonated preproinsulin (SSPPI) and folded proinsulin and enzymatic conversion rate. The ranking of expression level of the five fused proinsulins was H27R≫T10R > B5K >T13R≈B5R. In particular, the expression level of H27R was more than double (60-70%) the level of the other fused proinsulins, and this high expression level led to large amounts of SSPPI, folded proinsulin and insulin. Changes to the leader peptide structure affected not only protein expression level, but also refolding yield because the leader peptide affects protein conformation and hydrophobicity. The refolding yield of H27R was 85% at 500L pilot scale. This high refolding yield was caused by the hydrophilic character of H27R. However, the β-mercaptoethanol concentration needed for refolding and the pH required to precipitate impurities after refolding had to be changed for high refolding yield. To avoid using CNBr, which is used to cleave fusion proteins, we used lysine and arginine linkers to connect the fusion protein and proinsulin. This fusion protein could be simultaneously cleaved by trypsin during enzymatic conversion to eliminate the C-peptide. The length and kind of leader peptide did not affect the enzyme reaction rate. Only the leader peptide linker connecting the B-chain influenced enzyme reaction rate. By testing several leader peptides, we constructed a new strain with 30% increased productivity based on expression level, refolding yield and enzyme reaction.
Collapse
|
23
|
Freydell EJ, van der Wielen LA, Eppink MH, Ottens M. Size-exclusion chromatographic protein refolding: Fundamentals, modeling and operation. J Chromatogr A 2010; 1217:7723-37. [DOI: 10.1016/j.chroma.2010.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/04/2010] [Accepted: 10/06/2010] [Indexed: 10/19/2022]
|
24
|
Ion-exchange chromatographic protein refolding. J Chromatogr A 2010; 1217:7265-74. [DOI: 10.1016/j.chroma.2010.09.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/03/2010] [Accepted: 09/14/2010] [Indexed: 11/22/2022]
|
25
|
Krämer I, Sauer T. The new world of biosimilars: what diabetologists need to know about biosimilar insulins. ACTA ACUST UNITED AC 2010. [DOI: 10.1177/1474651410369234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biosimilar pharmaceuticals are emerging as patent protection on the original biopharmaceutical products expires. However, biopharmaceuticals are particularly complex molecules, and biosimilar insulins present special challenges. In part this reflects their structure and chemical modification after synthesis to attain a biologically active form. Their therapeutic window is narrow and the accuracy of their dosing is highly dependent on the formulation and quality of the administration device. For these reasons, the European Medicines Agency has issued stringent guidelines that must be fulfilled in order to receive approval as a biosimilar soluble insulin. Prescribers should therefore consider issues of manufacture, protein quality, formulation, reliability of supply, and other factors that might affect efficacy, safety and tolerability when making choices regarding the selection of biosimilar products.
Collapse
Affiliation(s)
- Irene Krämer
- Pharmacy Department, University Medical Center, Johannes Gutenberg University, Mainz, Germany,
| | - Thomas Sauer
- Industrial Affairs, Chemistry and Biotechnology, sanofi-aventis Germany, Frankfurt, Germany
| |
Collapse
|
26
|
|
27
|
Sohma Y, Hua QX, Whittaker J, Weiss MA, Kent SBH. Design and folding of [GluA4(ObetaThrB30)]insulin ("ester insulin"): a minimal proinsulin surrogate that can be chemically converted into human insulin. Angew Chem Int Ed Engl 2010; 49:5489-93. [PMID: 20509131 PMCID: PMC3311283 DOI: 10.1002/anie.201001151] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Youhei Sohma
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
28
|
Sohma Y, Hua QX, Whittaker J, Weiss M, Kent S. Design and Folding of [GluA4(OβThrB30)]Insulin (“Ester Insulin”): A Minimal Proinsulin Surrogate that Can Be Chemically Converted into Human Insulin. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001151] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Sohma Y, Kent SBH. Biomimetic synthesis of lispro insulin via a chemically synthesized "mini-proinsulin" prepared by oxime-forming ligation. J Am Chem Soc 2010; 131:16313-8. [PMID: 19835355 DOI: 10.1021/ja9052398] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report a proof-of-principle study demonstrating the efficient folding, with concomitant formation of the correct disulfides, of an isolated polypeptide insulin precursor of defined covalent structure. We used oxime-forming chemical ligation to introduce a temporary "chemical tether" to link the N-terminal residue of the insulin A chain to the C-terminal residue of the insulin B chain; the tether enabled us to fold/form disulfides with high efficiency. Enzymatic removal of the temporary chemical tether gave mature, fully active insulin. This chemical tethering principle could form the basis of a practical, high yield total synthesis of insulin and analogues.
Collapse
Affiliation(s)
- Youhei Sohma
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
30
|
Gusarova VD, Gusarov DA, Mironov AF, Bairamashvili DI, Miroshnikov AI. [Optimization of the industrial production of the recombinant precursor of human insulin]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009; 35:510-8. [PMID: 19928053 DOI: 10.1134/s1068162009040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conditions were found at the analytical level for the solubilization of a recombinant insulin precursor from inclusion bodies in different buffer systems at a wide pH range in the presence of different reducing (dithiothreitol, dithioerythritol) and chaotropic agents (urea, guanidine hydrochloride) and the subsequent renaturation with the use of redox pairs (cysteine-cystine, oxidized glutathione-reduced glutathione, and others). The scaling of the method for the production of the active substance of genetically engineered human insulin has been performed.
Collapse
|
31
|
Lu Q, Burns MC, McDevitt PJ, Graham TL, Sukman AJ, Fornwald JA, Tang X, Gallagher KT, Hunsberger GE, Foley JJ, Schmidt DB, Kerrigan JJ, Lewis TS, Ames RS, Johanson KO. Optimized procedures for producing biologically active chemokines. Protein Expr Purif 2009; 65:251-60. [PMID: 19297698 DOI: 10.1016/j.pep.2009.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We describe here two strategies to produce biologically active chemokines with authentic N-terminal amino acid residues. The first involves producing the target chemokine with an N-terminal 6xHis-SUMO tag in Escherichia coli as inclusion bodies. The fusion protein is solubilized and purified with Ni-NTA-agarose in denaturing reagents. This is further followed by tag removal and refolding in a redox refolding buffer. The second approach involves expressing the target chemokine with an N-terminal 6xHis-Trx-SUMO tag in an engineered E. coli strain that facilitates formation of disulfide bonds in the cytoplasm. Following purification of the fusion protein via Ni-NTA and tag removal, the target chemokine is refolded without redox buffer and purified by reverse phase chromatography. Using the procedures, we have produced more than 15 biologically active chemokines, with a yield of up to 15 mg/L.
Collapse
Affiliation(s)
- Quinn Lu
- GlaxoSmithKline, Biological Reagents & Assay Development, Mail Code: UE0548, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Son YJ, Kim CK, Kim YB, Kweon DH, Park YC, Seo JH. Effects of citraconylation on enzymatic modification of human proinsulin using trypsin and carboxypeptidase B. Biotechnol Prog 2009; 25:1064-70. [DOI: 10.1002/btpr.195] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Tofteng AP, Jensen KJ, Schäffer L, Hoeg-Jensen T. Total synthesis of desB30 insulin analogues by biomimetic folding of single-chain precursors. Chembiochem 2009; 9:2989-96. [PMID: 19035371 DOI: 10.1002/cbic.200800430] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin is a peptide hormone consisting of 51 amino acids in two chains with three disulfide bridges. Human insulin and various analogues are used for the treatment of diabetes and are produced recombinantly at ton scale. Herein, we report the chemical synthesis of insulin by the step-wise, Fmoc-based, solid-phase synthesis of single-chain precursors with solubilising extensions, which under redox conditions, spontaneously fold with the correct pairing of the three disulfide bridges. The folded, single-chain, insulin precursors can be transformed into bioactive two-chain desB30 insulin by the simultaneous removal of the solubilising extension (4-5 residues) and the chain-bridging C-peptide (3-5 residues) by employing Achromobacter lyticus protease--a process well-known from the yeast-based recombinant production of insulin. The overall yields of synthetic insulins were as much as 6 %, and the synthetic process was straightforward and not labour intensive.
Collapse
Affiliation(s)
- A Pernille Tofteng
- Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
34
|
Bowsher RR, Santa PF. Application of size-exclusion chromatography in the investigation of the in vitro stability of proinsulin and its cleaved metabolites in human serum and plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:689-96. [PMID: 19223249 DOI: 10.1016/j.jchromb.2009.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 11/26/2022]
Abstract
To help ensure reliability of proinsulin measurements and define the optimal matrix for conducting routine bioanalysis of this prognostic biomarker, we undertook a systematic evaluation of its in vitro stability. For this study, we subjected mono-radioiodinated forms of hPI and its cleaved metabolites to size-exclusion chromatography (FPLC-SEC employing a Superdex-75 10/30 HR column) to characterize their elution profiles following incubation in human serum and plasma. We determined that intact hPI is a substrate for serine-like protease(s) that are present in human serum. Furthermore, RIA analysis of the elution profile of unlabeled peptide demonstrated that the B-C junction is cleaved preferentially. Thus, in vitro degradation of hPI represents a potential pathway for the formation of cleaved metabolites. Our findings confirmed that EDTA plasma is the preferred matrix for quantitative determination of intact hPI and its cleaved metabolites. We concluded the SEC strategy employed in this study is broadly applicable to evaluating the in vitro stability of other peptides/proteins of diagnostic or therapeutic interest.
Collapse
|
35
|
Lu D, Liu Z. Oscillatory molecular driving force for protein folding at high concentration: a molecular simulation. J Phys Chem B 2008; 112:2686-93. [PMID: 18266355 DOI: 10.1021/jp076940o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper presents a Langevin dynamics simulation that suggests a novel way to fold protein at high concentration, a fundamental issue in neurodegenerative diseases in vivo and the production of recombinant proteins in vitro. The simulation indicates that the folding of a coarse-grained beta-barrel protein at high concentration follows the "collapse-rearrangement" mechanism but it yields products of various forms, including single proteins in the native, misfolded, and uncollapsed forms and protein aggregates. Misfolded and uncollapased proteins are the "nucleus" of the aggregates that also encapsulate some correctly folded proteins (native proteins). An optimum hydrophobic interaction strength (epsilon*(p)) between the hydrophobic beads of the model protein, which results from a compromise between the kinetics of collapse and rearrangement, is identified for use in increasing the rate of folding over aggregating. Increased protein concentration hinders the structural transitions in both collapse and rearrangement and thus favors aggregation. A new method for protein folding at high concentration is proposed, which uses an oscillatory molecular driving force (epsilon*(p)) to promote the dissociation of aggregates in the low epsilon*(p) regime while promoting folding at a high epsilon*(p). The advantage of this method in enhancing protein folding while depressing aggregation is illustrated by a comparison with the methods based on direct dilution or applying a denaturant gradient.
Collapse
Affiliation(s)
- Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
36
|
Farinas CS, Leite A, Miranda EA. Recombinant human proinsulin from transgenic corn endosperm: solvent screening and extraction studies. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2007. [DOI: 10.1590/s0104-66322007000300002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - A. Leite
- Universidade Estadual de Campinas, Brazil
| | | |
Collapse
|
37
|
Freydell EJ, Ottens M, Eppink M, van Dedem G, van der Wielen L. Efficient solubilization of inclusion bodies. Biotechnol J 2007; 2:678-84. [PMID: 17492713 DOI: 10.1002/biot.200700046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The overexpression of recombinant proteins in Escherichia coli leads in most cases to their accumulation in the form of insoluble aggregates referred to as inclusion bodies (IBs). To obtain an active product, the IBs must be solubilized and thereafter the soluble monomeric protein needs to be refolded. In this work we studied the solubilization behavior of a model-protein expressed as IBs at high protein concentrations, using a statistically designed experiment to determine which of the process parameters, or their interaction, have the greatest impact on the amount of soluble protein and the fraction of soluble monomer. The experimental methodology employed pointed out an optimum balance between maximum protein solubility and minimum fraction of soluble aggregates. The optimized conditions solubilized the IBs without the formation of insoluble aggregates; moreover, the fraction of soluble monomer was approximately 75% while the fraction of soluble aggregates was approximately 5%. Overall this approach guarantees a better use of the solubilization reagents, which brings an economical and technical benefit, at both large and lab scale and may be broadly applicable for the production of recombinant proteins.
Collapse
Affiliation(s)
- Esteban J Freydell
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Kishimura H, Hayashi K, Ando S. Characteristics of carboxypeptidase B from pyloric ceca of the starfish Asterina pectinifera. Food Chem 2006. [DOI: 10.1016/j.foodchem.2005.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Kommer AA, Dashkova IG, Esipov RS, Miroshnikov AI, Spirin AS. Synthesis of functionally active human proinsulin in a cell-free translation system. DOKL BIOCHEM BIOPHYS 2005; 401:154-8. [PMID: 15999826 DOI: 10.1007/s10628-005-0058-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A A Kommer
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow oblast 142290, Russia
| | | | | | | | | |
Collapse
|
40
|
Alewood D, Nielsen K, Alewood PF, Craik DJ, Andrews P, Nerrie M, White S, Domagala T, Walker F, Rothacker J, Burgess AW, Nice EC. The role of disulfide bonds in the structure and function of murine epidermal growth factor (mEGF). Growth Factors 2005; 23:97-110. [PMID: 16019431 DOI: 10.1080/08977190500096061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A systematic study using solid phase peptide synthesis has been undertaken to examine the role of the disulfide bonds in the structure and function of mEGF. A combination of one, two and three native disulfide pair analogues of an active truncated (4-48) form of mEGF have been synthesised by replacing specific cysteine residues with isosteric a-amino-n-butyric acid (Abu). Oxidation of the peptides was performed using either conventional aerobic oxidation at basic pH, in DMSO under acidic conditions or via selective disulfide formation using orthogonal protection of the cysteine pairs. The contribution of individual, or pairs of, disulfide bonds to EGF structure was evaluated by CD and (1)H-NMR spectroscopy. The mitogenic activity of each analogue was determined using Balb/c 3T3 mouse fibroblastsAs we have reported previously (Barnham et al. 1998), the disulfide bond between residues 6 and 20 can be removed with significant retention of biological activity (EC50 20-50 nM). The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. We now show that removal of any other disulfide bond, either singly or in pairs, results in a major disruption of the tertiary structure, and a large loss of activity (EC50>900 nM). Remarkably, the linear analogue appears to have greater activity (EC50 580 nM) than most one and two disulfide bond analogues although it does not have a definable tertiary structure.
Collapse
Affiliation(s)
- Dianne Alewood
- The Institute for Molecular Bioscience, The University of Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brinkmeyer S, Eckert R, Ragg H. Reformable intramolecular cross-linking of the N-terminal domain of heparin cofactor II. ACTA ACUST UNITED AC 2004; 271:4275-83. [PMID: 15511233 DOI: 10.1111/j.1432-1033.2004.04367.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of a heparin cofactor II (HCII)-thrombin Michaelis complex has revealed extensive contacts encompassing the N-terminal domain of HCII and exosite I of the proteinase. In contrast, the location of the N-terminal extension in the uncomplexed inhibitor was unclear. Using a disulfide cross-linking strategy, we demonstrate that at least three different sites (positions 52, 54 and 68) within the N terminus may be tethered in a reformable manner to position 195 in the loop region between helix D and strand s2A of the HCII molecule, suggesting that the N-terminal domain may interact with the inhibitor scaffold in a permissive manner. Cross-linking of the N terminus to the HCII body does not strongly affect the inhibition of alpha-chymotrypsin, indicating that the reactive site loop sequences of the engineered inhibitor variants, required for interaction with one of the HCII target enzymes, are normally accessible. In contrast, intramolecular tethering of the N-terminal extension results in a drastic decrease of alpha-thrombin inhibitory activity, both in the presence and in the absence of glycosaminoglycans. Treatment with dithiothreitol and iodoacetamide restores activity towards alpha-thrombin, suggesting that release of the N terminus of HCII is an important component of the multistep interaction between the inhibitor and alpha-thrombin.
Collapse
Affiliation(s)
- Stephan Brinkmeyer
- Department of Biotechnology, Faculty of Technology, University of Bielefeld, Germany
| | | | | |
Collapse
|
42
|
Jaeckel E, Lipes MA, von Boehmer H. Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat Immunol 2004; 5:1028-35. [PMID: 15378058 DOI: 10.1038/ni1120] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 08/23/2004] [Indexed: 01/26/2023]
Abstract
Although autoimmune diseases can be initiated by immunization with a single antigen, it is not clear whether a single self antigen is essential for the initiation and, perhaps, the perpetuation of spontaneous autoimmunity. Some studies have suggested that insulin may represent an essential autoantigen in type 1 diabetes. Here we show that unlike tolerance to glutamic acid decarboxylase, tolerance to transgenically overexpressed preproinsulin 2 substantially reduced the onset and severity of type 1 diabetes in nonobese diabetic mice. However, some mice still developed type 1 diabetes, suggesting that insulin is a key, but not absolutely essential, autoantigen. The results are consistent with the idea that the human IDDM2 locus controls susceptibility to type 1 diabetes by regulating intrathymic preproinsulin expression.
Collapse
Affiliation(s)
- Elmar Jaeckel
- Harvard Medical School, Dana Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
43
|
Vallejo LF, Rinas U. Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration. Biotechnol Bioeng 2004; 85:601-9. [PMID: 14966801 DOI: 10.1002/bit.10906] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human gene encoding the mature form of bone morphogenetic protein-2 (hBMP-2), a dimeric disulfide-bonded protein of the cystine knot growth factor family, was expressed in recombinant Escherichia coli using a temperature-inducible expression system. The recombinant protein was produced in the form of cytoplasmic inclusion bodies and the effect of different variables on the renaturation of rhBMP-2 was investigated. In particular, variables such as pH, redox conditions, protein concentration, temperature, the presence of different types of aggregation suppressors, and host cell contaminants were studied with respect to their effect on aggregation during refolding and on the final renaturation yield of rhBMP-2. It is shown that the renaturation yield is particularly sensitive to pH, temperature, protein concentration, and the presence of aggregation suppressors. In contrast, little effect of the redox conditions and the ionic strength on the renaturation yield was observed, as equal yields were obtained in a broad range of reduced to oxidized glutathione ratios and concentrations of NaCl, respectively. The aggregation suppressor 2-(cyclohexylamino)ethanesulfonic acid (CHES) proved to be superior with respect to the final renaturation yield, although, in comparison to the more common arginine, it was less efficient in preventing aggregation of rhBMP-2 during refolding. Detergent washing of inclusion bodies was sufficient, as further purification of rhBMP-2 prior to refolding was without effect on the final renaturation yield. An increase in the concentration of renatured rhBMP-2 was achieved by a pulsed refolding procedure by which up to a total amount of 2.1 mg mL(-1) rhBMP-2 could be transferred in seven pulses into the renaturation buffer with an overall refolding yield of 38%, corresponding to 0.8 mg mL(-1) renatured dimeric rhBMP-2. Furthermore, a simplified purification procedure is presented that also includes freeze-drying for long-term storage of biologically active rhBMP-2. Finally, it is shown that the appearance of rhBMP-2 variants could be avoided by using a host strain overexpressing rare codon tRNAs.
Collapse
Affiliation(s)
- Luis Felipe Vallejo
- Biochemical Engineering Division, GBF German Research Center for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | |
Collapse
|