1
|
Singh D, Memari E, He S, Yusefi H, Helfield B. Cardiac gene delivery using ultrasound: State of the field. Mol Ther Methods Clin Dev 2024; 32:101277. [PMID: 38983873 PMCID: PMC11231612 DOI: 10.1016/j.omtm.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Over the past two decades, there has been tremendous and exciting progress toward extending the use of medical ultrasound beyond a traditional imaging tool. Ultrasound contrast agents, typically used for improved visualization of blood flow, have been explored as novel non-viral gene delivery vectors for cardiovascular therapy. Given this adaptation to ultrasound contrast-enhancing agents, this presents as an image-guided and site-specific gene delivery technique with potential for multi-gene and repeatable delivery protocols-overcoming some of the limitations of alternative gene therapy approaches. In this review, we provide an overview of the studies to date that employ this technique toward cardiac gene therapy using cardiovascular disease animal models and summarize their key findings.
Collapse
Affiliation(s)
- Davindra Singh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Elahe Memari
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Hossein Yusefi
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Brandon Helfield
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Physics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
2
|
Lahmann I, Griger J, Chen JS, Zhang Y, Schuelke M, Birchmeier C. Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration. eLife 2021; 10:57356. [PMID: 34350830 PMCID: PMC8370772 DOI: 10.7554/elife.57356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species, as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.
Collapse
Affiliation(s)
- Ines Lahmann
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Joscha Griger
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Jie-Shin Chen
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Yao Zhang
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
3
|
Madonna R, Cadeddu C, Deidda M, Giricz Z, Madeddu C, Mele D, Monte I, Novo G, Pagliaro P, Pepe A, Spallarossa P, Tocchetti CG, Varga ZV, Zito C, Geng YJ, Mercuro G, Ferdinandy P. Cardioprotection by gene therapy. Int J Cardiol 2015; 191:203-10. [DOI: 10.1016/j.ijcard.2015.04.232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/16/2022]
|
4
|
Abstract
INTRODUCTION Therapeutic angiogenesis is a strategy of inducing new collateral vessels and stimulating new capillaries that enhance tissue oxygen exchange in ischemic cardiovascular disorders, including acute myocardial infarction, chronic cardiac ischemia, peripheral artery disease and stroke. AREAS COVERED Over the last 10 years, promising results of early clinical trials have generated great expectation on the potential of therapeutic angiogenesis. However, even if large randomized placebo-controlled and double-blinded Phase II clinical trials have confirmed the feasibility, safety and potential effectiveness of therapeutic angiogenesis, they provided very limited evidence of its efficacy in terms of clinical benefit. EXPERT OPINION Results of the latest trials on therapeutic angiogenesis have not provided satisfactory results. Much is still unknown about the optimal delivery of angiogenic factors. Trials using alternative growth factors, dose regimens and methods of delivery are needed to enhance the treatment benefit of therapeutic angiogenesis.
Collapse
Affiliation(s)
- Domenico Ribatti
- University of Bari Medical School, National Cancer Institute, Giovanni Paolo II, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Piazza G. Cesare, 11, Policlinico, 70124 Bari, Italy.
| | | |
Collapse
|
5
|
Nonviral delivery of genetic medicine for therapeutic angiogenesis. Adv Drug Deliv Rev 2012; 64:40-52. [PMID: 21971337 DOI: 10.1016/j.addr.2011.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/29/2011] [Accepted: 09/18/2011] [Indexed: 01/08/2023]
Abstract
Genetic medicines that induce angiogenesis represent a promising strategy for the treatment of ischemic diseases. Many types of nonviral delivery systems have been tested as therapeutic angiogenesis agents. However, their delivery efficiency, and consequently therapeutic efficacy, remains to be further improved, as few of these technologies are being used in clinical applications. This article reviews the diverse nonviral gene delivery approaches that have been applied to the field of therapeutic angiogenesis, including plasmids, cationic polymers/lipids, scaffolds, and stem cells. This article also reviews clinical trials employing nonviral gene therapy and discusses the limitations of current technologies. Finally, this article proposes a future strategy to efficiently develop delivery vehicles that might be feasible for clinically relevant nonviral gene therapy, such as high-throughput screening of combinatorial libraries of biomaterials.
Collapse
|
6
|
Ido A, Moriuchi A, Numata M, Murayama T, Teramukai S, Marusawa H, Yamaji N, Setoyama H, Kim ID, Chiba T, Higuchi S, Yokode M, Fukushima M, Shimizu A, Tsubouchi H. Safety and pharmacokinetics of recombinant human hepatocyte growth factor (rh-HGF) in patients with fulminant hepatitis: a phase I/II clinical trial, following preclinical studies to ensure safety. J Transl Med 2011; 9:55. [PMID: 21548996 PMCID: PMC3112439 DOI: 10.1186/1479-5876-9-55] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) stimulates hepatocyte proliferation, and also acts as an anti-apoptotic factor. Therefore, HGF is a potential therapeutic agent for treatment of fatal liver diseases. We performed a translational medicine protocol with recombinant human HGF (rh-HGF), including a phase I/II study of patients with fulminant hepatitis (FH) or late-onset hepatic failure (LOHF), in order to examine the safety, pharmacokinetics, and clinical efficacy of this molecule. METHODS Potential adverse effects identified through preclinical safety tests with rh-HGF include a decrease in blood pressure (BP) and an increase in urinary excretion of albumin. Therefore, we further investigated the effect of rh-HGF on circulatory status and renal toxicity in preclinical animal studies. In a clinical trial, 20 patients with FH or LOHF were evaluated for participation in this clinical trial, and four patients were enrolled. Subjects received rh-HGF (0.6 mg/m2/day) intravenously for 12 to 14 days. RESULTS We established an infusion method to avoid rapid BP reduction in miniature swine, and confirmed reversibility of renal toxicity in rats. Although administration of rh-HGF moderately decreased BP in the participating subjects, this BP reduction did not require cessation of rh-HGF or any vasopressor therapy; BP returned to resting levels after the completion of rh-HGF infusion. Repeated doses of rh-HGF did not induce renal toxicity, and severe adverse events were not observed. Two patients survived, however, there was no evidence that rh-HGF was effective for the treatment of FH or LOHF. CONCLUSIONS Intravenous rh-HGF at a dose of 0.6 mg/m2 was well tolerated in patients with FH or LOHF; therefore, it is desirable to conduct further investigations to determine the efficacy of rh-HGF at an increased dose.
Collapse
Affiliation(s)
- Akio Ido
- HGF Hepatic Regeneration Therapy Project, Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Poynter JA, Herrmann JL, Manukyan MC, Wang Y, Abarbanell AM, Weil BR, Brewster BD, Meldrum DR. Intracoronary mesenchymal stem cells promote postischemic myocardial functional recovery, decrease inflammation, and reduce apoptosis via a signal transducer and activator of transcription 3 mechanism. J Am Coll Surg 2011; 213:253-60. [PMID: 21546276 DOI: 10.1016/j.jamcollsurg.2011.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) regulates myocardial apoptosis, cellular proliferation, and the immune response after ischemia/reperfusion (I/R). STAT3 is also necessary for the production of vascular endothelial growth factor (VEGF) by mesenchymal stem cells (MSCs), which are known to reduce myocardial injury after I/R. However, it remains unknown whether STAT3 is an important mediator of MSC-based cardioprotection. We hypothesized that knockout of stem cell STAT3 would reduce MSC-derived myocardial functional recovery and increase myocardial inflammatory and apoptotic signaling. STUDY DESIGN With a Langendorff apparatus, male rat hearts were subjected to 15 minutes of equilibration and 25 minutes of ischemia, followed by 40 minutes of reperfusion. Immediately before ischemia, hearts received intracoronary infusions of vehicle, wild-type MSCs (WT MSCs) or STAT3 knockout MSCs (STAT3KO MSCs). Heart function was measured continuously. Myocardial homogenates were analyzed for production of interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α). Additionally, MSC production of hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) were measured in vitro. RESULTS Hearts treated with WT MSCs exhibited the greatest functional recovery, and those treated with STAT3KO MSCs had equivalent recovery to vehicle. The highest proinflammatory cytokine levels were seen in vehicle-treated hearts, and the lowest in the WT MSC group. STAT3KO MSCs produced less IGF-1, but more HGF than WT MSCs. Finally, hearts treated with STAT3KO MSCs or vehicle had significantly higher caspase-3 levels than those treated with WT MSCs. CONCLUSIONS Intracoronary infusions of MSCs improve postischemic left ventricular function and reduce proapoptotic and proinflammatory signaling via a STAT3-dependent mechanism.
Collapse
Affiliation(s)
- Jeffrey A Poynter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
A mouse model for spatial and temporal expression of HGF in the heart. Transgenic Res 2011; 20:1203-16. [DOI: 10.1007/s11248-011-9485-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 01/09/2011] [Indexed: 10/18/2022]
|
9
|
Ko YT, Falcao C, Torchilin VP. Cationic liposomes loaded with proapoptotic peptide D-(KLAKLAK)(2) and Bcl-2 antisense oligodeoxynucleotide G3139 for enhanced anticancer therapy. Mol Pharm 2009; 6:971-7. [PMID: 19317442 PMCID: PMC2705994 DOI: 10.1021/mp900006h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The treatment of cancer using macromolecular therapeutics such as oligonucleotides or peptides requires efficient delivery systems capable of intracellular penetration and may also benefit from use of a combination of therapeutics with different mechanisms of action. With this possibility in mind, we constructed cationic liposome loaded with the proapoptotic peptide, d-(KLAKLAK)(2) and the Bcl-2 antisense oligodeoxynucleotide, G3139, and determined whether the combination of the proapoptotic macromolecules in a single cationic liposome can enhance antitumor efficacy. Advantage was taken of alternating charge interaction to entrap macromolecules of opposite charge. The polycationic peptide d-(KLAKLAK)(2) was first condensed with the polyanionic oligodeoxynucleotide G3139 to obtain overall negatively charged peptide/oligodeoxynucleotide complexes. The complexes were then entrapped into DOTAP/DOPE cationic liposomes (CL). This sequential charge interaction ensured efficient entrapment of d-(KLAKLAK)(2) and G3139 with a high loading efficiency (50%) and capacity (7.5 wt %). In vitro treatment of mouse melanoma B16(F10) with CL loaded with d-(KLAKLAK)(2)/G3139 led to significantly enhanced antitumor efficacy, mediated by stimulated induction of apoptotic (caspase 3/7) activity, when compared to CL loaded with G3139 alone. Intratumoral injection of CL loaded with d-(KLAKLAK)(2)/G3139 in B16(F10) mice xenograft also led to suppressed tumor growth associated with enhanced apoptotic activity. Thus, the combination of proapoptotic peptide d-(KLAKLAK)(2) and antisense oligonucleotide G3139 in a cationic liposome led to enhanced apoptotic/antitumor efficacy and may provide a promising tool for cancer treatment.
Collapse
Affiliation(s)
- Young Tag Ko
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA,
| | - Claudio Falcao
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA,
| | - Vladimir P. Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA,
| |
Collapse
|
10
|
|
11
|
An ovine preimmune foetal model to study the effect of cellular therapies for myocardic diseases. Vet Res Commun 2008; 32 Suppl 1:S45-50. [PMID: 18704737 DOI: 10.1007/s11259-008-9092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The ovine foetus is an ideal model for preclinical medical studies of cell therapies. It allows us to follow the behaviour of repairing cells inserted into a favourable physiological microenvironment in an animal species more closely related to humans than the rat or rabbit. In addition, the preimmune foetus is able to support cell engraftment by eliminating the problems of tissue rejection. Labelled fibroblasts were transplanted into the myocardium of preimmune foetuses, injecting through a disposable bowed mouth pipette into the left ventricular apex. Two weeks later, foetuses were isolated by laparotomy and each heart was collected and morphologically analyzed. No cases of abortion or postoperative complications in mothers or foetuses occurred. Macroscopically, the isolated hearts did not display any abnormality apart from a small petechia at the injection site. Tissue sections did not show any sign of acute tissue inflammation and viable labelled cells were easily identified among myocardiocytes. This model system guarantees a reduced damage in the engrafted tissue, a high survival and easy retrieval of the injected cells. The direct injection of cells into the preimmune ovine foetus myocardium can be satisfactorily performed to control tissue delivery and to reduce the risk of cell loss and dispersion.
Collapse
|
12
|
Ko YT, Hartner WC, Kale A, Torchilin VP. Gene delivery into ischemic myocardium by double-targeted lipoplexes with anti-myosin antibody and TAT peptide. Gene Ther 2008; 16:52-9. [PMID: 18701915 DOI: 10.1038/gt.2008.135] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The treatment of myocardial ischemia using gene therapy is a rather novel but promising approach. Gene delivery to target cells may be enhanced by using double-targeted delivery systems simultaneously capable of extracellular accumulation and intracellular penetration. With this in mind, we have used low cationic liposomes-plasmid DNA complexes (lipoplexes) modified with cell-penetrating transactivating transcriptional activator (TAT) peptide (TATp) and/or with monoclonal anti-myosin monoclonal antibody 2G4 (mAb 2G4) specific toward cardiac myosin, for targeted gene delivery to ischemic myocardium. In vitro transfection of both normoxic and hypoxic cardiomyocytes was enhanced by the presence of TATp as determined by fluorescence microscopy and ELISA. The in vitro transfection was further enhanced by the additional modification with mAb 2G4 antibody in the case of hypoxic, but not normoxic cardiomyocytes. However, we did not observe a synergism between TATp and mAb 2G4 ligands under our experimental condition. In in vivo experiments, we have clearly demonstrated an increased accumulation of mAb 2G4-modified TATp lipoplexes in the ischemic rat myocardium and significantly enhanced transfection of cardiomyocytes in the ischemic zone. Thus, the genetic transformation of normoxic and hypoxic cardiomyocytes can be enhanced by using lipoplexes modified with TATp and/or mAb 2G4. Such complexes also demonstrate an increased accumulation in the ischemic myocardium and effective transfection of hypoxic cardiomyocytes in vivo.
Collapse
Affiliation(s)
- Y T Ko
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
13
|
Anderson CD, Heydarkhan-Hagvall S, Schenke-Layland K, Yang JQ, Jordan MC, Kim JK, Brown DA, Zuk PA, Laks H, Roos KP, MacLellan WR, Beygui RE. The Role of Cytoprotective Cytokines in Cardiac Ischemia/Reperfusion Injury. J Surg Res 2008; 148:164-71. [DOI: 10.1016/j.jss.2007.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/23/2007] [Accepted: 08/01/2007] [Indexed: 01/25/2023]
|
14
|
Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E, Sussman MA. Activation of Notch-mediated protective signaling in the myocardium. Circ Res 2008; 102:1025-35. [PMID: 18369158 DOI: 10.1161/circresaha.107.164749] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Notch network regulates multiple cellular processes, including cell fate determination, development, differentiation, proliferation, apoptosis, and regeneration. These processes are regulated via Notch-mediated activity that involves hepatocyte growth factor (HGF)/c-Met receptor and phosphatidylinositol 3-kinase/Akt signaling cascades. The impact of HGF on Notch signaling was assessed following myocardial infarction as well as in cultured cardiomyocytes. Notch1 is activated in border zone cardiomyocytes coincident with nuclear c-Met following infarction. Intramyocardial injection of HGF enhances Notch1 and Akt activation in adult mouse myocardium. Corroborating evidence in cultured cardiomyocytes shows treatment with HGF or insulin increases levels of Notch effector Hes1 in immunoblots, whereas overexpression of activated Notch intracellular domain prompts a 3-fold increase in phosphorylated Akt. Infarcted hearts injected with adenoviral vector expressing Notch intracellular domain treatment exhibit improved hemodynamic function in comparison with control mice after 4 weeks, implicating Notch signaling in a cardioprotective role following cardiac injury. These results indicate Notch activation in cardiomyocytes is mediated through c-Met and Akt survival signaling pathways, and Notch1 signaling in turn enhances Akt activity. This mutually supportive crosstalk suggests a positive survival feedback mechanism between Notch and Akt signaling in adult myocardium following injury.
Collapse
Affiliation(s)
- Natalie A Gude
- San Diego State University Heart Institute, Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li X, Wang Z, Ran H, Li X, Yuan Q, Zheng Y, Ren J, Su L, Zhang W, Li Q, Xu C. Experimental research on therapeutic angiogenesis induced by hepatocyte growth factor directed by ultrasound-targeted microbubble destruction in rats. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2008; 27:453-460. [PMID: 18314523 DOI: 10.7863/jum.2008.27.3.453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE The purpose of this study was to explore the feasibility of therapeutic angiogenesis in myocardial infarction induced by hepatocyte growth factor (HGF) mediated by ultrasound-targeted microbubble destruction. METHODS Forty Wistar rats were divided into 4 groups after the models of myocardial infarction were prepared: (1) HGF, ultrasound, and microbubbles (HGF+US/MB), (2) HGF and ultrasound, (3) HGF and microbubbles, and (4) surgery alone. Destruction of ultrasound-targeted microbubbles loaded with the HGF gene with an electrocardiographic trigger mode was performed in the HGF+US/MB group. All the rats were killed after being transfected for 14 days. Enhanced green fluorescent protein expression was examined in the myocardium, liver, and kidney in all groups by fluorescence microscopy; CD34 expression was detected by immunohistochemistry, and microvessel density (MVD) was counted in the high-power field on microscopy. Hepatocyte growth factor expression in the myocardium was detected by western blotting and an enzyme-linked immunosorbent assay. RESULTS Enhanced green fluorescent protein expression was detected in the myocardium of the HGF+US/MB group, but a few areas of HGF expression were detected only in small vessels and the capillary endothelium, and no expression was found in the surgery-alone and HGF and microbubbles groups. The results of MVD counting by microscopy showed that the MVD in the myocardium of the HGF+US/MB group was the highest among all the groups. The results of western blotting and the enzyme-linked immunosorbent assay showed that the amount of HGF in the myocardium was highest in the HGF+US/MB group. CONCLUSIONS Ultrasound-targeted microbubble destruction could deliver HGF into the infracted myocardium and produce an angiogenesis effect, which could provide a novel strategy for gene therapy of myocardial infarction.
Collapse
Affiliation(s)
- Xingsheng Li
- Institute of Ultrasound Imaging, Chongqing University of Medical Sciences, 74 Linjiang Rd, Yuzhong, 400010 Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
In vivo hepatocyte growth factor gene transfer reduces myocardial ischemia-reperfusion injury through its multiple actions. J Card Fail 2008; 13:874-83. [PMID: 18068622 DOI: 10.1016/j.cardfail.2007.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 06/27/2007] [Accepted: 07/09/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is reported to protect the heart against ischemia-reperfusion injury. However, whether in vivo adenovirus-mediated HGF gene transfer before ischemia is protective against ischemia-reperfusion and its precise mechanisms are still unknown. METHODS AND RESULTS By using a rabbit model of ischemia-reperfusion injury, we demonstrate that HGF gene transfer is cardioprotective through its multiple beneficial actions, such as angiogenesis, Bcl-2 overexpression, and decreasing hydroxyl radicals, deoxyuride-5'-triphosphate biotin nick end labeling (TUNEL)-positive myocytes, and fibrotic area. After HGF gene transfer, the rabbits underwent 30 minutes of coronary occlusion and 30 minutes, 4 hours, 48 hours, and 14 days of reperfusion. The infarct size at 48 hours of reperfusion was significantly reduced in the HGF group (13.4% +/- 2.3%) compared with that in the LacZ group (36.5% +/- 2.0%) and saline group (40.3% +/- 3.2%). At 14 days of reperfusion, HGF gene transfer improved left ventricular ejection fraction and fractional shortening, reduced the fibrotic area, and increased the capillary density in the risk area. At 4 hours of reperfusion, Bcl-2 protein was overexpressed and the incidence of TUNEL-positive myocytes was significantly decreased in the risk area in the HGF group compared with the LacZ and saline groups. The myocardial interstitial 2,5-dihydroxybenzoic acid level, an indicator of hydroxyl radical, increased during 30 minutes of ischemia and 30 minutes of reperfusion in the LacZ and saline groups, and was significantly inhibited in the HGF group. CONCLUSION HGF gene therapy may be a novel therapeutic strategy against unstable angina pectoris or severe angina pectoris, which may progress to acute myocardial infarction.
Collapse
|
17
|
Makiuchi A, Yamaura K, Mizuno S, Matsumoto K, Nakamura T, Amano J, Ito KI. Hepatocyte growth factor prevents pulmonary ischemia-reperfusion injury in mice. J Heart Lung Transplant 2007; 26:935-43. [PMID: 17845933 DOI: 10.1016/j.healun.2007.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion (IR) injury after lung transplantation leads to significant morbidity and mortality in recipients, which remains the major obstacle in clinical lung transplantation. To reduce pulmonary graft dysfunction and improve prognosis after lung transplantation, prevention of IR-induced lung injury in the peri-operative period is required. In the present study, we investigated the effects of recombinant hepatocyte growth factor (HGF) on pulmonary IR injury using a murine model system. METHODS To assess the protective effect of HGF against lung injury, mice with pulmonary IR were divided into two groups and injected with 500 microg/kg of human recombinant HGF or the same dose of saline alone as a control. RESULTS After pulmonary IR injury, the lung injury score increased in a time-dependent manner up to 24 hours. A significant reduction of lung injury score was observed with the administration of exogenous HGF. Moreover, the ratio of apoptotic cells was significantly reduced in mice treated with HGF. Significantly increased expression of Bcl-xL was observed after IR in mice administered HGF as compared with saline-treated controls. In contrast, expression of Bax was reduced significantly in HGF-treated mice. Serum levels of endogenous murine HGF were increased significantly in HGF-treated mice. CONCLUSIONS Our findings indicate that administration of exogenous HGF ameliorates the pulmonary tissue injury induced by IR, which may provide an alternative for prevention of IR-induced lung injury in the peri-operative period in lung transplantation.
Collapse
Affiliation(s)
- Akiko Makiuchi
- Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, Ingram DA, Rosen ED, March KL. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells 2007; 25:3234-43. [PMID: 17901400 DOI: 10.1634/stemcells.2007-0388] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of adipose-derived stem/stromal cells (ASCs) for promoting repair of tissues is a promising potential therapy, but the mechanisms of their action are not fully understood. We and others previously demonstrated accelerated reperfusion and tissue salvage by ASCs in peripheral ischemia models and have shown that ASCs secrete physiologically relevant levels of hepatocyte growth factor (HGF) and vascular endothelial growth factor. The specific contribution of HGF to ASC potency was determined by silencing HGF expression. RNA interference was used to downregulate HGF expression. A dual-cassette lentiviral construct expressing green fluorescent protein (GFP) and either a small hairpin RNA specifically targeted to HGF mRNA (shHGF) or an inactive control sequence (shCtrl) were used to stably transduce ASCs (ASC-shHGF and ASC-shCtrl, respectively). Transduced ASC-shHGF secreted >80% less HGF, which led to a reduced ability to promote survival, proliferation, and migration of mature and progenitor endothelial cells in vitro. ASC-shHGF were also significantly impaired, compared with ASC-shCtrl, in their ability to promote reperfusion in a mouse hindlimb ischemia model. The diminished ability of ASCs with silenced HGF to promote reperfusion of ischemic tissues was reflected by reduced densities of capillaries in reperfused tissues. In addition, fewer GFP(+) cells were detected at 3 weeks in ischemic limbs of mice treated with ASC-shHGF compared with those treated with ASC-shCtrl. These results indicate that production of HGF is important for the potency of ASCs. This finding directly supports the emerging concept that local factor secretion by donor cells is a key element of cell-based therapies. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Liying Cai
- Indiana Center for Vascular Biology & Medicine, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 975 W. Walnut Street IB 441, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gene Therapies and Stem Cell Therapies. Cardiovasc Ther 2007. [DOI: 10.1016/b978-1-4160-3358-5.50009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
Abstract
Heart failure associated with coronary artery disease is a major cause of morbidity and mortality. Recent developments in the understanding of the molecular mechanisms of heart failure have led to the identification of novel therapeutic targets which, combined with the availability of efficient gene delivery vectors, offer the opportunity for the design of gene therapies for protection of the myocardium. Viral-based therapies have been developed to treat polygenic and complex diseases such as myocardial ischaemia, hypertension, atherosclerosis and restenosis. Some of these experimental therapies are now undergoing clinical evaluation in patients with cardiovascular diseases. In this review we will focus on the latest advances in the field of gene therapy for treatment of heart failure and their clinical application.
Collapse
Affiliation(s)
- A S Pachori
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27701, USA.
| | | | | |
Collapse
|
21
|
Pislaru SV, Simari RD. Gene transfer for ischemic cardiovascular disease: is this the end of the beginning or the beginning of the end? ACTA ACUST UNITED AC 2005; 2:138-44. [PMID: 16265457 DOI: 10.1038/ncpcardio0136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 02/02/2005] [Indexed: 11/08/2022]
Abstract
The past decade has represented a period of high expectations for cardiovascular gene transfer on the basis of the findings from preclinical experiments and promising early clinical results. Yet, randomized studies have not demonstrated similar results. Do these poor results mean that gene transfer for ischemic cardiovascular disease has failed in its promise, or do they merely signify the inherent challenges of a pioneering field? In this paper we briefly review the clinical experience of gene transfer for ischemic cardiovascular disease and propose future directions for research.
Collapse
Affiliation(s)
- Sorin V Pislaru
- Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
22
|
Shirakawa Y, Sawa Y, Takewa Y, Tatsumi E, Kaneda Y, Taenaka Y, Matsuda H. Gene transfection with human hepatocyte growth factor complementary DNA plasmids attenuates cardiac remodeling after acute myocardial infarction in goat hearts implanted with ventricular assist devices. J Thorac Cardiovasc Surg 2005; 130:624-32. [PMID: 16153905 DOI: 10.1016/j.jtcvs.2004.02.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 02/15/2004] [Accepted: 02/26/2004] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although a left ventricular assist device is often used to provide circulatory support until transplantation in severe heart failure, the mortality of long-term use of left ventricular assist devices remains high. We have shown that hepatocyte growth factor causes angiogenesis, antifibrosis, and antiapoptosis in the myocardium. Therefore, gene therapy with hepatocyte growth factor-complementary DNA plasmids may enhance the chance of "bridge to recovery." In this study, we performed gene therapy with hepatocyte growth factor in the impaired goat heart with a left ventricular assist device. METHODS Cardiac impairment was induced in 6 adult goats (56-65 kg) by ligation of the coronary artery, and ventricular assist devices were installed. The hepatocyte growth factor group (HGF; n = 3) was administered human hepatocyte growth factor-complementary DNA plasmid (2.0 mg) in the myocardium. The control group (n = 3) was similarly administered beta-galactosidase plasmid. Four weeks after gene transfection, we attempted to wean all goats from the ventricular assist device. RESULTS The myocardia transfected with human hepatocyte growth factor-complementary DNA contained human hepatocyte growth factor protein at levels as high as 1.0 +/- 0.3 ng/g tissue 3 days after transfection. After weaning from the ventricular assist device, the HGF group showed good hemodynamics, whereas the control group showed deterioration. The percentage of fractional shortening was significantly higher in the HGF group than the control group (HGF vs control, 37.9% +/- 1.7% vs 26.4% +/- 0.3%, respectively; P < .01). Left ventricular dilatation associated with myocyte hypertrophy and fibrotic changes was detected in the control group but not in the HGF group. Vascular density was markedly increased in the HGF group. CONCLUSIONS These results suggest that gene therapy with human hepatocyte growth factor may enhance the chance of bridge to recovery in the impaired heart supported with a ventricular assist device.
Collapse
Affiliation(s)
- Yukitoshi Shirakawa
- Department of Surgery, E1, Division of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Jayasankar V, Woo YJ, Pirolli TJ, Bish LT, Berry MF, Burdick J, Gardner TJ, Sweeney HL. Induction of angiogenesis and inhibition of apoptosis by hepatocyte growth factor effectively treats postischemic heart failure. J Card Surg 2005; 20:93-101. [PMID: 15673421 DOI: 10.1111/j.0886-0440.2005.200373.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heart failure following myocardial infarction (MI) is a significant cause of morbidity and mortality and remains a difficult therapeutic challenge. Hepatocyte growth factor (HGF) is a potent angiogenic and anti-apoptotic protein whose receptor is upregulated following MI. This study was designed to investigate the ability of HGF to prevent heart failure in a rat model of experimental MI. METHODS The rats underwent direct intramyocardial injection with replication-deficient adenovirus encoding HGF (n = 7) or null virus as control (n = 7) 3 weeks following ligation of the left anterior descending coronary artery. Analysis of the following was performed 3 weeks after injection: cardiac function by pressure-volume conductance catheter measurements; LV wall thickness; angiogenesis by Von Willebrand's factor staining; and apoptosis by the TUNEL assay. The expression levels of HGF and the anti-apoptotic factor Bcl-2 were analyzed by Western blot. RESULTS Adeno-HGF-treated animals had greater preservation of maximum LV pressure (HGF 77 +/- 3 vs. control 64 +/- 5 mmHg, p < 0.05), maximum dP/dt (3024 +/- 266 vs. 1907 +/- 360 mmHg/sec, p < 0.05), maximum dV/dt (133 +/- 20 vs. 84 +/- 6 muL/sec, p < 0.05), and LV border zone wall thickness (1.98 +/- 0.06 vs. 1.53 +/- 0.07 mm, p < 0.005). Angiogenesis was enhanced (151 +/- 10.0 vs. 90 +/- 4.5 endothelial cells/hpf, p < 0.005) and apoptosis was reduced (3.9 +/- 0.3 vs. 8.2 +/- 0.5%, p < 0.005). Increased expression of HGF and Bcl-2 protein was observed in the Adeno-HGF-treated group. CONCLUSIONS Overexpression of HGF 3 weeks post-MI resulted in enhanced angiogenesis, reduced apoptosis, greater preservation of ventricular geometry, and preservation of cardiac contractile function. This technique may be useful to treat or prevent postinfarction heart failure.
Collapse
Affiliation(s)
- Vasant Jayasankar
- Department of Cardiothoracic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Recent advances in understanding the molecular and cellular basis of cardiovascular diseases, together with the availability of tools for genetic manipulation of the cardiovascular system, offer possibilities for new treatments. Gene therapies have demonstrated potential usefulness for treating complex cardiovascular diseases, such as hypertension, atherosclerosis and myocardial ischemia, in various animal models. Some of these experimental therapies are now undergoing clinical evaluation in patients with cardiovascular disease. However, the successful transition of these therapies into mainstream clinical practice awaits further improvements to vector platforms and delivery tools and the documentation of clinical feasibility, safety and efficacy through multi-center randomized trials.
Collapse
Affiliation(s)
- Luis G Melo
- Department of Physiology, Queen's University, 18 Stuart Street, Kingston, Ontario, K7L 3N6, Canada.
| | | | | | | |
Collapse
|
25
|
Abstract
Recent progress in molecular and cellular biology has led to the development of numerous effective cardiovascular drugs. However, there are still a number of diseases for which no known effective therapy exists, such as peripheral arterial disease, ischaemic heart disease, restenosis after angioplasty, and vascular bypass graft occlusion. Currently, gene therapy is emerging as a potential strategy for the treatment of cardiovascular disease despite its limitations. The first human trial in gene therapy for cardiovascular disease was started at 1994 to treat peripheral vascular disease using vascular endothelial growth factor (VEGF). Then, many different potent angiogenic growth factors were tested in clinical trials to treat peripheral arterial disease and ischaemic heart disease. Improvement of clinical symptoms in peripheral arterial disease and ischaemic heart disease has been reported. This review focuses on the future potential of gene therapy for the treatment of cardiovascular disease. In the future, gene therapy might become a real pharmacotherapy to treat cardiovascular disease.
Collapse
Affiliation(s)
- Ryuichi Morishita
- Division of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan.
| | | | | |
Collapse
|
26
|
Ince H, Petzsch M, Rehders TC, Chatterjee T, Nienaber CA. Transcatheter Transplantation of Autologous Skeletal Myoblasts in Postinfarction Patients With Severe Left Ventricular Dysfunction. J Endovasc Ther 2004; 11:695-704. [PMID: 15615560 DOI: 10.1583/04-1386r.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To report a case-controlled safety and feasibility study of transcatheter transplantation of autologous skeletal myoblasts as a stand-alone procedure in patients with ischemic heart failure. METHODS Six men (mean age 66.2+/-7.2 years) were eligible for transcatheter transplantation of autologous skeletal myoblasts cultured from quadriceps muscle biopsies. Six other men (mean age 65.7+/-6.3 years) were selected as matched controls (no muscle biopsies). A specially designed injection catheter was advanced through a femoral sheath into the left ventricle cavity, where myoblasts in solution (0.2 mL/injection) were injected into the myocardium via a 25-G needle. At baseline and in follow-up, both groups underwent Holter monitoring, a 6-minute walk test, New York Heart Association (NYHA) class determination, and echocardiography with dobutamine challenge. RESULTS Skeletal myoblast transplantation was technically successful in all 6 patients with no complications; 19+/-10 injections were performed per patient (210 x 10(6)+/-150 x 10(6) cells implanted per patient). Left ventricular ejection fraction (LVEF) rose from 24.3%+/-6.7% at baseline to 32.2%+/-10.2% at 12 months after myoblast implantation (p=0.02 versus baseline and p<0.05 versus controls); in matched controls, LVEF decreased from 24.7%+/-4.6% to 21.0%+/-4.0% (p=NS). Walking distance and NYHA functional class were significantly improved at 1 year (p=0.02 and p=0.001 versus baseline, respectively), whereas matched controls were unchanged. CONCLUSIONS Transcatheter transplantation of autologous skeletal myoblasts for severe left ventricular dysfunction in postinfarction patients is feasible, safe, and promising. Scrutiny with randomized, double-blinded, multicenter trials appears warranted.
Collapse
Affiliation(s)
- Hüseyin Ince
- Division of Cardiology/Angiology and Department of Internal Medicine at the University Hospital Rostock, Germany
| | | | | | | | | |
Collapse
|
27
|
Okamoto N, Nakagawa M, Fujino H, Nishijima S, Hanato T, Narita T, Takeuchi Y, Imanaka-Yoshida K. Teratogenic effects of bis-diamine on the developing myocardium. ACTA ACUST UNITED AC 2004; 70:132-41. [PMID: 15039927 DOI: 10.1002/bdra.20001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Bis-diamine induces conotruncal anomalies and disproportional ventricular development in rat embryos when administered to the mother. To evaluate the mechanisms of disproportional ventricular development in the anomalous heart, we analyzed the morphology of the embryonic heart and investigated cardiomyocytic DNA synthesis and apoptosis. METHODS A single dose of 200 mg of bis-diamine was administered to pregnant rats Wistar on day 9.5 of pregnancy. The embryos were removed on each embryonic day from 10.5 to 18.5. Expression of cardiotrophin-1 and hepatocyte growth factor was investigated on the sections, and cardiotrophin-1, hepatocyte growth factor and myocyte enhancer factor 2 mRNA expression was examined by reverse transcriptase-polymerase chain reaction. Myocardial DNA synthesis was investigated using 5-bromo-2'-deoxyuridine and the labeling index was calculated for each heart. Apoptosis was also analyzed using TUNEL reaction and electrophoresis of DNA fragmentation. RESULTS The embryos treated with bis-diamine had conotruncal anomalies associated with thin left ventricular wall in the later stage. The labeling index on embryonic day 15.5 and 16.5 was significantly lower than those in the controls. Hepatocyte growth factor and cardiotrophin-1 mRNA expression was upregulated on embryonic day 12.5 and 15.5 in bis-diamine-treated hearts. Fewer apoptotic cells were detected in the hearts of bis-diamine-treated embryos than in control hearts from embryonic day 14.5 to 16.5. CONCLUSIONS The ventricular disproportion in the bis-diamine-treated heart may be caused by the early myocardial differentiation delay and poor proliferation and reduced apoptosis associated with anomalous circulatory condition in the later stage.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Pediatrics, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ryugo M, Sawa Y, Ono M, Fukushima N, Aleshin AN, Mizuno S, Nakamura T, Matsuda H. Myocardial Protective Effect of Human Recombinant Hepatocyte Growth Factor for Prolonged Heart Graft Preservation in Rats. Transplantation 2004; 78:1153-8. [PMID: 15502712 DOI: 10.1097/01.tp.0000134975.86867.f5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In heart transplantation, myocardial apoptosis during hypothermic storage contributes to graft dysfunction. On the other hand, hepatocyte growth factor (HGF) has been reported to be an antiapoptotic factor in the heart. Therefore, we assessed whether the administration of recombinant human HGF (rh-HGF) prevents apoptosis in the prolonged preserved myocardium, resulting in an improvement in the cardiac function of the graft. METHODS Isolated rat hearts were subjected to 4 hr (group A), 6 hr (group B), and 8 hr (group C: without rh-HGF vs. group D: with 100 microg of rh-HGF) of hypothermic storage followed by 60 min of normothermic reperfusion (n=5 in each group). RESULTS Compared with non-HGF-treated hearts (group C), HGF-treated hearts (group D) showed a significantly higher recovery rate of left ventricular developed pressure (38+/-5% vs. 58+/-6%, P<0.01) and maximum dp/dt (53+/-7% vs. 74+/-4%, P<0.01) and a lower rate of TUNEL-positive cardiomyocytes (7.8+/-6.0% vs. 25.3+/-8.9%, P<0.05) after 60 min of reperfusion. Western blot analysis revealed that c-Met/HGF receptor expression was stronger in the HGF-treated myocardium than in the non-HGF-treated myocardium after 8 hr of storage and was associated with a weaker expression of caspase-3 and a stronger expression of Bcl-xL after 60 min of reperfusion. CONCLUSION The administration of rh-HGF before storage improved cardiac function after prolonged myocardial preservation by preventing apoptosis through the c-Met/HGF receptor. Thus, the addition of rh-HGF in the storage solution may be a promising strategy for prolonged heart graft preservation.
Collapse
Affiliation(s)
- Masahiro Ryugo
- Division of Cardiovascular Surgery, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kondo I, Ohmori K, Oshita A, Takeuchi H, Fuke S, Shinomiya K, Noma T, Namba T, Kohno M. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a "functional" gene using ultrasonic microbubble destruction. J Am Coll Cardiol 2004; 44:644-53. [PMID: 15358035 DOI: 10.1016/j.jacc.2004.04.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2002] [Revised: 04/12/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVES We examined whether ultrasonic microbubble destruction (US/MB) enables therapeutic myocardial gene transfer of hepatocyte growth factor (HGF) for acute myocardial infarction (MI). BACKGROUND Hepatocyte growth factor gene transfer provides cardioprotective effects in MI, which requires direct intramyocardial injection or special vectors. Although US/MB was used in myocardial gene transfer, its feasibility in transfer of a therapeutic gene with non-viral vector remains unknown. METHODS In a rat model of acute MI, naked plasmid (pVaxl) encoding human HGF (1,500 microg) was infused into the left ventricular (LV) chamber during US/MB (HGF-US/MB) or insonation only (HGF-US) or alone (HGF-alone), while control MI rats received empty pVaxl during US/MB (pVaxl-US/MB). For US/MB, transthoracic intermittent insonation with a diagnostic transducer (1.3 MHz) was performed for 2 min at a peak negative pressure of -2,160 kPa during intravenous 20% Optison. RESULTS Baseline risk area was comparable among the groups. Immunohistology seven days after treatment revealed significant myocardial expression of HGF protein only in HGF-US/MB. At three weeks, LV weight in HGF-US/MB (0.89 +/- 0.03 g) was significantly lower than those in HGF-alone (1.09 +/- 0.08 g), HGF-US (1.04 +/- 0.07 g), and pVaxl-US/MB (1.04 +/- 0.05 g). Moreover, scar size was significantly smaller (16 +/- 6% vs. 39 +/- 5%, 41 +/- 6%, and 40 +/- 4% of total myocardial circumferential length, respectively), while capillary density (49 +/- 8 vs. 34 +/- 5, 37 +/- 6, and 36 +/- 4 capillaries/high-power field, respectively) and arterial density (37 +/- 7 vs. 15 +/- 9, 18 +/- 4, and 14 +/- 11 arterioles/high-power field, respectively) in the risk area were higher in HGF-US/MB than the other groups. CONCLUSIONS Ultrasound-mediated microbubble destruction may enable myocardial HGF gene transfer with systemic administration of naked plasmid, which enhances angiogenesis, limits infarction size, and prevents LV remodeling after MI.
Collapse
Affiliation(s)
- Isao Kondo
- Second Department of Internal Medicine, Kagawa University School of Medicine, Kagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Melo LG, Pachori AS, Kong D, Gnecchi M, Wang K, Pratt RE, Dzau VJ. Gene and cell-based therapies for heart disease. FASEB J 2004; 18:648-63. [PMID: 15054087 DOI: 10.1096/fj.03-1171rev] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart disease remains the prevalent cause of premature death and accounts for a significant proportion of all hospital admissions. Recent developments in understanding the molecular mechanisms of myocardial disease have led to the identification of new therapeutic targets, and the availability of vectors with enhanced myocardial tropism offers the opportunity for the design of gene therapies for both protection and rescue of the myocardium. Genetic therapies have been devised to treat complex diseases such as myocardial ischemia, heart failure, and inherited myopathies in various animal models. Some of these experimental therapies have made a successful transition to clinical trial and are being considered for use in human patients. The recent isolation of endothelial and cardiomyocyte precursor cells from adult bone marrow may permit the design of strategies for repair of the damaged heart. Cell-based therapies may have potential application in neovascularization and regeneration of ischemic and infarcted myocardium, in blood vessel reconstruction, and in bioengineering of artificial organs and prostheses. We expect that advances in the field will lead to the development of safer and more efficient vectors. The advent of genomic screening technology should allow the identification of novel therapeutic targets and facilitate the detection of disease-causing polymorphisms that may lead to the design of individualized gene and cell-based therapies.
Collapse
Affiliation(s)
- Luis G Melo
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ryugo M, Sawa Y, Ono M, Miyamoto Y, Aleshin AN, Matsuda H. Pharmacologic preconditioning of JTE-607, a novel cytokine inhibitor, attenuates ischemia-reperfusion injury in the myocardium. J Thorac Cardiovasc Surg 2004; 127:1723-7. [PMID: 15173729 DOI: 10.1016/j.jtcvs.2003.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury is a main cause of postoperative cardiac dysfunction, and a burst of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin 1 beta, interleukin 6, and interleukin 8, plays a pivotal role. Recently, JTE-607 has been reported as a potent inhibitor of the multiple inflammatory cytokines in the endotoxin shock mouse model. In this study we proved the hypothesis that JTE-607 might attenuate myocardial ischemia-reperfusion injury in a rat model. METHODS The isolated rat hearts in the JTE-607 preconditioning group (J group, n = 8) or control group (C group, n = 8) were subjected to warm ischemia (37 degrees C) for 30 minutes, followed by 60 minutes of reperfusion with the Langendorff perfusion system. RESULTS Left ventricular developed pressure and maximum dp/dt after reperfusion were significantly improved in the J group than in the C group (P <.01). Creatine phosphokinase leakage is significantly lower in the J group (P <.05). Moreover, the tissue cytokine levels, such as tumor necrosis factor alpha, interleukin 6, and interleukin 8, in the myocardium were significantly lower in the J group than in the C group (P <.05). CONCLUSION These results suggested that the pharmacologic preconditioning of JTE-607 inhibits a burst of endogenous cytokines in the myocardium, resulting in the improvement of cardiac function after ischemia-reperfusion injury. Thus JTE-607 might be a novel therapeutic strategy for the protection of postoperative cardiac dysfunction in cardiac surgery.
Collapse
Affiliation(s)
- Masahiro Ryugo
- Division of Cardiovascular Surgery, Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Nagayama T, Nagayama M, Kohara S, Kamiguchi H, Shibuya M, Katoh Y, Itoh J, Shinohara Y. Post-ischemic delayed expression of hepatocyte growth factor and c-Met in mouse brain following focal cerebral ischemia. Brain Res 2004; 999:155-66. [PMID: 14759494 DOI: 10.1016/j.brainres.2003.11.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2003] [Indexed: 01/08/2023]
Abstract
We investigated long-term changes in the expression of protein and mRNA of hepatocyte growth factor (HGF) and its receptor c-Met in mouse brain after permanent occlusion of the middle cerebral artery, by using immunohistochemistry and quantitative reverse transcription-polymerase chain reaction. HGF-immunopositive cells were observed in the periinfarct region from 4 days after occlusion, peaking at 14-28 days. The area containing HGF-immunopositive cells continued to expand until 28 days after occlusion. c-Met-immunopositive cells were observed exclusively at the periinfarct region at 7 and 14 days after occlusion. At 28 days after occlusion, there were many c-Met-immunopositive cells in the widespread periinfarct region. Triple immunohistochemical staining by using confocal laser scanning microscopy (CLSM) demonstrated that most of the HGF-immunopositive cells were localized to reactive astrocytes. The c-Met-immunopositive cells were also localized to reactive astrocytes. HGF mRNA was upregulated exclusively in the periinfarct region at 14 days. c-Met mRNA was upregulated in the periinfarct region from as late as 28 days after occlusion. Thus, HGF and c-Met show delayed expression in the periinfarct region at both protein and mRNA levels after induction of ischemia. Because HGF was recently shown to play critical roles in angiogenesis and neurotrophic activities, the temporal profiles of their expression may imply the involvement of HGF in the process of post-ischemic brain tissue repair.
Collapse
Affiliation(s)
- Tomiko Nagayama
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hisaka Y, Ieda M, Nakamura T, Kosai KI, Ogawa S, Fukuda K. Powerful and controllable angiogenesis by using gene-modified cells expressing human hepatocyte growth factor and thymidine kinase. J Am Coll Cardiol 2004; 43:1915-22. [PMID: 15145121 DOI: 10.1016/j.jacc.2004.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2003] [Revised: 12/10/2003] [Accepted: 01/05/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This study investigated the possibility of achieving angiogenesis by using gene-modified cells as a vector. BACKGROUND Although gene therapy for peripheral circulation disorders has been studied intensively, the plasmid or viral vectors have been associated with several disadvantages, including unreliable transfection and uncontrollable gene expression. METHODS Human hepatocyte growth factor (hHGF) and thymidine kinase (TK) expression plasmids were serially transfected into NIH3T3 cells, and permanent transfectants were selected (NIH3T3 + hHGF + TK). Unilateral hindlimb ischemia was surgically induced in BALB/c nude mice, and cells were transplanted into the thigh muscles. All effects were assessed at four weeks. RESULTS The messenger ribonucleic acid expression and protein production of hHGF were confirmed. Assay of growth inhibition by ganciclovir revealed that the 50% (median) inhibitory concentration of NIH3T3 + hHGF + TK was 1000 times lower than that of NIH3T3 + hHGF. The NIH3T3 + hHGF + TK group had a higher laser Doppler blood perfusion index, higher microvessel density, wider microvessel diameter, and lower rate of hindlimb necrosis, as compared with the plasmid- and adenovirus-mediated hHGF transfection groups or the NIH3T3 group. The newly developed microvessels were accompanied by smooth muscle cells, as well as endothelial cells, indicating that they were on the arteriolar or venular level. Laser Doppler monitoring showed that the rate of blood perfusion could be controlled by oral administration of ganciclovir. The transplanted cells completely disappeared in response to ganciclovir administration for four weeks. CONCLUSIONS Gene-modified cell transplantation therapy induced strong angiogenesis and collateral vessel formation that could be controlled externally with ganciclovir.
Collapse
Affiliation(s)
- Yasuyo Hisaka
- Institute for Advanced Cardiac Therapeutics, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
In conclusion, myoblast transfer has now reached a stage where large randomized trials such as the one we are initiating (300 patients) are mandatory to thoroughly assess the efficacy of the procedure. It is important that the design of these studies complies with the stringent methodologic guidelines commonly used in drug trials, as this is the only means of accurately assessing whether and to what extent skeletal myoblast transfer can really impact the outcome of patients with advanced left-ventricular ischemic dysfunction.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Bichat Claude Bernard, 46 rue Henri Huchard, Paris 75018, France.
| |
Collapse
|
35
|
Suzuki YJ, Evans T. Regulation of cardiac myocyte apoptosis by the GATA-4 transcription factor. Life Sci 2004; 74:1829-38. [PMID: 14761664 DOI: 10.1016/j.lfs.2003.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 10/08/2003] [Indexed: 10/26/2022]
Abstract
Apoptosis of cardiac muscle cells plays important roles in the development of various heart diseases including myocardial infarction and anthracycline-induced cardiomyopathy. Understanding the regulatory mechanisms of cardiac myocyte apoptosis and survival is important for establishing therapeutic strategies against heart disease. Our recent experiments demonstrate that the GATA-4 transcription factor not only mediates cardiac hypertrophy, but also regulates apoptosis and survival of adult cardiac muscle cells. Apoptosis induced by anthracyclines is associated with decreased expression of GATA-4, while the restoration of GATA-4 levels via ectopic expression attenuated the apoptosis. Survival factors of cardiac myocytes such as hepatocyte growth factor and endothelin-1 activate GATA-4, and this signal transduction mechanism at least in part serves to protect the heart against oxidative stress.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Cell & Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Jean Mayer USDA Human Nutrition Research Center on Aging, Department of Medicine, Tufts University, Boston, MA 02111, USA.
| | | |
Collapse
|
36
|
Abstract
Recent progress in molecular and cellular biology has developed numerous effective cardiovascular drugs. However, there are still a number of diseases for which no known effective therapy exists, such as peripheral arterial disease, ischemic heart disease, restenosis after angioplasty, vascular bypass graft occlusion, and transplant coronary vasculopathy. Currently, gene therapy is emerging as a potential strategy for the treatment of cardiovascular disease to treat such diseases despite of its limitations. The first human trial in cardiovascular disease was started in 1994 to treat peripheral vascular disease using vascular endothelial growth factor (VEGF). Since then, many different potent angiogenic growth factors have been tested in clinical trials to treat peripheral arterial disease. The results from these clinical trials seem to exceed expectations. Improvement of clinical symptoms in peripheral arterial disease and ischemic heart disease has been reported. In addition, another strategy for combating disease processes, the targeting of transcriptional processes, has been tested in a human trial. Genetically modified vein grafts transfected with decoy against E2F, an essential transcription factor in cell cycle progression, revealed apparent long-term potency in human patients. This review focuses on the future potential of gene therapy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ryuichi Morishita
- Division of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
37
|
Abstract
The heart is subjected to oxidative stress during various clinical situations, such as ischemia-reperfusion injury and anthracycline chemotherapy. The loss of cardiac myocytes is the major problem in heart failure; thus, it is important to protect cardiac myocytes against cell death. Various growth factors, including insulin like growth factor, hepatocyte growth factor, endothelin-1, fibroblast growth factor, and transforming growth factor, have been shown to protect the heart against oxidative stress. The mechanism of growth factor-mediated cardioprotection may involve the attenuation of cardiac myocyte apoptosis. The present article summarizes the current knowledge on the molecular mechanisms of growth factor-mediated antiapoptotic signaling in cardiac myocytes. Insulin-like growth factor-1 activates phosphatidylinositol 3' -kinase and extracellular signal-regulated kinase pathways. Recent data showed that GATA-4 might be an important mediator of cardiac myocyte survival by endothelin-1 and hepatocyte growth factor. These growth factors, as well as mediators of growth factor-signaling, may be useful in therapeutic strategies against oxidative stress-induced cardiac injury.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Jean Mayer USDA Human Nutrition Research Center on Aging, Department of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
38
|
Miyake M, Saze KI, Yaguchi T, Wang J, Suzuta Y, Haga Y, Takahashi SY, Yamamoto Y, Iwabuchi S. Canine hepatocyte growth factor: molecular cloning and characterization of the recombinant protein. Vet Immunol Immunopathol 2003; 95:135-43. [PMID: 12963274 DOI: 10.1016/s0165-2427(03)00118-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hepatocyte growth factor (HGF) is a pleiotropic cytokine originally identified and cloned as a potent mitogen for hepatocytes. The HGF receptor is the transmembrane tyrosine kinase encoded by c-MET proto-oncogene. Various lines of evidence suggest that the HGF/c-MET receptor system plays essential roles in monocyte-macrophage function, mammalian development, angiogenesis and organ regeneration. We have cloned canine HGF (CaHGF) cDNA from leukocytes by the methods of reverse transcription (RT)-polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE). Canine HGF contains an open reading frame (ORF) of 2193 nucleotides, coding for 730 amino acids. The deduced amino acid sequence of canine HGF shows 97.5, 92.3, 92.1, and 92.0% homologies with those of feline, human, mouse, and rat, respectively. The possible glycosylation sites, cysteine residues linking the alpha and beta chains and the proteolytic processing site are conserved in all species. In addition, we have found a variant cDNA that deleted a sequence of 15 base pairs in the first kringle domain (K1) and resulted in the deletion of five amino acids. To confirm the biological activities of canine HGF cDNAs, both cDNAs were transiently expressed in COS-7 cells. The conditioned medium from the canine HGF-transfected COS-7 cells stimulated the growth of BNL CL.2 cells (a mouse hepatocyte cell) and scattering activity of Madin-Darby canine kidney (MDCK) cells. The materials reported here will be a crucial resource for further studies of canine HGF.
Collapse
Affiliation(s)
- Masashi Miyake
- Central Research Laboratories, Nippon Zenyaku Kogyo Co. Ltd., 1-1 Tairanoue Sasagawa, Asaka, Koriyama, Fukushima 963-0196, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Cell transplantation is emerging as a new treatment designed tot improve the poor outcome of patients with cardiac failure. Its rationale is that implantation of contractile cells into postinfarction scars can functionally rejuvenate these areas. Primarily for practical reasons, autologous skeletal myoblasts have been the first to be tested clinically but bone marrow stromal and hematopoietic stem cells may represent an interesting alternative in select situations because of their autologous origin and their purported plasticity. However, several key issues still need to be addressed including (1) the optimal type of cells, (2) the mechanism by which cell engraftment improves cardiac function, i.e., increased contractility or limitation of remodeling, (3) the most effective strategies for optimizing cell survival, and (4) the potential benefits of cell transplantation in nonischemic heart failure. In parallel to the experimental studies designed to address these issues, initial clinical trials are underway and should hopefully allow to know whether the hopes raised by cellular therapy are met by clinically meaningful improvements in function and outcome in patients with severe left ventricular ischemic dysfunction.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
40
|
Abstract
Cell transplantation is gaining a growing interest as a potential new means of improving the prognosis of patients with cardiac failure. The basic assumption is that left ventricular dysfunction is largely due to the loss of a critical number of cardiomyocytes and that it can be partly reversed by implantation of new contractile cells into the postinfarction scars. Primarily for practical reasons, autologous skeletal myoblasts have been the first to undergo clinical trials but other cell types are also considered, particularly bone marrow stem cells, which are attractive because of their autologous origin and their purported cardiomyocyte/endothelial transdifferentiation potential in response to cues provided by the target organ. However several key issues still need to be addressed including (1) the optimal type of donor cells, (2) the mechanism by which cell engraftment improves cardiac function, (3) the optimization of cell survival, and (4) the potential benefits of cell transplantation in non-ischemic heart failure. In parallel to the experimental studies designed to address these issues clinical trials are under way and should hopefully allow assessing to what extent cell transplantation may improve the outcome of patients with heart failure.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
41
|
Ahmet I, Sawa Y, Yamaguchi T, Matsuda H. Gene transfer of hepatocyte growth factor improves angiogenesis and function of chronic ischemic myocardium in canine heart. Ann Thorac Surg 2003; 75:1283-7. [PMID: 12683576 DOI: 10.1016/s0003-4975(02)04677-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatocyte growth factor (HGF) induces angiogenesis in myocardium. In the present study, its effects in chronic ischemic myocardium were tested. METHODS Four weeks after left anterior descending coronary artery ligation in canine hearts, HVJ-liposome containing either human HGF gene (160 microg; HGF group, n = 7) or nothing (control group, n = 6) was directly injected into ischemic myocardium. Four weeks after gene transfection, the thickness fraction (TF), an index of regional myocardial contractility (assessed by epicardial pulse-Doppler crystals), the myocardial perfusion flow (assessed by color microspheres), and the capillary density (assessed by immunostaining of vessels) were evaluated in ischemic myocardium. RESULTS Thickness fraction (percent of nonischemic myocardium) was significantly improved in the HGF group (80 +/- 15 from 52 +/- 16 of pregene; p < 0.05) whereas it was not changed in the control group (52 +/- 10 from 50 +/- 8 of pregene). The perfusion flow (% of nonischemic myocardium) was significantly improved in the HGF group (98 +/- 17 from 51 +/- 14 of pregene; p < 0.05) while it was not changed in the Control group (58 +/- 13 from 62 +/- 18 of pregene). The capillary density was significantly higher in the HGF group (894 +/- 211/mm2; p < 0.05) than that in the control group (511 +/- 127/mm2). CONCLUSIONS Gene transfection of HGF improved angiogenesis, thereby improved regional myocardial function and perfusion in chronic ischemic myocardium. It indicates a potent therapeutic value of HGF gene transfection for chronic ischemic heart diseases such as myocardial infarction.
Collapse
Affiliation(s)
- Ismayil Ahmet
- First Department of Surgery, Osaka University Medical School, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
42
|
Kitta K, Day RM, Kim Y, Torregroza I, Evans T, Suzuki YJ. Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells. J Biol Chem 2003; 278:4705-12. [PMID: 12468531 DOI: 10.1074/jbc.m211616200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) is released in response to myocardial infarction and may play a role in regulating cardiac remodeling. Recently, HGF was found to inhibit the apoptosis of cardiac muscle cells. Because GATA-4 can induce cell survival, the effects of HGF on GATA-4 activity were investigated. Treatment of HL-1 cells or primary adult rat cardiac myocytes with HGF, at concentrations that can be detected in the human serum after myocardial infarction, rapidly enhances GATA-4 DNA-binding activity. The enhanced DNA-binding activity is associated with the phosphorylation of GATA-4. HGF-induced phosphorylation and activation of GATA-4 is abolished by MEK inhibitors or the mutation of the ERK phosphorylation site (S105A), suggesting that HGF activates GATA-4 via MEK-ERK pathway-dependent phosphorylation. HGF enhances the expression of anti-apoptotic Bcl-x(L), and this is blocked by dominant negative mutants of MEK or GATA-4. Forced expression of wild-type GATA-4, but not the GATA-4 mutant (S105A) increases the expression of Bcl-x(L). Furthermore, expression of the GATA-4 mutant (S105A) suppresses HGF-mediated protection of cells against daunorubicin-induced apoptosis. These results demonstrate that HGF protects cardiac muscle cells against apoptosis via a signaling pathway involving MEK/ERK-dependent phosphorylation of GATA-4.
Collapse
Affiliation(s)
- Kazumi Kitta
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
43
|
Jin H, Yang R, Li W, Ogasawara AK, Schwall R, Eberhard DA, Zheng Z, Kahn D, Paoni NF. Early treatment with hepatocyte growth factor improves cardiac function in experimental heart failure induced by myocardial infarction. J Pharmacol Exp Ther 2003; 304:654-60. [PMID: 12538818 DOI: 10.1124/jpet.102.041772] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasma levels of hepatocyte growth factor (HGF) are increased within hours of cardiac ischemia/reperfusion in rats, and HGF has been shown to be cardioprotective toward acute ischemic injury. Myocardial levels of HGF mRNA and protein are increased for several days after myocardial infarction (MI), however, indicating a possible additional protective effect of HGF toward the progression of MI to heart failure. The purpose of this study was to determine whether HGF administration during the time course of endogenous cardiac HGF induction would lead to long-term improvement in cardiac function in rats with MI. MI was induced by 2-h occlusion of the left coronary artery, followed by reperfusion. HGF was given by intravenous infusion at 0.45 mg/kg/day for 6 days beginning on the day after surgery. Cardiac function and hemodynamic parameters were measured by using indwelling catheters and perivascular flow probes in conscious animals 8 weeks post-MI. Myocardial infarcts were approximately 30% of the left ventricle, and there was no difference in infarct size between the vehicle-treated and HGF-treated groups. Compared with untreated sham-operated rats, vehicle-treated MI animals had significantly lower cardiac index and stroke volume index and higher systemic vascular resistance, indicating heart failure developed. Treatment with HGF caused a significant increase in cardiac index and stroke volume index and a reduction in systemic vascular resistance in rats with MI, restoring these parameters close to those observed in sham-operated control animals. These results provide direct evidence that HGF may be of benefit to cardiovascular function in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Hongkui Jin
- Department of Cardiovascular Research, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Hepatocyte growth factor (HGF), initially identified and molecularly cloned as a potent mitogen of primary cultured hepatocytes, has multiple activities in a variety of tissues during the course of development and also in various disease states. HGF plays key roles in the attenuation of disease progression as an intrinsic repair factor. It is also evident that HGF levels are regulated under different conditions, for example, during the course of pregnancy, aging, and disease. This review focuses on the levels of HGF in normal and pathophysiological situations and examines the relationships between HGF levels and disease, disease stage, and disease prognosis. The clinical potential of HGF as a treatment for subjects with various diseases is also given attention.
Collapse
Affiliation(s)
- Hiroshi Funakoshi
- Division of Molecular Regenerative Medicine, Course of Advanced Medicine, Osaka University Graduate School of Medicine, B-7 Osaka 565-0871, Japan
| | | |
Collapse
|
45
|
Abstract
Gene therapy is emerging as a potential strategy for the treatment of cardiovascular diseases, such as peripheral arterial disease, ischemic heart disease, restenosis after angioplasty, vascular bypass graft occlusion and transplant coronary vasculopathy, for which no known effective therapy exists. The first human trial in cardiovascular disease started in 1994 treating peripheral vascular disease with vascular endothelial growth factor (VEGF) and since then, many different potent angiogenic growth factors have been tested in clinical trials for the treatment of peripheral arterial disease. In addition, therapeutic angiogenesis using the VEGF gene has been used to treat ischemic heart disease since 1997. The results from these clinical trials have exceeded expectations; improvement in the clinical symptoms of peripheral arterial disease and ischemic heart disease has been reported. Another strategy for combating the disease processes, targeting the transcriptional process, has been tested in a human trial. IN particular, transfection of cis-element double-stranded (ds) oligodeoxynucleotides (ODN) (= decoy) is a powerful tool in a new class of anti-gene strategies. Transfection of ds-ODN corresponding to the cis sequence will attenuate the authentic cis-trans interaction, leading to removal of trans-factors from the endogenous cis-elements and subsequent modulation of gene expression. Genetically modified vein grafts transfected with a decoy against E2F, an essential transcription factor in cell cycle progression, appear to have long-term potency in human patients. There is great potential in gene therapy for cardiovascular disease.
Collapse
Affiliation(s)
- Ryuichi Morishita
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
46
|
Funatsu T, Sawa Y, Ohtake S, Takahashi T, Matsumiya G, Matsuura N, Nakamura T, Matsuda H. Therapeutic angiogenesis in the ischemic canine heart induced by myocardial injection of naked complementary DNA plasmid encoding hepatocyte growth factor. J Thorac Cardiovasc Surg 2002; 124:1099-105. [PMID: 12447174 DOI: 10.1067/mtc.2002.123809] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We investigated the efficacy of directly injecting a plasmid with complementary DNA encoding human hepatocyte growth factor into ischemic canine myocardium to induce angiogenesis. METHODS Four weeks after ligation of the left anterior descending coronary artery, 125 microg of a complementary DNA plasmid encoding the gene for either hepatocyte growth factor (n = 8) or LacZ (transfection control group, n = 8) was injected directly into the myocardium at the border between the normal tissue and the infarction. Eight other dogs were used as a sham control group. Regional thickening fraction, which indicated contractile function, and blood flow in the normal (circumflex branch territory) and ischemic areas were evaluated under dobutamine administration just before and 4 weeks after transfection. The animals were killed, and capillary numbers in both areas were assessed. These data in the ischemic area were evaluated as the percentage of those in the normal. RESULTS The number of myocardial capillaries in the ischemic area was successfully increased to approximately 140% of usual in the hepatocyte growth factor group, whereas no change was observed in the other groups (P =.0017 by analysis of variance). Furthermore, regional thickening fraction and blood flow in the ischemic area, which had deteriorated after coronary ligation, showed significant improvement in the hepatocyte growth factor group relative to the other groups (thickening fraction P <.0001 by analysis of variance, blood flow P =.0005 by analysis of variance). CONCLUSIONS These results support the efficacy of the direct injection of plasmid complementary DNA encoding human hepatocyte growth factor to induce therapeutic angiogenesis in the ischemic myocardium.
Collapse
Affiliation(s)
- Toshihiro Funatsu
- Division of Cardiovascular Surgery, Department of Surgery E1, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ahmet I, Sawa Y, Iwata K, Matsuda H. Gene transfection of hepatocyte growth factor attenuates cardiac remodeling in the canine heart: A novel gene therapy for cardiomyopathy. J Thorac Cardiovasc Surg 2002; 124:957-63. [PMID: 12407379 DOI: 10.1067/mtc.2002.126655] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Hepatocyte growth factor, a potent angiogenic agent, is unique in having the effects of antiapoptosis and antifibrosis. In the present study we used the rapid pacing-induced heart failure canine model to investigate the effect of gene transfection of hepatocyte growth factor on the failing heart. METHODS Four weeks after onset of rapid pacing, either the human hepatocyte growth factor gene (160 microg; hepatocyte growth factor group, n = 7) or empty vector (control group, n = 7) was directly injected into the left ventricular myocardium by means of the hemagglutinating virus of Japan liposome method. RESULTS At 4 weeks after gene transfection, the left ventricular global function, assessed by means of pressure-volume loop analysis, was improved in the hepatocyte growth factor group as preload-recruitable stroke work (percentage of baseline: 80% +/- 20% from 38% +/- 15% before gene transfection, P =.005), whereas it was not changed in the control group (50% +/- 18% from 50% +/- 18%). Weekly echocardiography showed that this improvement began in the week after gene transfer. The hearts in the hepatocyte growth factor group had a large wall thickness, large myocyte diameter, high capillary density, low fibrotic area fraction, and low density of apoptotic nuclei revealed by means of histologic analysis compared with that in the control group. Myocardial perfusion flow, assessed with color microspheres, was increased in the hepatocyte growth factor group (percentage of baseline: 79% +/- 16% from 48% +/- 14%, P =.010), whereas it was reduced in the control group (30% +/- 12% from 45% +/- 17%). CONCLUSIONS Gene transfection of hepatocyte growth factor promoted angiogenesis, improved perfusion, decreased fibrosis and apoptosis, promoted recovery from myocyte atrophy, and thereby attenuated cardiac remodeling and improved myocardial function in the failing heart. It is a novel gene therapy for human heart failure.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Atrophy/genetics
- Atrophy/therapy
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/therapy
- Disease Models, Animal
- Dogs
- Echocardiography
- Female
- Fibrosis/genetics
- Genetic Therapy
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/therapeutic use
- Models, Cardiovascular
- Myocardial Contraction/drug effects
- Myocardial Contraction/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stroke Volume/drug effects
- Stroke Volume/genetics
- Transfection
- Treatment Outcome
- Ventricular Function, Left/drug effects
- Ventricular Function, Left/genetics
Collapse
Affiliation(s)
- Ismayil Ahmet
- First Department of Surgery, Osaka University Medical School, Osaka, Japan
| | | | | | | |
Collapse
|
48
|
Soeki T, Tamura Y, Shinohara H, Sakabe K, Onose Y, Fukuda N. Serum hepatocyte growth factor predicts ventricular remodeling following myocardial infarction. Circ J 2002; 66:1003-7. [PMID: 12419930 DOI: 10.1253/circj.66.1003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) stimulate endothelial cell proliferation and induce angiogenesis, but the timing and significance of their release in patients with acute myocardial infarction (AMI) are unknown in relation to future left ventricular remodeling. Venous blood samples were obtained at admission and up to 3 weeks later in 40 patients with AMI and in 40 age- and sex-matched control subjects. Blood samples were also taken from the coronary sinus (CS) in 20 patients on day 7 following AMI. Left ventricular end-diastolic volume in the subacute (1 week) and chronic (3 months) phases was assessed by left ventriculography to identify the remodeling group (n=15), which was defined as an increase in left ventricular end-diastolic volume index > or =5 ml/m(2) relative to the baseline value. Serum HGF and VEGF concentrations were higher in newly admitted patients with AMI than in the controls (HGF, 0.33 +/-0.09 vs 0.24+/-0.08 ng/ml, p<0.01; VEGF, 92.2+/-43.1 vs 67.2+/-29.8 pg/ml, p<0.01), peaking on day 7 (HGF, 0.41+/-0.12; VEGF, 161.7+/-76.9), and gradually decreasing between days 14 and 21. The HGF concentration in the CS did not differ from the concentration in the periphery, but the VEGF concentration was significantly more abundant in the CS than in the peripheral sample on day 7 (p<0.05). The serum HGF concentration on day 7 was higher in the remodeling group than in the nonremodeling group (0.47 +/-0.13 vs 0.36+/-0.09 ng/ml, p<0.01), but there was no difference between the groups on admission, day 14 and day 21. The serum VEGF concentration did not differ between the remodeling and nonremodeling groups at any time. Thus, the serum HGF concentration on day 7 after AMI is mostly from noncardiac sources and predicts left ventricular remodeling.
Collapse
Affiliation(s)
- Takeshi Soeki
- Department of Cardiology and Clinical Research, National Zentsuji Hospital, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Taniyama Y, Morishita R, Aoki M, Hiraoka K, Yamasaki K, Hashiya N, Matsumoto K, Nakamura T, Kaneda Y, Ogihara T. Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy. Hypertension 2002; 40:47-53. [PMID: 12105137 DOI: 10.1161/01.hyp.0000020755.56955.bf] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impairment of cardiac function in cardiomyopathy has been postulated to be related to decreased blood blow and increased collagen synthesis. Therefore, a therapeutic approach to alter the blood flow or fibrosis directly by means of growth factors may open a new therapeutic concept in dilated cardiomyopathy. From this viewpoint, hepatocyte growth factor (HGF) is a unique growth factor with antifibrosis and angiogenesis effects. Using the hereditary cardiomyopathic Syrian hamster as a model of genetically determined cardiomyopathy and heart failure, the effects of overexpression of HGF on fibrosis and microvascular dysfunction were examined. HGF gene or control vector was injected by the Hemagglutinating Virus of Japan-liposome method into the anterior heart of cardiomyopathic hamsters (Bio 14.6) under echocardiography once a week, from 12 to 20 weeks of age (total, 8 times). Blood flow, as assessed by a laser Doppler imager score, and the capillary density in hearts, as assessed by alkaline phosphatase staining, were significantly increased in hamsters transfected with HGF gene compared with control-vector-transfected hamsters (P<0.01). In contrast, the fibrotic area was significantly decreased in hamsters transfected with HGF gene compared with control (P<0.01). Overall, in vivo experiments demonstrated that transfection of HGF gene into the myocardium of cardiomyopathic hamsters stimulated blood flow through the induction of angiogenesis and reduction of fibrosis. These results suggest that HGF gene transfer may be useful to protect against myocardial injury in cardiomyopathy through its cardioprotective effects such as antifibrosis and angiogenesis actions.
Collapse
Affiliation(s)
- Yoshiaki Taniyama
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Morishita R, Aoki M, Yo Y, Ogihara T. Hepatocyte growth factor as cardiovascular hormone: role of HGF in the pathogenesis of cardiovascular disease. Endocr J 2002; 49:273-84. [PMID: 12201209 DOI: 10.1507/endocrj.49.273] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a mesenchyme-derived pleiotropic factor which regulates cell growth, cell motility, and morphogenesis of various types of cells, and is thus considered a humoral mediator of epithelial-mesenchymal interactions responsible for morphogenic tissue interactions during embryonic development and organogenesis. Although HGF was originally identified as a potent mitogen for hepatocytes, HGF has also been identified as a member of angiogenic growth factors. Interestingly, the presence of its specific receptor, c-met, is observed in vascular cells, endothelial cells and cardiac myocytes. In addition, the mitogenic action of HGF on human endothelial cells was most potent among growth factors. Recent studies have demonstrated the potential application of HGF to treat cardiovascular disease such as peripheral vascular disease, myocardial infarction and restenosis after angioplasty. On the other hand, serum HGF concentration was significantly correlated with blood pressure. These results suggest that HGF secretion might be elevated in response to high blood pressure as a counter-system against endothelial dysfunction, and may be considered as an index of severity of hypertension. In this review, we discussed the potential role of HGF in cardiovascular disease.
Collapse
Affiliation(s)
- Ryuichi Morishita
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | | | | | | |
Collapse
|