1
|
Jha P, Rajoria P, Poonia P, Chopra M. Identification of novel PAD2 inhibitors using pharmacophore-based virtual screening, molecular docking, and MD simulation studies. Sci Rep 2024; 14:28097. [PMID: 39543332 PMCID: PMC11564549 DOI: 10.1038/s41598-024-78330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
In the realm of epigenetic regulation, Protein arginine deiminase 2 (PAD2) stands out as a therapeutic target due to its significant role in neurological disorders, rheumatoid arthritis (RA), multiple sclerosis (MS), and various cancers. To date, no in silico studies have focused on PAD2 for lead compound identification. Therefore, we conducted structure-based pharmacophore modeling, virtual screening, molecular docking, molecular dynamics (MD) simulations, and essential dynamics studies using PCA and free energy landscape analyses to identify repurposed drugs and selective inhibitors against PAD2. The best pharmacophore model, 'Pharm_01,' had a selectivity score of 10.485 and an excellent ROC curve quality of 0.972. Pharm1 consisted of three hydrogen bond donors (HBD) and two hydrophobic (Hy) features (DDDHH). A virtual screening of about 9.2 million compounds yielded 2575 hits using a fit value threshold of 2.5 and drug-likeness criteria. Molecular docking identified the top ten molecules, which were verified using MD simulations. Stability was verified using MM-PBSA studies, whereas conformational differences were investigated using PCA and free energy landscape analyses. Two hits (Leads 1 and 2) from the DrugBank dataset showed promise for repurposing as PAD2 inhibitors, while one hit compound (Lead 8) from the ZINC database emerged as a novel PAD2 inhibitor. These findings indicate that the discovered compounds may be potent PAD2 inhibitors, necessitating additional preclinical and clinical research to produce viable treatments for cancer and neurological disorders.
Collapse
Affiliation(s)
- Prakash Jha
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Prerna Rajoria
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Priya Poonia
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Byrnes LJ, Choi WY, Balbo P, Banker ME, Chang J, Chen S, Cheng X, Cong Y, Culp J, Di H, Griffor M, Hall J, Meng X, Morgan B, Mousseau JJ, Nicki J, O'Connell T, Ramsey S, Shaginian A, Shanker S, Trujillo J, Wan J, Vincent F, Wright SW, Vajdos F. Discovery, Characterization, and Structure of a Cell Active PAD2 Inhibitor Acting through a Novel Allosteric Mechanism. ACS Chem Biol 2024; 19:2186-2197. [PMID: 39316753 DOI: 10.1021/acschembio.4c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Peptidyl arginine deiminases (PADs) are important enzymes in many diseases, especially those involving inflammation and autoimmunity. Despite many years of effort, developing isoform-specific inhibitors has been a challenge. We describe herein the discovery of a potent, noncovalent PAD2 inhibitor, with selectivity over PAD3 and PAD4, from a DNA-encoded library. The biochemical and biophysical characterization of this inhibitor and two noninhibitory binders indicated a novel, Ca2+ competitive mechanism of inhibition. This was confirmed via X-ray crystallographic analysis. Finally, we demonstrate that this inhibitor selectively inhibits PAD2 in a cellular context.
Collapse
Affiliation(s)
- Laura J Byrnes
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Won Young Choi
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Paul Balbo
- Pfizer Worldwide Research and Development, 1 Portland St., Cambridge, Massachusetts 02139, United States
| | - Mary Ellen Banker
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jeanne Chang
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Shi Chen
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Xuemin Cheng
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Yang Cong
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jeff Culp
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Hongxia Di
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Matt Griffor
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Justin Hall
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Xiaoyun Meng
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Barry Morgan
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - James J Mousseau
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jennifer Nicki
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Thomas O'Connell
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Simeon Ramsey
- Pfizer Worldwide Research and Development, 1 Portland St., Cambridge, Massachusetts 02139, United States
| | - Alex Shaginian
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Suman Shanker
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - John Trujillo
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jinqiao Wan
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Fabien Vincent
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Stephen W Wright
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Felix Vajdos
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| |
Collapse
|
3
|
Neira JL, Rizzuti B, Abian O, Velazquez-Campoy A. Isolated auto-citrullinated regions of PADI4 associate to the intact protein without altering their disordered conformation. Biophys Chem 2024; 312:107288. [PMID: 38991454 DOI: 10.1016/j.bpc.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
PADI4 is one of the human isoforms of a group of enzymes intervening in the conversion of arginine to citrulline. It is involved in the development of several types of tumors, as well as other immunological illnesses, such as psoriasis, multiple sclerosis, or rheumatoid arthritis. PADI4 auto-citrullinates in several regions of its sequence, namely in correspondence of residues Arg205, Arg212, Arg218, and Arg383. We wanted to study whether the citrullinated moiety affects the conformation of nearby regions and its binding to intact PADI4. We designed two series of synthetic peptides comprising either the wild-type or the relative citrullinated versions of such regions - i.e., a first series of peptides comprising the first three arginines, and a second series comprising Arg383. We studied their conformational properties in isolation by using fluorescence, far-ultraviolet (UV) circular dichroism (CD), and 2D1H NMR. Furthermore, we characterized the binding of the wild-type and citrullinated peptides in the two series to the intact PADI4, by using isothermal titration calorimetry (ITC), fluorescence, and biolayer interferometry (BLI), as well as by molecular docking simulations. We observed that citrullination did not alter the local conformational propensities of the isolated peptides. Nevertheless, for all the peptides in the two series, citrullination slowed down the kinetic koff rates of the binding reaction to PADI4, probably due to differences in electrostatic effects compared to the presence of arginine. The affinities of PADI4 for unmodified peptides were slightly larger than those of the corresponding citrullinated ones in the two series, but they were all within the same range, indicating that there were no relevant variations in the thermodynamics of binding due to sequence effects. These results highlight details of the self-citrullination of PADI4 and, more generally, of possible auto-catalytic mechanisms taking place in vivo for other citrullinating enzymes or, alternatively, in proteins undergoing citrullination passively.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Wang Y, Song X, Song Y, Fang K, Chang X. Investigating the cell membrane localization of PADI4 in breast cancer cells and inhibition of anti-PADI4 monoclonal antibody. J Cancer Res Clin Oncol 2023; 149:17253-17268. [PMID: 37804426 PMCID: PMC10657297 DOI: 10.1007/s00432-023-05433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Peptidyl arginine deiminase 4 (PADI4) is a post-translational modification enzymecan that converts arginine in protein into citrulline in the presence of calcium ions, which is called citrullination. PADI4 has been reported to be expressed in the cytoplasm and nucleus in a variety of malignant tumors. Based on the GeneCards database and our previous research, it is speculated that PADI4 may also be expressed on the cell membrane. This study aimed to confirm the membrane expression of PADI4 and the effect of anti-PADI4 antibodies on cell membrane PADI4. This may be another mechanism of action of anti-PADI4 monoclonal antibodies in the treatment of breast cancer. METHODS The subcellular localizations of PADI4 in MDA-MB-231 and MCF-7 breast cancer cells were determined by immunofluorescence, immunoelectron microscopy, and Western blot analysis. The tumor cells were treated with PADI4 antibody, and cell proliferation, migration, colony formation, apoptosis, glycolysis, and epithelial-mesenchymal transition (EMT) were measured as well as the expression of some essential tumor genes. RESULTS PADI4 was not only localized in the nucleus and cytoplasm of breast cancer cells but was also detected on the cell membrane. Following PADI4 antibody treatment, cell proliferation, migration, colony formation, EMT, and ATP production through glycolysis were decreased, and the mRNA expression of MYC proto-oncogene (MYC), FAT atypical cadherin 1 (FAT1), nuclear factor kappa B subunit 1 (NFκB), and tumor necrosis factor (TNF-α) in breast cancer cells was downregulated, while the mRNA expression of tumor protein p63 (TP63) was upregulated. CONCLUSIONS PADI4 is expressed on the cell membrane in breast cancer cells. Anti-PADI4 antibodies can affect the biological functions of cell membrane PADI4, including proliferation, migration, apoptosis, and glycolysis, thereby inhibiting tumor progression.
Collapse
Affiliation(s)
- Yan Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Xianqin Song
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Yu Song
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Araujo-Abad S, Fuentes-Baile M, Rizzuti B, Bazán JF, Villamarin-Ortiz A, Saceda M, Fernández E, Vidal M, Abian O, Velazquez-Campoy A, de Juan Romero C, Neira JL. The intrinsically disordered, epigenetic factor RYBP binds to the citrullinating enzyme PADI4 in cancer cells. Int J Biol Macromol 2023; 246:125632. [PMID: 37399862 DOI: 10.1016/j.ijbiomac.2023.125632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
RYBP (Ring1 and YY 1 binding protein) is a multifunctional, intrinsically disordered protein (IDP), best described as a transcriptional regulator. It exhibits a ubiquitin-binding functionality, binds to other transcription factors, and has a key role during embryonic development. RYBP, which folds upon binding to DNA, has a Zn-finger domain at its N-terminal region. By contrast, PADI4 is a well-folded protein and it is one the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. As both proteins intervene in signaling pathways related to cancer development and are found in the same localizations within the cell, we hypothesized they may interact. We observed their association in the nucleus and cytosol in several cancer cell lines, by using immunofluorescence (IF) and proximity ligation assays (PLAs). Binding also occurred in vitro, as measured by isothermal titration calorimetry (ITC) and fluorescence, with a low micromolar affinity (~1 μM). AlphaFold2-multimer (AF2) results indicate that PADI4's catalytic domain interacts with the Arg53 of RYBP docking into its active site. As RYBP sensitizes cells to PARP (Poly (ADP-ribose) polymerase) inhibitors, we applied them in combination with an enzymatic inhibitor of PADI4 observing a change in cell proliferation, and the hampering of the interaction of both proteins. This study unveils for the first time the possible citrullination of an IDP, and suggests that this new interaction, whether it involves or not citrullination of RYBP, might have implications in cancer development and progression.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Centro de Biotecnología, Universidad Nacional de Loja, Avda. Pío Jaramillo Alvarado s/n, 110111 Loja, Ecuador
| | - María Fuentes-Baile
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche, Alicante, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - J Fernando Bazán
- ħ Bioconsulting, LLC, Stillwater, MN, USA; Unit for Structural Biology, Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | | | - Miguel Saceda
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche, Alicante, Spain
| | - Eduardo Fernández
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Centro de Investigación Biomédica en Red CIBER-BBN, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche, Alicante, Spain.
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
6
|
Araujo-Abad S, Neira JL, Rizzuti B, García-Morales P, de Juan Romero C, Santofimia-Castaño P, Iovanna J. Intrinsically Disordered Chromatin Protein NUPR1 Binds to the Enzyme PADI4. J Mol Biol 2023; 435:168033. [PMID: 36858171 DOI: 10.1016/j.jmb.2023.168033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
The nuclear protein 1 (NUPR1) is an intrinsically disordered protein involved in stress-mediated cellular conditions. Its paralogue nuclear protein 1-like (NUPR1L) is p53-regulated, and its expression down-regulates that of the NUPR1 gene. Peptidyl-arginine deiminase 4 (PADI4) is an isoform of a family of enzymes catalyzing arginine to citrulline conversion; it is also involved in stress-mediated cellular conditions. We characterized the interaction between NUPR1 and PADI4 in vitro, in silico, and in cellulo. The interaction of NUPR1 and PADI4 occurred with a dissociation constant of 18 ± 6 μM. The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch surrounding the key residue Ala33, as pinpointed by: (i) computational results; and, (ii) site-directed mutagenesis of residues of NUPR1. The association between PADI4 and wild-type NUPR1 was also assessed in cellulo by using proximity ligation assays (PLAs) and immunofluorescence (IF), and it occurred mainly in the nucleus. Moreover, binding between NUPR1L and PADI4 also occurred in vitro with an affinity similar to that of NUPR1. Molecular modelling provided information on the binding hot spot for PADI4. This is an example of a disordered partner of PADI4, whereas its other known interacting proteins are well-folded. Altogether, our results suggest that the NUPR1/PADI4 complex could have crucial functions in modulating DNA-repair, favoring metastasis, or facilitating citrullination of other proteins.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Centro de Biotecnología, Universidad Nacional de Loja, Avda. Pío Jaramillo Alvarado s/n, Loja, 110111 Loja, Ecuador
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Institute of Biocomputation and Physics of Complex Systems - Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Bruno Rizzuti
- Institute of Biocomputation and Physics of Complex Systems - Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
| | | | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche (Alicante), Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
| |
Collapse
|
7
|
Neira JL, Rizzuti B, Araujo-Abad S, Abian O, Fárez-Vidal ME, Velazquez-Campoy A, de Juan Romero C. The armadillo-repeat domain of Plakophilin 1 binds to human enzyme PADI4. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140868. [PMID: 36372391 DOI: 10.1016/j.bbapap.2022.140868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Plakophilin 1 (PKP1), a member of the armadillo repeat family of proteins, is a key structural component of cell-cell adhesion scaffolds, although it can also be found in other cell locations, including the cytoplasm and the nucleus. PADI4 (peptidyl-arginine deiminase 4) is one of the human isoforms of a family of enzymes engaged in the conversion of arginine to citrulline, and is present in monocytes, macrophages, granulocytes, and in several types of cancer cells. It is the only family member observed both within the nucleus and the cytoplasm under ordinary conditions. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with PADI4, by using several biophysical methods, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), isothermal titration calorimetry (ITC), and molecular simulations; furthermore, binding was also tested by Western-blot (WB) analyses. Our results show that there was binding between the two proteins, with a dissociation constant in the low micromolar range (∼ 1 μM). Molecular modelling provided additional information on the possible structure of the binding complex, and especially on the binding hot-spot predicted for PADI4. This is the first time that the interaction between these two proteins has been described and studied. Our findings could be of importance to understand the development of tumors, where PKP1 and PADI4 are involved. Moreover, our findings pave the way to describe the formation of neutrophil extracellular traps (NETs), whose construction is modulated by PADI4, and which mediate the proteolysis of cell-cell junctions where PKP1 intervenes.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Institute of Biocomputation and Physics of Complex Systems - Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Bruno Rizzuti
- Institute of Biocomputation and Physics of Complex Systems - Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Salome Araujo-Abad
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Centro de Biotecnología, Universidad Nacional de Loja, Avda. Pío Jaramillo Alvarado s/n, Loja, 110111 Loja, Ecuador
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems - Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - María Esther Fárez-Vidal
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Investigación Biomédica IBS, Granada, Spain; Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071 Granada, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems - Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche (Alicante), Spain.
| |
Collapse
|
8
|
Li H, Muhetaer G, Xie Y, Yao K, Ma Q, Guan H, Xing S, Huang X, Zhou J. Identification of super-enhancer-driven peptidyl arginine deiminases as potential biomarkers and therapeutic targets for osimertinib-resistant non-small cell lung cancer. Front Pharmacol 2022; 13:1071365. [PMID: 36479196 PMCID: PMC9719927 DOI: 10.3389/fphar.2022.1071365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/08/2022] [Indexed: 06/21/2025] Open
Abstract
Resistance to targeted drugs is now a challenging clinical problem in the treatment of non-small cell lung cancer (NSCLC). So far, there are no approved targeted therapeutic drugs for patients with disease progression after the third-generation epidermal growth factor receptor-tyrosine kinase inhibitor osimertinib resistance (OR). Super-enhancers (SEs) are large clusters of transcriptional enhancers that drive gene expression. In this study, we aimed to explore the potential pathogenic SEs and their driven genes in OR NSCLC. OR cell line was established by exposure of H1975 cells to incremental dosing of osimertinib. RNA-sequencing and H3K27ac ChIP-sequencing were used to identify the differential expressed genes (DEGs) and SEs in parental and resistant cells. Gene ontology analysis for the OR-specific SEs-associated genes showed that histone citrullination, protein citrullination, and peptidyl-arginine modification are the top three biological processes, and the DEGs involved in these biological processes, including peptidyl arginine deiminase 1 (PADI1), PADI2, and PADI3. Realtime-PCR and western blot detections confirmed these genes were highly expressed in OR cells. SE inhibitor decreases their expression, ensuring that SEs regulate their transcriptional expressions. The PADI inhibitor inhibited OR cells' proliferation, invasion, and colony formation. This study demonstrates that SE-driven PADI family genes are potential biomarkers and targets for OR NSCLC.
Collapse
Affiliation(s)
- Hang Li
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Gulizeba Muhetaer
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yizi Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kainan Yao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qianqian Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Huiting Guan
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Sizhong Xing
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiufang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jihong Zhou
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
9
|
Human Enzyme PADI4 Binds to the Nuclear Carrier Importin α3. Cells 2022; 11:cells11142166. [PMID: 35883608 PMCID: PMC9319256 DOI: 10.3390/cells11142166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
PADI4 is a peptidyl-arginine deiminase (PADI) involved in the conversion of arginine to citrulline. PADI4 is present in macrophages, monocytes, granulocytes, and several cancer cells. It is the only PADI family member observed within both the nucleus and the cytoplasm. PADI4 has a predicted nuclear localization sequence (NLS) comprising residues Pro56 to Ser83, to allow for nuclear translocation. Recent predictors also suggest that the region Arg495 to Ile526 is a possible NLS. To understand how PADI4 is involved in cancer, we studied the ability of intact PADI4 to bind importin α3 (Impα3), a nuclear transport factor that plays tumor-promoting roles in several cancers, and its truncated species (ΔImpα3) without the importin-binding domain (IBB), by using fluorescence, circular dichroism (CD), and isothermal titration calorimetry (ITC). Furthermore, the binding of two peptides, encompassing the first and the second NLS regions, was also studied using the same methods and molecular docking simulations. PADI4 interacted with both importin species, with affinity constants of ~1–5 µM. The isolated peptides also interacted with both importins. The molecular simulations predict that the anchoring of both peptides takes place in the major binding site of Impα3 for the NLS of cargo proteins. These findings suggest that both NLS regions were essentially responsible for the binding of PADI4 to the two importin species. Our data are discussed within the framework of a cell mechanism of nuclear transport that is crucial in cancer.
Collapse
|
10
|
Trejo-Zambrano MI, Gómez-Bañuelos E, Andrade F. Redox-Mediated Carbamylation As a Hapten Model Applied to the Origin of Antibodies to Modified Proteins in Rheumatoid Arthritis. Antioxid Redox Signal 2022; 36:389-409. [PMID: 33906423 PMCID: PMC8982126 DOI: 10.1089/ars.2021.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Significance: The production of antibodies to posttranslationally modified antigens is a hallmark in rheumatoid arthritis (RA). In particular, the presence of citrullination-associated antibodies, targeting both citrullinating enzymes (the peptidylarginine deiminases [PADs]) and citrullinated antigens (anticitrullinated protein antibodies [ACPAs]), has suggested that dysregulated citrullination is relevant for disease pathogenesis. Antibodies to other protein modifications with physicochemical similarities to citrulline, such as carbamylated-lysine and acetylated-lysine, have also gained interest in RA, but their mechanistic relation to ACPAs remains unclear. Recent Advances: Recent studies using RA-derived monoclonal antibodies have found that ACPAs are cross-reactive to carbamylated and acetylated peptides, challenging our understanding of the implications of such cross-reactivity. Critical Issues: Analogous to the classic antibody response to chemically modified proteins, we examine the possibility that antibodies to modified proteins in RA are more likely to resemble antihapten antibodies rather than autoantibodies. This potential shift in the autoantibody paradigm in RA offers the opportunity to explore new mechanisms involved in the origin and cross-reactivity of pathogenic antibodies in RA. In contrast to citrullination, carbamylation is a chemical modification associated with oxidative stress, it is highly immunogenic, and is considered in the group of posttranslational modification-derived products. We discuss the possibility that carbamylated proteins are antigenic drivers of cross-reacting antihapten antibodies that further create the ACPA response, and that ACPAs may direct the production of antibodies to PAD enzymes. Future Directions: Understanding the complexity of autoantibodies in RA is critical to develop tools to clearly define their origin, identify drivers of disease propagation, and develop novel therapeutics. Antioxid. Redox Signal. 36, 389-409.
Collapse
Affiliation(s)
| | - Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Neira JL, Araujo-Abad S, Cámara-Artigas A, Rizzuti B, Abian O, Giudici AM, Velazquez-Campoy A, de Juan Romero C. Biochemical and biophysical characterization of PADI4 supports its involvement in cancer. Arch Biochem Biophys 2022; 717:109125. [DOI: 10.1016/j.abb.2022.109125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
12
|
Funabashi K, Sawata M, Nagai A, Akimoto M, Mashimo R, Takahara H, Kizawa K, Thompson PR, Ite K, Kitanishi K, Unno M. Structures of human peptidylarginine deiminase type III provide insights into substrate recognition and inhibitor design. Arch Biochem Biophys 2021; 708:108911. [PMID: 33971157 DOI: 10.1016/j.abb.2021.108911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Peptidylarginine deiminase type III (PAD3) is an isozyme belonging to the PAD enzyme family that converts arginine to citrulline residue(s) within proteins. PAD3 is expressed in most differentiated keratinocytes of the epidermis and hair follicles, while S100A3, trichohyalin, and filaggrin are its principal substrates. In this study, the X-ray crystal structures of PAD3 in six states, including its complex with the PAD inhibitor Cl-amidine, were determined. This structural analysis identified a large space around Gly374 in the PAD3-Ca2+-Cl-amidine complex, which may be used to develop novel PAD3-selective inhibitors. In addition, similarities between PAD3 and PAD4 were found based on the investigation of PAD4 reactivity with S100A3 in vitro. A comparison of the structures of PAD1, PAD2, PAD3, and PAD4 implied that the flexibility of the structures around the active site may lead to different substrate selectivity among these PAD isozymes.
Collapse
Affiliation(s)
- Kazumasa Funabashi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan
| | - Mizuki Sawata
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan
| | - Anna Nagai
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Megumi Akimoto
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Ryutaro Mashimo
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Hidenari Takahara
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan; College of Agriculture, Ibaraki University, Ami Inashiki, Japan
| | - Kenji Kizawa
- Kao Corporation, Biological Science Research Laboratory, Odawara, Japan
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kenji Ite
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Kenichi Kitanishi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Tokyo University of Science, Faculty of Science Division I, Tokyo, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan.
| |
Collapse
|
13
|
Abstract
As the main protein components of chromatin, histones play central roles in gene regulation as spools of winding DNA. Histones are subject to various modifications, including phosphorylation, acetylation, glycosylation, methylation, ubiquitination and citrullination, which affect gene transcription. Histone citrullination, a posttranscriptional modification catalyzed by peptidyl arginine deiminase (PAD) enzymes, is involved in human carcinogenesis. In this study, we highlighted the functions of histone citrullination in physiological regulation and tumors. Additionally, because histone citrullination involves forming neutrophil extracellular traps (NETs), the relationship between NETs and tumors was illustrated. Finally, the clinical application of histone citrullination and PAD inhibitors was discussed.
Collapse
Affiliation(s)
- Dongwei Zhu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
14
|
Briot J, Simon M, Méchin MC. Deimination, Intermediate Filaments and Associated Proteins. Int J Mol Sci 2020; 21:E8746. [PMID: 33228136 PMCID: PMC7699402 DOI: 10.3390/ijms21228746] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Deimination (or citrullination) is a post-translational modification catalyzed by a calcium-dependent enzyme family of five peptidylarginine deiminases (PADs). Deimination is involved in physiological processes (cell differentiation, embryogenesis, innate and adaptive immunity, etc.) and in autoimmune diseases (rheumatoid arthritis, multiple sclerosis and lupus), cancers and neurodegenerative diseases. Intermediate filaments (IF) and associated proteins (IFAP) are major substrates of PADs. Here, we focus on the effects of deimination on the polymerization and solubility properties of IF proteins and on the proteolysis and cross-linking of IFAP, to finally expose some features of interest and some limitations of citrullinomes.
Collapse
Affiliation(s)
| | | | - Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Université Fédérale de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France; (J.B.); (M.S.)
| |
Collapse
|
15
|
An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. J Immunol Res 2019; 2019:7592851. [PMID: 31886309 PMCID: PMC6899306 DOI: 10.1155/2019/7592851] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/03/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
A protein undergoes many types of posttranslation modification. Citrullination is one of these modifications, where an arginine amino acid is converted to a citrulline amino acid. This process depends on catalytic enzymes such as peptidylarginine deiminase enzymes (PADs). This modification leads to a charge shift, which affects the protein structure, protein-protein interactions, and hydrogen bond formation, and it may cause protein denaturation. The irreversible citrullination reaction is not limited to a specific protein, cell, or tissue. It can target a wide range of proteins in the cell membrane, cytoplasm, nucleus, and mitochondria. Citrullination is a normal reaction during cell death. Apoptosis is normally accompanied with a clearance process via scavenger cells. A defect in the clearance system either in terms of efficiency or capacity may occur due to massive cell death, which may result in the accumulation and leakage of PAD enzymes and the citrullinated peptide from the necrotized cell which could be recognized by the immune system, where the immunological tolerance will be avoided and the autoimmune disorders will be subsequently triggered. The induction of autoimmune responses, autoantibody production, and cytokines involved in the major autoimmune diseases will be discussed.
Collapse
|
16
|
Martinez-Prat L, Palterer B, Vitiello G, Parronchi P, Robinson WH, Mahler M. Autoantibodies to protein-arginine deiminase (PAD) 4 in rheumatoid arthritis: immunological and clinical significance, and potential for precision medicine. Expert Rev Clin Immunol 2019; 15:1073-1087. [DOI: 10.1080/1744666x.2020.1668778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Martinez-Prat
- Research and Development, Inova Diagnostics, San Diego, CA, USA
- Department of Experimental Science, Francisco de Vitoria University, Madrid, Spain
| | - Boaz Palterer
- specialist in Allergy and Clinical Immunology, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - Gianfranco Vitiello
- resident in Allergy and Clinical Immunology, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - Paola Parronchi
- (Allergy and Clinical Immunology), Laboratory Head, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - William H. Robinson
- (Immunology and Rheumatology), Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- Geriatric Research Education and Clinical [GRECC] Division, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Michael Mahler
- Research and Development, Inova Diagnostics, San Diego, CA, USA
| |
Collapse
|
17
|
|
18
|
Li X, Luo J, Zhang C, Liu L, Ou S, Zhang G, Peng X. Alliin protects against inflammatory bowel disease by preserving the gene expression in colonic epithelial cells rather than altering gut microbiota. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Cau L, Takahara H, Thompson PR, Serre G, Méchin MC, Simon M. Peptidylarginine Deiminase Inhibitor Cl-Amidine Attenuates Cornification and Interferes with the Regulation of Autophagy in Reconstructed Human Epidermis. J Invest Dermatol 2019; 139:1889-1897.e4. [PMID: 30878672 DOI: 10.1016/j.jid.2019.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Deimination, a post-translational modification catalyzed by a family of enzymes called peptidylarginine deiminases (PADs), is the conversion of arginine into citrulline residues in a protein. Deimination has been associated with numerous physiological and pathological processes. Our aim was to study its implication in the homeostasis of human epidermis, where three PADs are expressed, namely PAD1, 2, and 3. Three-dimensional reconstructed human epidermis (RHEs) were treated for 2 days with increased concentrations (0-800 μM) of Cl-amidine, a specific PAD inhibitor. Cl-amidine treatments inhibited deimination in a dose-dependent manner and were not cytotoxic for keratinocytes. At 800 μM , Cl-amidine was shown to reduce deimination by half, alter keratinocyte differentiation, decrease the number of corneocyte layers, significantly increase the number of transitional cells, induce clustering of mitochondria and of heterogeneous vesicles in the cytoplasm of granular keratinocytes, and upregulate the expression of autophagy proteins, including LC3-II, sestrin-2, and p62/SQSTM1. LC3 and PADs were further shown to partially co-localize in the upper epidermis. These results demonstrated that Cl-amidine treatments slow down cornification and alter autophagy in the granular layer. They suggest that PAD1 and/or PAD3 play a role in the constitutive epidermal autophagy process that appears as an important step in cornification.
Collapse
Affiliation(s)
- Laura Cau
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Hidenari Takahara
- Department of Applied Biological Resource Sciences, School of Agriculture, University of Ibaraki, Ibaraki, Japan
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Guy Serre
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Marie-Claire Méchin
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Michel Simon
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Toulouse, France.
| |
Collapse
|
20
|
Peptidyl arginine deiminase 2 (Padi2) is expressed in Sertoli cells in a specific manner and regulated by SOX9 during testicular development. Sci Rep 2018; 8:13263. [PMID: 30185873 PMCID: PMC6125343 DOI: 10.1038/s41598-018-31376-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
Peptidyl arginine deiminases (PADIs) are enzymes that change the charge of proteins through citrullination. We recently found Padi2 was expressed exclusively in fetal Sertoli cells. In this study, we analyzed the transcriptional regulation of Padi2 and the role of PADI2 in testicular development. We showed SOX9 positively regulated Padi2 transcription and FOXL2 antagonized it in TM3 cells, a model of Sertoli cells. The responsive region to SOX9 and FOXL2 was identified within the Padi2 sequence by reporter assay. In fetal testes from Sox9 knockout (AMH-Cre:Sox9flox/flox) mice, Padi2 expression was greatly reduced, indicating SOX9 regulates Padi2 in vivo. In vitro analysis using siRNA suggested PADI2 modified transcriptional regulation by SOX9. However, Padi2−/− XY mice were fertile and showed no apparent reproductive anomalies. Although, PADI2 is known as an epigenetic transcriptional regulator through H3 citrullination, no significant difference in H3 citrullination between wildtype and Padi2−/− XY gonads was observed. These results suggest Padi2 is a novel gene involved in testis development that is specifically expressed in Sertoli cells through the regulation by SOX9 and FOXL2 and PADI2 supports regulation of target genes by SOX9. Analysis of the Padi2−/− XY phenotype suggested a redundant factor compensated for PADI2 function in testicular development.
Collapse
|
21
|
Lee CY, Wang D, Wilhelm M, Zolg DP, Schmidt T, Schnatbaum K, Reimer U, Pontén F, Uhlén M, Hahne H, Kuster B. Mining the Human Tissue Proteome for Protein Citrullination. Mol Cell Proteomics 2018; 17:1378-1391. [PMID: 29610271 DOI: 10.1074/mcp.ra118.000696] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Indexed: 11/06/2022] Open
Abstract
Citrullination is a posttranslational modification of arginine catalyzed by five peptidylarginine deiminases (PADs) in humans. The loss of a positive charge may cause structural or functional alterations, and while the modification has been linked to several diseases, including rheumatoid arthritis (RA) and cancer, its physiological or pathophysiological roles remain largely unclear. In part, this is owing to limitations in available methodology to robustly enrich, detect, and localize the modification. As a result, only a few citrullination sites have been identified on human proteins with high confidence. In this study, we mined data from mass-spectrometry-based deep proteomic profiling of 30 human tissues to identify citrullination sites on endogenous proteins. Database searching of ∼70 million tandem mass spectra yielded ∼13,000 candidate spectra, which were further triaged by spectrum quality metrics and the detection of the specific neutral loss of isocyanic acid from citrullinated peptides to reduce false positives. Because citrullination is easily confused with deamidation, we synthetized ∼2,200 citrullinated and 1,300 deamidated peptides to build a library of reference spectra. This led to the validation of 375 citrullination sites on 209 human proteins. Further analysis showed that >80% of the identified modifications sites were new, and for 56% of the proteins, citrullination was detected for the first time. Sequence motif analysis revealed a strong preference for Asp and Gly, residues around the citrullination site. Interestingly, while the modification was detected in 26 human tissues with the highest levels found in the brain and lung, citrullination levels did not correlate well with protein expression of the PAD enzymes. Even though the current work represents the largest survey of protein citrullination to date, the modification was mostly detected on high abundant proteins, arguing that the development of specific enrichment methods would be required in order to study the full extent of cellular protein citrullination.
Collapse
Affiliation(s)
- Chien-Yun Lee
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,§Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.,¶Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
| | - Dongxue Wang
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Daniel P Zolg
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Tobias Schmidt
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | | | - Ulf Reimer
- ‖JPT Peptide Technologies GmbH, Berlin, Germany
| | - Fredrik Pontén
- **Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlén
- ‡‡Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | - Bernhard Kuster
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; .,¶¶Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Dysregulated citrullination is a key element that drives the production and maintenance of antibodies to citrullinated proteins, a hallmark in rheumatoid arthritis (RA). This article reviews recent literature on the origin of citrullinated antigens in RA. RECENT FINDINGS The study of synovial fluid from patients with RA has provided important insights into the identity of citrullinated proteins that accumulate in the RA joint (the RA citrullinome) and mechanisms that control their generation. SUMMARY Citrullinating enzymes (peptidylarginine deiminases, PADs) are tightly controlled to limit their hyperactivation. Calcium and redox conditions are important regulators of PAD activity. Studies suggest that citrullination is dysregulated both intra- and extracellularly in RA. In neutrophils, host (i.e., perforin and the membrane attack complex) and bacterial (i.e., toxins) pore-forming proteins induce prominent calcium influx, cytolysis, and hyperactivation of PADs. These factors likely drive hypercitrullination in the RA joint and at extraarticular sites of disease initiation, respectively. As oxidizing conditions present in the extracellular environment are known to inactivate PADs, extracellular citrullination in RA probably requires the constant release of active enzymes from dying cells and may be accelerated by autoantibodies that activate PADs.
Collapse
Affiliation(s)
- Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Vitulo N, Dalla Valle L, Skobo T, Valle G, Alibardi L. Downregulation of lizard immuno-genes in the regenerating tail and myogenes in the scarring limb suggests that tail regeneration occurs in an immuno-privileged organ. PROTOPLASMA 2017; 254:2127-2141. [PMID: 28357509 DOI: 10.1007/s00709-017-1107-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Amputated tails of lizards regenerate while limbs form scars which histological structure is very different from the original organs. Lizards provide useful information for regenerative medicine and some hypotheses on the loss of regeneration in terrestrial vertebrates. Analysis of tail and limb transcriptomes shows strong downregulation in the tail blastema for immunoglobulins and surface B and T receptors, cell function, and metabolism. In contrast, in the limb blastema genes for myogenesis, muscle and cell function, and extracellular matrix deposition but not immunity are variably downregulated. The upregulated genes show that the regenerating tail is an embryonic organ driven by the Wnt pathway and non-coding RNAs. The strong inflammation following amputation, the non-activation of the Wnt pathway, and the upregulation of inflammatory genes with no downregulation of immune genes indicate that the amputated limb does not activate an embryonic program. Intense inflammation in limbs influences in particular the activity of genes coding for muscle proteins, cell functions, and stimulates the deposition of dense extracellular matrix proteins resulting in scarring limb outgrowths devoid of muscles. The present study complements that on upregulated genes, and indicates that the regenerating tail requires immune suppression to maintain this embryonic organ connected to the rest of the tail without be rejected or turned into a scar. It is hypothesized that the evolution of the adaptive immune system determined scarring instead of organ regeneration in terrestrial vertebrates and that lizards evolved the process of tail regeneration through a mechanism of immuno-evasion.
Collapse
Affiliation(s)
- Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Tatjana Skobo
- Department of Biology, University of Padova, Padova, Italy
| | - Giorgio Valle
- Department of Biology, University of Padova, Padova, Italy
| | - Lorenzo Alibardi
- Comparative Histolab, Padova, Italy.
- Dipartimento Bigea, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
24
|
Probing the Roles of Calcium-Binding Sites during the Folding of Human Peptidylarginine Deiminase 4. Sci Rep 2017; 7:2429. [PMID: 28546558 PMCID: PMC5445078 DOI: 10.1038/s41598-017-02677-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 04/18/2017] [Indexed: 11/24/2022] Open
Abstract
Our recent studies of peptidylarginine deiminase 4 (PAD4) demonstrate that its non-catalytic Ca2+-binding sites play a crucial role in the assembly of the correct geometry of the enzyme. Here, we examined the folding mechanism of PAD4 and the role of Ca2+ ions in the folding pathway. Multiple mutations were introduced into the calcium-binding sites, and these mutants were termed the Ca1_site, Ca2_site, Ca3_site, Ca4_site and Ca5_site mutants. Our data indicate that during the unfolding process, the PAD4 dimer first dissociates into monomers, and the monomers then undergo a three-state denaturation process via an intermediate state formation. In addition, Ca2+ ions assist in stabilizing the folding intermediate, particularly through binding to the Ca3_site and Ca4_site to ensure the correct and active conformation of PAD4. The binding of calcium ions to the Ca1_site and Ca2_site is directly involved in the catalytic action of the enzyme. Finally, this study proposes a model for the folding of PAD4. The nascent polypeptide chains of PAD4 are first folded into monomeric intermediate states, then continue to fold into monomers, and ultimately assemble into a functional and dimeric PAD4 enzyme, and cellular Ca2+ ions may be the critical factor governing the interchange.
Collapse
|
25
|
Safi M, Mahjoob MP, Nateghi S, Khaheshi I, Akbarzadeh MA, Naderian M. The Assessment of short-term effect of L-Citrulline on endothelial function via FMD to NMD ratio in known CAD patients: A randomized, cross-over clinical trial (Clinical trial number: NCT02638727). ROMANIAN JOURNAL OF INTERNAL MEDICINE 2017; 55:23-27. [DOI: 10.1515/rjim-2016-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background. Recent studies have confirmed the essential and paramount role of the L-Citrulline on the nitric oxide regulation and the endothelial function improvement.
Materials and Methods. In this cross-over clinical trial, thirty patients, diagnosed with coronary artery disease (CAD) and flow mediated dilation to nitroglycerin dependent vasodilation (FMD/NMD) ratio less than 1, were included. The patients were randomly divided into two groups of 15 patients and underwent treatment by L-Citrulline or placebo for 15 days, in 2 step protocol. The indicators of assessment in the current study were the ratio of the FMD/NMD and FMD value.
Results. In the current cross-over clinical trial, the mean of FMD to NMD ratio and mean FMD value of all patients before starting the protocol were 0.91 ± 0.08 and 4.04 ± 0.51 mm, respectively. The final results of study showed that following L-Citrulline administration, mean FMD to NMD ratio and mean FMD value were enhanced to: 1.03 ± 0.09 and 4.96 ± 0.72 mm, respectively, which were statistically significant (P<0.001 and P<0.001, respectively). However, following placebo administration, mean FMD to NMD ratio and mean FMD value were receded to: 0.92 ± 0.09 and 4.06 ± 0.22 mm, respectively, which were not statistically significant (P = 0.75 and P = 0.89, respectively). Moreover, the improvement of mean FMD to NMD ratio (0.12 ± 0.02) and mean FMD value (0.92 ± 0.16 mm), following L-Citrulline administration, were statistically significant in comparison with the change of mean FMD to NMD ratio (0.01 ± 0.002) and mean FMD value (0.02 ± 0.003), following placebo administration (P<0.001 and P<0.001, respectively).
Conclusion. L-Citrulline treatment can lead to improvement of the endothelial function in patients diagnosed with CAD which are assessed via FMD to NMD ratio FMD value enhancements.
Collapse
Affiliation(s)
- Morteza Safi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Islamic Republic of)
| | - Mohammad Parsa Mahjoob
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Islamic Republic of)
| | - Saeed Nateghi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Islamic Republic of)
| | - Isa Khaheshi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Islamic Republic of)
| | - Mohammad Ali Akbarzadeh
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Islamic Republic of)
| | - Mohammadreza Naderian
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran (Islamic Republic of) . Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran (Islamic Republic of)
| |
Collapse
|
26
|
Cau L, Pendaries V, Lhuillier E, Thompson PR, Serre G, Takahara H, Méchin MC, Simon M. Lowering relative humidity level increases epidermal protein deimination and drives human filaggrin breakdown. J Dermatol Sci 2017; 86:106-113. [PMID: 28242341 DOI: 10.1016/j.jdermsci.2017.02.280] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Deimination (also known as citrullination), the conversion of arginine in a protein to citrulline, is catalyzed by a family of enzymes called peptidylarginine deiminases (PADs). Three PADs are expressed in the epidermis, one of their targets being filaggrin. Filaggrin plays a central role in atopic dermatitis and is a key protein for the epidermal barrier. It aggregates keratins and is cross-linked to cornified envelopes. Following its deimination, it is totally degraded to release free amino acids, contributing to the natural moisturizing factor (NMF). The mechanisms controlling this multistep catabolism in human are unknown. OBJECTIVE To test whether external humidity plays a role, and investigate the molecular mechanisms involved. METHODS Specimens of reconstructed human epidermis (RHEs) produced in humid or dry conditions (>95% or 30-50% relative humidity) were compared. RESULTS RHEs produced in the dry condition presented structural changes, including a thicker stratum corneum and a larger amount of keratohyalin granules. The transepidermal water loss and the stratum corneum pH were decreased whereas the quantity of NMF was greater. This highly suggested that filaggrin proteolysis was up-regulated. The expression/activity of the proteases involved in filaggrin breakdown did not increase while PAD1 expression and the deimination rate of proteins, including filaggrin, were drastically enhanced. Partial inhibition of PADs with Cl-amidine reversed the effect of dryness on filaggrin breakdown. CONCLUSION These results demonstrate the importance of external humidity in the control of human filaggrin metabolism, and suggest that deimination plays a major role in this regulation.
Collapse
Affiliation(s)
- Laura Cau
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France
| | - Valérie Pendaries
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France
| | - Emeline Lhuillier
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France; Plateau de Génomique GeT-Purpan, Genotoul, Toulouse, France
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guy Serre
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France
| | - Hidenari Takahara
- Department of Applied Biological Resource Sciences, School of Agriculture, University of Ibaraki, Ibaraki, Japan
| | - Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France
| | - Michel Simon
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université de Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique, Toulouse, France.
| |
Collapse
|
27
|
Lee CY, Lin CC, Liu YL, Liu GY, Liu JH, Hung HC. Molecular Interplay between the Dimer Interface and the Substrate-Binding Site of Human Peptidylarginine Deiminase 4. Sci Rep 2017; 7:42662. [PMID: 28209966 PMCID: PMC5314407 DOI: 10.1038/srep42662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Our previous studies suggest that the fully active form of Peptidylarginine deiminase 4 (PAD4) should be a dimer and not a monomer. This paper provides a plausible mechanism for the control of PAD4 catalysis by molecular interplay between its dimer-interface loop (I-loop) and its substrate-binding loop (S-loop). Mutagenesis studies revealed that two hydrophobic residues, W347 and V469, are critical for substrate binding at the active site; mutating these two residues led to a severe reduction in the catalytic activity. We also identified several hydrophobic amino acid residues (L6, L279 and V283) at the dimer interface. Ultracentrifugation analysis revealed that interruption of the hydrophobicity of this region decreases dimer formation and, consequently, enzyme activity. Molecular dynamic simulations and mutagenesis studies suggested that the dimer interface and the substrate-binding site of PAD4, which consist of the I-loop and the S-loop, respectively, are responsible for substrate binding and dimer stabilization. We identified five residues with crucial roles in PAD4 catalysis and dimerization: Y435 and R441 in the I-loop, D465 and V469 in the S-loop, and W548, which stabilizes the I-loop via van der Waals interactions with C434 and Y435. The molecular interplay between the S-loop and the I-loop is crucial for PAD4 catalysis.
Collapse
Affiliation(s)
- Chien-Yun Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Chu-Cheng Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
28
|
Amin B, Voelter W. Human Deiminases: Isoforms, Substrate Specificities, Kinetics, and Detection. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 106:203-240. [PMID: 28762090 DOI: 10.1007/978-3-319-59542-9_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peptidylarginine deiminase (PAD) enzymes are of enormous interest in biomedicine. They catalyze the conversion of a positively-charged guanidinium at an arginine side chain into a neutral ureido group. As a result of this conversion, proteins acquire the non-ribosomally encoded amino acid "citrulline". This imposes critical influences on the structure and function of the target molecules. In multiple sclerosis, myelin hyper-citrullination promotes demyelination by reducing its compaction and triggers auto-antibody production. Immune responses to citrulline-containing proteins play a central role in the pathogenesis of autoimmune diseases. Moreover, auto-antibodies, specific to citrullinated proteins, such as collagen type I and II and filaggrin, are early detectable in rheumatoid arthritis, serving as diagnostic markers of the disease. Despite their significance, little is understood about the role in demyelinating disorders, diversified cancers, and auto-immune diseases. To impart their biological and pathological effects, it is crucial to better understand the reaction mechanism, kinetic properties, substrate selection, and specificities of peptidylarginine deiminase isoforms.Many aspects of PAD biochemistry and physiology have been ignored in past, but, herein is presented a comprehensive survey to improve our current understandings of the underlying mechanism and regulation of PAD enzymes.
Collapse
Affiliation(s)
- Bushra Amin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, PA, USA.
| | - Wolfgang Voelter
- Interfacultary Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, BW, Germany
| |
Collapse
|
29
|
Konig MF, Andrade F. A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis Mimics Based on Differential Requirements for Protein Citrullination. Front Immunol 2016; 7:461. [PMID: 27867381 PMCID: PMC5095114 DOI: 10.3389/fimmu.2016.00461] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022] Open
Abstract
NETosis, an antimicrobial form of neutrophil cell death, is considered a primary source of citrullinated autoantigens in rheumatoid arthritis (RA) and immunogenic DNA in systemic lupus erythematosus (SLE). Activation of the citrullinating enzyme peptidylarginine deiminase type 4 (PAD4) is believed to be essential for neutrophil extracellular trap (NET) formation and NETosis. PAD4 is therefore viewed as a promising therapeutic target to inhibit the formation of NETs in both diseases. In this review, we examine the evidence for PAD4 activation during NETosis and provide experimental data to suggest that protein citrullination is not a universal feature of NETs. We delineate two distinct biological processes, leukotoxic hypercitrullination (LTH) and defective mitophagy, which have been erroneously classified as “NETosis.” While these NETosis mimics share morphological similarities with NETosis (i.e., extracellular DNA release), they are biologically distinct. As such, these processes can be readily classified by their stimuli, activation of distinct biochemical pathways, the presence of hypercitrullination, and antimicrobial effector function. NETosis is an antimicrobial form of cell death that is NADPH oxidase-dependent and not associated with hypercitrullination. In contrast, LTH is NADPH oxidase-independent and not bactericidal. Rather, LTH represents a bacterial strategy to achieve immune evasion. It is triggered by pore-forming pathways and equivalent signals that cumulate in calcium-dependent hyperactivation of PADs, protein hypercitrullination, and neutrophil death. The generation of citrullinated autoantigens in RA is likely driven by LTH, but not NETosis. Mitochondrial DNA (mtDNA) expulsion, the result of a constitutive defect in mitophagy, represents a second NETosis mimic. In the presence of interferon-α and immune complexes, this process can generate highly interferogenic oxidized mtDNA, which has previously been mistaken for NETosis in SLE. Distinguishing NETosis from LTH and defective mitophagy is paramount to understanding the role of neutrophil damage in immunity and the pathogenesis of human diseases. This provides a framework to design specific inhibitors of these distinct biological processes in human disease.
Collapse
Affiliation(s)
- Maximilian F Konig
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
30
|
Balasubramaniam S, Lewis B, Mock DM, Said HM, Tarailo-Graovac M, Mattman A, van Karnebeek CD, Thorburn DR, Rodenburg RJ, Christodoulou J. Leigh-Like Syndrome Due to Homoplasmic m.8993T>G Variant with Hypocitrullinemia and Unusual Biochemical Features Suggestive of Multiple Carboxylase Deficiency (MCD). JIMD Rep 2016; 33:99-107. [PMID: 27450367 DOI: 10.1007/8904_2016_559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 01/15/2023] Open
Abstract
Leigh syndrome (LS), or subacute necrotizing encephalomyelopathy, is a genetically heterogeneous, relentlessly progressive, devastating neurodegenerative disorder that usually presents in infancy or early childhood. A diagnosis of Leigh-like syndrome may be considered in individuals who do not fulfil the stringent diagnostic criteria but have features resembling Leigh syndrome.We describe a unique presentation of Leigh-like syndrome in a 3-year-old boy with elevated 3-hydroxyisovalerylcarnitine (C5-OH) on newborn screening (NBS). Subsequent persistent plasma elevations of C5-OH and propionylcarnitine (C3) as well as fluctuating urinary markers were suggestive of multiple carboxylase deficiency (MCD). Normal enzymology and mutational analysis of genes encoding holocarboxylase synthetase (HLCS) and biotinidase (BTD) excluded MCD. Biotin uptake studies were normal excluding biotin transporter deficiency. His clinical features at 13 months of age comprised psychomotor delay, central hypotonia, myopathy, failure to thrive, hypocitrullinemia, recurrent episodes of decompensation with metabolic keto-lactic acidosis and an episode of hyperammonemia. Biotin treatment from 13 months of age was associated with increased patient activity, alertness, and attainment of new developmental milestones, despite lack of biochemical improvements. Whole exome sequencing (WES) analysis failed to identify any other variants which could likely contribute to the observed phenotype, apart from the homoplasmic (100%) m.8993T>G variant initially detected by mitochondrial DNA (mtDNA) sequencing.Hypocitrullinemia has been reported in patients with the m.8993T>G variant and other mitochondrial disorders. However, persistent plasma elevations of C3 and C5-OH have previously only been reported in one other patient with this homoplasmic mutation. We suggest considering the m.8993T>G variant early in the diagnostic evaluation of MCD-like biochemical disturbances, particularly when associated with hypocitrullinemia on NBS and subsequent confirmatory tests. An oral biotin trial is also warranted.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Metabolic Unit, Department of Rheumatology and Metabolic Medicine, Princess Margaret Hospital, Perth, WA, Australia. .,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia. .,Western Sydney Genetics Program, Children's Hospital at Westmead, Westmead, NSW, Australia.
| | - B Lewis
- PathWest Laboratories WA, Princess Margaret Hospital, Perth, WA, Australia
| | - D M Mock
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - H M Said
- Department of Medicine, University of California School of Medicine Irvine, Irvine, CA, USA
| | - M Tarailo-Graovac
- Centre for Molecular Medicine, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - A Mattman
- Adult Metabolic Diseases Clinic, Division of Endocrinology and Metabolism, Vancouver General Hospital, UBC, Vancouver, BC, Canada
| | - C D van Karnebeek
- Centre for Molecular Medicine, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - D R Thorburn
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - R J Rodenburg
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J Christodoulou
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Saijo S, Nagai A, Kinjo S, Mashimo R, Akimoto M, Kizawa K, Yabe-Wada T, Shimizu N, Takahara H, Unno M. Monomeric Form of Peptidylarginine Deiminase Type I Revealed by X-ray Crystallography and Small-Angle X-ray Scattering. J Mol Biol 2016; 428:3058-73. [DOI: 10.1016/j.jmb.2016.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 02/01/2023]
|
32
|
Witalison EE, Thompson PR, Hofseth LJ. Protein Arginine Deiminases and Associated Citrullination: Physiological Functions and Diseases Associated with Dysregulation. Curr Drug Targets 2016; 16:700-10. [PMID: 25642720 DOI: 10.2174/1389450116666150202160954] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/24/2015] [Indexed: 11/22/2022]
Abstract
Human proteins are subjected to more than 200 known post-translational modifications (PTMs) (e.g., phosphorylation, glycosylation, ubiquitination, S-nitrosylation, methylation, Nacetylation, and citrullination) and these PTMs can alter protein structure and function with consequent effects on the multitude of pathways necessary for maintaining the physiological homeostasis. When dysregulated, however, the enzymes that catalyze these PTMs can impact the genesis of countless diseases. In this review, we will focus on protein citrullination, a PTM catalyzed by the Protein Arginine Deiminase (PAD) family of enzymes. Specifically, we will describe the roles of the PADs in both normal human physiology and disease. The development of PAD inhibitors and their efficacy in a variety of autoimmune disorders and cancer will also be discussed.
Collapse
Affiliation(s)
| | | | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy 770 Sumter St., Coker Life Sciences, Rm. 513C University of South Carolina Columbia, SC 29208.
| |
Collapse
|
33
|
Ishigami A, Masutomi H, Handa S, Nakamura M, Nakaya S, Uchida Y, Saito Y, Murayama S, Jang B, Jeon YC, Choi EK, Kim YS, Kasahara Y, Maruyama N, Toda T. Mass spectrometric identification of citrullination sites and immunohistochemical detection of citrullinated glial fibrillary acidic protein in Alzheimer's disease brains. J Neurosci Res 2015; 93:1664-74. [DOI: 10.1002/jnr.23620] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Akihito Ishigami
- Molecular Regulation of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Hirofumi Masutomi
- Molecular Regulation of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Setsuko Handa
- Molecular Regulation of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Megumi Nakamura
- Molecular Regulation of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Shuuichi Nakaya
- Global Applications Development Center; Shimadzu Corp.; Kyoto Japan
| | - Yoshiaki Uchida
- Research & Development Division; Fujirebio Inc.; Tokyo Japan
| | - Yuko Saito
- Department of Neuropathology; Tokyo Metropolitan Institute of Gerontology; Itabashi-ku, Tokyo Japan
| | - Shigeo Murayama
- Department of Neuropathology; Tokyo Metropolitan Institute of Gerontology; Itabashi-ku, Tokyo Japan
| | - Byungki Jang
- Ilsong Institute of Life Science; Hallym University; Anyang Gyeonggi-do Korea
| | - Yong-Chul Jeon
- Ilsong Institute of Life Science; Hallym University; Anyang Gyeonggi-do Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science; Hallym University; Anyang Gyeonggi-do Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science; Hallym University; Anyang Gyeonggi-do Korea
| | - Yasushi Kasahara
- Molecular Regulation of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
- Research & Development Division; Fujirebio Inc.; Tokyo Japan
| | - Naoki Maruyama
- Molecular Regulation of Aging; Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Tosifusa Toda
- Advanced Medical Research Center; Yokohama City University; Yokohama Japan
| |
Collapse
|
34
|
Fuhrmann J, Clancy K, Thompson PR. Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 2015; 115:5413-61. [PMID: 25970731 PMCID: PMC4463550 DOI: 10.1021/acs.chemrev.5b00003] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kathleen
W. Clancy
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
35
|
Koziel J, Bryzek D, Sroka A, Maresz K, Glowczyk I, Bielecka E, Kantyka T, Pyrć K, Svoboda P, Pohl J, Potempa J. Citrullination alters immunomodulatory function of LL-37 essential for prevention of endotoxin-induced sepsis. THE JOURNAL OF IMMUNOLOGY 2014; 192:5363-72. [PMID: 24771854 DOI: 10.4049/jimmunol.1303062] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cathelicidin LL-37 plays an essential role in innate immunity by killing invading microorganisms and regulating the inflammatory response. These activities depend on the cationic character of the peptide, which is conferred by arginine and lysine residues. At inflammatory foci in vivo, LL-37 is exposed to peptidyl arginine deiminase (PAD), an enzyme released by inflammatory cells. Therefore, we hypothesized that PAD-mediated citrullination of the arginine residues within LL-37 will abrogate its immunomodulatory functions. We found that, when citrullinated, LL-37 was at least 40 times less efficient at neutralizing the proinflammatory activity of LPS due to a marked decrease in its affinity for endotoxin. Also, the ability of citrullinated LL-37 to quench macrophage responses to lipoteichoic acid and poly(I:C) signaling via TLR2 and TLR3, respectively, was significantly reduced. Furthermore, in stark contrast to native LL-37, the modified peptide completely lost the ability to prevent morbidity and mortality in a mouse model of d-galactosamine-sensitized endotoxin shock. In fact, administration of citrullinated LL-37 plus endotoxin actually exacerbated sepsis due to the inability of LL-37 to neutralize LPS and the subsequent enhancement of systemic inflammation due to increased serum levels of IL-6. Importantly, serum from septic mice showed increased PAD activity, which strongly correlated with the level of citrullination, indicating that PAD-driven protein modification occurs in vivo. Because LL-37 is a potential treatment for sepsis, its administration should be preceded by a careful analysis to ensure that the citrullinated peptide is not generated in treated patients.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Danuta Bryzek
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Aneta Sroka
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Katarzyna Maresz
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Izabela Glowczyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Ewa Bielecka
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Tomasz Kantyka
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Krzysztof Pyrć
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Pavel Svoboda
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30333; and
| | - Jan Pohl
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30333; and
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; Center for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| |
Collapse
|
36
|
Ishigami A, Uchida Y, Miyazaki T, Handa S, Choi EK, Kim YS, Kasahara Y, Maruyama N. Two novel sandwich ELISAs identify PAD4 levels and PAD4 autoantibodies in patients with rheumatoid arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-012-0748-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Moelants EA, Mortier A, Van Damme J, Proost P, Loos T. Peptidylarginine deiminases: physiological function, interaction with chemokines and role in pathology. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 9:e227-314. [PMID: 24063741 DOI: 10.1016/j.ddtec.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Liu YL, Tsai IC, Chang CW, Liao YF, Liu GY, Hung HC. Functional roles of the non-catalytic calcium-binding sites in the N-terminal domain of human peptidylarginine deiminase 4. PLoS One 2013; 8:e51660. [PMID: 23382808 PMCID: PMC3559651 DOI: 10.1371/journal.pone.0051660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
This study investigated the functional roles of the N-terminal Ca2+ ion-binding sites, in terms of enzyme catalysis and stability, of peptidylarginine deiminase 4 (PAD4). Amino acid residues located in the N-terminal Ca2+-binding site of PAD4 were mutated to disrupt the binding of Ca2+ ions. Kinetic data suggest that Asp155, Asp157 and Asp179, which directly coordinate Ca3 and Ca4, are essential for catalysis in PAD4. For D155A, D157A and D179A, the kcat/Km,BAEE values were 0.02, 0.63 and 0.01 s−1mM−1 (20.8 s−1mM−1 for WT), respectively. Asn153 and Asp176 are directly coordinated with Ca3 and indirectly coordinated with Ca5 via a water molecule. However, N153A displayed low enzymatic activity with a kcat value of 0.3 s−1 (13.3 s−1 for wild-type), whereas D176A retained some catalytic power with a kcat of 9.7 s−1. Asp168 is the direct ligand for Ca5, and Ca5 coordination by Glu252 is mediated by two water molecules. However, mutation of these two residues to Ala did not cause a reduction in the kcat/Km,BAEE values, which indicates that the binding of Ca5 may not be required for PAD4 enzymatic activity. The possible conformational changes of these PAD4 mutants were examined. Thermal stability analysis of the PAD4 mutants in the absence or presence of Ca2+ indicated that the conformational stability of the enzyme is highly dependent on Ca2+ ions. In addition, the results of urea-induced denaturation for the N153, D155, D157 and D179 series mutants further suggest that the binding of Ca2+ ions in the N-terminal Ca2+-binding site stabilizes the overall conformational stability of PAD4. Therefore, our data strongly suggest that the N-terminal Ca2+ ions play critical roles in the full activation of the PAD4 enzyme.
Collapse
Affiliation(s)
- Yi-Liang Liu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- Institute of Microbiology & Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - I-Chen Tsai
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Chia-Wei Chang
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Ya-Fan Liao
- Graduate Institute of Biochemical Sciences and Biotechnology, Chaoyang University of Technology Taichung, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology & Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| |
Collapse
|
39
|
Bozdag M, Dreker T, Henry C, Tosco P, Vallaro M, Fruttero R, Scozzafava A, Carta F, Supuran CT. Novel small molecule protein arginine deiminase 4 (PAD4) inhibitors. Bioorg Med Chem Lett 2012; 23:715-9. [PMID: 23265898 DOI: 10.1016/j.bmcl.2012.11.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 01/22/2023]
Abstract
Protein arginin deaminase 4 (PAD4) is a calcium dependent enzyme which catalyses the conversion of peptidyl-arginine into peptidyl-citrulline and is implicated in several diseases such as rheumatoid arthritis (RA) and cancer. Herein we report the discovery of novel small-molecule, non peptidic PAD4 inhibitors incorporating primary/secondary guanidine moieties.
Collapse
Affiliation(s)
- Murat Bozdag
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Two novel sandwich ELISAs identify PAD4 levels and PAD4 autoantibodies in patients with rheumatoid arthritis. Mod Rheumatol 2012; 23:794-803. [PMID: 22986904 DOI: 10.1007/s10165-012-0748-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/10/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The peptidylarginine deiminase 4 (PAD4) gene and PAD4 autoantibodies have been associated with rheumatoid arthritis (RA) and its pathogenesis. Therefore, methods for accurately determining their levels in the peripheral blood of these patients would be a diagnostic asset. The objective of our study was to adapt the enzyme-linked immunosorbent assay (ELISA) method for evaluating PAD4 levels in human blood. METHODS We prepared recombinant human (h)PAD1, -2, -3, and -4 proteins to develop mouse monoclonal antibodies specific to hPAD4. We then generated six monoclonal antibodies against hPAD4 and developed two new sandwich ELISA methods for evaluating hPAD4 and PAD4 autoantibodies in the peripheral blood from 32 patients with RA, ten patients with osteoarthrosis, and 20 healthy individuals. RESULTS The distribution of hPAD4 in the patients' plasma was determined. Two populations were identified: one group with high hPAD4 levels (>0.57 ng/mL) and a second group with near-zero levels (<0.1 ng/mL). Most patients approximating zero hPAD4 levels had PAD4 autoantibodies. In contrast, most of those with higher plasma hPAD4 levels did not have detectable PAD4 autoantibodies. CONCLUSION The combination of these sandwich ELISA methods may be a potentially beneficial clinical tool for diagnosing RA.
Collapse
|
41
|
Makrygiannakis D, Revu S, Engström M, af Klint E, Nicholas AP, Pruijn GJ, Catrina AI. Local administration of glucocorticoids decreases synovial citrullination in rheumatoid arthritis. Arthritis Res Ther 2012; 14:R20. [PMID: 22284820 PMCID: PMC3392813 DOI: 10.1186/ar3702] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/11/2011] [Accepted: 01/27/2012] [Indexed: 12/31/2022] Open
Abstract
Introduction Protein citrullination is present in the rheumatoid synovium, presumably contributing to the perpetuation of chronic inflammation, in the presence of specific autoimmunity. As a result, the present study examined the possibility that effective antirheumatic treatment will decrease the level of synovial citrullination. Methods Synovial biopsies were obtained from 11 rheumatoid arthritis (RA) patients before and after 8 weeks of treatment with 20 mg methotrexate weekly, 15 RA patients before and 2 weeks after an intraarticular glucocorticoid injection, and eight healthy volunteers. Synovial inflammation was assessed with double-blind semiquantitative analysis of lining thickness, cell infiltration, and vascularity by using a 4-point scale. Expression of citrullinated proteins (CPs) with the monoclonal antibody F95 and peptidylarginine deiminase (PAD) 2 and 4 was assessed immunohistochemically with double-blind semiquantitative analysis. In vitro synovial fluid (SF), peripheral blood (PB), mononuclear cells (MCs), and synovial explants obtained from RA patients were incubated with dexamethasone and analyzed with immunohistochemistry for expression of CP as well as PAD2 and PAD4 enzymes. Results The presence of synovial CP was almost exclusive in RA compared with healthy synovium and correlated with the degree of local inflammation. Treatment with glucocorticoids but not methotrexate alters expression of synovial CP and PAD enzymes, in parallel with a decrease of synovial inflammation. Ex vivo and in vitro studies suggest also a direct effect of glucocorticoids on citrullination, as demonstrated by the decrease in the level of citrullination and PAD expression after incubation of SFMC and synovial explants with dexamethasone. Conclusion Synovial citrullination and PAD expression are dependent on local inflammation and targeted by glucocorticoids.
Collapse
Affiliation(s)
- Dimitrios Makrygiannakis
- Department of Medicine, Rheumatology Unit, Karolinska University Hospital, Karolinska Institutet, SE- 141 86, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Localization and expression of peptidylarginine deiminase 4 (PAD4) in mammalian oocytes and preimplantation embryos. ZYGOTE 2011; 21:314-24. [PMID: 22126893 DOI: 10.1017/s0967199411000633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Post-translational modifications generally involve the addition or removal of various functional groups to or from the protein residues. However, citrullination, which is catalyzed by the peptidylarginine deiminases (PADs), involves conversion of one kind of amino acid residue into another. One of five isoforms, PAD4 is a nuclear enzyme known to play a role in development, differentiation and apoptosis through gene regulation. To investigate the possible role of PAD4 in mammalian preimplantation embryonic development, we first studied localization and expression of PAD4 and citrullinated proteins in pig and mouse oocytes, and parthenogenetic or in vitro fertilized (IVF) embryos. Immunofluorescence study revealed that PAD4 primarily localizes in the cytoplasm in pig oocytes and parthenogenetic embryos. However, the nuclear translocation of PAD4 was observed in late germinal vesicle (GV) stage oocytes prior to GV breakdown and was localized around the metaphase (M)I and II spindle. Nucleus localized PAD4 was noticed partially again in blastocysts. In mouse IVF embryos, nuclear translocation started from the 2-cell stage and gradually increased up to blastocyst. Western blot studies confirmed that PAD4 was expressed in oocytes, and parthenogenetic embryos of pig. Citrullinated proteins were detected in granular form on the chromatin in GV, MI and MII oocytes and nuclei in all the stages of the embryos studied. It was found that the target of citrullination was histone protein (H3), not B23. Therefore the presence of PAD4 and citrullinated histone H3 in oocytes and embryos suggested a possible role for PAD4 in preimplantation embryonic development.
Collapse
|
43
|
Guo Q, Bedford MT, Fast W. Discovery of peptidylarginine deiminase-4 substrates by protein array: antagonistic citrullination and methylation of human ribosomal protein S2. MOLECULAR BIOSYSTEMS 2011; 7:2286-95. [PMID: 21584310 PMCID: PMC3251905 DOI: 10.1039/c1mb05089c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peptidylarginine deiminase (PAD) catalyzes the posttranslational citrullination of selected proteins in a calcium dependent manner. The PAD4 isoform has been implicated in multiple sclerosis, rheumatoid arthritis, some types of cancer, and plays a role in gene regulation. However, the substrate selectivity of PAD4 is not well defined, nor is the impact of citrullination on many other pathways. Here, a high-density protein array is used as a primary screen to identify 40 previously unreported PAD4 substrates, 10 of which are selected and verified in a cell lysate-based secondary assay. One of the most prominent hits, human 40S ribosomal protein S2 (RPS2), is characterized in detail. PAD4 citrullinates the Arg-Gly repeat region of RPS2, which is also an established site for Arg methylation by protein arginine methyltransferase 3 (PRMT3). As in other systems, crosstalk is observed; citrullination and methylation modifications are found to be antagonistic to each other, suggesting a conserved posttranslational regulatory strategy. Both PAD4 and PRMT3 are found to co-sediment with the free 40S ribosomal subunit fraction from cell extracts. These findings are consistent with participation of citrullination in the regulation of RPS2 and ribosome assembly. This application of protein arrays to reveal new PAD4 substrates suggests a role for citrullination in a number of different cellular pathways.
Collapse
Affiliation(s)
- Qin Guo
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | - Mark T. Bedford
- Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
44
|
Liu YL, Chiang YH, Liu GY, Hung HC. Functional role of dimerization of human peptidylarginine deiminase 4 (PAD4). PLoS One 2011; 6:e21314. [PMID: 21731701 PMCID: PMC3120853 DOI: 10.1371/journal.pone.0021314] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4) is a homodimeric enzyme that catalyzes Ca2+-dependent protein citrullination, which results in the conversion of arginine to citrulline. This paper demonstrates the functional role of dimerization in the regulation of PAD4 activity. To address this question, we created a series of dimer interface mutants of PAD4. The residues Arg8, Tyr237, Asp273, Glu281, Tyr435, Arg544 and Asp547, which are located at the dimer interface, were mutated to disturb the dimer organization of PAD4. Sedimentation velocity experiments were performed to investigate the changes in the quaternary structures and the dissociation constants (Kd) between wild-type and mutant PAD4 monomers and dimers. The kinetic data indicated that disrupting the dimer interface of the enzyme decreases its enzymatic activity and calcium-binding cooperativity. The Kd values of some PAD4 mutants were much higher than that of the wild-type (WT) protein (0.45 µM) and were concomitant with lower kcat values than that of WT (13.4 s−1). The Kd values of the monomeric PAD4 mutants ranged from 16.8 to 45.6 µM, and the kcat values of the monomeric mutants ranged from 3.3 to 7.3 s−1. The kcat values of these interface mutants decreased as the Kd values increased, which suggests that the dissociation of dimers to monomers considerably influences the activity of the enzyme. Although dissociation of the enzyme reduces the activity of the enzyme, monomeric PAD4 is still active but does not display cooperative calcium binding. The ionic interaction between Arg8 and Asp547 and the Tyr435-mediated hydrophobic interaction are determinants of PAD4 dimer formation.
Collapse
Affiliation(s)
- Yi-Liang Liu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- Institute of Microbiology & Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiu Chiang
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology & Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (H-CH); (G-YL)
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- * E-mail: (H-CH); (G-YL)
| |
Collapse
|
45
|
Abdeen SM, Olusi SO. Peptidyl arginine deiminase: A novel immunohistochemical marker for liver fibrosis in patients with chronic hepatitis. Acta Histochem 2010; 112:592-603. [PMID: 19836826 DOI: 10.1016/j.acthis.2009.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/14/2009] [Accepted: 06/19/2009] [Indexed: 11/19/2022]
Abstract
Peptidylarginine deiminase (PAD) is an enzyme known to be involved in the pathogenesis of rheumatoid arthritis (RA). Since many of the molecular events present in the joints in RA also take place in the injured liver, we postulated in this study that PAD may be involved in liver fibrosis. The objectives of this study therefore were to find out if PAD could be demonstrated immunohistochemically in liver biopsies of patients with chronic hepatitis and if it is associated with METAVIR activity and fibrosis scores. Liver biopsies were obtained from 100 patients with chronic liver diseases between September 2006 and 2007. The biopsies were scored by two histopathologists according to the METAVIR activity and fibrosis scores after histological preparation. Immunohistochemistry for PAD was performed on the biopsies using a monoclonal antibody against PAD. PAD could not be demonstrated in normal liver biopsies but was found in the hepatocytes of patients with chronic hepatitis. PAD labeling could distinguish patients with no fibrosis from either F1 or F2 or F3 or F4 fibrosis. Similarly, PAD labeling could separate patients with no inflammatory activity from those with mild or moderate or severe activity. We concluded that PAD could be demonstrated immunohistochemically in liver biopsies of patients with chronic hepatitis and that its immunodetection was significantly associated with Metavir activity and fibrosis scores.
Collapse
Affiliation(s)
- Suad M Abdeen
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, 13110 Safat, Kuwait.
| | | |
Collapse
|
46
|
Méchin MC, Sebbag M, Arnaud J, Nachat R, Foulquier C, Adoue V, Coudane F, Duplan H, Schmitt AM, Chavanas S, Guerrin M, Serre G, Simon M. Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. Int J Cosmet Sci 2010; 29:147-68. [PMID: 18489346 DOI: 10.1111/j.1467-2494.2007.00377.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Deimination (or citrullination) is a recently described post-translational modification, but its consequences are not yet well understood. It is catalysed by peptidylarginine deiminases (PADs). These enzymes transform arginyl residues involved in a peptidyl link into citrullyl residues in a calcium-dependent manner. Several PAD substrates have already been identified like filaggrin and keratins K1 and K10 in the epidermis, trichohyalin in hair follicles, but also ubiquitous proteins like histones. PADs act in a large panel of physiological functions as cellular differentiation or gene regulation. It has been suggested that deimination plays a role in many major diseases such as rheumatoid arthritis, multiple sclerosis, Alzheimer's disease and psoriasis. Five human genes (PADIs), encoding five highly conserved paralogous enzymes (PAD1-4 and 6), have been characterized. These genes are clustered in a single locus, at 1p35-36 in man. Only PAD1-3 are expressed in human epidermis. PADs seem to be controlled at transcriptional, translational and activity levels and they present particular substrate specificities. In this review, we shall discuss these main biochemical, genetic and functional aspects of PADs together with their pathophysiological implications.
Collapse
Affiliation(s)
- M-C Méchin
- University of Toulouse III, UMR5165, Institut Fédératif de Recherche Claude de Préval, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mangat P, Wegner N, Venables PJ, Potempa J. Bacterial and human peptidylarginine deiminases: targets for inhibiting the autoimmune response in rheumatoid arthritis? Arthritis Res Ther 2010; 12:209. [PMID: 20553633 PMCID: PMC2911857 DOI: 10.1186/ar3000] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peptidylarginine deiminases (PADs) convert arginine within a peptide (peptidylarginine) into peptidylcitrulline. Citrullination by human PADs is important in normal physiology and inflammation. Porphyromonas gingivalis, a major pathogen in periodontitis, is the only prokaryote described to possess PAD. P. gingivalis infection may generate citrullinated peptides, which trigger anti-citrullinated peptide antibodies. In susceptible individuals, host protein citrullination by human PADs in the joint probably perpetuates antibody formation, paving the way for the development of chronic arthritis. Blockades of bacterial and human PADs may act as powerful novel therapies by inhibiting the generation of the antigens that trigger and sustain autoimmunity in rheumatoid arthritis.
Collapse
Affiliation(s)
- Pamela Mangat
- The Kennedy Institute of Rheumatology Division, Imperial College, 65 Aspenlea Road, London, W6 8LH, UK
| | | | | | | |
Collapse
|
48
|
Ishigami A, Maruyama N. Importance of research on peptidylarginine deiminase and citrullinated proteins in age-related disease. Geriatr Gerontol Int 2010; 10 Suppl 1:S53-8. [DOI: 10.1111/j.1447-0594.2010.00593.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Shimada N, Handa S, Uchida Y, Fukuda M, Maruyama N, Asaga H, Choi EK, Lee J, Ishigami A. Developmental and age-related changes of peptidylarginine deiminase 2 in the mouse brain. J Neurosci Res 2010; 88:798-806. [PMID: 19830834 DOI: 10.1002/jnr.22255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peptidylarginine deiminases (PADs) are a group of posttranslational modification enzymes that citrullinate (deiminate) protein arginine residues in a Ca(2+)-dependent manner. Enzymatic citrullination abolishes positive charges of native protein molecules, inevitably causing significant alterations in their structure and functions. Among the five isoforms of PADs, PAD2 and PAD4 are proved occupants of the central nervous system (CNS), and especially PAD2 is a main PAD enzyme expressed in the CNS. We previously reported that abnormal protein citrullination by PAD2 has been closely associated with the pathogenesis of neurodegenerative disorders such as Alzheimer's disease and prion disease. Protein citrullination in these patients is thought to play a role during the initiation and/or progression of disease. However, the contribution of changes in PAD2 levels, and consequent citrullination, during developmental and aging processes remained unclear. Therefore, we used quantitative real-time RT-PCR, Western blot analysis, and immunohistochemical methods to measure PAD2 expression and localization in the brain during those processes. PAD2 mRNA expression was detected in the brains of mice as early as embryonic day 15, and its expression in cerebral cortex, hippocampus, and cerebellum increased significantly as the animals aged from 3 to 30 months old. No citrullinated proteins were detected during that period. Moreover, we found here, for the first time, that PAD2 localized specifically in the neuronal cells of the cerebral cortex and Purkinje cells of the cerebellum. These findings indicate that, despite PAD2's normally inactive status, it becomes active and citrullinates cellular proteins, but only when the intracellular Ca(2+) balance is upset during neurodegenerative changes.
Collapse
Affiliation(s)
- Nobuko Shimada
- Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
PADI4 post-translationally converts peptidylarginine to citrulline, a process called citrullination. Studies have demonstrated the high expression of PADI4 in various malignant tumour tissues. PADI4 is also expressed at high levels in the blood of patients with some malignant tumours. Thus far, citrullination of histone, cytokeratin, antithrombin and fibronectin have been confirmed to be involved in abnormal apoptosis, high coagulation, and disordered cell proliferation and differentiation, all of which are main features of malignant tumours. PADI4 is expressed in CD34+ stem cells in normal tissues, and many more CD34+ cells expressing PADI4 are present in tumour tissues. These findings suggest that PADI4 may play an important role in tumourigenesis.
Collapse
Affiliation(s)
- Xiaotian Chang
- Laboratory for Bio-Drugs of Ministry of Health, Provincial Laboratory for Modern Medicine and Technology of Shandong, Research Center for Medicinal Biotechnology, Shandong Academy of Medical Sciences, Jingshi Road, Shandong, PR China.
| | | |
Collapse
|