1
|
Liu J, Zhang D. Cytochrome P450-mediated carbon-carbon bond formation in drug metabolism. Drug Metab Rev 2025; 57:51-66. [PMID: 39906921 DOI: 10.1080/03602532.2025.2451847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025]
Abstract
Cytochrome P450 (CYPs) enzymes are essential for the metabolism of numerous drug compounds and are capable of catalyzing many types of biotransformation reactions. One of the more unusual reactions catalyzed by CYPs is carbon-carbon (C-C) bond formation, which is critical in organic synthesis but found less commonly in nature. This review focuses on examples of C-C bond formation that occur during drug metabolism and highlights the mechanism for the formation of novel drug metabolites that result from these reactions. The different roles that mammalian CYPs can play in C-C bond formations are also discussed in detail. Ultimately, an understanding of the range of xenobiotics that undergo C-C bond formation and the mechanisms by which they do so can further facilitate metabolite identification and drug design efforts.
Collapse
Affiliation(s)
- Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
2
|
Mondal A, Banerjee S, Terang W, Bishayee A, Zhang J, Ren L, da Silva MN, Bishayee A. Capsaicin: A chili pepper bioactive phytocompound with a potential role in suppressing cancer development and progression. Phytother Res 2024; 38:1191-1223. [PMID: 38176910 DOI: 10.1002/ptr.8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Cancer profoundly influences morbidity and fatality rates worldwide. Patients often have dismal prognoses despite recent improvements in cancer therapy regimens. However, potent biomolecules derived from natural sources, including medicinal and dietary plants, contain biological and pharmacological properties to prevent and treat various human malignancies. Capsaicin is a bioactive phytocompound present in red hot chili peppers. Capsaicin has demonstrated many biological effects, including antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic capabilities. This review highlights the cellular and molecular pathways through which capsaicin exhibits antineoplastic activities. Our work also depicts the synergistic anticancer properties of capsaicin in conjunction with other natural bioactive components and approved anticancer drugs. Capsaicin inhibits proliferation in various cancerous cells, and its antineoplastic actions in numerous in vitro and in vivo carcinoma models impact oncogenesis, tumor-promoting and suppressor genes, and associated signaling pathways. Capsaicin alone or combined with other phytocompounds or approved antineoplastic drugs triggers cell cycle progression arrest, generating reactive oxygen species and disrupting mitochondrial membrane integrity, ultimately stimulating caspases and promoting death. Furthermore, capsaicin alone or in combination can promote apoptosis in carcinoma cells by enhancing the p53 and c-Myc gene expressions. In conclusion, capsaicin alone or in combination can have enormous potential for cancer prevention and intervention, but further high-quality studies are needed to firmly establish the clinical efficacy of this phytocompound.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Wearank Terang
- Department of Pharmacology, Rahman Institute of Pharmaceutical Sciences and Research, Kamrup, India
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, New York, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Milton Nascimento da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
3
|
Vázquez-Espinosa M, González-de-Peredo AV, Espada-Bellido E, Ferreiro-González M, Barbero GF, Palma M. The effect of ripening on the capsaicinoids composition of Jeromin pepper (Capsicum annuum L.) at two different stages of plant maturity. Food Chem 2023; 399:133979. [DOI: 10.1016/j.foodchem.2022.133979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
4
|
Goci E, Haloci E, Di Stefano A, Chiavaroli A, Angelini P, Miha A, Cacciatore I, Marinelli L. Evaluation of In Vitro Capsaicin Release and Antimicrobial Properties of Topical Pharmaceutical Formulation. Biomolecules 2021; 11:biom11030432. [PMID: 33804191 PMCID: PMC8001808 DOI: 10.3390/biom11030432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
(1) Background: Capsaicin is the main capsaicinoid of the Capsicum genus and it is responsible for the pungent taste. Medical uses of the fruits of chili peppers date from the ancient time until nowadays. Most of all, they are used topically as analgesic in anti-inflammatory diseases as rheumatism, arthritis and in diabetic neuropathy. Reports state that the Capsicum genus, among other plant genera, is a good source of antimicrobial and antifungal compounds. The aim of this study was the preparation of a pharmaceutical Carbopol-based formulation containing capsaicin and the evaluation of its in vitro release and antimicrobial and antifungal properties. (2) Methods: It was first stabilized with an extraction method from the Capsicum annuum fruits with 98% ethanol and then the identification and determination of Capsaicin in this extract was realized by HPLC. (3) Results and Conclusions: Rheological analyses revealed that the selected formulation exhibited a pseudo-plastic behavior. In vitro release studies of capsaicin from a Carbopol-based formulation reported that approximately 50% of capsaicin was release within 52 h. Additionally, the Carbopol-based formulation significantly increased the antimicrobial effects of capsaicin towards all tested bacteria and fungi strains.
Collapse
Affiliation(s)
- Enkelejda Goci
- Pharmacotherapeutic Research Center, Faculty of Medical Sciences, Aldent University, 1001 Tirana, Albania;
- Correspondence:
| | - Entela Haloci
- Department of Pharmacy, Faculty of Medicine, University of Medicine, 1001 Tirana, Albania;
| | - Antonio Di Stefano
- Department of Pharmacy, University of “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (A.D.S.); (A.C.); (I.C.); (L.M.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, University of “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (A.D.S.); (A.C.); (I.C.); (L.M.)
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy;
| | - Ajkuna Miha
- Pharmacotherapeutic Research Center, Faculty of Medical Sciences, Aldent University, 1001 Tirana, Albania;
| | - Ivana Cacciatore
- Department of Pharmacy, University of “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (A.D.S.); (A.C.); (I.C.); (L.M.)
| | - Lisa Marinelli
- Department of Pharmacy, University of “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (A.D.S.); (A.C.); (I.C.); (L.M.)
| |
Collapse
|
5
|
da Silva LV, dos Santos ND, de Almeida AK, dos Santos DDE, Santos ACF, França MC, Lima DJP, Lima PR, Goulart MO. A new electrochemical sensor based on oxidized capsaicin/multi-walled carbon nanotubes/glassy carbon electrode for the quantification of dopamine, epinephrine, and xanthurenic, ascorbic and uric acids. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Antioxidant Profile of Pepper ( Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants (Basel) 2020; 9:antiox9090878. [PMID: 32957493 PMCID: PMC7554748 DOI: 10.3390/antiox9090878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Capsicum is the genus where a number of species and varieties have pungent features due to the exclusive content of capsaicinoids such as capsaicin and dihydrocapsaicin. In this work, the main enzymatic and non-enzymatic systems in pepper fruits from four varieties with different pungent capacity have been investigated at two ripening stages. Thus, a sweet pepper variety (Melchor) from California-type fruits and three autochthonous Spanish varieties which have different pungency levels were used, including Piquillo, Padrón and Alegría riojana. The capsaicinoids contents were determined in the pericarp and placenta from fruits, showing that these phenyl-propanoids were mainly localized in placenta. The activity profiles of catalase, total and isoenzymatic superoxide dismutase (SOD), the enzymes of the ascorbate–glutathione cycle (AGC) and four NADP-dehydrogenases indicate that some interaction with capsaicinoid metabolism seems to occur. Among the results obtained on enzymatic antioxidants, the role of Fe-SOD and the glutathione reductase from the AGC is highlighted. Additionally, it was found that ascorbate and glutathione contents were higher in those pepper fruits which displayed the greater contents of capsaicinoids. Taken together, all these data indicate that antioxidants may contribute to preserve capsaicinoids metabolism to maintain their functionality in a framework where NADPH is perhaps playing an essential role.
Collapse
|
7
|
Zhu J, Tian K, Reilly CA, Qiu X. Capsaicinoid metabolism by the generalist Helicoverpa armigera and specialist H. assulta: Species and tissue differences. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:164-174. [PMID: 31973854 DOI: 10.1016/j.pestbp.2019.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Helicoverpa armigera and H. assulta are two of the few insects that can feed on hot pepper fruits. Capsaicin and dihydrocapsaicin (i.e., capsaicinoids) are the principal pungent compounds in hot peppers. To explore possible molecular mechanisms of adaptation that allow these two species to consume capsaicinoids, the capacity of the three detoxification tissues (fat body, midgut, and Malpighian tubule) of the two pests, to metabolically degrade capsaicin and dihydrocapsaicin, was compared. The results showed that capsaicin and dihydrocapsaicin were metabolized by crude enzyme preparations from all three tissues of the two pests. Five metabolites of capsaicin, and five metabolites of dihydrocapsaicin were identified. Tissue and species differences in the degree of capsaicin and dihydrocapsaicin metabolism were observed. The specialist H. assulta had an overall greater capacity to degrade the capsaicinoids compared to the generalist H. armigera. Further, the midgut was the most significant contributor to capsaicinoid metabolism. The notably high specific activity in Malpighian tubules of H. armigera also further highlights the significance of this organ in xenobiotic detoxification. Alkyl hydroxylation and dehydrogenation were the main pathways for the oxidative biotransformation of both capsaicin and dihydrocapsaicin by cytochrome P450s. This study provides evidence that enhanced metabolic decomposition of capsaicinoids may be an adaptation explaining dietary preferences for Capsicum fruits by these two pests.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Njuma OJ, Davis I, Ndontsa EN, Krewall JR, Liu A, Goodwin DC. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme. J Biol Chem 2017; 292:18408-18421. [PMID: 28972181 DOI: 10.1074/jbc.m117.791202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H2O2-induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H2O2 to O2 and H2O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H2O2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting (i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H2O2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates.
Collapse
Affiliation(s)
- Olive J Njuma
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Ian Davis
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and.,the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Elizabeth N Ndontsa
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Jessica R Krewall
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Aimin Liu
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and
| | - Douglas C Goodwin
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312,
| |
Collapse
|
9
|
Hernandez SR, Kergaravat SV, Pividori MI. Enzymatic electrochemical detection coupled to multivariate calibration for the determination of phenolic compounds in environmental samples. Talanta 2013; 106:399-407. [DOI: 10.1016/j.talanta.2013.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/26/2022]
|
10
|
Reilly CA, Henion F, Bugni TS, Ethirajan M, Stockmann C, Pramanik KC, Srivastava SK, Yost GS. Reactive intermediates produced from the metabolism of the vanilloid ring of capsaicinoids by p450 enzymes. Chem Res Toxicol 2012; 26:55-66. [PMID: 23088752 DOI: 10.1021/tx300366k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study characterized electrophilic and radical products derived from the metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from the trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5'-Dicapsaicin, presumably arising from the bimolecular coupling of free radical intermediates was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated quinone methide and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems.
Collapse
Affiliation(s)
- Christopher A Reilly
- Department of Pharmacology and Toxicology, University of Utah , 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, Utah 84112, United States
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ndontsa EN, Moore RL, Goodwin DC. Stimulation of KatG catalase activity by peroxidatic electron donors. Arch Biochem Biophys 2012; 525:215-22. [DOI: 10.1016/j.abb.2012.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/25/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
12
|
Enhancing the peroxidatic activity of KatG by deletion mutagenesis. J Inorg Biochem 2012; 116:106-15. [PMID: 23018273 DOI: 10.1016/j.jinorgbio.2012.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 11/23/2022]
Abstract
Catalase-peroxidase (KatG) enzymes use a peroxidase active site to facilitate robust catalase activity, an ability all other members of its superfamily lack. KatG's have a Met-Tyr-Trp covalent adduct that is essential for catalatic but not peroxidatic turnover. The tyrosine (Y226 in E. coli KatG) is supplied by a large loop (LL1) that is absent from all other plant peroxidases. Elimination of Y226 from the KatG structure, either by site directed mutagenesis (i.e., Y226F KatG) or by deletion of larger portions of LL1 invariably eliminates catalase activity, but deletion variants were substantially more active as peroxidases, up to an order of magnitude. Moreover, the deletion variants were more resistant to H(2)O(2)-dependent inactivation than Y226F KatG. Stopped-flow evaluation of reactions of H(2)O(2) with Y226F KatG and the most peroxidase active deletion variant (KatG[Δ209-228]) produced highly similar rate constants for formation of compounds I and II, and about a four-fold faster formation of compound III for the deletion variant as opposed to Y226F. Conversely, single turnover experiments showed a 60-fold slower return of Y226F KatG to its ferric state in the presence of the exogenous electron donor 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) than was determined for KatG(Δ209-228). Our data suggest that the peroxidatic output of KatG cannot be optimized simply by elimination of catalase activity alone, but also requires modifications that increase electron transfer between exogenous electron donors and the heme prosthetic group.
Collapse
|
13
|
Prasad BCN, Kumar V, Gururaj HB, Parimalan R, Giridhar P, Ravishankar GA. Characterization of capsaicin synthase and identification of its gene (csy1) for pungency factor capsaicin in pepper (Capsicum sp.). Proc Natl Acad Sci U S A 2006; 103:13315-20. [PMID: 16938870 PMCID: PMC1569161 DOI: 10.1073/pnas.0605805103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Indexed: 11/18/2022] Open
Abstract
Capsaicin is a unique alkaloid of the plant kingdom restricted to the genus Capsicum. Capsaicin is the pungency factor, a bioactive molecule of food and of medicinal importance. Capsaicin is useful as a counterirritant, antiarthritic, analgesic, antioxidant, and anticancer agent. Capsaicin biosynthesis involves condensation of vanillylamine and 8-methyl nonenoic acid, brought about by capsaicin synthase (CS). We found that CS activity correlated with genotype-specific capsaicin levels. We purified and characterized CS ( approximately 35 kDa). Immunolocalization studies confirmed that CS is specifically localized to the placental tissues of Capsicum fruits. Western blot analysis revealed concomitant enhancement of CS levels and capsaicin accumulation during fruit development. We determined the N-terminal amino acid sequence of purified CS, cloned the CS gene (csy1) and sequenced full-length cDNA (981 bp). The deduced amino acid sequence of CS from full-length cDNA was 38 kDa. Functionality of csy1 through heterologous expression in recombinant Escherichia coli was also demonstrated. Here we report the gene responsible for capsaicin biosynthesis, which is unique to Capsicum spp. With this information on the CS gene, speculation on the gene for pungency is unequivocally resolved. Our findings have implications in the regulation of capsaicin levels in Capsicum genotypes.
Collapse
Affiliation(s)
- B. C. Narasimha Prasad
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (Constituent Laboratory of Council of Scientific and Industrial Research), Mysore 570020, India
| | - Vinod Kumar
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (Constituent Laboratory of Council of Scientific and Industrial Research), Mysore 570020, India
| | - H. B. Gururaj
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (Constituent Laboratory of Council of Scientific and Industrial Research), Mysore 570020, India
| | - R. Parimalan
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (Constituent Laboratory of Council of Scientific and Industrial Research), Mysore 570020, India
| | - P. Giridhar
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (Constituent Laboratory of Council of Scientific and Industrial Research), Mysore 570020, India
| | - G. A. Ravishankar
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (Constituent Laboratory of Council of Scientific and Industrial Research), Mysore 570020, India
| |
Collapse
|