1
|
Fierling N, Billard P, Dluzniewski A, Sohm B, Bauda P, Blaudez D. Importance of the envelope in Escherichia coli resistance to lithium. CHEMOSPHERE 2025; 374:144234. [PMID: 39983623 DOI: 10.1016/j.chemosphere.2025.144234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
The increasing use of lithium (Li) in emerging technologies has prompted concerns about its effects on living microorganisms. To enhance our understanding of the bacterial cytotoxicity of Li, we conducted a deletomic analysis using the bacterial model Escherichia coli. A screen of 3,985 knockout mutants under Li stress highlighted 27 Li-sensitive and 15 Li-resistant mutants. The synthesis of peptidoglycan and the capsule, along with the secretion of colanic acid, contributed to resistance to Li. Ribosomes and the stringent response also seem to play a role in mitigating Li cytotoxicity. A cross-metal comparison revealed that the Li-sensitive phenotype of the mutants was shared with Ca, whereas the resistant phenotype was shared with Mg, Na and K. Moreover, this allowed the identification of ΔacrA as a Li sensitivity-specific mutant. AcrA is a subunit of the AcrAB-TolC efflux pump, which is responsible for the efflux of various xenobiotics. We demonstrate that ΔacrB-ΔtolC accumulates approximately 1.5 times more Li than the WT, indicating that this pump could also facilitate the efflux of Li. This study offers a more comprehensive insight into the mechanisms involved in the Li response in E. coli.
Collapse
Affiliation(s)
| | | | | | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France.
| |
Collapse
|
2
|
Hariharan P, Bakhtiiari A, Liang R, Guan L. Distinct roles of the major binding residues in the cation-binding pocket of the melibiose transporter MelB. J Biol Chem 2024; 300:107427. [PMID: 38823641 PMCID: PMC11259710 DOI: 10.1016/j.jbc.2024.107427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the major facilitator superfamily (MFS) transporters, which play important roles in human health and diseases. MelBSt catalyzed the symport of galactosides with Na+, Li+, or H+ but prefers the coupling with Na+. Previously, we determined the structures of the inward- and outward-facing conformation of MelBSt and the molecular recognition for galactoside and Na+. However, the molecular mechanisms for H+- and Na+-coupled symport remain poorly understood. In this study, we solved two x-ray crystal structures of MelBSt, the cation-binding site mutants D59C at an unliganded apo-state and D55C at a ligand-bound state, and both structures display the outward-facing conformations virtually identical as published. We determined the energetic contributions of three major Na+-binding residues for the selection of Na+ and H+ by free energy simulations. Transport assays showed that the D55C mutant converted MelBSt to a solely H+-coupled symporter, and together with the free-energy perturbation calculation, Asp59 is affirmed to be the sole protonation site of MelBSt. Unexpectedly, the H+-coupled melibiose transport exhibited poor activities at greater bulky ΔpH and better activities at reversal ΔpH, supporting the novel theory of transmembrane-electrostatically localized protons and the associated membrane potential as the primary driving force for the H+-coupled symport mediated by MelBSt. This integrated study of crystal structure, bioenergetics, and free energy simulations, demonstrated the distinct roles of the major binding residues in the cation-binding pocket of MelBSt.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA.
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
3
|
Lo WC, Krasnopeeva E, Pilizota T. Bacterial Electrophysiology. Annu Rev Biophys 2024; 53:487-510. [PMID: 38382113 DOI: 10.1146/annurev-biophys-030822-032215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial ion fluxes are involved in the generation of energy, transport, and motility. As such, bacterial electrophysiology is fundamentally important for the bacterial life cycle, but it is often neglected and consequently, by and large, not understood. Arguably, the two main reasons for this are the complexity of measuring relevant variables in small cells with a cell envelope that contains the cell wall and the fact that, in a unicellular organism, relevant variables become intertwined in a nontrivial manner. To help give bacterial electrophysiology studies a firm footing, in this review, we go back to basics. We look first at the biophysics of bacterial membrane potential, and then at the approaches and models developed mostly for the study of neurons and eukaryotic mitochondria. We discuss their applicability to bacterial cells. Finally, we connect bacterial membrane potential with other relevant (electro)physiological variables and summarize methods that can be used to both measure and influence bacterial electrophysiology.
Collapse
Affiliation(s)
- Wei-Chang Lo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | | | - Teuta Pilizota
- School of Biological Sciences, Centre for Engineering Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
4
|
Hariharan P, Bakhtiiari A, Liang R, Guan L. Distinct roles of the major binding residues in the cation-binding pocket of MelB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582382. [PMID: 38464317 PMCID: PMC10925273 DOI: 10.1101/2024.02.27.582382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the major facilitator superfamily (MFS) transporters, which play important roles in human health and diseases. MelBSt catalyzed the symport of galactosides with either H+, Li+, or Na+, but prefers the coupling with Na+. Previously, we determined the structures of the inward- and outward-facing conformation of MelBSt, as well as the molecular recognition for galactoside and Na+. However, the molecular mechanisms for H+- and Na+-coupled symport still remain poorly understood. We have solved two x-ray crystal structures of MelBSt cation-binding site mutants D59C at an unliganded apo-state and D55C at a ligand-bound state, and both structures display the outward-facing conformations virtually identical as published previously. We determined the energetic contributions of three major Na+-binding residues in cation selectivity for Na+ and H+ by the free energy simulations. The D55C mutant converted MelBSt to a solely H+-coupled symporter, and together with the free-energy perturbation calculation, Asp59 is affirmed to be the sole protonation site of MelBSt. Unexpectedly, the H+-coupled melibiose transport with poor activities at higher ΔpH and better activities at reversal ΔpH was observed, supporting that the membrane potential is the primary driving force for the H+-coupled symport mediated by MelBSt. This integrated study of crystal structure, bioenergetics, and free energy simulations, demonstrated the distinct roles of the major binding residues in the cation-binding pocket.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | | | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
5
|
Goldman AL, Fulk EM, Momper LM, Heider C, Mulligan J, Osburn M, Masiello CA, Silberg JJ. Microbial sensor variation across biogeochemical conditions in the terrestrial deep subsurface. mSystems 2024; 9:e0096623. [PMID: 38059636 PMCID: PMC10805038 DOI: 10.1128/msystems.00966-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Microbes can be found in abundance many kilometers underground. While microbial metabolic capabilities have been examined across different geochemical settings, it remains unclear how changes in subsurface niches affect microbial needs to sense and respond to their environment. To address this question, we examined how microbial extracellular sensor systems vary with environmental conditions across metagenomes at different Deep Mine Microbial Observatory (DeMMO) subsurface sites. Because two-component systems (TCSs) directly sense extracellular conditions and convert this information into intracellular biochemical responses, we expected that this sensor family would vary across isolated oligotrophic subterranean environments that differ in abiotic and biotic conditions. TCSs were found at all six subsurface sites, the service water control, and the surface site, with an average of 0.88 sensor histidine kinases (HKs) per 100 genes across all sites. Abundance was greater in subsurface fracture fluids compared with surface-derived fluids, and candidate phyla radiation (CPR) bacteria presented the lowest HK frequencies. Measures of microbial diversity, such as the Shannon diversity index, revealed that HK abundance is inversely correlated with microbial diversity (r2 = 0.81). Among the geochemical parameters measured, HK frequency correlated most strongly with variance in dissolved organic carbon (r2 = 0.82). Taken together, these results implicate the abiotic and biotic properties of an ecological niche as drivers of sensor needs, and they suggest that microbes in environments with large fluctuations in organic nutrients (e.g., lacustrine, terrestrial, and coastal ecosystems) may require greater TCS diversity than ecosystems with low nutrients (e.g., open ocean).IMPORTANCEThe ability to detect extracellular environmental conditions is a fundamental property of all life forms. Because microbial two-component sensor systems convert information about extracellular conditions into biochemical information that controls their behaviors, we evaluated how two-component sensor systems evolved within the deep Earth across multiple sites where abiotic and biotic properties vary. We show that these sensor systems remain abundant in microbial consortia at all subterranean sampling sites and observe correlations between sensor system abundances and abiotic (dissolved organic carbon variation) and biotic (consortia diversity) properties. These results suggest that multiple environmental properties may drive sensor protein evolution and highlight the need for further studies of metagenomic and geochemical data in parallel to understand the drivers of microbial sensor evolution.
Collapse
Affiliation(s)
| | - Emily M. Fulk
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, Texas, USA
| | - Lily M. Momper
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Clinton Heider
- Rice University, Center for Research Computing, Houston, Texas, USA
| | - John Mulligan
- Rice University, Center for Research Computing, Houston, Texas, USA
| | - Magdalena Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Caroline A. Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
| | - Jonathan J. Silberg
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
6
|
Bavnhøj L, Driller JH, Zuzic L, Stange AD, Schiøtt B, Pedersen BP. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. NATURE PLANTS 2023; 9:938-950. [PMID: 37188854 PMCID: PMC10281868 DOI: 10.1038/s41477-023-01421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Sucrose import from photosynthetic tissues into the phloem is mediated by transporters from the low-affinity sucrose transporter family (SUC/SUT family). Furthermore, sucrose redistribution to other tissues is driven by phloem sap movement, the product of high turgor pressure created by this import activity. Additionally, sink organs such as fruits, cereals and seeds that accumulate high concentrations of sugar also depend on this active transport of sucrose. Here we present the structure of the sucrose-proton symporter, Arabidopsis thaliana SUC1, in an outward open conformation at 2.7 Å resolution, together with molecular dynamics simulations and biochemical characterization. We identify the key acidic residue required for proton-driven sucrose uptake and describe how protonation and sucrose binding are strongly coupled. Sucrose binding is a two-step process, with initial recognition mediated by the glucosyl moiety binding directly to the key acidic residue in a stringent pH-dependent manner. Our results explain how low-affinity sucrose transport is achieved in plants, and pinpoint a range of SUC binders that help define selectivity. Our data demonstrate a new mode for proton-driven symport with links to cation-driven symport and provide a broad model for general low-affinity transport in highly enriched substrate environments.
Collapse
Affiliation(s)
- Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Heiner Driller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lorena Zuzic
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
7
|
Blaimschein N, Hariharan P, Manioglu S, Guan L, Müller DJ. Substrate-binding guides individual melibiose permeases MelB to structurally soften and to destabilize cytoplasmic middle-loop C3. Structure 2023; 31:58-67.e4. [PMID: 36525976 PMCID: PMC9825662 DOI: 10.1016/j.str.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
The melibiose permease MelB is a well-studied Na+-coupled transporter of the major facilitator superfamily. However, the symport mechanism of galactosides and cations is still not fully understood, especially at structural levels. Here, we use single-molecule force spectroscopy to investigate substrate-induced structural changes of MelB from Salmonella typhimurium. In the absence of substrate, MelB equally populates two different states, from which one shows higher mechanical structural stability with additional stabilization of the cytoplasmic middle-loop C3. In the presence of either melibiose or a coupling Na+-cation, however, MelB increasingly populates the mechanically less stable state, which shows a destabilized middle-loop C3. In the presence of both substrate and co-substrate, this mechanically less stable state of MelB is predominant. Our findings describe how both substrates guide MelB transporters to populate two different mechanically stabilized states, and contribute mechanistic insights to the alternating-access action for the galactoside/cation symport catalyzed by MelB.
Collapse
Affiliation(s)
- Nina Blaimschein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Switzerland
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Switzerland
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
8
|
White N, Sadeeshkumar H, Sun A, Sudarsan N, Breaker RR. Na + riboswitches regulate genes for diverse physiological processes in bacteria. Nat Chem Biol 2022; 18:878-885. [PMID: 35879547 PMCID: PMC9337991 DOI: 10.1038/s41589-022-01086-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/10/2022] [Indexed: 01/31/2023]
Abstract
Organisms presumably have mechanisms to monitor and physiologically adapt to changes in cellular Na+ concentrations. Only a single bacterial protein has previously been demonstrated to selectively sense Na+ and regulate gene expression. Here we report a riboswitch class, previously called the 'DUF1646 motif', whose members selectively sense Na+ and regulate the expression of genes relevant to sodium biology. Many proteins encoded by Na+-riboswitch-regulated genes are annotated as metal ion transporters, whereas others are involved in mitigating osmotic stress or harnessing Na+ gradients for ATP production. Na+ riboswitches exhibit dissociation constants in the low mM range, and strongly reject all other alkali and alkaline earth ions. Likewise, only Na+ triggers riboswitch-mediated transcription and gene expression changes. These findings reveal that some bacteria use Na+ riboswitches to monitor, adjust and exploit Na+ concentrations and gradients, and in some instances collaborate with c-di-AMP riboswitches to coordinate gene expression during osmotic stress.
Collapse
Affiliation(s)
- Neil White
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Harini Sadeeshkumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Anna Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Hubloher JJ, van der Sande L, Müller V. Na + homeostasis in Acinetobacter baumannii is facilitated via the activity of the Mrp antiporter. Environ Microbiol 2022; 24:4411-4424. [PMID: 35535800 DOI: 10.1111/1462-2920.16039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
The human opportunistic pathogen Acinetobacter baumannii is a global threat to healthcare institutions worldwide, since it developed very efficient strategies to evade host defense and to adapt to the different environmental conditions of the host. This worked focused on the importance of Na+ homeostasis in A. baumannii with regards to pathobiological aspects. In silico studies revealed a homologue of a multicomponent Na+ /H+ antiporter system. Inactivation of the Mrp antiporter through deletion of the first gene (mrpA') resulted in a mutant that was sensitive to increasing pH values. Furthermore, the strain was highly sensitive to increasing Na+ and Li+ concentrations. Increasing Na+ sensitivity is thought to be responsible for growth impairment in human fluids. Furthermore, deletion of mrpA' is associated with energetic defects, inhibition of motility and survival under anoxic and dry conditions.
Collapse
Affiliation(s)
- Josephine Joy Hubloher
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Lisa van der Sande
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| |
Collapse
|
10
|
Katsube S, Liang R, Amin A, Hariharan P, Guan L. Molecular basis for the cation selectivity of Salmonella typhimurium melibiose permease. J Mol Biol 2022; 434:167598. [DOI: 10.1016/j.jmb.2022.167598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022]
|
11
|
Schicker K, Farr CV, Boytsov D, Freissmuth M, Sandtner W. Optimizing the Substrate Uptake Rate of Solute Carriers. Front Physiol 2022; 13:817886. [PMID: 35185619 PMCID: PMC8850955 DOI: 10.3389/fphys.2022.817886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The diversity in solute carriers arose from evolutionary pressure. Here, we surmised that the adaptive search for optimizing the rate of substrate translocation was also shaped by the ambient extracellular and intracellular concentrations of substrate and co-substrate(s). We explored possible solutions by employing kinetic models, which were based on analytical expressions of the substrate uptake rate, that is, as a function of the microscopic rate constants used to parameterize the transport cycle. We obtained the defining terms for five reaction schemes with identical transport stoichiometry (i.e., Na+: substrate = 2:1). We then utilized an optimization algorithm to find the set of numeric values for the microscopic rate constants, which provided the largest value for the substrate uptake rate: The same optimized rate was achieved by different sets of numerical values for the microscopic rate constants. An in-depth analysis of these sets provided the following insights: (i) In the presence of a low extracellular substrate concentration, a transporter can only cycle at a high rate, if it has low values for both, the Michaelis-Menten constant (KM) for substrate and the maximal substrate uptake rate (Vmax). (ii) The opposite is true for a transporter operating at high extracellular substrate concentrations. (iii) Random order of substrate and co-substrate binding is superior to sequential order, if a transporter is to maintain a high rate of substrate uptake in the presence of accumulating intracellular substrate. Our kinetic models provide a framework to understand how and why the transport cycles of closely related transporters differ.
Collapse
Affiliation(s)
| | | | | | | | - Walter Sandtner
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Markham KJ, Tikhonova EB, Scarpa AC, Hariharan P, Katsube S, Guan L. Complete cysteine-scanning mutagenesis of the Salmonella typhimurium melibiose permease. J Biol Chem 2021; 297:101090. [PMID: 34416232 PMCID: PMC8437787 DOI: 10.1016/j.jbc.2021.101090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/15/2022] Open
Abstract
The melibiose permease of Salmonella typhimurium (MelBSt) catalyzes the stoichiometric symport of galactopyranoside with a cation (H+, Li+, or Na+) and is a prototype for Na+-coupled major facilitator superfamily (MFS) transporters presenting from bacteria to mammals. X-ray crystal structures of MelBSt have revealed the molecular recognition mechanism for sugar binding; however, understanding of the cation site and symport mechanism is still vague. To further investigate the transport mechanism and conformational dynamics of MelBSt, we generated a complete single-Cys library containing 476 unique mutants by placing a Cys at each position on a functional Cys-less background. Surprisingly, 105 mutants (22%) exhibit poor transport activities (<15% of Cys-less transport), although the expression levels of most mutants were comparable to that of the control. The affected positions are distributed throughout the protein. Helices I and X and transmembrane residues Asp and Tyr are most affected by cysteine replacement, while helix IX, the cytoplasmic middle-loop, and C-terminal tail are least affected. Single-Cys replacements at the major sugar-binding positions (K18, D19, D124, W128, R149, and W342) or at positions important for cation binding (D55, N58, D59, and T121) abolished the Na+-coupled active transport, as expected. We mapped 50 loss-of-function mutants outside of these substrate-binding sites that suffered from defects in protein expression/stability or conformational dynamics. This complete Cys-scanning mutagenesis study indicates that MelBSt is highly susceptible to single-Cys mutations, and this library will be a useful tool for further structural and functional studies to gain insights into the cation-coupled symport mechanism for Na+-coupled MFS transporters.
Collapse
Affiliation(s)
- Kelsey J Markham
- Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | - Elena B Tikhonova
- Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | - Aaron C Scarpa
- Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | - Satoshi Katsube
- Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | - Lan Guan
- Department of Cell Physiology & Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA.
| |
Collapse
|
13
|
Guan L, Hariharan P. X-ray crystallography reveals molecular recognition mechanism for sugar binding in a melibiose transporter MelB. Commun Biol 2021; 4:931. [PMID: 34341464 PMCID: PMC8329300 DOI: 10.1038/s42003-021-02462-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Major facilitator superfamily_2 transporters are widely found from bacteria to mammals. The melibiose transporter MelB, which catalyzes melibiose symport with either Na+, Li+, or H+, is a prototype of the Na+-coupled MFS transporters, but its sugar recognition mechanism has been a long-unsolved puzzle. Two high-resolution X-ray crystal structures of a Salmonella typhimurium MelB mutant with a bound ligand, either nitrophenyl-α-d-galactoside or dodecyl-β-d-melibioside, were refined to a resolution of 3.05 or 3.15 Å, respectively. In the substrate-binding site, the interaction of both galactosyl moieties on the two ligands with MelBSt are virturally same, so the sugar specificity determinant pocket can be recognized, and hence the molecular recognition mechanism for sugar binding in MelB has been deciphered. The conserved cation-binding pocket is also proposed, which directly connects to the sugar specificity pocket. These key structural findings have laid a solid foundation for our understanding of the cooperative binding and symport mechanisms in Na+-coupled MFS transporters, including eukaryotic transporters such as MFSD2A. Guan and Hariharan report two crystal structures of melibiose transporter MelB in complex with substrate analogs, nitrophenyl-galactoside, and dodecyl-melibioside. Both structures revealed similar specific site for sugar recognition and resolved the cation-binding pocket, advancing the understanding of MelB and related transporters.
Collapse
Affiliation(s)
- Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
14
|
Hariharan P, Guan L. Cooperative binding ensures the obligatory melibiose/Na+ cotransport in MelB. J Gen Physiol 2021; 153:212278. [PMID: 34110360 PMCID: PMC8200842 DOI: 10.1085/jgp.202012710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
MelB catalyzes the obligatory cotransport of melibiose with Na+, Li+, or H+. Crystal structure determination of the Salmonella typhimurium MelB (MelBSt) has revealed a typical major facilitator superfamily (MFS) fold at a periplasmic open conformation. Cooperative binding of Na+ and melibiose has been previously established. To determine why cotranslocation of sugar solute and cation is obligatory, we analyzed each binding in the thermodynamic cycle using three independent methods, including the determination of melting temperature by circular dichroism spectroscopy, heat capacity change (ΔCp), and regulatory phosphotransferase EIIAGlc binding with isothermal titration calorimetry (ITC). We found that MelBSt thermostability is increased by either substrate (Na+ or melibiose) and observed a cooperative effect of both substrates. ITC measurements showed that either binary formation yields a positive sign in the ΔCp, suggesting MelBSt hydration and a likely widening of the periplasmic cavity. Conversely, formation of a ternary complex yields negative values in ΔCp, suggesting MelBSt dehydration and cavity closure. Lastly, we observed that EIIAGlc, which has been suggested to trap MelBSt at an outward-open state, readily binds to the MelBSt apo state at an affinity similar to MelBSt/Na+. However, it has a suboptimal binding to the ternary state, implying that MelBSt in the ternary complex may be conformationally distant from the EIIAGlc-preferred outward-facing conformation. Our results consistently support the notion that binding of one substrate (Na+ or melibiose) favors MelBSt at open states, whereas the cooperative binding of both substrates triggers the alternating-access process, thus suggesting this conformational regulation could ensure the obligatory cotransport.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
15
|
A Novel Auxiliary Agarolytic Pathway Expands Metabolic Versatility in the Agar-Degrading Marine Bacterium Colwellia echini A3 T. Appl Environ Microbiol 2021; 87:e0023021. [PMID: 33811026 DOI: 10.1128/aem.00230-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine microorganisms encode a complex repertoire of carbohydrate-active enzymes (CAZymes) for the catabolism of algal cell wall polysaccharides. While the core enzyme cascade for degrading agar is conserved across agarolytic marine bacteria, gain of novel metabolic functions can lead to the evolutionary expansion of the gene repertoire. Here, we describe how two less-abundant GH96 α-agarases harbored in the agar-specific polysaccharide utilization locus (PUL) of Colwellia echini strain A3T facilitate the versatility of the agarolytic pathway. The cellular and molecular functions of the α-agarases examined by genomic, transcriptomic, and biochemical analyses revealed that α-agarases of C. echini A3T create a novel auxiliary pathway. α-Agarases convert even-numbered neoagarooligosaccharides to odd-numbered agaro- and neoagarooligosaccharides, providing an alternative route for the depolymerization process in the agarolytic pathway. Comparative genomic analysis of agarolytic bacteria implied that the agarolytic gene repertoire in marine bacteria has been diversified during evolution, while the essential core agarolytic gene set has been conserved. The expansion of the agarolytic gene repertoire and novel hydrolytic functions, including the elucidated molecular functionality of α-agarase, promote metabolic versatility by channeling agar metabolism through different routes. IMPORTANCE Colwellia echini A3T is an example of how the gain of gene(s) can lead to the evolutionary expansion of agar-specific polysaccharide utilization loci (PUL). C. echini A3T encodes two α-agarases in addition to the core β-agarolytic enzymes in its agarolytic PUL. Among the agar-degrading CAZymes identified so far, only a few α-agarases have been biochemically characterized. The molecular and biological functions of two α-agarases revealed that their unique hydrolytic pattern leads to the emergence of auxiliary agarolytic pathways. Through the combination of transcriptomic, genomic, and biochemical evidence, we elucidate the complete α-agarolytic pathway in C. echini A3T. The addition of α-agarases to the agarolytic enzyme repertoire might allow marine agarolytic bacteria to increase competitive abilities through metabolic versatility.
Collapse
|
16
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
17
|
Prokaryotic Solute/Sodium Symporters: Versatile Functions and Mechanisms of a Transporter Family. Int J Mol Sci 2021; 22:ijms22041880. [PMID: 33668649 PMCID: PMC7918813 DOI: 10.3390/ijms22041880] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The solute/sodium symporter family (SSS family; TC 2.A.21; SLC5) consists of integral membrane proteins that use an existing sodium gradient to drive the uphill transport of various solutes, such as sugars, amino acids, vitamins, or ions across the membrane. This large family has representatives in all three kingdoms of life. The human sodium/iodide symporter (NIS) and the sodium/glucose transporter (SGLT1) are involved in diseases such as iodide transport defect or glucose-galactose malabsorption. Moreover, the bacterial sodium/proline symporter PutP and the sodium/sialic acid symporter SiaT play important roles in bacteria–host interactions. This review focuses on the physiological significance and structural and functional features of prokaryotic members of the SSS family. Special emphasis will be given to the roles and properties of proteins containing an SSS family domain fused to domains typically found in bacterial sensor kinases.
Collapse
|
18
|
Functional and Structural Roles of the Major Facilitator Superfamily Bacterial Multidrug Efflux Pumps. Microorganisms 2020; 8:microorganisms8020266. [PMID: 32079127 PMCID: PMC7074785 DOI: 10.3390/microorganisms8020266] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Pathogenic microorganisms that are multidrug-resistant can pose severe clinical and public health concerns. In particular, bacterial multidrug efflux transporters of the major facilitator superfamily constitute a notable group of drug resistance mechanisms primarily because multidrug-resistant pathogens can become refractory to antimicrobial agents, thus resulting in potentially untreatable bacterial infections. The major facilitator superfamily is composed of thousands of solute transporters that are related in terms of their phylogenetic relationships, primary amino acid sequences, two- and three-dimensional structures, modes of energization (passive and secondary active), and in their mechanisms of solute and ion translocation across the membrane. The major facilitator superfamily is also composed of numerous families and sub-families of homologous transporters that are conserved across all living taxa, from bacteria to humans. Members of this superfamily share several classes of highly conserved amino acid sequence motifs that play essential mechanistic roles during transport. The structural and functional importance of multidrug efflux pumps that belong to the major facilitator family and that are harbored by Gram-negative and -positive bacterial pathogens are considered here.
Collapse
|
19
|
Hariharan P, Guan L. Thermodynamic cooperativity of cosubstrate binding and cation selectivity of Salmonella typhimurium MelB. J Gen Physiol 2017; 149:1029-1039. [PMID: 29054867 PMCID: PMC5677108 DOI: 10.1085/jgp.201711788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/17/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
The melibiose symporter MelB couples melibiose transport to that of cations such as Na+. Hariharan and Guan show that the binding of Na+ and melibiose is thermodynamically cooperative and that Na+ coupling is based on ion concentrations and competitive binding, but not ion selectivity. The Na+-coupled melibiose symporter MelB, which can also be coupled to H+ or Li+ transport, is a prototype for the glycoside-pentoside-hexuronide:cation symporter family. Although the 3-D x-ray crystal structure of Salmonella typhimurium MelB (MelBSt) has been determined, the symport mechanisms for the obligatory coupled transport are not well understood. Here, we apply isothermal titration calorimetry to determine the energetics of Na+ and melibiose binding to MelBSt, as well as protonation of this transporter. Studies of the thermodynamic cycle for the formation of the Na+–MelBSt–melibiose ternary complex at pH 7.45 reveal that the binding of Na+ and melibiose is cooperative. The binding affinity for one substrate (Na+ or melibiose) is increased by the presence of the other by about eightfold. The coupling free energies (ΔΔG) of either substrate binding are ∼5 kJ/mol, and binding of both substrates releases a free energy of ∼35 kJ/mol. Measurements of the Na+-binding enthalpy at three different pH values, including the pKa value of MelB, indicate that the binding of one Na+ displaces one H+ per MelBSt molecule. In addition, the absolute dissociation constants for Na+ and H+, determined by competitive binding, show that MelBSt is selective for H+ over Na+ by ∼1,000-fold at a pKa of 6.25. Thus, the Na+ coupling in MelBSt is based not on ion selectivity but on ion concentrations and competitive binding because of a much higher Na+ concentration under physiological conditions. Such a selectivity feature seems to be common for membrane transport proteins that can bind both H+ and Na+ at a common site.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
20
|
Hariharan P, Guan L. Insights into the inhibitory mechanisms of the regulatory protein IIA(Glc) on melibiose permease activity. J Biol Chem 2014; 289:33012-9. [PMID: 25296751 DOI: 10.1074/jbc.m114.609255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphotransfer protein IIA(Glc) of the bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system plays a key role in the regulation of carbohydrate metabolism. Melibiose permease (MelB) is one among several permeases subject to IIA(Glc) regulation. The regulatory mechanisms are poorly understood; in addition, thermodynamic features of IIA(Glc) binding to other proteins are also unknown. Applying isothermal titration calorimetry and amine-specific cross-linking, we show that IIA(Glc) directly binds to MelB of Salmonella typhimurium (MelB(St)) and Escherichia coli MelB (MelB(Ec)) at a stoichiometry of unity in the absence or presence of melibiose. The dissociation constant values are 3-10 μM for MelB(St) and 25 μM for MelB(Ec). All of the binding is solely driven by favorable enthalpy forces. IIA(Glc) binding to MelB(St) in the absence or presence of melibiose yields a large negative heat capacity change; in addition, the conformational entropy is constrained upon the binding. We further found that the IIA(Glc)-bound MelB(St) exhibits a decreased binding affinity for melibiose or nitrophenyl-α-galactoside. It is believed that sugar binding to the permease is involved in an induced fit mechanism, and the transport process requires conformational cycling between different states. Thus, the thermodynamic data are consistent with the interpretation that IIA(Glc) inhibits the induced fit process and restricts the conformational dynamics of MelB(St).
Collapse
Affiliation(s)
- Parameswaran Hariharan
- From the Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Lan Guan
- From the Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
21
|
Survival of Escherichia coli cells on solid copper surfaces is increased by glutathione. Appl Environ Microbiol 2014; 80:7071-8. [PMID: 25192999 DOI: 10.1128/aem.02842-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacteria are rapidly killed on solid copper surfaces, so this material could be useful to limit the spread of multiple-drug-resistant bacteria in hospitals. In Escherichia coli, the DNA-protecting Dps protein and the NADH:ubiquinone oxidoreductase II Ndh were not involved in tolerance to copper ions or survival on solid copper surfaces. Decreased copper tolerance under anaerobic growth conditions in the presence of ascorbate and with melibiose as the carbon source indicated that sodium-dependent symport systems may provide an import route for Cu(I) into the cytoplasm. Glutathione-free ΔcopA ΔgshA double mutants of E. coli were more rapidly inactivated on solid copper surfaces than glutathione-containing wild-type cells. Therefore, while DNA protection by Dps was not required, glutathione was needed to protect the cytoplasm and the DNA against damage mediated by solid copper surfaces, which may explain the differences in the molecular mechanisms of killing between glutathione-containing Gram-negative and glutathione-free Gram-positive bacteria.
Collapse
|
22
|
Laehnemann D, Peña-Miller R, Rosenstiel P, Beardmore R, Jansen G, Schulenburg H. Genomics of rapid adaptation to antibiotics: convergent evolution and scalable sequence amplification. Genome Biol Evol 2014; 6:1287-301. [PMID: 24850796 PMCID: PMC4079197 DOI: 10.1093/gbe/evu106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Evolutionary adaptation can be extremely fast, especially in response to high selection intensities. A prime example is the surge of antibiotic resistance in bacteria. The genomic underpinnings of such rapid changes may provide information on the genetic processes that enhance fast responses and the particular trait functions under selection. Here, we use experimentally evolved Escherichia coli for a detailed dissection of the genomics of rapid antibiotic resistance evolution. Our new analyses demonstrate that amplification of a sequence region containing several known antibiotic resistance genes represents a fast genomic response mechanism under high antibiotic stress, here exerted by drug combination. In particular, higher dosage of such antibiotic combinations coincided with higher copy number of the sequence region. The amplification appears to be evolutionarily costly, because amplification levels rapidly dropped after removal of the drugs. Our results suggest that amplification is a scalable process, as copy number rapidly changes in response to the selective pressure encountered. Moreover, repeated patterns of convergent evolution were found across the experimentally evolved bacterial populations, including those with lower antibiotic selection intensities. Intriguingly, convergent evolution was identified on different organizational levels, ranging from the above sequence amplification, high variant frequencies in specific genes, prevalence of individual nonsynonymous mutations to the unusual repeated occurrence of a particular synonymous mutation in Glycine codons. We conclude that constrained evolutionary trajectories underlie rapid adaptation to antibiotics. Of the identified genomic changes, sequence amplification seems to represent the most potent, albeit costly genomic response mechanism to high antibiotic stress.
Collapse
Affiliation(s)
- David Laehnemann
- Department of Evolutionary Ecology and Genetics, University of Kiel, Germany
| | - Rafael Peña-Miller
- Biosciences, Geoffrey Pope Building, University of Exeter, United KingdomDepartment of Zoology, University of Oxford, United Kingdom
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, Germany
| | - Robert Beardmore
- Biosciences, Geoffrey Pope Building, University of Exeter, United Kingdom
| | - Gunther Jansen
- Department of Evolutionary Ecology and Genetics, University of Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, University of Kiel, Germany
| |
Collapse
|
23
|
Milner SJ, Carrick CT, Kerr KG, Snelling AM, Thomas GH, Duhme-Klair AK, Routledge A. Probing bacterial uptake of glycosylated ciprofloxacin conjugates. Chembiochem 2014; 15:466-71. [PMID: 24449436 DOI: 10.1002/cbic.201300512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Indexed: 11/05/2022]
Abstract
Mono- and disaccharide-functionalised conjugates of the fluoroquinolone antibiotic ciprofloxacin have been synthesised and used as chemical probes of the bacterial uptake of glycosylated ciprofloxacin. Their antimicrobial activities against a panel of clinically relevant bacteria were determined: the ability of these conjugates to inhibit their target DNA gyrase and to be transported into the bacteria was assessed by using in vivo and in vitro assays. The data suggest a lack of active uptake through sugar transporters and that although the addition of monosaccharides is compatible with the inhibition of DNA gyrase, the addition of a disaccharide results in a significant decrease in antimicrobial activity.
Collapse
Affiliation(s)
- Stephen J Milner
- Department of Chemistry, University of York, Heslington, York, YO10 5DD (UK)
| | | | | | | | | | | | | |
Collapse
|
24
|
Ethayathulla AS, Yousef MS, Amin A, Leblanc G, Kaback HR, Guan L. Structure-based mechanism for Na(+)/melibiose symport by MelB. Nat Commun 2014; 5:3009. [PMID: 24389923 PMCID: PMC4026327 DOI: 10.1038/ncomms4009] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/22/2013] [Indexed: 12/12/2022] Open
Abstract
The bacterial melibiose permease (MelB) belongs to the glycoside-pentoside-hexuronide:cation symporter family, a part of the major facilitator superfamily (MFS). Structural information regarding glycoside-pentoside-hexuronide:cation symporter family transporters and other Na(+)-coupled permeases within MFS has been lacking, although a wealth of biochemical and biophysical data are available. Here we present the three-dimensional crystal structures of Salmonella typhimurium MelBSt in two conformations, representing an outward partially occluded and an outward inactive state of MelBSt. MelB adopts a typical MFS fold and contains a previously unidentified cation-binding motif. Three conserved acidic residues form a pyramidal-shaped cation-binding site for Na(+), Li(+) or H(+), which is in close proximity to the sugar-binding site. Both cosubstrate-binding sites are mainly contributed by the residues from the amino-terminal domain. These two structures and the functional data presented here provide mechanistic insights into Na(+)/melibiose symport. We also postulate a structural foundation for the conformational cycling necessary for transport catalysed by MFS permeases in general.
Collapse
Affiliation(s)
- Abdul S. Ethayathulla
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Mohammad S. Yousef
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
- Present address: Department of Physics, College of Arts and Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1654, USA (on leave from: Biophysics Department, Faculty of Science, Cairo University, Egypt)
| | - Anowarul Amin
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Gérard Leblanc
- Department of Physiology, University of California, Los Angeles, California 90095, USA
- Present address: CEA-DSV-Fontenay aux Roses, Cross Division of Toxicology, 92 265 Fontenay aux Roses BP 6, France
| | - H. Ronald Kaback
- Department of Physiology, University of California, Los Angeles, California 90095, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| |
Collapse
|
25
|
Kuroda T, Fujita N, Utsugi J, Kuroda M, Mizushima T, Tsuchiya T. A Major Li+Extrusion System NhaB ofPseudomonas aeruginosa: Comparison with the Major Na+Extrusion System NhaP. Microbiol Immunol 2013; 48:243-50. [PMID: 15107534 DOI: 10.1111/j.1348-0421.2004.tb03520.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A gene encoding a Li(+) extrusion system was cloned from the chromosomal DNA of Pseudomonas aeruginosa and expressed in Escherichia coli cells. The gene enabled growth of E. coli KNabc cells, which were unable to grow in the presence of 10 mM LiCl or 0.1 M NaCl because of the lack of major Na(+) (Li(+))/H(+) antiporters. We detected Li(+)/H(+) and Na(+)/H(+) antiport activities in membrane vesicles prepared from E. coli KNabc cells that harbored a plasmid carrying the cloned gene. Activity of this antiporter was pH-dependent with an optimal pH activity between pH 7.5 and 8.5. These properties indicate that this antiporter is different from NhaP, an Na(+)/H(+) antiporter from P. aeruginosa that we reported previously, and that is rather specific to Na(+) but it cannot extrude Li(+) effectively. The gene was sequenced and an open reading frame (ORF) was identified. The amino acid sequence deduced from the ORF showed homology (about 60% identity and 90% similarity) with that of the NhaB Na(+)/H(+) antiporters of E. coli and Vibrio parahaemolyticus. Thus, we designated the antiporter as NhaB of P. aeruginosa. E. coli KNabc carrying the nhaB gene from P. aeruginosa was able to grow in the presence of 10 to 50 mM LiCl, although KNabc carrying nhaP was unable to grow in these conditions. The antiport activity of NhaB from P. aeruginosa was produced in E. coli and showed apparent Km values for Li(+) and Na(+) of 2.0 mM and 1.3 mM, respectively. The antiport activity was inhibited by amiloride with a Ki value for Li(+) and Na(+) of 0.03 mM and 0.04 mM, respectively.
Collapse
Affiliation(s)
- Teruo Kuroda
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Zdybicka-Barabas A, Mak P, Klys A, Skrzypiec K, Mendyk E, Fiołka MJ, Cytryńska M. Synergistic action of Galleria mellonella anionic peptide 2 and lysozyme against Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2623-35. [PMID: 22705262 DOI: 10.1016/j.bbamem.2012.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 12/13/2022]
Abstract
Lysozyme and antimicrobial peptides are key factors of the humoral immune response in insects. In the present work lysozyme and anionic defense peptide (GMAP2) were isolated from the hemolymph of the greater wax moth Galleria mellonella and their antibacterial activity was investigated. Adsorption of G. mellonella lysozyme on the cell surface of Gram-positive and Gram-negative bacteria was demonstrated using immunoblotting with anti-G. mellonella lysozyme antibodies. Lysozyme effectively inhibited the growth of selected Gram-positive bacteria, which was accompanied by serious alterations of the cell surface, as revealed by atomic force microscopy (AFM) imaging. G. mellonella lysozyme used in concentrations found in the hemolymph of naive and immunized larvae, perforated also the Escherichia coli cell membrane and the level of such perforation was considerably increased by GMAP2. GMAP2 used alone did not perforate E. coli cells nor influence lysozyme muramidase activity. However, the peptide induced a decrease in the turgor pressure of the bacterial cell. Moreover, in the samples of bacteria treated with a mixture of lysozyme and GMAP2 the sodium chloride crystals were found, suggesting disturbance of ion transport across the membrane leading to cell disruption. These results clearly indicated the synergistic action of G. mellonella lysozyme and anionic peptide 2 against Gram-negative bacteria. The reported results suggested that, thanks to immune factors constitutively present in hemolymph, G. mellonella larvae are to some extent protected against infection caused by Gram-negative bacteria.
Collapse
Affiliation(s)
- Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | | | | | |
Collapse
|
27
|
Insights into the mechanism of electron transfer and sodium translocation of the Na(+)-pumping NADH:quinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1823-32. [PMID: 22465856 DOI: 10.1016/j.bbabio.2012.03.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/22/2022]
Abstract
Na(+)-NQR is a unique energy-transducing complex, widely distributed among marine and pathogenic bacteria. It converts the energy from the oxidation of NADH and the reduction of quinone into an electrochemical Na(+)-gradient that can provide energy for the cell. Na(+)-NQR is not homologous to any other respiratory protein but is closely related to the RNF complex. In this review we propose that sodium pumping in Na(+)-NQR is coupled to the redox reactions by a novel mechanism, which operates at multiple sites, is indirect and mediated by conformational changes of the protein. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
28
|
Lórenz-Fonfría VA, León X, Padrós E. Studying substrate binding to reconstituted secondary transporters by attenuated total reflection infrared difference spectroscopy. Methods Mol Biol 2012; 914:107-126. [PMID: 22976025 DOI: 10.1007/978-1-62703-023-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The determination of protein conformational changes induced by the interaction of substrates with secondary transporters is an important step toward the elucidation of their transport mechanism. Since conformational changes in a protein alter its vibrational patterns, they can be detected with high sensitivity by infrared difference (IR(diff)) spectroscopy without the need for external probes. We describe a general procedure to obtain substrate-induced IR(diff) spectra by alternating perfusion of buffers over an attenuated total reflection (ATR) crystal containing an adhered film of a membrane protein reconstituted in lipids. As an example, we provide specific protocols to obtain melibiose and Na(+)-induced ATR-IR(diff) spectra of reconstituted melibiose permease, a sodium/melibiose co-transporter from E. coli. The presented methodology is applicable in principle to any membrane protein, provided that it can be purified and reconstituted in functional form, and appropriate substrates are available.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
29
|
Guan L, Nurva S, Ankeshwarapu SP. Mechanism of melibiose/cation symport of the melibiose permease of Salmonella typhimurium. J Biol Chem 2010; 286:6367-74. [PMID: 21148559 DOI: 10.1074/jbc.m110.206227] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MelB permease of Salmonella typhimurium (MelB-ST) catalyzes the coupled symport of melibiose and Na(+), Li(+), or H(+). In right-side-out membrane vesicles, melibiose efflux is inhibited by an inwardly directed gradient of Na(+) or Li(+) and stimulated by equimolar concentrations of internal and external Na(+) or Li(+). Melibiose exchange is faster than efflux in the presence of H(+) or Na(+) and stimulated by an inwardly directed Na(+) gradient. Thus, sugar is released from MelB-ST externally prior to the release of cation in agreement with current models proposed for MelB of Escherichia coli (MelB-EC) and LacY. Although Li(+) stimulates efflux, and an outwardly directed Li(+) gradient increases exchange, it is striking that internal and external Li(+) with no gradient inhibits exchange. Furthermore, Trp → dansyl FRET measurements with a fluorescent sugar (2'-(N-dansyl)aminoalkyl-1-thio-β-D-galactopyranoside) demonstrate that MelB-ST, in the presence of Na(+) or Li(+), exhibits (app)K(d) values of ∼1 mM for melibiose. Na(+) and Li(+) compete for a common binding pocket with activation constants for FRET of ∼1 mM, whereas Rb(+) or Cs(+) exhibits little or no effect. Taken together, the findings indicate that MelB-ST utilizes H(+) in addition to Na(+) and Li(+). FRET studies also show symmetrical emission maximum at ∼500 nm with MelB-ST in the presence of 2'-(N-dansyl)aminoalkyl-1-thio-β-D-galactopyranoside and Na(+), Li(+), or H(+), which implies a relatively homogeneous distribution of conformers of MelB-ST ternary complexes in the membrane.
Collapse
Affiliation(s)
- Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| | | | | |
Collapse
|
30
|
Structural insights into the activation mechanism of melibiose permease by sodium binding. Proc Natl Acad Sci U S A 2010; 107:22078-83. [PMID: 21135207 DOI: 10.1073/pnas.1008649107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The melibiose carrier from Escherichia coli (MelB) couples the accumulation of the disaccharide melibiose to the downhill entry of H(+), Na(+), or Li(+). In this work, substrate-induced FTIR difference spectroscopy was used in combination with fluorescence spectroscopy to quantitatively compare the conformational properties of MelB mutants, implicated previously in sodium binding, with those of a fully functional Cys-less MelB permease. The results first suggest that Asp55 and Asp59 are essential ligands for Na(+) binding. Secondly, though Asp124 is not essential for Na(+) binding, this acidic residue may play a critical role, possibly by its interaction with the bound cation, in the full Na(+)-induced conformational changes required for efficient coupling between the ion- and sugar-binding sites; this residue may also be a sugar ligand. Thirdly, Asp19 does not participate in Na(+) binding but it is a melibiose ligand. The location of these residues in two independent threading models of MelB is consistent with their proposed role.
Collapse
|
31
|
Giotis ES, Muthaiyan A, Natesan S, Wilkinson BJ, Blair IS, McDowell DA. Transcriptome analysis of alkali shock and alkali adaptation in Listeria monocytogenes 10403S. Foodborne Pathog Dis 2010; 7:1147-57. [PMID: 20677981 PMCID: PMC3132107 DOI: 10.1089/fpd.2009.0501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alkali stress is an important means of inactivating undesirable pathogens in a wide range of situations. Unfortunately, Listeria monocytogenes can launch an alkaline tolerance response, significantly increasing persistence of the pathogen in such environments. This study compared transcriptome patterns of alkali and non-alkali-stressed L. monocytogenes 10403S cells, to elucidate the mechanisms by which Listeria adapts and/or grows during short- or long-term alkali stress. Transcription profiles associated with alkali shock (AS) were obtained by DNA microarray analysis of midexponential cells suspended in pH 9 media for 15, 30, or 60 min. Transcription profiles associated with alkali adaptation (AA) were obtained similarly from cells grown to midexponential phase at pH 9. Comparison of AS and AA transcription profiles with control cell profiles identified a high number of differentially regulated open-reading frames in all tested conditions. Rapid (15 min) changes in expression included upregulation of genes encoding for multiple metabolic pathways (including those associated with Na+/H+ antiporters), ATP-binding cassette transporters of functional compatible solutes, motility, and virulence-associated genes as well as the σ(B) controlled stress resistance network. Slower (30 min and more) responses to AS and adaptation during growth in alkaline conditions (AA) involved a different pattern of changes in mRNA concentrations, and genes involved in proton export.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Food Microbiology Research Group, School of Health Sciences, University of Ulster, Northern Ireland, United Kingdom
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois
| | - Arunachalam Muthaiyan
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Brian J. Wilkinson
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois
| | - Ian S. Blair
- Food Microbiology Research Group, School of Health Sciences, University of Ulster, Northern Ireland, United Kingdom
| | - David A. McDowell
- Food Microbiology Research Group, School of Health Sciences, University of Ulster, Northern Ireland, United Kingdom
| |
Collapse
|
32
|
Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O'Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PCJ, Iwata S, Henderson PJF, Cameron AD. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 2008; 322:709-13. [PMID: 18927357 PMCID: PMC2885439 DOI: 10.1126/science.1164440] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nucleobase-cation-symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuT(Aa) and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.
Collapse
Affiliation(s)
- Simone Weyand
- Membrane Protein Laboratory, Diamond Light Source Limited, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Reith MEA, Zhen J, Chen N. The importance of company: Na+ and Cl- influence substrate interaction with SLC6 transporters and other proteins. Handb Exp Pharmacol 2007:75-93. [PMID: 16722231 DOI: 10.1007/3-540-29784-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
SLC6 transporters, which include transporters for gamma-aminobutyric acid (GABA), norepinephrine, dopamine, serotonin, glycine, taurine, L-proline, creatine, betaine, and neutral cationic amino acids, require Na+ and Cl- for their function, and this review covers the interaction between transporters of this family with Na+ and Cl- from a structure-function standpoint. Because detailed structure-function information regarding ion interactions with SLC6 transporters is limited, we cover other proteins cotransporting Na+ or Cl- with substrate (SLClA2, PutP, SLC5A1, melB), or ion binding to proteins in general (rhodanese, ATPase, LacY, thermolysine, angiotensin-converting enzyme, halorhodopsin, CFTR). Residues can be involved in directly binding Na+ or Cl-, in coupling ion binding to conformational changes in transporter, in coupling Na+ or Cl- movement to transport, or in conferring ion selectivity. Coordination of ions can involve a number of residues, and portions of the substrate and coupling ion binding sites can be distal in space in the tertiary structure of the transporter, with other portions that are close in space thought to be crucial for the coupling process. The reactivity with methanethiosulfonate reagents of cysteines placed in strategic positions in the transporter provides a readout for conformational changes upon ion or substrate binding. More work is needed to establish the relationships between ion interactions and oligomerization of SLC6 transporters.
Collapse
Affiliation(s)
- M E A Reith
- Department of Biological Sciences, Illinois State University, Normal, IL 61656, USA.
| | | | | |
Collapse
|
34
|
Jung H, Pirch T, Hilger D. Secondary transport of amino acids in prokaryotes. J Membr Biol 2007; 213:119-33. [PMID: 17417701 DOI: 10.1007/s00232-006-0880-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Indexed: 01/09/2023]
Abstract
Amino acid transport is a ubiquitous phenomenon and serves a variety of functions in prokaryotes, including supply of carbon and nitrogen for catabolic and anabolic processes, pH homeostasis, osmoprotection, virulence, detoxification, signal transduction and generation of electrochemical ion gradients. Many of the participating proteins have eukaryotic relatives and are successfully used as model systems for exploration of transporter structure and function. Distribution, physiological roles, functional properties, and structure-function relationships of prokaryotic alpha-amino acid transporters are discussed.
Collapse
Affiliation(s)
- H Jung
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, D-80638, München, Germany.
| | | | | |
Collapse
|
35
|
Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 2007; 445:387-93. [PMID: 17230192 DOI: 10.1038/nature05455] [Citation(s) in RCA: 398] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 11/15/2006] [Indexed: 11/09/2022]
Abstract
Secondary transporters are integral membrane proteins that catalyse the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt(Ph), a sodium (Na+)-coupled aspartate transporter, defining sites for aspartate, two sodium ions and d,l-threo-beta-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound alpha-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.
Collapse
Affiliation(s)
- Olga Boudker
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
37
|
Padan E, Bibi E, Ito M, Krulwich TA. Alkaline pH homeostasis in bacteria: new insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1717:67-88. [PMID: 16277975 PMCID: PMC3072713 DOI: 10.1016/j.bbamem.2005.09.010] [Citation(s) in RCA: 501] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/19/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH homeostasis, as shown in pH shift experiments and growth experiments in chemostats at different external pH values. Transcriptome and proteome analyses have recently complemented physiological and genetic studies, revealing numerous adaptations that contribute to alkaline pH homeostasis. These include elevated levels of transporters and enzymes that promote proton capture and retention (e.g., the ATP synthase and monovalent cation/proton antiporters), metabolic changes that lead to increased acid production, and changes in the cell surface layers that contribute to cytoplasmic proton retention. Targeted studies over the past decade have followed up the long-recognized importance of monovalent cations in active pH homeostasis. These studies show the centrality of monovalent cation/proton antiporters in this process while microbial genomics provides information about the constellation of such antiporters in individual strains. A comprehensive phylogenetic analysis of both eukaryotic and prokaryotic genome databases has identified orthologs from bacteria to humans that allow better understanding of the specific functions and physiological roles of the antiporters. Detailed information about the properties of multiple antiporters in individual strains is starting to explain how specific monovalent cation/proton antiporters play dominant roles in alkaline pH homeostasis in cells that have several additional antiporters catalyzing ostensibly similar reactions. New insights into the pH-dependent Na(+)/H(+) antiporter NhaA that plays an important role in Escherichia coli have recently emerged from the determination of the structure of NhaA. This review highlights the approaches, major findings and unresolved problems in alkaline pH homeostasis, focusing on the small number of well-characterized alkali-tolerant and extremely alkaliphilic bacteria.
Collapse
Affiliation(s)
- Etana Padan
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
38
|
Hall JA, Pajor AM. Functional characterization of a Na(+)-coupled dicarboxylate carrier protein from Staphylococcus aureus. J Bacteriol 2005; 187:5189-94. [PMID: 16030212 PMCID: PMC1196027 DOI: 10.1128/jb.187.15.5189-5194.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned and functionally characterized a Na(+)-coupled dicarboxylate transporter, SdcS, from Staphylococcus aureus. This carrier protein is a member of the divalent anion/Na(+) symporter (DASS) family and shares significant sequence homology with the mammalian Na(+)/dicarboxylate cotransporters NaDC-1 and NaDC-3. Analysis of SdcS function indicates transport properties consistent with those of its eukaryotic counterparts. Thus, SdcS facilitates the transport of the dicarboxylates fumarate, malate, and succinate across the cytoplasmic membrane in a Na(+)-dependent manner. Furthermore, kinetic work predicts an ordered reaction sequence with Na(+) (K(0.5) of 2.7 mM) binding before dicarboxylate (K(m) of 4.5 microM). Because this transporter and its mammalian homologs are functionally similar, we suggest that SdcS may serve as a useful model for DASS family structural analysis.
Collapse
Affiliation(s)
- Jason A Hall
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0647, USA.
| | | |
Collapse
|
39
|
Ding PZ. An investigation of cysteine mutants on the cytoplasmic loop X/XI in the melibiose transporter of Escherichia coli by using thiol reagents: implication of structural conservation of charged residues. Biochem Biophys Res Commun 2003; 307:864-9. [PMID: 12878191 DOI: 10.1016/s0006-291x(03)01290-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The melibiose transporter (Mel B) of Escherichia coli is a cation-coupled (H(+), Li(+), and Na(+)) membrane protein (MW 50 kDa) consisting of 12 transmembrane helices that are connected by periplasmic and cytoplasmic loops, with both the C- and N-ends located on the cytoplasmic side of the membrane. Previous investigations on the largest cytoplasmic loop X/XI indicated that it is a functional re-entrant loop. In this communication, the cysteine mutants on loop X/XI were studied with charged thiol reagents MTSES, MTSET, and IAA for both the inhibition patterns and charge replacement/function rescue of inactive mutants in which the original charged residues were replaced by neutral cysteines. Strong inhibitions were observed in T373C and V376C by both MTSES and MTSET, consistent with previous results of PCMBS inhibition. The thiol reagents failed to recover the activities of inactive mutants D351C, D354C, and R363C and to inhibit active mutants E357C, K359C, and E365C to any significant extent, suggesting a structural conservation at D351, D354, and R363 and tolerance of structural variations at E357, K359, and E365. The results are consistent with previous observation of structural conservation of functionally charged residues in the transmembrane domains and extend to a loop the contention that in the melibiose transporter functionally important charged residues are structurally conserved.
Collapse
Affiliation(s)
- Ping Z Ding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
40
|
Wang DN, Safferling M, Lemieux MJ, Griffith H, Chen Y, Li XD. Practical aspects of overexpressing bacterial secondary membrane transporters for structural studies. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:23-36. [PMID: 12586376 DOI: 10.1016/s0005-2736(02)00709-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane transporter proteins play critical physiological roles in the cell and constitute 5-10% of prokaryotic and eukaryotic genomes. High-resolution structural information is essential for understanding the functional mechanism of these proteins. A prerequisite for structural study is to overexpress such proteins in large quantities. In the last few years, over 20 bacterial membrane transporters were overexpressed at a level of 1 mg/l of culture or higher, most often in Escherichia coli. In this review, we analyzed those factors that affect the quantity and quality of the protein produced, and summarized recent progress in overexpression of membrane transporters from bacterial inner membrane. Rapid progress in genome sequencing provides opportunities for expressing several homologues and orthologues of the target protein simultaneously, while the availability of various expression vectors allows flexible experimental design. Careful optimization of cell culture conditions can drastically improve the expression level and homogeneity of the target protein. New sample preparation techniques for mass spectrometry of membrane proteins have enabled one to identity the rigid protein core, which can be subsequently overexpressed. Size-exclusion chromatography on HPLC has proven to be an efficient method in screening detergent, pH an other conditions required for maintaining the stability and monodispersity of the protein. Such high-quality preparations of membrane transporter proteins will probably lead to successful crystallization and structure determination of these proteins in the next few years.
Collapse
Affiliation(s)
- Da-Neng Wang
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Judy Hirst
- Medical Research Council, Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| |
Collapse
|
42
|
Abstract
Members of the sodium/substrate symporter family (SSSF, TC 2.A.21) catalyze the uptake of a wide variety of solutes including sugars, proline, pantothenate, and iodide into cells of pro- and eukaryotic origin. Extensive analyses of the topology of different SSSF proteins suggest an arrangement of 13 transmembrane domains as a common topological motif. Regions involved in sodium and/or substrate binding were identified. Furthermore, protein chemical and spectroscopic studies reveal ligand-induced structural alterations which are consistent with close interactions between the sites of sodium and substrate binding, thereby supporting an ordered binding mechanism for transport.
Collapse
Affiliation(s)
- Heinrich Jung
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069, Osnabrück, Germany.
| |
Collapse
|
43
|
Pirch T, Quick M, Nietschke M, Langkamp M, Jung H. Sites important for Na+ and substrate binding in the Na+/proline transporter of Escherichia coli, a member of the Na+/solute symporter family. J Biol Chem 2002; 277:8790-6. [PMID: 11756453 DOI: 10.1074/jbc.m111008200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the functional importance of transmembrane domain II in the Na(+)/proline transporter (PutP) of Escherichia coli we analyzed the effect of replacing Ser-54 through Gly-58. Substitution of Asp-55 or Met-56 dramatically reduces the apparent affinity for Na(+) and Li(+) in a cation-dependent manner. Conversely, Cys in place of Gly-58 significantly reduces only the apparent proline affinity while substitution of Ser-57 results in a dramatic reduction of the apparent proline and cation affinities. Interestingly, upon increasing the proline concentration the apparent Na(+) affinity of Ser-57 replacement mutants converges toward the wild-type value, indicating a close cooperativity between cation and substrate site(s). This notion is supported by the fact that Na(+)-stimulated site-specific fluorescence labeling of a single Cys at position 57 is completely reversed by the addition of proline. Similar results are obtained upon labeling of a Cys at position 54 or 58. Taken together, these results indicate that Asp-55 and Met-56 are located at or close to the ion-binding site while Ser-54, Ser-57, and Gly-58 may be close to the proline translocation pathway. In addition, the data prod at an involvement of the latter residues in ligand-induced conformational dynamics that are crucial for cation-coupled transport.
Collapse
Affiliation(s)
- Torsten Pirch
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|