1
|
Nie G, He J, Liu A, Zhou J, Bi M, Lai H, Ma J, Wang X, Feng G, Huang L, Zhang X. Functional characterization of MinisST1.2, a sulfate transporter gene family member, on absorption and accumulation of Cr(VI) in Miscanthus sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110033. [PMID: 40403624 DOI: 10.1016/j.plaphy.2025.110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/11/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
Soil contamination with heavy metals, particularly hexavalent chromium, represents a critical global environmental challenge. Miscanthus sinensis, a perennial C4 grass species, exhibits exceptional heavy metal tolerance while maintaining robust biomass production under Cr stress. This study presents the first genome-wide characterization of the sulfate transporter (ST) gene family in M. sinensis, with focused investigation of MisinST1.2 functionality. Transcriptional profiling revealed spatiotemporal specificity in MisinST1.2 expression across treatment durations and different tissue types. Heterologous overexpression in yeast systems unexpectedly enhanced Cr(VI) sensitivity, as evidenced by impaired growth under Cr(VI) exposure compared to wild-type controls. Parallel experiments in Arabidopsis thaliana demonstrated exacerbated stress responses in MisinST1.2-overexpressing lines relative to wild-type. Notably, transgenic line OE3 accumulated 7.75 mg/kg and 23.50 mg/kg Cr concentrations in above and underground tissues respectively, higher than 1.43 mg/kg and 10.63 mg/kg in WT. These findings elucidate the pivotal role of MisinST1.2 in mediating Cr uptake and accumulation strategies in M. sinensis. Our results advance understanding of plant heavy metal transport mechanisms while establishing a molecular framework for optimizing phytoremediation strategies in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie He
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Aiyu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Zhou
- Institute of Grassland Sciences, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Ming Bi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huiqi Lai
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jieyu Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xia Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Akter S, Mahmud U, Shoumik BAA, Khan MZ. Although invisible, fungi are recognized as the engines of a microbial powerhouse that drives soil ecosystem services. Arch Microbiol 2025; 207:79. [PMID: 40047912 DOI: 10.1007/s00203-025-04285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Soil ecosystem services (SES) are the benefits that humans derive from soil. These services emerge from the complex interactions between biotic and abiotic processes within soil systems. They are vital for maintaining ecosystem resilience and ensuring long-term sustainability. Soil hosts a diverse group of biota, among them fungi play a crucial role in supporting and enhancing SES due to their remarkable adaptability and ability to thrive under unfavorable conditions. This review explores the multifaceted roles of fungi in SES, emphasizing their growing importance in strengthening ecosystem resilience and climate change adaptation. Fungi significantly contribute to the key ecosystem processes such as soil aggregation, organic matter (OM) decomposition, nutrients cycling, plant productivity, and carbon (C) sequestration. However, potential threats to fungal abundance and diversity could undermine these critical functions, highlighting the need for proactive measures to preserve fungal communities. The pivotal role of fungi in SES, including agricultural production and climate regulation, tailor them as indispensable microbial engines that shape and maintain ecosystem resilience. Emerging evidence suggests that soil fungal communities may become increasingly prominent under the future climate scenarios. Thus, understanding how fungal functional roles evolve in response to climate change is emergent for safeguarding SES and ensuring environmental sustainability. Furthermore, the co-occurrance of fungi with other soil organisms in supporting SES highlights the need to integrate diverse soil biota alongside fungi to promote sustainable SES. Collaborative efforts to comprehend and manage soil microbial communities are imperative for maintaining the long-term ecological stability of ecosystems.
Collapse
Affiliation(s)
- Shova Akter
- Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Samsun, 55139, Turkey
| | - Upoma Mahmud
- Department of Soil Science and Agrophysics, University of Agriculture in Krakow, Krakow, 30-120, Poland
| | | | - Md Zulfikar Khan
- French National Research Institute for Agriculture, Food and Environment (INRAE), Poitou-Charentes, Lusignan, URP3F, 86600, France.
| |
Collapse
|
3
|
Xiao T, Qiang J, Sun H, Luo F, Li X, Yan Y. Overexpression of Wheat Selenium-Binding Protein Gene TaSBP-A Enhances Plant Growth and Grain Selenium Accumulation under Spraying Sodium Selenite. Int J Mol Sci 2024; 25:7007. [PMID: 39000115 PMCID: PMC11240915 DOI: 10.3390/ijms25137007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Selenium (Se) is an essential trace element for humans. Low concentrations of Se can promote plant growth and development. Enhancing grain yield and crop Se content is significant, as major food crops generally have low Se content. Studies have shown that Se biofortification can significantly increase Se content in plant tissues. In this study, the genetic transformation of wheat was conducted to evaluate the agronomic traits of non-transgenic control and transgenic wheat before and after Se application. Se content, speciation, and transfer coefficients in wheat grains were detected. Molecular docking simulations and transcriptome data were utilized to explore the effects of selenium-binding protein-A TaSBP-A on wheat growth and grain Se accumulation and transport. The results showed that TaSBP-A gene overexpression significantly increased plant height (by 18.50%), number of spikelets (by 11.74%), and number of grains in a spike (by 35.66%) in wheat. Under normal growth conditions, Se content in transgenic wheat grains did not change significantly, but after applying sodium selenite, Se content in transgenic wheat grains significantly increased. Analysis of Se speciation revealed that organic forms of selenomethionine (SeMet) and selenocysteine (SeCys) predominated in both W48 and transgenic wheat grains. Moreover, TaSBP-A significantly increased the transfer coefficients of Se from solution to roots and from flag leaves to grains. Additionally, it was found that with the increase in TaSBP-A gene overexpression levels in transgenic wheat, the transfer coefficient of Se from flag leaves to grains also increased.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohui Li
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
4
|
Mushtaq NU, Alghamdi KM, Saleem S, Shajar F, Tahir I, Bahieldin A, Rehman RU, Hakeem KR. Selenate and selenite transporters in proso millet: Genome extensive detection and expression studies under salt stress and selenium. FRONTIERS IN PLANT SCIENCE 2022; 13:1060154. [PMID: 36531352 PMCID: PMC9748351 DOI: 10.3389/fpls.2022.1060154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Crops are susceptible to a variety of stresses and amongst them salinity of soil is a global agronomic challenge that has a detrimental influence on crop yields, thus posing a severe danger to our food security. Therefore, it becomes imperative to examine how plants respond to salt stress, develop a tolerance that allows them to live through higher salt concentrations and choose species that can endure salt stress. From the perspective of food, security millets can be substituted to avoid hardships because of their efficiency in dealing with salt stress. Besides, this problem can also be tackled by using beneficial exogenous elements. Selenium (Se) which exists as selenate or selenite is one such cardinal element that has been reported to alleviate salt stress. The present study aimed for identification of selenate and selenite transporters in proso millet (Panicum miliaceum L.), their expression under NaCl (salt stress) and Na2SeO3 (sodium selenite)treatments. This study identified eight transporters (RLM65282.1, RLN42222.1, RLN18407.1, RLM74477.1, RLN41904.1, RLN17428.1, RLN17268.1, RLM65753.1) that have a potential role in Se uptake in proso millet. We analyzed physicochemical properties, conserved structures, sub-cellular locations, chromosome location, molecular phylogenetic analysis, promoter regions prediction, protein-protein interactions, three-dimensional structure modeling and evaluation of these transporters. The analysis revealed the chromosome location and the number of amino acids present in these transporters as RLM65282.1 (16/646); RLN42222.1 (1/543); RLN18407.1 (2/483); RLM74477.1 (15/474); RLN41904.1 (1/521); RLN17428.1 (2/522); RLN17268.1(2/537);RLM65753.1 (16/539). The sub-cellular locations revealed that all the selenite transporters are located in plasma membrane whereas among selenate transporters RLM65282.1 and RLM74477.1 are located in mitochondria and RLN42222.1 and RLN18407.1 in chloroplast. The transcriptomic studies revealed that NaCl stress decreased the expression of both selenate and selenite transporters in proso millet and the applications of exogenous 1µM Se (Na2SeO3) increased the expression of these Se transporter genes. It was also revealed that selenate shows similar behavior as sulfate, while selenite transport resembles phosphate. Thus, it can be concluded that phosphate and sulphate transporters in millets are responsible for Se uptake.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid M. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Faamiya Shajar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
5
|
Zhang J, Shen Y, Chen W, Bai B, Ji X, Chi Y. Systematic Identification and Expression Analysis of the Sorghum Pht1 Gene Family Reveals Several New Members Encoding High-Affinity Phosphate Transporters. Int J Mol Sci 2022; 23:ijms232213855. [PMID: 36430345 PMCID: PMC9698377 DOI: 10.3390/ijms232213855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Sorghum (Sorghum bicolor) is known to have a more robust capability of phosphorus uptake than many other cereal plants, which could be attributed to its phosphate transporter 1 (Pht1) that has a high phosphorus affinity. There are eleven SbPht1 genes in the sorghum genome, nine of which are expressed in sorghum roots or shoots in response to phosphorus deficiency (low-P). The molecular features of these nine genes were investigated by gene expression analysis, subcellular localization, and a yeast mutant complementation growth assay. They were found to be induced in response to low-P stress in root or shoot. All these SbPht1 proteins were found to be localized on the cell membrane, and SbPht1;8 was also detected in the endoplasmic reticulum. These SbPht1s were able to complement the yeast mutant EY917 that lacks all the functional phosphate transporters, and, among them, SbPht1;5, SbPht1;6 and SbPht1;8 could partially complement the yeast mutant strain EY917 in low-P conditions. Overall, these findings demonstrate that SbPht1;5, SbPht1;6, and SbPht1;8 are high-affinity phosphate transporters. SbPht1;5, in particular, is specifically involved in phosphorus uptake in the roots, whilst SbPht1;6 and SbPht1;8 are key players in both P uptake and P transport in response to low-P stress in sorghum.
Collapse
|
6
|
Nakei MD, Venkataramana PB, Ndakidemi PA. Soybean-Nodulating Rhizobia: Ecology, Characterization, Diversity, and Growth Promoting Functions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.824444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The worldwide increase in population continues to threaten the sustainability of agricultural systems since agricultural output must be optimized to meet the global rise in food demand. Sub-Saharan Africa (SSA) is among the regions with a fast-growing population but decreasing crop productivity. Pests and diseases, as well as inadequate nitrogen (N) levels in soils, are some of the biggest restrictions to agricultural production in SSA. N is one of the most important plant-limiting elements in agricultural soils, and its deficit is usually remedied by using nitrogenous fertilizers. However, indiscriminate use of these artificial N fertilizers has been linked to environmental pollution calling for alternative N fertilization mechanisms. Soybean (Glycine max) is one of the most important legumes in the world. Several species of rhizobia from the four genera, Bardyrhizobium, Rhizobium, Mesorhizobium, and Ensifer (formerly Sinorhizobium), are observed to effectively fix N with soybean as well as perform various plant-growth promoting (PGP) functions. The efficiency of the symbiosis differs with the type of rhizobia species, soybean cultivar, and biotic factors. Therefore, a complete understanding of the ecology of indigenous soybean-nodulating rhizobia concerning their genetic diversity and the environmental factors associated with their localization and dominance in the soil is important. This review aimed to understand the potential of indigenous soybean-nodulating rhizobia through a synthesis of the literature regarding their characterization using different approaches, genetic diversity, symbiotic effectiveness, as well as their functions in biological N fixation (BNF) and biocontrol of soybean soil-borne pathogens.
Collapse
|
7
|
Singh S, Kumar V, Datta S, Dhanjal DS, Singh S, Kumar S, Kapoor D, Prasad R, Singh J. Physiological responses, tolerance, and remediation strategies in plants exposed to metalloids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40233-40248. [PMID: 32748354 DOI: 10.1007/s11356-020-10293-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
Metalloids are a subset of particular concern to risk assessors and toxicologists because of their well-documented potential hazards to plant system. Most of the metalloids are major environmental contaminants which affect crop productivity when present in high concentrations in soil. Metalloids are coupled with carrier proteins of the plasma membrane and translocated to various organs causing changes in key metabolic processes, damages cell biomolecules, and finally inhibit its growth. Phytoremediation-based approaches help in understanding the molecular and biochemical mechanisms for prerequisite recombinant genetic approaches. Recent advancements in proteomics and plant genomics help in understanding the role of transcription factors, metabolites, and genes in plant system which confers metal tolerance. The present review summarizes our current status of knowledge in this direction related to various physiological responses, detoxification mechanisms, and remediation strategies of metalloids in crop plants in relation to plant-metalloid tolerance. Further, the role of various transcription factors and miRNAs in conferring metal tolerance is also briefed. Hence, the present review mainly focused on the alterations in the physiological activities of plants due to metalloid toxicity and the various mechanisms which get activated inside the plants to mitigate their toxic effects.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
- Punjab Biotechnology Incubator (PBTI), Phase-V, S.A.S. Nagar, Punjab, 160059, India
- RAWTL, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar, Punjab, 160054, India
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, 474009, India
| | - Shivika Datta
- Department of Zoology, Doaba College Jalandhar, Jalandhar, Punjab, 144001, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Satyender Singh
- RAWTL, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar, Punjab, 160054, India
| | - Sanjay Kumar
- Punjab Biotechnology Incubator (PBTI), Phase-V, S.A.S. Nagar, Punjab, 160059, India
- RAWTL, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar, Punjab, 160054, India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
8
|
Srivastava R, Sirohi P, Chauhan H, Kumar R. The enhanced phosphorus use efficiency in phosphate-deficient and mycorrhiza-inoculated barley seedlings involves activation of different sets of PHT1 transporters in roots. PLANTA 2021; 254:38. [PMID: 34312721 DOI: 10.1007/s00425-021-03687-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Transcriptional activation of subfamily II PHT1 members in roots is associated with the enhanced phosphorus use efficiency and growth promotion of barley seedlings inoculated with Glomus species. The arbuscular mycorrhizal (AM) fungi symbiotic associations in cereal crops are known to regulate growth in cultivar-specific manner and induce phosphate (Pi) transporters (PHT1) in roots. In the present study, we observed that both AM colonization of roots by Glomus species and phosphate starvation enhanced phosphorus use efficiency (PUE) in barley seedlings. Our search for the full complement of PHT1 members in the recently sequenced barley genome identified six additional genes, totaling their number to 17. Both AM colonization and Pi starvation triggered activation of common as well as different PHT1s. Pi starvation led to the robust upregulation of HvPHT1;6.2/6.3 at 7d and weak activation of HvPHT1;1 in shoots at 3d time-point. In roots, only HvPHT1;1, HvPHT1;6.2/6.3, HvPHT1;7, HvPHT1;8, HvPHT1;11.2 and HvPHT12 were induced at least one of the time-points. AM colonization specifically upregulated HvPHT1;11, HvPHT1;11.2, HvPHT1;12 and HvPHT1;13.1/13.2, members belonging to subfamily II, in roots. Sucrose availability seems to be obligatory for the robust activation of HvPHT1;1 as unavailability of this metabolite generally weakened its upregulation under Pi starvation. Intriguingly, lack of sucrose supply also led to induction of HvPHT1;5, HvPHT1;8, and HvPHT1;11.2 in either roots or shoot or both. The mRNA levels of HvPHT1;5 and HvPHT1;11.2 were not severely affected under combined deficiency of Pi and sucrose. Taken together, this study not only identify additional PHT1 members in barley, but also ascertain their AM, Pi and sucrose-specific transcript accumulation. The beneficial role of AM fungi in the promotion of PUE and barley seedlings' growth is also demonstrated.
Collapse
Affiliation(s)
- Rajat Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
9
|
Mghazli N, Sbabou L, Hakkou R, Ouhammou A, El Adnani M, Bruneel O. Description of Microbial Communities of Phosphate Mine Wastes in Morocco, a Semi-Arid Climate, Using High-Throughput Sequencing and Functional Prediction. Front Microbiol 2021; 12:666936. [PMID: 34305834 PMCID: PMC8297565 DOI: 10.3389/fmicb.2021.666936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Soil microbiota are vital for successful revegetation, as they play a critical role in nutrient cycles, soil functions, and plant growth and health. A rehabilitation scenario of the abandoned Kettara mine (Morocco) includes covering acidic tailings with alkaline phosphate mine wastes to limit water infiltration and hence acid mine drainage. Revegetation of phosphate wastes is the final step to this rehabilitation plan. However, revegetation is hard on this type of waste in semi-arid areas and only a few plants managed to grow naturally after 5 years on the store-and-release cover. As we know that belowground biodiversity is a key component for aboveground functioning, we sought to know if any structural problem in phosphate waste communities could explain the almost absence of plants. To test this hypothesis, bacterial and archaeal communities present in these wastes were assessed by 16S rRNA metabarcoding. Exploration of taxonomic composition revealed a quite diversified community assigned to 19 Bacterial and two Archaeal phyla, similar to other studies, that do not appear to raise any particular issues of structural problems. The dominant sequences belonged to Proteobacteria, Bacteroidetes, Actinobacteria, and Gemmatimonadetes and to the genera Massilia, Sphingomonas, and Adhaeribacter. LEfSe analysis identified 19 key genera, and metagenomic functional prediction revealed a broader phylogenetic range of taxa than expected, with all identified genera possessing at least one plant growth-promoting trait. Around 47% of the sequences were also related to genera possessing strains that facilitate plant development under biotic and environmental stress conditions, such as drought and heat.
Collapse
Affiliation(s)
- Najoua Mghazli
- Center of Research Plants and Microbial Biotechnologies, Biodiversity and Environment, Team of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Laila Sbabou
- Center of Research Plants and Microbial Biotechnologies, Biodiversity and Environment, Team of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rachid Hakkou
- IMED_Laboratory, Faculty of Science and Technology, Cadi Ayyad University (UCA), Marrakech, Morocco
- Mining Environment and Circular Economy Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Ahmed Ouhammou
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Team of Agrosciences, PhytoBiodiversity and Environment, Regional Herbarium ‘MARK’, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mariam El Adnani
- Resources Valorisation, Environment and Sustainable Development Laboratory, National School of Mines of Rabat, Mohammed V University in Rabat, Rabat, Morocco
| | - Odile Bruneel
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
10
|
Diversity of Ectomycorrhizal Fungal Communities in Four Types of Stands in Pinus massoniana Plantation in the West of China. FORESTS 2021. [DOI: 10.3390/f12060719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ectomycorrhizal (ECM) fungi can form symbioses with plant roots, which play an important role in regulating the rhizosphere microenvironment. As a broad-spectrum ECM tree species, Pinus massoniana forms symbiotic relationship called mycorrhiza with various ECM fungal species. In this study, four types of forests were selected from a 38-year-old Pinus plantation in eastern Sichuan, namely, pure P. massoniana forest (MC), P. massoniana mixed with Cunninghamia lanceolata forest (MS), P. massoniana–Cryptomeria fortunei forest (ML), and P. massoniana–broadleaved forest (MK), the species mixture ratio of all forests was 1:1. The ITS2 segment of ECM root tip sequenced by high-throughput sequencing using the Illumina MiSeq sequencing platform. (1) The ECM fungi of these four P. massoniana forests showed similar dominant genera but different relative abundances in community structure during the three seasons. (2) The alpha diversity index of ECM fungi was significantly influenced by season and forest type. (3) Soil pH, soil organic matter (SOM), total nitrogen (TN), C/N ratio, and total phosphorus (TP) influenced the ECM fungal community structure in different seasons. In summary, there were significant differences in ECM fungal communities among different forest types and different seasons; the colonization rate of ECM fungal in P. massoniana–Cunninghamia lanceolata was the highest, so we infer that Cunninghamia lanceolata is the most suitable tree species for mixed with P. massoniana in three mixture forests.
Collapse
|
11
|
Pei L, Liu J, Zhou Y, Jiang Y, Li H. Transcriptomic and metabolomic profiling reveals the protective role of anthocyanins in alleviating low phosphate stress in maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:889-905. [PMID: 34108822 PMCID: PMC8140177 DOI: 10.1007/s12298-021-00981-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 05/15/2023]
Abstract
UNLABELLED Anthocyanin accumulation is a characteristic response to phosphate (Pi) deficiency in plants. In the present study, we investigated the role of maize anthocyanins (MA) in alleviating low Pi (LP) stress in maize (Zea mays L). To this end, maize plants were exposed to LP conditions and treated with or without (control) MA. Interestingly, MA-treated maize plants showed relieved growth inhibition, reproductive development retardation, and yield loss compared to control plants under LP stress. Moreover, the level of oxidative destruction was significantly alleviated in MA-treated plants compared to the untreated control under conditions of LP stress. Acid phosphatase (APase) activity was significantly higher in MA-treated plants than in control plants, resulting in enhanced Pi mobilization and recycling. The results of the transcriptome analysis suggested that genes involved in photosynthesis, photosystem light harvesting, Pi transport, and recycling were differentially expressed between MA-treated plants and control plants. Moreover, metabolome analysis indicated higher sugar and organic acid levels and lower phosphorylated metabolite contents in MA-treated plants than in control plants, which was consistent with the results of the comparative transcriptome analysis. Taken together, our findings indicate that MA plays critical roles in alleviating LP stress in maize plants, probably by improving photosynthetic performance and increasing Pi mobilization and recycling. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00981-9.
Collapse
Affiliation(s)
- Laming Pei
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Jiajia Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Yuanyuan Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Yuhang Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| |
Collapse
|
12
|
Raina M, Sharma A, Nazir M, Kumari P, Rustagi A, Hami A, Bhau BS, Zargar SM, Kumar D. Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. PHYSIOLOGIA PLANTARUM 2021; 171:882-895. [PMID: 33179766 DOI: 10.1111/ppl.13275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) is a vital mineral for both plants and animals. It is widely distributed on the earth's crust and is taken up by the plants as selenite or selenate. Plants substantially vary in their physiological response to Se. The amount of Se in edible plants is genetically controlled. Its availability can be determined by measuring its phytoavailability in soil. The low concentration of Se in plants can help them in combating stress, whereas higher concentrations can be detrimental to plant health and in most cases it is toxic. Thus, solving the double-edged sword problem of nutritional Se deficiency and its elevated concentrations in environment requires a better understanding of Se uptake and metabolism in plants. The studies on Se uptake and metabolism can help in genetic biofortification of Se in plants and also assist in phytoremediation. Moreover, Se uptake and transport, especially biochemical pathways of assimilation and incorporation into proteins, offers striking mechanisms of toxicity and tolerance. These developments have led to a revival of Se research in higher plants with significant break throughs being made in the previous years. This review explores the new dimensions of Se research with major emphasis on key research events related to Se undertaken in last few years. Further, we also discussed future possibilities in Se research for crop improvement.
Collapse
Affiliation(s)
- Meenakshi Raina
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Akanksha Sharma
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Muslima Nazir
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Punam Kumari
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
13
|
Kumar S, Kumar S, Mohapatra T. Interaction Between Macro- and Micro-Nutrients in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665583. [PMID: 34040623 PMCID: PMC8141648 DOI: 10.3389/fpls.2021.665583] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients required for optimum growth, development, and productivity of plants. The deficiency of any of these nutrients may lead to defects in plant growth and decreased productivity. Plant responses to the deficiency of N, P, S, Fe, or Zn have been studied mainly as a separate event, and only a few reports discuss the molecular basis of biological interaction among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting pathways for each other but also affect micro-nutrient pathways. Limited reports are available on the investigation of two-by-two or multi-level nutrient interactions in plants. Such studies on the nutrient interaction pathways suggest that an MYB-like transcription factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identified to be involved in modulating nutrient responses in Arabidopsis. This review focuses on the recent advances in our understanding of how plants coordinate the acquisition, transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the molecular level. Identification of the important candidate genes for interactions between N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve nutrient use efficiency and yield/quality of crop plants. Integrated studies on pathways interactions/cross-talks between macro- and micro-nutrients in the agronomically important crop plants would be essential for sustainable agriculture around the globe, particularly under the changing climatic conditions.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | | | |
Collapse
|
14
|
Li Q, Gao Y, Yang A. Sulfur Homeostasis in Plants. Int J Mol Sci 2020; 21:E8926. [PMID: 33255536 PMCID: PMC7727837 DOI: 10.3390/ijms21238926] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sulfur (S) is an essential macronutrient for plant growth and development. S is majorly absorbed as sulfate from soil, and is then translocated to plastids in leaves, where it is assimilated into organic products. Cysteine (Cys) is the first organic product generated from S, and it is used as a precursor to synthesize many S-containing metabolites with important biological functions, such as glutathione (GSH) and methionine (Met). The reduction of sulfate takes place in a two-step reaction involving a variety of enzymes. Sulfate transporters (SULTRs) are responsible for the absorption of SO42- from the soil and the transport of SO42- in plants. There are 12-16 members in the S transporter family, which is divided into five categories based on coding sequence homology and biochemical functions. When exposed to S deficiency, plants will alter a series of morphological and physiological processes. Adaptive strategies, including cis-acting elements, transcription factors, non-coding microRNAs, and phytohormones, have evolved in plants to respond to S deficiency. In addition, there is crosstalk between S and other nutrients in plants. In this review, we summarize the recent progress in understanding the mechanisms underlying S homeostasis in plants.
Collapse
Affiliation(s)
| | | | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; (Q.L.); (Y.G.)
| |
Collapse
|
15
|
Da Ros LM, Soolanayakanahally RY, Mansfield SD. Discerning the effects of phosphate status on the metabolism of hybrid poplar. TREE PHYSIOLOGY 2020; 40:158-169. [PMID: 31748816 DOI: 10.1093/treephys/tpz114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Accumulation of phosphate in leaves as external environmental phosphate concentrations increase has been observed across the plant kingdom. The excess storage of anions, such as phosphate, has various metabolic trade-offs, including a corresponding influx of counter-ions to maintain charge balance and/or the reduction in organic acid content to maintain internal pH. The leaves and roots of four hybrid poplar genotypes were tested for differences in metabolic response to increasing external phosphate and further effects on patterns of anion resorption among hybrid poplar and willow were explored. Organic acid concentrations increased or remained constant across treatments, suggesting that metabolic adjustments were made in response to greater influxes of inorganic cations rather than a response to increasing phosphate. During senescence, the hybrid poplar Tristis had higher sulfate and organic acid resorption, while hybrid willow, AAFC-5, had higher phosphate resorption proficiencies, suggesting differing anion remobilization mechanisms. Furthermore, phosphate accumulation was shown to continue well after bud-set in poplar hybrids, which may contribute to the low phosphorus resorption efficiency. This indicates that closely related species, with similar growth strategies, show preferential resorption toward different nutrients.
Collapse
Affiliation(s)
- Letitia M Da Ros
- University of British Columbia, Department of Wood Science, 2424 Main Mall, Vancouver, BC V6T1Z4, Canada
| | | | - Shawn D Mansfield
- University of British Columbia, Department of Wood Science, 2424 Main Mall, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
16
|
Da Ros LM, Mansfield SD. Biotechnological mechanism for improving plant remobilization of phosphorus during leaf senescence. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:470-478. [PMID: 31325405 PMCID: PMC6953190 DOI: 10.1111/pbi.13212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 05/23/2019] [Accepted: 07/11/2019] [Indexed: 05/08/2023]
Abstract
Phosphorus enrichment of aquatic ecosystems through diffuse source pollution is an ongoing issue worldwide. A potential solution lies in the use of fast-growing, multipurpose feedstocks, such as trees, to limit the flow of phosphorus into riparian areas through luxury consumption. However, the perennial nature of trees and their use of leaves as storage organs for excess phosphorus may reduce the effectiveness of contaminant removal during periods of leaf abscission. In an attempt to improve phosphorus remobilization during autumnal senescence, transgenic hybrid poplar P39 (Populus alba × Populus grandidentata) and Arabidopsis thaliana harbouring a constitutively expressed low-affinity potato phosphate transporter (35S::StPht1-1) were generated using Agrobacterium-mediated transformation. For both species, the highest expressing 35S::StPht1-1 lines were grown alongside wild-type plants and subjected to increasing phosphate applications. StPht1-1 expression in A. thaliana led to a reduction in biomass when grown under high-phosphate conditions and had no effect on phosphate remobilization during senescence. In contrast, StPht1-1 constitutive expression in P39 resulted in increased leaf phosphate content in the highest expressing transgenic line and minimal to no effect on P resorption efficiency. Surprisingly, sulphate resorption showed the greatest improvement in all three transgenic poplar lines, displaying a 31%-37% increase in resorption efficiency. These results highlight the complexity of nutrient resorption mechanisms in plants.
Collapse
Affiliation(s)
- Letitia M. Da Ros
- Department of Wood ScienceUniversity of British ColumbiaVancouverBCCanada
| | - Shawn D. Mansfield
- Department of Wood ScienceUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
17
|
Dirks I, Köhler J, Rachmilevitch S, Meier IC. The Phosphorus Economy of Mediterranean Oak Saplings Under Global Change. FRONTIERS IN PLANT SCIENCE 2019; 10:405. [PMID: 31024583 PMCID: PMC6459984 DOI: 10.3389/fpls.2019.00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 05/26/2023]
Abstract
While a severe decrease in phosphorus (P) availability is already taking place in a large number of ecosystems, drought and nitrogen (N) deposition will likely further decrease the availability of P under global change. Plants have developed physiological strategies to cope with decreasing P resources, but it is unclear how these strategies respond to elevated N deposition and summer droughts. We investigated the influence of N and P availability and soil drought on P uptake (H3 33PO4 feeding experiment) and use efficiencies in young Quercus calliprinos Webb. trees. We hypothesized that (H1) the expected increases in soil N:P ratios will increase the efficiencies of P uptake and use of oak saplings but will decrease the efficiencies of N uptake and use, whereas (H2) drought will affect P uptake efficiency more than N uptake efficiency. In confirmation of (H1) we found that a sharp increase of the soil N:P ratio from 4 to 42 g g-1 significantly increased the instantaneous 33P uptake efficiency (33PUptakeE) by five-fold and long-term P uptake efficiency (PUptakeE) by six-fold, while it decreased N uptake efficiency (NUptakeE) and N use efficiency (NUE). In contradiction to (H1), P use efficiency (PUE) did not respond to the simulated extended gradient of soil N:P ratios but remained relatively constant. (H2) was only partially confirmed as soil drought reduced PUptakeE by up to a fourth at high soil N:P ratios but had no significant effect on NUptakeE. As a consequence, increasing summer droughts may decrease the response of PUptakeE to increasing P limitation, which - in the absence of adjustments of the efficiency of P use - can aggravate growth reductions in this eastern Mediterranean tree species under global change.
Collapse
Affiliation(s)
- Inga Dirks
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Beersheba, Israel
| | - Julia Köhler
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Shimon Rachmilevitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Beersheba, Israel
| | - Ina C. Meier
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
AtMBD4: A methylated DNA binding protein negatively regulates a subset of phosphate starvation genes. J Biosci 2019. [DOI: 10.1007/s12038-018-9843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Köhler J, Yang N, Pena R, Raghavan V, Polle A, Meier IC. Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech. THE NEW PHYTOLOGIST 2018; 220:1200-1210. [PMID: 29770963 DOI: 10.1111/nph.15208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/10/2018] [Indexed: 05/05/2023]
Abstract
Increases in summer droughts and nitrogen (N) deposition have raised concerns of widespread biodiversity loss and nutrient imbalances, but our understanding of the ecological role of ectomycorrhizal fungal (ECMF) diversity in mediating root functions remains a major knowledge gap. We used different global change scenarios to experimentally alter the composition of ECMF communities colonizing European beech saplings and examined the consequences for phosphorus (P) uptake (H333 PO4 feeding experiment) and use efficiencies of trees. Specifically, we simulated increases in temperature and N deposition and decreases in soil moisture and P availability in a factorial experiment. Here, we show that ECMF α diversity is a major factor contributing to root functioning under global change. P uptake efficiency of beech significantly increased with increasing ECMF species richness and diversity, as well as with decreasing P availability. As a consequence of decreases in ECMF diversity, P uptake efficiency decreased when soil moisture was limiting. By contrast, P use efficiencies were a direct (negative) function of P availability and not of ECMF diversity. We conclude that increasing summer droughts may reduce ECMF diversity and the complementarity of P uptake by ECMF species, which will add to negative growth effects expected from nutrient imbalances under global change.
Collapse
Affiliation(s)
- Julia Köhler
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Goettingen, Germany
| | - Nan Yang
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Goettingen, Germany
| | - Rodica Pena
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Goettingen, Germany
| | - Venket Raghavan
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Goettingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Goettingen, Germany
- Laboratory for Radio-Isotopes, University of Goettingen, 37077, Goettingen, Germany
| | - Ina C Meier
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Goettingen, Germany
| |
Collapse
|
20
|
Post A, Minović I, van den Berg E, Eggersdorfer ML, Navis GJ, Geleijnse JM, Gans ROB, van Goor H, Struck J, Franssen CFM, Kema IP, Bakker SJL. Renal sulfate reabsorption in healthy individuals and renal transplant recipients. Physiol Rep 2018; 6:e13670. [PMID: 29671959 PMCID: PMC5907819 DOI: 10.14814/phy2.13670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/24/2022] Open
Abstract
Inorganic sulfate is essential for normal cellular function and its homeostasis is primarily regulated in the kidneys. However, little is known about renal sulfate handling in humans and particularly in populations with impaired kidney function such as renal transplant recipients (RTR). Hence, we aimed to assess sulfate reabsorption in kidney donors and RTR. Plasma and urinary sulfate were determined in 671 RTR and in 251 kidney donors. Tubular sulfate reabsorption (TSR) was defined as filtered load minus sulfate excretion and fractional sulfate reabsorption (FSR) was defined as 1-fractional excretion. Linear regression analyses were employed to explore associations of FSR with baseline parameters and to identify the determinants of FSR in RTR. Compared to kidney donors, RTR had significantly lower TSR (15.2 [11.2-19.5] vs. 20.3 [16.7-26.3] μmol/min), and lower FSR (0.56 [0.48-0.64] vs. 0.64 [0.57-0.69]) (all P < 0.001). Kidney donation reduced both TSR and FSR by circa 50% and 25% respectively (both P < 0.001). In RTR and donors, both TSR and FSR associated positively with renal function. In RTR, FSR was independently associated with urinary thiosulfate (β = -0.18; P = 0.002), growth hormone (β = 0.12; P = 0.007), the intakes of alcohol (β = -0.14; P = 0.002), methionine (β = -0.34; P < 0.001), cysteine (β = -0.41; P < 0.001), and vitamin D (β = -0.14; P = 0.009). In conclusion, TSR and FSR are lower in RTR compared to kidney donors and both associated with renal function. Additionally, FSR is determined by various dietary and metabolic factors. Future research should determine the mechanisms behind sulfate handling in humans and the prognostic value of renal sulfate reabsorption in RTR.
Collapse
Affiliation(s)
- Adrian Post
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Isidor Minović
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Top Institute Food and NutritionWageningenThe Netherlands
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Else van den Berg
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | - Gerjan J. Navis
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | - Reinold O. B. Gans
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Harry van Goor
- Department of PathologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | - Casper F. M. Franssen
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Ido P. Kema
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Stephan J. L. Bakker
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Top Institute Food and NutritionWageningenThe Netherlands
- Transplant Lines Food and Nutrition Biobank and Cohort StudyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
21
|
Kumaresan V, Nizam F, Ravichandran G, Viswanathan K, Palanisamy R, Bhatt P, Arasu MV, Al-Dhabi NA, Mala K, Arockiaraj J. Transcriptome changes of blue-green algae, Arthrospira sp. in response to sulfate stress. ALGAL RES 2017; 23:96-103. [DOI: 10.1016/j.algal.2017.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
|
23
|
Kariman K, Barker SJ, Jost R, Finnegan PM, Tibbett M. Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations. MYCORRHIZA 2016; 26:401-15. [PMID: 26810895 PMCID: PMC4909810 DOI: 10.1007/s00572-015-0674-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 12/14/2015] [Indexed: 05/28/2023]
Abstract
Many plant species adapted to P-impoverished soils, including jarrah (Eucalyptus marginata), develop toxicity symptoms when exposed to high doses of phosphate (Pi) and its analogs such as phosphite (Phi) and arsenate (AsV). The present study was undertaken to investigate the effects of fungal symbionts Scutellospora calospora, Scleroderma sp., and Austroboletus occidentalis on the response of jarrah to highly toxic pulses (1.5 mmol kg(-1) soil) of Pi, Phi, and AsV. S. calospora formed an arbuscular mycorrhizal (AM) symbiosis while both Scleroderma sp. and A. occidentalis established a non-colonizing symbiosis with jarrah plants. All these interactions significantly improved jarrah growth and Pi uptake under P-limiting conditions. The AM fungal colonization naturally declines in AM-eucalypt symbioses after 2-3 months; however, in the present study, the high Pi pulse inhibited the decline of AM fungal colonization in jarrah. Four weeks after exposure to the Pi pulse, plants inoculated with S. calospora had significantly lower toxicity symptoms compared to non-mycorrhizal (NM) plants, and all fungal treatments induced tolerance against Phi toxicity in jarrah. However, no tolerance was observed for AsV-treated plants even though all inoculated plants had significantly lower shoot As concentrations than the NM plants. The transcript profile of five jarrah high-affinity phosphate transporter (PHT1 family) genes in roots was not altered in response to any of the fungal species tested. Interestingly, plants exposed to high Pi supplies for 1 day did not have reduced transcript levels for any of the five PHT1 genes in roots, and transcript abundance of four PHT1 genes actually increased. It is therefore suggested that jarrah, and perhaps other P-sensitive perennial species, respond positively to Pi available in the soil solution through increasing rather than decreasing the expression of selected PHT1 genes. Furthermore, Scleroderma sp. can be considered as a fungus with dual functional capacity capable of forming both ectomycorrhizal and non-colonizing associations, where both pathways are always accompanied by evident growth and nutritional benefits.
Collapse
Affiliation(s)
- Khalil Kariman
- School of Earth and Environment M087, The University of Western Australia, Crawley, WA, 6009, Australia
- School of Plant Biology M084, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Susan J Barker
- School of Plant Biology M084, The University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Agriculture M082, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ricarda Jost
- School of Plant Biology M084, The University of Western Australia, Crawley, WA, 6009, Australia
- School of Life Science, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Patrick M Finnegan
- School of Plant Biology M084, The University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Agriculture M082, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mark Tibbett
- Centre for Agri-Environmental Research, and Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Berkshire, RG6 6AR, UK.
| |
Collapse
|
24
|
Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H. Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:871-84. [PMID: 24420568 PMCID: PMC3924728 DOI: 10.1093/jxb/ert444] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Interactions between zinc (Zn) and phosphate (Pi) nutrition in plants have long been recognized, but little information is available on their molecular bases and biological significance. This work aimed at examining the effects of Zn deficiency on Pi accumulation in Arabidopsis thaliana and uncovering genes involved in the Zn-Pi synergy. Wild-type plants as well as mutants affected in Pi signalling and transport genes, namely the transcription factor PHR1, the E2-conjugase PHO2, and the Pi exporter PHO1, were examined. Zn deficiency caused an increase in shoot Pi content in the wild type as well as in the pho2 mutant, but not in the phr1 or pho1 mutants. This indicated that PHR1 and PHO1 participate in the coregulation of Zn and Pi homeostasis. Zn deprivation had a very limited effect on transcript levels of Pi-starvation-responsive genes such as AT4, IPS1, and microRNA399, or on of members of the high-affinity Pi transporter family PHT1. Interestingly, one of the PHO1 homologues, PHO1;H3, was upregulated in response to Zn deficiency. The expression pattern of PHO1 and PHO1;H3 were similar, both being expressed in cells of the root vascular cylinder and both localized to the Golgi when expressed transiently in tobacco cells. When grown in Zn-free medium, pho1;h3 mutant plants displayed higher Pi contents in the shoots than wild-type plants. This was, however, not observed in a pho1 pho1;h3 double mutant, suggesting that PHO1;H3 restricts root-to-shoot Pi transfer requiring PHO1 function for Pi homeostasis in response to Zn deficiency.
Collapse
Affiliation(s)
- Ghazanfar Abbas Khan
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Samir Bouraine
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| | - Stefanie Wege
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Yuanyuan Li
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Matthieu de Carbonnel
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Berthomieu
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| | - Yves Poirier
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hatem Rouached
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| |
Collapse
|
25
|
Low cellular P-quota and poor metabolic adaptations of the freshwater cyanobacterium Anabaena fertilissima Rao during Pi-limitation. Antonie van Leeuwenhoek 2012; 103:277-91. [PMID: 22968428 DOI: 10.1007/s10482-012-9808-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 09/04/2012] [Indexed: 01/03/2023]
Abstract
Anabaena fertilissima is a filamentous freshwater N(2)-fixing cyanobacterium, isolated from a paddy field. Growth of the cyanobacterium was limited by the non-availability of inorganic phosphate (Pi) in the growth medium and was found to be directly related to the cellular P quota, which declined rapidly in Pi-deficient cells. To overcome Pi-deficiency, cells induced both cell-bound and cell-free alkaline phosphatase activities (APase). The activity of cell-bound APase was rapid and 5-6 times higher than that of the cell-free APase activity. Native gel electrophoresis revealed the presence of two APase activity bands for both the cell bound and cell-free APase (Mr ≈42 and 34 kDa). For Pi-deficient cells, APase activity was inversely related to cellular P-quota. In A. fertilissima phosphate uptake was facilitated by single high-affinity phosphate transporter (K ( s ), 4.54 μM; V(max), 4.84 μmol mg protein(-1) min(-1)). Pi-deficiency severely reduced the photosynthetic rate, respiration rate and nitrate uptake, as well as the activities of nitrate reductase, nitrite reductase and nitrogenase enzymes. In photosynthesis, PSII activity was maximally inhibited, followed by PSI and whole chain activities. Transcript levels of five key glycolytic enzymes showed the poor adaptability of the cyanobacterium to switch its metabolic activity to PPi-dependent enzyme variants, which has rather constant cellular concentrations.
Collapse
|
26
|
Pei L, Wang J, Li K, Li Y, Li B, Gao F, Yang A. Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. PLoS One 2012; 7:e43501. [PMID: 22952696 PMCID: PMC3431357 DOI: 10.1371/journal.pone.0043501] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/24/2012] [Indexed: 11/19/2022] Open
Abstract
Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H(+)-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress.
Collapse
Affiliation(s)
- Laming Pei
- School of Life Science, Shandong University, Jinan, Shandong, China
| | - Jiemin Wang
- School of Life Science, Shandong University, Jinan, Shandong, China
| | - Kunpeng Li
- School of Life Science, Shandong University, Jinan, Shandong, China
| | - Yongjun Li
- School of Life Science, Shandong University, Jinan, Shandong, China
| | - Bei Li
- School of Life Science, Shandong University, Jinan, Shandong, China
| | - Feng Gao
- School of Life Science, Shandong University, Jinan, Shandong, China
| | - Aifang Yang
- School of Life Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud MC. Phosphate Import in Plants: Focus on the PHT1 Transporters. FRONTIERS IN PLANT SCIENCE 2011; 2:83. [PMID: 22645553 PMCID: PMC3355772 DOI: 10.3389/fpls.2011.00083] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/03/2011] [Indexed: 05/17/2023]
Abstract
The main source of phosphorus for plants is inorganic phosphate (Pi), which is characterized by its poor availability and low mobility. Uptake of this element from the soil relies heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins that were identified by homology with the yeast PHO84 Pi transporter. Since the discovery of PHT1 transporters in 1996, various studies have revealed that their function is controlled by a highly complex network of regulation. This review will summarize the current state of research on plant PHT1 multigenic families, including physiological, biochemical, molecular, cellular, and genetics studies.
Collapse
Affiliation(s)
- Laurent Nussaume
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Satomi Kanno
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-kuTokyo, Japan 113-8657
| | - Hélène Javot
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Elena Marin
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Nathalie Pochon
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Amal Ayadi
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Tomoko M. Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-kuTokyo, Japan 113-8657
| | - Marie-Christine Thibaud
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| |
Collapse
|
28
|
Rouached H. Multilevel coordination of phosphate and sulfate homeostasis in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:952-5. [PMID: 21697651 PMCID: PMC3257768 DOI: 10.4161/psb.6.7.15318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 05/25/2023]
Abstract
Phosphate and sulfate are two macro-elements essential for plant growth and development. Both elements play a central role in numerous aspects of plant metabolism and their deficiencies have profound effects on the transcriptome as well as on numerous metabolic pathways. The research emphasis so far has been on elucidating the molecular physiology of these individual nutritive elements. Recent data proved the existence of complex connections between the various regulatory layers of the homeostasis of these elements, but the molecular bases and biological significance of such interconnections remains poorly understood. This review provides an update on recent advances to identify the components involved in phosphate and sulfate homeostasis crosstalk. In light of this case study, developing a comprehensive understanding of the coordination of the ion homeostasis and identifying genes which can be used as good molecular markers for monitoring the “integrative ionic status” of plants is not only of great scientific interest, but also crucial for biotechnological and agronomic applications.
Collapse
Affiliation(s)
- Hatem Rouached
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
29
|
Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK. Piriformospora indica enhances plant growth by transferring phosphate. PLANT SIGNALING & BEHAVIOR 2011; 6:723-5. [PMID: 21502815 PMCID: PMC3172848 DOI: 10.4161/psb.6.5.15106] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 05/21/2023]
Abstract
Piriformospora indica is an endophytic fungus that colonized monocot as well as dicot. P. indica has been termed as plant probiotic because of its plant growth promoting activity and its role in enhancement of the tolerance of the host plants against abiotic and biotic stresses. In our recent study, we have characterized a high affinity phosphate transporter (PiPT) and by using RNAi approach, we have demonstrated the involvement of PiPT in P transfer to the host plant. When knockdown strains of PiPT-P. indica was colonized with the host plant, it resulted in the impaired growth of the host plants. Here we have analyzed and discussed whether the growth promoting activity of P. indica is its intrinsic property or it is dependent on P availability. Our data explain the correlation between the availability of P and growth-promoting activity of P. indica.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
30
|
Simmons DBD, Emery RJN. Phytochelatin induction by selenate in Chlorella vulgaris, and regulation of effect by sulfate levels. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:469-476. [PMID: 21038439 DOI: 10.1002/etc.392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Phytochelatins (PCs) are short metal detoxification peptides made from the sulfur-rich molecule glutathione. The production of PCs by algae caused by Se exposure has never been studied, although many algae accumulate Se, forming Se-rich proteins and peptides, and higher plants have demonstrated PC production when treated with Se; therefore, a goal of the current study was to examine whether Se induces PC production in algae. Furthermore, selenate is thought to compete with sulfate in the S assimilation pathway, and sulfate therefore may have a protective effect against the toxic effects of high doses of Se in algae. Hence, the interaction of selenate and sulfate was investigated with respect to the induction of PCs. Chlorella vulgaris was cultured in media with either low (31.2 µM) or high (312 µM) concentrations of sulfate. These cultures were exposed to selenate in doses of 7, 35, and 70 nM for 48 h. In a separate treatment, Cd (890 nM) was added as a positive PC-inducing control, and one no-metal negative control was used. Total Se and Se speciation were determined, and glutathione, phytochelatin-2, and phytochelatin-3 were quantified in each of cell digests, cell medium, and cell lysates. We found that PCs and their precursor glutathione were induced by selenate as well as by a Cd control. The high concentration of sulfate was able to counter selenate-induced production of PCs and glutathione. These data support two possible mechanisms: a negative feedback system in the S assimilation pathway that affects PC production when sulfate is abundant, and competition for uptake at the ion transport level between selenate and sulfate.
Collapse
Affiliation(s)
- Denina B D Simmons
- Environmental & Life Sciences, Trent University, Peterborough, Ontario, Canada
| | | |
Collapse
|
31
|
Rouached H, Secco D, Arpat B, Poirier Y. The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC PLANT BIOLOGY 2011; 11:19. [PMID: 21261953 PMCID: PMC3036608 DOI: 10.1186/1471-2229-11-19] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/24/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. RESULTS Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up-regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up-regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. CONCLUSIONS This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.
Collapse
Affiliation(s)
- Hatem Rouached
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - David Secco
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Bulak Arpat
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S, Wege S. Anion channels/transporters in plants: from molecular bases to regulatory networks. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:25-51. [PMID: 21275645 DOI: 10.1146/annurev-arplant-042110-103741] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Anion channels/transporters are key to a wide spectrum of physiological functions in plants, such as osmoregulation, cell signaling, plant nutrition and compartmentalization of metabolites, and metal tolerance. The recent identification of gene families encoding some of these transport systems opened the way for gene expression studies, structure-function analyses of the corresponding proteins, and functional genomics approaches toward further understanding of their integrated roles in planta. This review, based on a few selected examples, illustrates that the members of a given gene family exhibit a diversity of substrate specificity, regulation, and intracellular localization, and are involved in a wide range of physiological functions. It also shows that post-translational modifications of transport proteins play a key role in the regulation of anion transport activity. Key questions arising from the increasing complexity of networks controlling anion transport in plant cells (the existence of redundancy, cross talk, and coordination between various pathways and compartments) are also addressed.
Collapse
|
33
|
Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM. A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:887-99. [PMID: 20444207 DOI: 10.1111/j.1467-7652.2010.00517.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNAs that can base pair their target mRNAs to repress their translation or induce their degradation in organisms. However, whether miRNAs are involved in the global response to sulphate deficiency and heavy metal stress is unknown. In this study, we constructed a small RNA library from rapeseed (Brassica napus) treated with sulphate deficiency and cadmium (Cd²+), respectively. Sequencing analysis revealed 13 conserved miRNAs representing nine families, with five new miRNAs that have not been cloned before. Transcriptional analysis with RT-PCR showed the differential expression of these miRNAs under sulphate deficiency and Cd exposure. We have cloned five genes BnSultr2;1 and BnAPS1-4, which encode a low-affinity sulphate transporter and a family of ATP sulphurylases in B. napus, respectively. BnSultr2;1, BnAPS3 and BnAPS4 were first cloned from B. napus, and BnSultr2;1, BnAPS1, BnAPS3 and BnAPS4 were identified as the targets of miR395. Analysis with 5'-RACE and transformation of MIR395d into B. napus confirmed that all of them were the authentic targets of miR395. Our results support the importance of miRNAs in regulating plant responses to abiotic stresses and suggest that identification of a set of miRNAs would facilitate our understanding of regulatory mechanisms for plant tolerance to sulphate deficiency and heavy metal stress.
Collapse
Affiliation(s)
- Si Qi Huang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Globally, phosphorus (P) limits productivity of trees in many forests and plantations especially in highly weathered, acidic or calcareous profiles. Most trees form mycorrhizal associations which are prevalent in the organic and mineral soil horizons. This review critically examines mechanisms that enhance the acquisition of P by tree roots. Mycorrhizal roots have a greater capacity to take up phosphate (Pi) from the soil solution than non-mycorrhizal root tips. Factors that contribute to this include the extent of extraradical hyphal penetration of soil and the physiology and biochemistry of the fungal/soil and fungal/plant interfaces. Ectomycorrhizal (ECM) trees are likely to benefit from association with basidiomycetes that possess several high-affinity Pi transporters that are expressed in extraradical hyphae and whose expression is enhanced by P deficiency. To understand fully the role of these putative transporters in the symbiosis, data regarding their localization, Pi transport capacities and regulation are required. Some ECM fungi are able to effect release of Pi from insoluble mineral P through excretion of low-molecular-weight organic anions such as oxalate, but the relative contribution of insoluble P dissolution in situ remains to be quantified. How the production of oxalate is regulated by nitrogen remains a key question to be answered. Lastly, phosphatase release from mycorrhizas is likely to play a significant role in the acquisition of Pi from labile organic forms of P (Po). As labile forms of Po can constitute the major fraction of the total P in some tropical and temperate soils, a greater understanding of the forms of Po available to the phosphatases is warranted.
Collapse
Affiliation(s)
- C Plassard
- INRA, UMR 1222, Eco&Sols, INRA-IRD-SupAgro, 2 Place P. Viala, Bat 12, 34060 Montpellier Cedex 01, France
| | | |
Collapse
|
35
|
Ali MA, Louche J, Legname E, Duchemin M, Plassard C. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils. TREE PHYSIOLOGY 2009; 29:1587-1597. [PMID: 19840995 DOI: 10.1093/treephys/tpp088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Young seedlings of maritime pine (Pinus pinaster Soland in Aït.) were grown in rhizoboxes using intact spodosol soil samples from the southwest of France, in Landes of Gascogne, presenting a large variation of phosphorus (P) availability. Soils were collected from a 93-year-old unfertilized stand and a 13-year-old P. pinaster stand with regular annual fertilization of either only P or P and nitrogen (N). After 6 months of culture in controlled conditions, different morphotypes of ectomycorrhiza (ECM) were used for the measurements of acid phosphatase activity and molecular identification of fungal species using amplification of the ITS region. Total biomass, N and P contents were measured in roots and shoots of plants. Bicarbonate- and NaOH-available inorganic P (Pi), organic P (Po) and ergosterol concentrations were measured in bulk and rhizosphere soil. The results showed that bulk soil from the 93-year-old forest stand presented the highest Po levels, but relatively higher bicarbonate-extractable Pi levels compared to 13-year-old unfertilized stand. Fertilizers significantly increased the concentrations of inorganic P fractions in bulk soil. Ergosterol contents in rhizosphere soil were increased by fertilizer application. The dominant fungal species was Rhizopogon luteolus forming 66.6% of analysed ECM tips. Acid phosphatase activity was highly variable and varied inversely with bicarbonate-extractable Pi levels in the rhizosphere soil. Total P or total N in plants was linearly correlated with total plant biomass, but the slope was steep only between total P and biomass in fertilized soil samples. In spite of high phosphatase activity in ECM tips, P availability remained a limiting nutrient in soil samples from unfertilized stands. Nevertheless young P. pinaster seedlings showed a high plasticity for biomass production at low P availability in soils.
Collapse
Affiliation(s)
- M A Ali
- INRA/IRD/SupAgro, UMR 1222 Eco&Sols, Montpellier, France
| | | | | | | | | |
Collapse
|
36
|
Rouached H, Secco D, Arpat AB. Getting the most sulfate from soil: Regulation of sulfate uptake transporters in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:893-902. [PMID: 19375816 DOI: 10.1016/j.jplph.2009.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/25/2009] [Indexed: 05/20/2023]
Abstract
Sulfur (S) is an essential macronutrient for all living organisms. Plants require large amounts of sulfate for growth and development, and this serves as a major entry point of sulfate into the food web. Plants acquire S in its ionic form from the soil; they have evolved tightly controlled mechanisms for the regulation of sulfate uptake in response to its external and internal availability. In the model plant Arabidopsis thaliana, the first key step in sulfate uptake is presumed to be carried out exclusively by only two high-affinity sulfate transporters: SULTR1;1 and SULTR1;2. A better understanding of the mode of regulation for these two transporters is crucial because they constitute the first determinative step in balancing sulfate in respect to its supply and demand. Here, we review the recent progress achieved in our comprehension of (i) mechanisms that regulate these two high-affinity sulfate transporters at the transcriptional and post-transcriptional levels, and (ii) their structure-function relationship. Such progress is important to enable biotechnological and agronomic strategies aimed at enhancing sulfate uptake and improving crop yield in S-deficient soils.
Collapse
Affiliation(s)
- Hatem Rouached
- Department of Plant Molecular Biology, University of Lausanne, Lausanne CH-1015, Switzerland.
| | | | | |
Collapse
|
37
|
Tatry MV, El Kassis E, Lambilliotte R, Corratgé C, van Aarle I, Amenc LK, Alary R, Zimmermann S, Sentenac H, Plassard C. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:1092-102. [PMID: 19054369 DOI: 10.1111/j.1365-313x.2008.03749.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ectomycorrhizal symbiosis markedly improves plant phosphate uptake, but the molecular mechanisms underlying this benefit are still poorly understood. We identified two ESTs in a cDNA library prepared from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum with significant similarities to phosphate transporters from the endomycorrhizal fungus Glomus versiforme and from non-mycorrhizal fungi. The full-length cDNAs corresponding to these two ESTs complemented a yeast phosphate transport mutant (Deltapho84). Measurements of (33)P-phosphate influx into yeast expressing either cDNA demonstrated that the encoded proteins, named HcPT1 and HcPT2, were able to mediate Pi:H(+) symport with different affinities for Pi (K(m) values of 55 and 4 mum, respectively). Real-time RT-PCR showed that Pi starvation increased the levels of HcPT1 transcripts in H. cylindrosporum hyphae grown in pure culture. Transcript levels of HcPT2 were less dependent on Pi availability. The two transporters were expressed in H. cylindrosporum associated with its natural host plant, Pinus pinaster, grown under low or high P conditions. The presence of ectomycorrhizae increased net Pi uptake rates into intact Pinus pinaster roots at low or high soil P levels. The expression patterns of HcPT1 and HcPT2 indicate that the two fungal phosphate transporters may be involved in uptake of phosphate from the soil solution under the two soil P availability conditions used.
Collapse
Affiliation(s)
- Marie-Violaine Tatry
- UMR 1222 INRA/SupAgro, Biogéochimie du Sol et de la Rhizosphère, INRA, Centre de Montpellier, 2 place Viala, Montpellier Cedex 1, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Winkler U, Zotz G. Highly efficient uptake of phosphorus in epiphytic bromeliads. ANNALS OF BOTANY 2009; 103:477-84. [PMID: 19033287 PMCID: PMC2707326 DOI: 10.1093/aob/mcn231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Vascular epiphytes which can be abundant in tree crowns of tropical forests have to cope with low and highly intermittent water and nutrient supply from rainwater, throughfall and stem flow. Phosphorus rather than nitrogen has been suggested as the most limiting nutrient element, but, unlike nitrogen, this element has received little attention in physiological studies. This motivated the present report, in which phosphate uptake kinetics by leaves and roots, the subsequent distribution within plants and the metabolic fate of phosphate were studied as a step towards an improved understanding of physiological adaptations to the conditions of tree canopies. METHODS Radioactively labelled [(32)P]phosphate was used to study uptake kinetics and plant distribution of phosphorus absorbed from bromeliad tanks. The metabolism of low molecular phosphorus metabolites was analysed by thin-layer chromatography followed by autoradiography. KEY RESULTS Uptake of phosphate from tanks is an ATP-dependent process. The kinetics of phosphorus uptake suggest that epiphytes possess effective phosphate transporters. The K(m) value of 1.05 microm determined for leaves of the bromeliad Aechmea fasciata is comparable with values obtained for the high affinity phosphate transporters in roots of terrestrial plants. In this species, young leaves are the main sink for phosphate absorbed from tank water. Within these leaves, phosphate is then allocated from the basal uptake zone into distal sections of the leaves. More than 80 % of the phosphate incorporated into leaves is not used in metabolism but stored as phytin. CONCLUSIONS Tank epiphytes are adapted to low and intermittent nutrient supply by different mechanisms. They possess an effective mechanism to take up phosphate, minimizing dilution and loss of phosphorus captured in the tank. Available phosphorus is taken up from the tank solution almost quantitatively, and the surplus not needed for current metabolism is accumulated in reserves, i.e. plants show luxury consumption. Young, developing leaves are preferentially supplied with this nutrient element. Taken together, these features allow epiphytes the efficient use of scarce and variable nutrient supplies.
Collapse
Affiliation(s)
- Uwe Winkler
- Functional Ecology Group, Universität Oldenburg, Oldenburg, Germany.
| | | |
Collapse
|
39
|
Li HF, McGrath SP, Zhao FJ. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. THE NEW PHYTOLOGIST 2008; 178:92-102. [PMID: 18179602 DOI: 10.1111/j.1469-8137.2007.02343.x] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Selenite can be a dominant form of selenium (Se) in aerobic soils; however, unlike selenate, the mechanism of selenite uptake by plants remains unclear. Uptake, translocation and Se speciation in wheat (Triticum aestivum) supplied with selenate or selenite, or both, were investigated in hydroponic experiments. The kinetics of selenite influx was determined in short-term (30 min) experiments. Selenium speciation in the water-extractable fraction of roots and shoots was determined by HPLC-ICPMS. Plants absorbed similar amounts of Se within 1 d when supplied with selenite or selenate. Selenate and selenite uptake were enhanced in sulphur-starved and phosphorus-starved plants, respectively. Phosphate markedly increased K(m) of the selenite influx. Selenate and selenite uptake were both metabolically dependent. Selenite was rapidly converted to organic forms in roots, with limited translocation to shoots. Selenomethionine, selenomethionine Se-oxide, Se-methyl-selenocysteine and several other unidentified Se species were detected in the root extracts and xylem sap from selenite-treated plants. Selenate was highly mobile in xylem transport, but little was assimilated to organic forms in 1 d. The presence of selenite decreased selenate uptake and xylem transport. Selenite uptake is an active process likely mediated, at least partly, by phosphate transporters. Selenite and selenate differ greatly in the ease of assimilation and xylem transport.
Collapse
Affiliation(s)
- Hua-Fen Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100094, China
- Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Steve P McGrath
- Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Fang-Jie Zhao
- Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
40
|
Ravna AW, Sager G, Dahl SG, Sylte I. Membrane Transporters: Structure, Function and Targets for Drug Design. TOPICS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1007/7355_2008_023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
41
|
An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci U S A 2007; 104:18807-12. [PMID: 18003916 DOI: 10.1073/pnas.0706373104] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molybdenum (Mo) is a trace element essential for living organisms, however no molybdate transporter has been identified in eukaryotes. Here, we report the identification of a molybdate transporter, MOT1, from Arabidopsis thaliana. MOT1 is expressed in both roots and shoots, and the MOT1 protein is localized, in part, to plasma membranes and to vesicles. MOT1 is required for efficient uptake and translocation of molybdate and for normal growth under conditions of limited molybdate supply. Kinetics studies in yeast revealed that the K(m) value of MOT1 for molybdate is approximately 20 nM. Furthermore, Mo uptake by MOT1 in yeast was not affected by coexistent sulfate, and MOT1 did not complement a sulfate transporter-deficient yeast mutant strain. These data confirmed that MOT1 is specific for molybdate and that the high affinity of MOT1 allows plants to obtain scarce Mo from soil.
Collapse
|
42
|
Schiavon M, Wirtz M, Borsa P, Quaggiotti S, Hell R, Malagoli M. Chromate differentially affects the expression of a high-affinity sulfate transporter and isoforms of components of the sulfate assimilatory pathway in Zea mays (L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:662-71. [PMID: 17853366 DOI: 10.1055/s-2007-965440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this study the chromate accumulation and tolerance were investigated in ZEA MAYS L. in relation to sulfur availability since sulfate may interact with chromate for transport into the cells. Chromate inhibited sulfate uptake when supplied to plants for a short-term period, whereas phosphate uptake remained unchanged. Sulfate absorption was also reduced in S-starved (-S) and S-supplied (+S) plants treated for 2 d with 0.2 mM chromate and the concomitant repression of the root high-affinity sulfate root transporter ZMST1;1 transcript accumulation was observed. Conversely, the plasma membrane H (+)-ATPase MHA2 was unaffected by chromate in +S plants, allowing to exclude a general effect of chromate on the active membrane transport. As observed for sulfate uptake, chromate uptake was enhanced in -S condition and decreased in both +S and -S plants after 2 d of Cr treatment. Chromate reduced the concentration of sulfur and sulfate in +S plants to the basal level of -S plants, and maximum chromium accumulation was recorded in S-deprived plants. Analysis of transcript abundance of genes involved in sulfate assimilation revealed differential regulation by chromate, which was only partly related to sulfur availability and to the levels of thiols. This work shows for the first time that chromate specifically represses sulfate uptake, and such repression occurs without the implication of the candidate regulatory metabolites of the sulfate transport system in plants.
Collapse
Affiliation(s)
- M Schiavon
- Department of Agricultural Biotechnologies, University of Padua, Agripolis, 35020 Legnaro (Padua), Italy
| | | | | | | | | | | |
Collapse
|
43
|
White PJ, Broadley MR, Bowen HC, Johnson SE. Selenium and its relationship with sulfur. PLANT ECOPHYSIOLOGY 2007. [DOI: 10.1007/978-1-4020-5887-5_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. THE NEW PHYTOLOGIST 2007; 173:11-26. [PMID: 17176390 DOI: 10.1111/j.1469-8137.2006.01935.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phosphorus (P) is an essential plant nutrient and one of the most limiting in natural habitats as well as in agricultural production world-wide. The control of P acquisition efficiency and its subsequent uptake and translocation in vascular plants is complex. The physiological role of key cellular structures in plant P uptake and underlying molecular mechanisms are discussed in this review, with emphasis on phosphate transport across the cellular membrane at the root and arbuscular-mycorrhizal (AM) interfaces. The tools of molecular genetics have facilitated novel approaches and provided one of the major driving forces in the investigation of the basic transport mechanisms underlying plant P nutrition. Genetic engineering holds the potential to modify the system in a targeted way at the root-soil or AM symbiotic interface. Such approaches should assist in the breeding of crop plants that exhibit improved P acquisition efficiency and thus require lower inputs of P fertilizer for optimal growth. Whether engineering of P transport systems can contribute to enhanced P uptake will be discussed.
Collapse
Affiliation(s)
- Marcel Bucher
- ETH Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, CH-8315 Lindau, Switzerland.
| |
Collapse
|
45
|
Tittarelli A, Milla L, Vargas F, Morales A, Neupert C, Meisel LA, Salvo-G H, Peñaloza E, Muñoz G, Corcuera LJ, Silva H. Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:2573-82. [PMID: 17562688 DOI: 10.1093/jxb/erm123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phosphorus deficiency is one of the major nutrient stresses affecting plant growth. Plants respond to phosphate (Pi) deficiency through multiple strategies, including the synthesis of high-affinity Pi transporters. In this study, the expression pattern of one putative wheat high-affinity phosphate transporter, TaPT2, was examined in roots and leaves under Pi-deficient conditions. TaPT2 transcript levels increased in roots of Pi-starved plants. A 579 bp fragment of the TaPT2 promoter is sufficient to drive the expression of the GUS reporter gene specifically in roots of Pi-deprived wheat. This TaPT2 promoter fragment was also able to drive expression of the GUS reporter gene in transgenic Arabidopsis thaliana, under similar growth conditions. Conserved regions and candidate regulatory motifs were detected by comparing this promoter with Pi transporter promoters from barley, rice, and Arabidopsis. Altogether, these results indicate that there are conserved cis-acting elements and trans-acting factors that enable the TaPT2 promoter to be regulated in a tissue-specific and Pi-dependent fashion in both monocots and dicots.
Collapse
Affiliation(s)
- A Tittarelli
- Millennium Nucleus in Plant Cell Biology and Center of Plant Biotechnology, Andres Bello University, Av República 217, 837-0146, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fomina M, Charnock JM, Hillier S, Alexander IJ, Gadd GM. Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. MICROBIAL ECOLOGY 2006; 52:322-33. [PMID: 16710792 DOI: 10.1007/s00248-006-9004-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 12/13/2005] [Indexed: 05/09/2023]
Abstract
In this research, we investigate zinc phosphate transformations by Paxillus involutus/pine ectomycorrhizas using zinc-resistant and zinc-sensitive strains of the ectomycorrhizal fungus under high- and low-phosphorus conditions to further understand fungal roles in the transformation of toxic metal minerals in the mycorrhizosphere. Mesocosm experiments with ectomycorrhizas were performed under sterile conditions with zinc phosphate localized in cellophane bags: zinc and phosphorus mobilization and uptake by the ectomycorrhizal biomass were analyzed. In the presence of a phosphorus source, an ectomycorrhizal association with a zinc-resistant strain accumulated the least zinc compared to a zinc-sensitive ectomycorrhizal association and non-mycorrhizal plants. Under low-phosphorus conditions, mycorrhizal seedlings infected with the zinc-resistant strain increased the dissolution of zinc phosphate and zinc accumulation by the plant. Extended X-ray absorption fine structure analysis of both mycorrhizal and nonmycorrhizal roots showed octahedral coordination of zinc by oxygen-containing ligands such as carboxylates or phosphate. We conclude that zinc phosphate solubilization and zinc and phosphorus uptake by the association depend on ectomycorrhizal infection, strain of the mycobiont, and the phosphorus status of the matrix.
Collapse
Affiliation(s)
- Marina Fomina
- Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, Scotland, UK
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Daszkiewicz M, Baran J, Cieślak-Golonka M. Theoretical studies on the interaction of the anions with biologically relevant ligands: NO+, NO, , OH, imidazole and methylimidazoles. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2005.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
SOSA LAURA, LLANES ANALÍA, REINOSO HERMINDA, REGINATO MARIANA, LUNA VIRGINIA. Osmotic and specific ion effects on the germination of Prosopis strombulifera. ANNALS OF BOTANY 2005; 96:261-7. [PMID: 15928009 PMCID: PMC4246873 DOI: 10.1093/aob/mci173] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Salinity can affect germination of seeds either by creating osmotic potentials that prevent water uptake or by toxic effects of specific ions. Most studies have only used monosaline solutions, although these limit the extent to which one can interpret the results or relate them to field conditions. The aim of this work was to evaluate the germination of Prosopis strombulifera seeds under increasing salinity by using the most abundant salts in central Argentina in monosaline or bisaline iso-osmotic solutions, or in solutions of mannitol and polyethylene glycol. METHODS Seeds were allowed to germinate under controlled conditions in a germination chamber at 30 +/- 1 degrees C and at 80 % r.h. Salinizing agents were KCl, NaCl, Na(2)SO(4), K(2)SO(4), NaCl + Na(2)SO(4) and KCl + K(2)SO(4) and osmotic agents were polyethylene glycol 6000 and mannitol. Treatments for all osmotica consisted of 0.0, -0.4, -0.8, -1.2, -1.5, -1.9 and -2.2 MPa solutions. KEY RESULTS The percentage of germination decreased as salinity increased. SO(4)(2-) in monosaline solutions, with osmotic potentials -1.2 MPa and lower, was more inhibitory than Cl(-) at iso-osmotic concentrations. This SO(4)(2-) toxicity was alleviated in salt mixtures and was more noticeable in higher concentrations. K(+) was more inhibitory than Na(+) independently of the accompanying anion. CONCLUSIONS Different responses to different compositions of iso-osmotic salt solutions and to both osmotic agents indicate specific ionic effects. This study demonstrates that the germination of P. strombulifera is strongly influenced by the nature of the ions in the salt solutions and their interactions. Comparative studies of Cl(-) and SO(4)(2-) effects and the interaction between SO(4)(2-) and Cl(-) in salt mixtures indicate that extrapolation of results obtained with monosaline solutions in the laboratory to field conditions can be speculative.
Collapse
Affiliation(s)
- LAURA SOSA
- Laboratorio de Fisiología Vegetal, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700, San Luis, Argentina
| | - ANALÍA LLANES
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Argentina
| | - HERMINDA REINOSO
- Laboratorio de Morfología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Argentina
| | - MARIANA REGINATO
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Argentina
| | - VIRGINIA LUNA
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Argentina
- For correspondence. E-mail
| |
Collapse
|
50
|
Chang CW, Moseley JL, Wykoff D, Grossman AR. The LPB1 gene is important for acclimation of Chlamydomonas reinhardtii to phosphorus and sulfur deprivation. PLANT PHYSIOLOGY 2005; 138:319-29. [PMID: 15849300 PMCID: PMC1104186 DOI: 10.1104/pp.105.059550] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 05/20/2023]
Abstract
Organisms exhibit a diverse set of responses when exposed to low-phosphate conditions. Some of these responses are specific for phosphorus limitation, including responses that enable cells to efficiently scavenge phosphate from internal and external stores via the production of high-affinity phosphate transporters and the synthesis of intracellular and extracellular phosphatases. Other responses are general and occur under a number of different environmental stresses, helping coordinate cellular metabolism and cell division with the growth potential of the cell. In this article, we describe the isolation and characterization of a mutant of Chlamydomonas reinhardtii, low-phosphate bleaching (lpb1), which dies more rapidly than wild-type cells during phosphorus limitation. The responses of this mutant to nitrogen limitation appear normal, although the strain is also somewhat more sensitive than wild-type cells to sulfur deprivation. Interestingly, depriving the cells of both nutrients simultaneously allows for sustained survival that is similar to that observed with wild-type cells. Furthermore, upon phosphorus deprivation, the lpb1 mutant, like wild-type cells, exhibits increased levels of mRNA encoding the PHOX alkaline phosphatase, the PTB2 phosphate transporter, and the regulatory element PSR1. The mutant strain is also able to synthesize the extracellular alkaline phosphatase activity upon phosphorus deprivation and the arylsulfatase upon sulfur deprivation, suggesting that the specific responses to phosphorus and sulfur deprivation are normal. The LPB1 gene was tagged by insertion of the ARG7 gene, which facilitated its isolation and characterization. This gene encodes a protein with strong similarity to expressed proteins in Arabidopsis (Arabidopsis thaliana) and predicted proteins in Oryza sativa and Parachlamydia. A domain in the protein contains some similarity to the superfamily of nucleotide-diphospho-sugar transferases, and it is likely to be localized to the chloroplast or mitochondrion based on programs that predict subcellular localization. While the precise catalytic role and physiological function of the putative protein is not known, it may function in some aspect of polysaccharide metabolism and/or influence phosphorus metabolism (either structural or regulatory) in a way that is critical for allowing the cells to acclimate to nutrient limitation conditions.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305, USA
| | | | | | | |
Collapse
|