1
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Clemmer DE, Zamfir AD. Advanced profiling and structural analysis of anencephaly gangliosides by ion mobility tandem mass spectrometry. Biochimie 2025; 232:91-104. [PMID: 39884374 DOI: 10.1016/j.biochi.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Anencephaly, the most severe type of neural tube defects (NTDs) in humans, occurs between the third and fourth gestational weeks (GW), involves the cranial part of the NT and results in the absence of the forebrain and skull. Exposed to amniotic fluid toxicity, neural tissue is degraded and prevented from development. Currently, little is known about the molecular bases of the disease and the possible involvement of glycans. In this context, considering the role played by gangliosides (GGs) in fetal brain development and the previous achievements of ion mobility separation (IMS) mass spectrometry (MS) in biomarker discovery, we report here on the introduction of this advanced analytical technique in NTD research, and its optimization for a comprehensive determination of anencephaly gangliosidome. Three native GG extracts from residual brains of anencephalic fetuses in 28, 35 and 37 GW were comparatively profiled by IMS MS, structurally analyzed by IMS MS/MS, and finally assessed against a native GG mixture from normal fetal brain. IMS MS provided data on 343 anencephaly gangliosides vs. only 157 known before and revealed for the first time the incidence of the entire penta-to octasialylated series. The comparative assay disclosed variations in GG expression with fetal age and a correlation of the pattern with the developmental stage. In contrast to the normal fetal brain, the neural tissue in anencephaly was found to contain an elevated number of polysialogangliosides and a lower expression of O-Ac- and GalNAc-modified glycoforms. These species worth further detailed investigation as new potential anencephaly markers.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania; Department of Physics, West University of Timisoara, Vasile Parvan, 4, 300223, Romania
| | - Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, Faculty of Medicine, University of Zagreb, Šalata 2, 10000, Croatia
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Alina D Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania; Department of Physics, West University of Timisoara, Vasile Parvan, 4, 300223, Romania; Institute for Research, Development and Innovation in Natural and Technical Sciences, Aurel Vlaicu University of Arad, B-dul Revoluţiei 77, 310130, Romania.
| |
Collapse
|
2
|
Merrill AH. Don't Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies. Int J Mol Sci 2025; 26:650. [PMID: 39859363 PMCID: PMC11765627 DOI: 10.3390/ijms26020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Sphingolipidomic mass spectrometry has provided valuable information-and surprises-about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than sphingosine (and sometimes sphinganine) or acquire from exogenous sources; infrequently considered metabolites of sphingoid bases, such as N-(methyl)n-derivatives; "ceramides" other than the most common N-acylsphingosines; and complex sphingolipids other than sphingomyelins and simple glycosphingolipids, including glucosyl- and galactosylceramides, which are usually reported as "monohexosylceramides". These and other subspecies are discussed, as well as some of the circumstances when they are likely to be seen (or present and missed) due to experimental conditions that can influence sphingolipid metabolism, uptake from the diet or from the microbiome, or as artifacts produced during extraction and analysis. If these compounds and factors are kept in mind during the design and interpretation of lipidomic studies, investigators are likely to be surprised by how often they appear and thereby advance knowledge about them.
Collapse
Affiliation(s)
- Alfred H Merrill
- School of Biological Sciences and The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Glueck M, Lucaciu A, Subburayalu J, Kestner RI, Pfeilschifter W, Vutukuri R, Pfeilschifter J. Atypical sphingosine-1-phosphate metabolites-biological implications of alkyl chain length. Pflugers Arch 2024; 476:1833-1843. [PMID: 39297971 PMCID: PMC11582160 DOI: 10.1007/s00424-024-03018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid signaling molecule with pleiotropic implications by both auto- and paracrine signaling. Signaling occurs by engaging five G protein-coupled receptors (S1P1-5) or intracellular pathways. While the extensively studied S1P with a chain length of 18 carbon atoms (d18:1 S1P) affects lymphocyte trafficking, immune cell survival and inflammatory responses, the biological implication of atypical S1Ps such as d16:1 or d20:1 remains elusive. As S1P lipids have far-reaching implications in health and disease states in mammalian organisms, the previous contrasting results may be attributed to differences in S1P's alkyl chain length. Current research is beginning to appreciate these less abundant atypical S1P moieties. This review provides an up-to-date foundation of recent findings on the biological implications of atypical S1P chain lengths and offers a perspective on future research endeavors on S1P alkyl chain length-influenced signaling and its implications for drug discovery.
Collapse
Affiliation(s)
- Melanie Glueck
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University Hospital, 60528, Frankfurt Am Main, Germany
| | - Alexandra Lucaciu
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Julien Subburayalu
- Department of Internal Medicine, University Hospital Carl Gustav Carus TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- Center of Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
| | - Roxane Isabelle Kestner
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology and Clinical Neurophysiology, Städtisches Klinikum Lüneburg, 21339, Lüneburg, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| |
Collapse
|
4
|
Markotić A, Omerović J, Marijan S, Režić-Mužinić N, Čikeš Čulić V. Biochemical Pathways Delivering Distinct Glycosphingolipid Patterns in MDA-MB-231 and MCF-7 Breast Cancer Cells. Curr Issues Mol Biol 2024; 46:10200-10217. [PMID: 39329960 PMCID: PMC11430773 DOI: 10.3390/cimb46090608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The complex structure of glycosphingolipids (GSLs) supports their important role in cell function as modulators of growth factor receptors and glutamine transporters in plasma membranes. The aberrant composition of clustered GSLs within signaling platforms, so-called lipid rafts, inevitably leads to tumorigenesis due to disturbed growth factor signal transduction and excessive uptake of glutamine and other molecules needed for increased energy and structural molecule cell supply. GSLs are also involved in plasma membrane processes such as cell adhesion, and their transition converts cells from epithelial to mesenchymal with features required for cell migration and metastasis. Glutamine activates the mechanistic target of rapamycin complex 1 (mTORC1), resulting in nucleotide synthesis and proliferation. In addition, glutamine contributes to the cancer stem cell GD2 ganglioside-positive phenotype in the triple-negative breast cancer cell line MDA-MB-231. Thieno[2,3-b]pyridine derivative possesses higher cytotoxicity against MDA-MB-231 than against MCF-7 cells and induces a shift to aerobic metabolism and a decrease in S(6)nLc4Cer GSL-positive cancer stem cells in the MDA-MB-231 cell line. In this review, we discuss findings in MDA-MB-231, MCF-7, and other breast cancer cell lines concerning their differences in growth factor receptors and recent knowledge of the main biochemical pathways delivering distinct glycosphingolipid patterns during tumorigenesis and therapy.
Collapse
Affiliation(s)
- Anita Markotić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Jasminka Omerović
- Department of Immunology, University of Split School of Medicine, 21000 Split, Croatia
| | - Sandra Marijan
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Nikolina Režić-Mužinić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
5
|
Mao R, Li J. Construction of a molecular diagnostic system for neurogenic rosacea by combining transcriptome sequencing and machine learning. BMC Med Genomics 2024; 17:232. [PMID: 39272052 PMCID: PMC11396881 DOI: 10.1186/s12920-024-02008-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Patients with neurogenic rosacea (NR) frequently demonstrate pronounced neurological manifestations, often unresponsive to conventional therapeutic approaches. A molecular-level understanding and diagnosis of this patient cohort could significantly guide clinical interventions. In this study, we amalgamated our sequencing data (n = 46) with a publicly accessible database (n = 38) to perform an unsupervised cluster analysis of the integrated dataset. The eighty-four rosacea patients were partitioned into two distinct clusters. Neurovascular biomarkers were found to be elevated in cluster 1 compared to cluster 2. Pathways in cluster 1 were predominantly involved in neurotransmitter synthesis, transmission, and functionality, whereas cluster 2 pathways were centered on inflammation-related processes. Differential gene expression analysis and WGCNA were employed to delineate the characteristic gene sets of the two clusters. Subsequently, a diagnostic model was constructed from the identified gene sets using linear regression methodologies. The model's C index, comprising genes PNPLA3, CUX2, PLIN2, and HMGCR, achieved a remarkable value of 0.9683, with an area under the curve (AUC) for the training cohort's nomogram of 0.9376. Clinical characteristics from our dataset (n = 46) were assessed by three seasoned dermatologists, forming the NR validation cohort (NR, n = 18; non-neurogenic rosacea, n = 28). Upon application of our model to NR diagnosis, the model's AUC value reached 0.9023. Finally, potential therapeutic candidates for both patient groups were predicted via the Connectivity Map. In summation, this study unveiled two clusters with unique molecular phenotypes within rosacea, leading to the development of a precise diagnostic model instrumental in NR diagnosis.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Jin X, Cheng H, Chen X, Cao X, Xiao C, Ding F, Qu H, Wang PG, Feng Y, Yang GY. A modular chemoenzymatic cascade strategy for the structure-customized assembly of ganglioside analogs. Commun Chem 2024; 7:17. [PMID: 38238524 PMCID: PMC10796935 DOI: 10.1038/s42004-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Gangliosides play vital biological regulatory roles and are associated with neurological system diseases, malignancies, and immune deficiencies. They have received extensive attention in developing targeted drugs and diagnostic markers. However, it is difficult to obtain enough structurally defined gangliosides and analogs especially at an industrial-relevant scale, which prevent exploring structure-activity relationships and identifying drug ingredients. Here, we report a highly modular chemoenzymatic cascade assembly (MOCECA) strategy for customized and large-scale synthesis of ganglioside analogs with various glycan and ceramide epitopes. We typically accessed five gangliosides with therapeutic promising and systematically prepared ten GM1 analogs with diverse ceramides. Through further process amplification, we achieved industrial production of ganglioside GM1 in the form of modular assembly at hectogram scale. Using MOCECA-synthesized GM1 analogs, we found unique ceramide modifications on GM1 could enhance the ability to promote neurite outgrowth. By comparing the structures with synthetic analogs, we further resolved the problem of contradicting descriptions for GM1 components in different pharmaceutical documents by reinterpreting the exact two-component structures of commercialized GM1 drugs. Because of its applicability and stability, the MOCECA strategy can be extended to prepare other glycosphingolipid structures, which may pave the way for developing new glycolipid drugs.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Clinical Pharmaceutics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hanchao Cheng
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
- Department of Pharmacology, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Guangdong, China
| | - Xiaohui Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Cao
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Cong Xiao
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Fengling Ding
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Huirong Qu
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Peng George Wang
- Department of Pharmacology, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Guangdong, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Schengrund CL. The Ying and Yang of Ganglioside Function in Cancer. Cancers (Basel) 2023; 15:5362. [PMID: 38001622 PMCID: PMC10670608 DOI: 10.3390/cancers15225362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
The plethora of information about the expression of cancer cell-associated gangliosides, their role(s) in signal transduction, and their potential usefulness in the development of cancer treatments makes this an appropriate time to review these enigmatic glycosphingolipids. Evidence, reflecting the work of many, indicates that (1) expression of specific gangliosides, not generally found in high concentrations in most normal human cells, can be linked to certain types of cancer. (2) Gangliosides can affect the ability of cells to interact either directly or indirectly with growth factor receptors, thereby changing such things as a cell's mobility, rate of proliferation, and metastatic ability. (3) Anti-ganglioside antibodies have been tested, with some success, as potential treatments for certain cancers. (4) Cancer-associated gangliosides shed into the circulation can (a) affect immune cell responsiveness either positively or negatively, (b) be considered as diagnostic markers, and (c) be used to look for recurrence. (5) Cancer registries enable investigators to evaluate data from sufficient numbers of patients to obtain information about potential therapies. Despite advances that have been made, a discussion of possible approaches to identifying additional treatment strategies to inhibit metastasis, responsible for the majority of deaths of cancer patients, as well as for treating therapy-resistant tumors, is included.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
8
|
Chowdhury S, Kumar R, Zepeda E, DeFrees S, Ledeen R. Synthetic GM1 improves motor and memory dysfunctions in mice with monoallelic or biallelic disruption of GM3 synthase. FEBS Open Bio 2023; 13:1651-1657. [PMID: 37401916 PMCID: PMC10476560 DOI: 10.1002/2211-5463.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023] Open
Abstract
This study attempts to answer the question of whether mice with biallelic and monoallelic disruption of the St3gal5 (GM3 synthase) gene might benefit from GM1 replacement therapy. The GM3 produced by this sialyltransferase gives rise to downstream GD3 and the ganglio-series of gangliosides. The latter includes the a-series (GM1 + GD1a), which has proved most essential for neuron survival and function (especially GM1, for which GD1a provides a reserve pool). These biallelic mice serve as a model for children with this relatively rare autosomal recessive condition (ST3GAL5-/-) who suffer rapid neurological decline including motor loss, intellectual disability, visual and hearing loss, failure to thrive, and other severe conditions leading to an early death by 2-5 years of age without supportive care. Here, we studied both these mice, which serve as a model for the parents and close relatives of these children who are likely to suffer long-term disabilities due to partial deficiency of GM1, including Parkinson's disease (PD). We find that the movement and memory disorders manifested by both types of mice can be resolved with GM1 application. This suggests the potential therapeutic value of GM1 for disorders stemming from GM1 deficiency, including GM3 synthase deficiency and PD. It was noteworthy that the GM1 employed in these studies was synthetic rather than animal brain-derived, reaffirming the therapeutic efficacy of the former.
Collapse
Affiliation(s)
- Suman Chowdhury
- Department of Pharmacology, Physiology, and NeuroscienceRutgers, The State University of New JerseyNewarkNJUSA
| | - Ranjeet Kumar
- Department of Pharmacology, Physiology, and NeuroscienceRutgers, The State University of New JerseyNewarkNJUSA
| | - Evelyn Zepeda
- Department of Pharmacology, Physiology, and NeuroscienceRutgers, The State University of New JerseyNewarkNJUSA
| | | | - Robert Ledeen
- Department of Pharmacology, Physiology, and NeuroscienceRutgers, The State University of New JerseyNewarkNJUSA
| |
Collapse
|
9
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Nagree MS, Rybova J, Kleynerman A, Ahrenhoerster CJ, Saville JT, Xu T, Bachochin M, McKillop WM, Lawlor MW, Pshezhetsky AV, Isaeva O, Budde MD, Fuller M, Medin JA. Spinal muscular atrophy-like phenotype in a mouse model of acid ceramidase deficiency. Commun Biol 2023; 6:560. [PMID: 37231125 DOI: 10.1038/s42003-023-04932-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Mutations in ASAH1 have been linked to two allegedly distinct disorders: Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). We have previously reported FD-like phenotypes in mice harboring a single amino acid substitution in acid ceramidase (ACDase), P361R, known to be pathogenic in humans (P361R-Farber). Here we describe a mouse model with an SMA-PME-like phenotype (P361R-SMA). P361R-SMA mice live 2-3-times longer than P361R-Farber mice and have different phenotypes including progressive ataxia and bladder dysfunction, which suggests neurological dysfunction. We found profound demyelination, loss of axons, and altered sphingolipid levels in P361R-SMA spinal cords; severe pathology was restricted to the white matter. Our model can serve as a tool to study the pathological effects of ACDase deficiency on the central nervous system and to evaluate potential therapies for SMA-PME.
Collapse
Affiliation(s)
- Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Jennifer T Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5006, Australia
| | - TianMeng Xu
- CHU Sainte-Justine, Université de Montréal, Montréal, QC, H3T 1C5, Canada
| | | | - William M McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Olena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthew D Budde
- Clement J. Zablocki Veteran's Affairs Medical Center, Milwaukee, WI, 53295, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON, Canada.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
11
|
Yu H, Zhang L, Yang X, Bai Y, Chen X. Process Engineering and Glycosyltransferase Improvement for Short Route Chemoenzymatic Total Synthesis of GM1 Gangliosides. Chemistry 2023; 29:e202300005. [PMID: 36596720 PMCID: PMC10159885 DOI: 10.1002/chem.202300005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Large-scale synthesis of GM1, an important ganglioside in mammalian cells especially those in the nervous system, is needed to explore its therapeutic potential. Biocatalytic production is a promising platform for such a purpose. We report herein the development of process engineering and glycosyltransferase improvement strategies to advance chemoenzymatic total synthesis of GM1. Firstly, a new short route was developed for chemical synthesis of lactosylsphingosine from the commercially available Garner's aldehyde. Secondly, two glycosyltransferases including Campylobacter jejuni β1-4GalNAcT (CjCgtA) and β1-3-galactosyltransferase (CjCgtB) were improved on their soluble expression in E. coli and enzyme stability by fusing with an N-terminal maltose binding protein (MBP). Thirdly, the process for enzymatic synthesis of GM1 sphingosines from lactosylsphingosine was engineered by developing a multistep one-pot multienzyme (MSOPME) strategy without isolating intermediate glycosphingosines and by adding a detergent, sodium cholate, to the later enzymatic glycosylation steps. Installation of a desired fatty acyl chain to GM1 glycosphingosines led to the formation of target GM1 gangliosides. The combination of glycosyltransferase improvement with chemical and enzymatic process engineering represents a significant advance in obtaining GM1 gangliosides containing different sialic acid forms by total chemoenzymatic synthesis in a short route and with high efficiency.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Libo Zhang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Xiaohong Yang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
12
|
van Echten-Deckert G. The role of sphingosine 1-phosphate metabolism in brain health and disease. Pharmacol Ther 2023; 244:108381. [PMID: 36907249 DOI: 10.1016/j.pharmthera.2023.108381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Lipids are essential structural and functional components of the central nervous system (CNS). Sphingolipids are ubiquitous membrane components which were discovered in the brain in the late 19th century. In mammals, the brain contains the highest concentration of sphingolipids in the body. Sphingosine 1-phosphate (S1P) derived from membrane sphingolipids evokes multiple cellular responses which, depending on its concentration and localization, make S1P a double-edged sword in the brain. In the present review we highlight the role of S1P in brain development and focus on the often contrasting findings regarding its contributions to the initiation, progression and potential recovery of different brain pathologies, including neurodegeneration, multiple sclerosis (MS), brain cancers, and psychiatric illnesses. A detailed understanding of the critical implications of S1P in brain health and disease may open the door for new therapeutic options. Thus, targeting S1P-metabolizing enzymes and/or signaling pathways might help overcome, or at least ameliorate, several brain illnesses.
Collapse
|
13
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
14
|
Suteanu-Simulescu A, Sarbu M, Ica R, Petrica L, Zamfir AD. Ganglioside analysis in body fluids by liquid-phase separation techniques hyphenated to mass spectrometry. Electrophoresis 2023; 44:501-520. [PMID: 36416190 DOI: 10.1002/elps.202200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The expression of gangliosides in central nervous system is a few times higher than in the extraneural tissue, a characteristic highlighting their major role at this level. Although in very low amounts, gangliosides are ubiquitously distributed in body fluids too, where, depending on many factors, including pathological states, their composition fluctuates, thus having diagnostic value. Ganglioside investigation in biological fluids, which, except for cerebrospinal fluid (CSF), may be sampled noninvasively, was for years impeded by the limited sensitivity of the analytical instrumentation available in glycomics. However, because the last decade has witnessed significant developments in biological mass spectrometry (MS) and the hyphenated separation techniques, marked by a major increase in sensitivity, reproducibility, and data reliability, ganglioside research started to be focused on biofluid analysis by separation techniques coupled to MS. In this context, our review presents the achievements in this emerging field of gangliosidomics, with a particular emphasis on modern liquid chromatography (LC), thin-layer chromatography, hydrophilic interaction LC, and ion mobility separation coupled to high-performance MS, as well as the results generated by these systems and allied experimental procedures in profiling and structural analysis of gangliosides in healthy or diseased body fluids, such as CSF, plasma/serum, and milk.
Collapse
Affiliation(s)
- Anca Suteanu-Simulescu
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Nephrology, County Emergency Hospital, Timisoara, Romania.,Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Physics, West University of Timisoara, Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Nephrology, County Emergency Hospital, Timisoara, Romania.,Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Neurosciences, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina Diana Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
15
|
Jové M, Mota-Martorell N, Obis È, Sol J, Martín-Garí M, Ferrer I, Portero-Otín M, Pamplona R. Lipid Adaptations against Oxidative Challenge in the Healthy Adult Human Brain. Antioxidants (Basel) 2023; 12:177. [PMID: 36671039 PMCID: PMC9855103 DOI: 10.3390/antiox12010177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
It is assumed that the human brain is especially susceptible to oxidative stress, based on specific traits such as a higher rate of mitochondrial free radical production, a high content in peroxidizable fatty acids, and a low antioxidant defense. However, it is also evident that human neurons, although they are post-mitotic cells, survive throughout an entire lifetime. Therefore, to reduce or avoid the impact of oxidative stress on neuron functionality and survival, they must have evolved several adaptive mechanisms to cope with the deleterious effects of oxidative stress. Several of these antioxidant features are derived from lipid adaptations. At least six lipid adaptations against oxidative challenge in the healthy human brain can be discerned. In this work, we explore the idea that neurons and, by extension, the human brain is endowed with an important arsenal of non-pro-oxidant and antioxidant measures to preserve neuronal function, refuting part of the initial premise.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Èlia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
- Catalan Institute of Health (ICS), Research Support Unit (USR), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), E-25007 Lleida, Spain
| | - Meritxell Martín-Garí
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), E-08907 Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research of Bellvitge (IDIBELL), E-08907 Barcelona, Spain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, E-08907 Barcelona, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| |
Collapse
|
16
|
Gangliosides in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2023; 29:391-418. [DOI: 10.1007/978-3-031-12390-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Sandhoff R, Sandhoff K. Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease : Cascades of Secondary Metabolic Errors Can Generate Complex Pathologies (in LSDs). ADVANCES IN NEUROBIOLOGY 2023; 29:333-390. [PMID: 36255681 DOI: 10.1007/978-3-031-12390-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Konrad Sandhoff
- LIMES, c/o Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
18
|
Hohenwallner K, Troppmair N, Panzenboeck L, Kasper C, El Abiead Y, Koellensperger G, Lamp LM, Hartler J, Egger D, Rampler E. Decoding Distinct Ganglioside Patterns of Native and Differentiated Mesenchymal Stem Cells by a Novel Glycolipidomics Profiling Strategy. JACS AU 2022; 2:2466-2480. [PMID: 36465531 PMCID: PMC9709940 DOI: 10.1021/jacsau.2c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Gangliosides are an indispensable glycolipid class concentrated on cell surfaces with a critical role in stem cell differentiation. Nonetheless, owing to the lack of suitable methods for scalable analysis covering the full scope of ganglioside molecular diversity, their mechanistic properties in signaling and differentiation remain undiscovered to a large extent. This work introduces a sensitive and comprehensive ganglioside assay based on liquid chromatography, high-resolution mass spectrometry, and multistage fragmentation. Complemented by an open-source data evaluation workflow, we provide automated in-depth lipid species-level and molecular species-level annotation based on decision rule sets for all major ganglioside classes. Compared to conventional state-of-the-art methods, the presented ganglioside assay offers (1) increased sensitivity, (2) superior structural elucidation, and (3) the possibility to detect novel ganglioside species. A major reason for the highly improved sensitivity is the optimized spectral readout based on the unique capability of two parallelizable mass analyzers for multistage fragmentation. We demonstrated the high-throughput universal capability of our novel analytical strategy by identifying 254 ganglioside species. As a proof of concept, 137 unique gangliosides were annotated in native and differentiated human mesenchymal stem cells including 78 potential cell-state-specific markers and 38 previously unreported gangliosides. A general increase of the ganglioside numbers upon differentiation was observed as well as cell-state-specific clustering based on the ganglioside species patterns. The combination of the developed glycolipidomics assay with the extended automated annotation tool enables comprehensive in-depth ganglioside characterization as shown on biological samples of interest. Our results suggest ganglioside patterns as a promising quality control tool for stem cells and their differentiation products. Additionally, we believe that our analytical workflow paves the way for probing glycolipid-based biochemical processes shedding light on the enigmatic processes of gangliosides and glycolipids in general.
Collapse
Affiliation(s)
- Katharina Hohenwallner
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Nina Troppmair
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Lisa Panzenboeck
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Cornelia Kasper
- Institute
of Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Yasin El Abiead
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Gunda Koellensperger
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Leonida M. Lamp
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
| | - Jürgen Hartler
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
- Field
of Excellence BioHealth − University
of Graz, Graz 8010, Austria
| | - Dominik Egger
- Institute
of Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Evelyn Rampler
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
19
|
Watanabe T, Suzuki A, Ohira S, Go S, Ishizuka Y, Moriya T, Miyaji Y, Nakatsuka T, Hirata K, Nagai A, Matsuda J. The Urinary Bladder is Rich in Glycosphingolipids Composed of Phytoceramides. J Lipid Res 2022; 63:100303. [PMID: 36441023 PMCID: PMC9708920 DOI: 10.1016/j.jlr.2022.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
Glycosphingolipids (GSLs) are composed of a polar glycan chain and a hydrophobic tail known as ceramide. Together with variation in the glycan chain, ceramides exhibit tissue-specific structural variation in the long-chain base (LCB) and N-acyl chain moieties in terms of carbon chain length, degree of desaturation, and hydroxylation. Here, we report the structural variation in GSLs in the urinary bladders of mice and humans. Using TLC, we showed that the major GSLs are hexosylceramide, lactosylceramide, globotriaosylceramide, globotetraosylceramide, Neu5Ac-Gal-Glc-Ceramide, and Neu5Ac-Neu5Ac-Gal-Glc-Ceramide. Our LC-MS analysis indicated that phytoceramide structures with a 20-carbon LCB (4-hydroxyeicosasphinganine) and 2-hydroxy fatty acids are abundant in hexosylceramide and Neu5Ac-Gal-Glc-Ceramide in mice and humans. In addition, quantitative PCR demonstrated that DES2 and FA2H, which are responsible for the generation of 4-hydroxysphinganine and 2-hydroxy fatty acid, respectively, and SPTLC3 and SPTSSB, which are responsible for the generation of 20-carbon LCBs, showed significant expressions in the epithelial layer than in the subepithelial layer. Immunohistochemically, dihydroceramide:sphinganine C4-hydroxylase (DES2) was expressed exclusively in urothelial cells of the urinary bladder. Our findings suggest that these ceramide structures have an impact on membrane properties of the stretching and shrinking in transitional urothelial cells.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Akemi Suzuki
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shin Ohira
- Department of Urology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Shinji Go
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yuta Ishizuka
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshiyuki Miyaji
- Department of Urology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tota Nakatsuka
- Department of Urology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Keita Hirata
- Department of Urology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Atsushi Nagai
- Department of Urology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Okayama, Japan,For correspondence: Junko Matsuda
| |
Collapse
|
20
|
Detzner J, Püttmann C, Pohlentz G, Müthing J. Ingenious Action of Vibrio cholerae Neuraminidase Recruiting Additional GM1 Cholera Toxin Receptors for Primary Human Colon Epithelial Cells. Microorganisms 2022; 10:microorganisms10061255. [PMID: 35744773 PMCID: PMC9227022 DOI: 10.3390/microorganisms10061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
For five decades it has been known that the pentamer of B subunits (choleragenoid) of the cholera toxin (CT) of Vibrio cholerae binds with high preference to the ganglioside GM1 (II3Neu5Ac-Gg4Cer). However, the exact structures of CT-binding GM1 lipoforms of primary human colon epithelial cells (pHCoEpiCs) have not yet been described in detail. The same holds true for generating further GM1 receptor molecules from higher sialylated gangliosides with a GM1 core through the neuraminidase of V. cholerae. To avoid the artificial incorporation of exogenous gangliosides from animal serum harboring GM1 and higher sialylated ganglio-series gangliosides, pHCoEpiCs were cultured in serum-free medium. Thin-layer chromatography overlay binding assays using a choleragenoid combined with electrospray ionization mass spectrometry revealed GM1 lipoforms with sphingosine (d18:1) as the sole sphingoid base linked to C14:0, C16:0, C18:0 or C20:0 fatty acyl chains forming the ceramide (Cer) moieties of the main choleragenoid-binding GM1 species. Desialylation of GD1a (IV3Neu5Ac,II3Neu5Ac-Gg4Cer) and GT1b (IV3Neu5Ac,II3(Neu5Ac)2-Gg4Cer) of pHCoEpiCs by V. cholerae neuraminidase was observed. GD1a-derived GM1 species with stable sphingosine (d18:1) and saturated fatty acyl chains varying in chain length from C16:0 up to C22:0 could be identified, indicating the ingenious interplay between CT and the neuraminidase of V. cholerae recruiting additional GM1 receptors of pHCoEpiCs.
Collapse
|
21
|
Belton S, Lamari N, Jermiin LS, Mariscal V, Flores E, McCabe PF, Ng CKY. Genetic and lipidomic analyses suggest that Nostoc punctiforme, a plant-symbiotic cyanobacterium, does not produce sphingolipids. Access Microbiol 2022; 4:000306. [PMID: 35252750 PMCID: PMC8895605 DOI: 10.1099/acmi.0.000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
Sphingolipids, a class of amino-alcohol-based lipids, are well characterized in eukaryotes and in some anaerobic bacteria. However, the only sphingolipids so far identified in cyanobacteria are two ceramides (i.e., an acetylsphingomyelin and a cerebroside), both based on unbranched, long-chain base (LCB) sphingolipids in Scytonema julianum and Moorea producens, respectively. The first step in de novo sphingolipid biosynthesis is the condensation of l-serine with palmitoyl-CoA to produce 3-keto-diyhydrosphingosine (KDS). This reaction is catalyzed by serine palmitoyltransferase (SPT), which belongs to a small family of pyridoxal phosphate-dependent α-oxoamine synthase (AOS) enzymes. Based on sequence similarity to molecularly characterized bacterial SPT peptides, we identified a putative SPT (Npun_R3567) from the model nitrogen-fixing, plant-symbiotic cyanobacterium, Nostoc punctiforme strain PCC 73102 (ATCC 29133). Gene expression analysis revealed that Npun_R3567 is induced during late-stage diazotrophic growth in N. punctiforme. However, Npun_R3567 could not produce the SPT reaction product, 3-keto-diyhydrosphingosine (KDS), when heterologously expressed in Escherichia coli. This agreed with a sphingolipidomic analysis of N. punctiforme cells, which revealed that no LCBs or ceramides were present. To gain a better understanding of Npun_R3567, we inferred the phylogenetic position of Npun_R3567 relative to other bacterial AOS peptides. Rather than clustering with other bacterial SPTs, Npun_R3567 and the other cyanobacterial BioF homologues formed a separate, monophyletic group. Given that N. punctiforme does not appear to possess any other gene encoding an AOS enzyme, it is altogether unlikely that N. punctiforme is capable of synthesizing sphingolipids. In the context of cross-kingdom symbiosis signalling in which sphingolipids are emerging as important regulators, it appears unlikely that sphingolipids from N. punctiforme play a regulatory role during its symbiotic association with plants.
Collapse
Affiliation(s)
- Samuel Belton
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin D4, Ireland
- Present address: DBN Plant Molecular Biology Lab, National Botanic Gardens of Ireland, Dublin, Ireland
| | - Nadia Lamari
- Present address: Philip Morris International, Quai Jeanrenaud 3, 2000, Neuchâtel, Switzerland
- UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin D4, Ireland
| | - Lars S. Jermiin
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
- UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin D4, Ireland
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, cicCartuja, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, cicCartuja, Avda. Américo Vespucio 49, 41092 Seville, Spain
| | - Paul F. McCabe
- UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD Centre for Plant Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin D4, Ireland
| | - Carl K. Y. Ng
- UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin D4, Ireland
- UCD Centre for Plant Science, University College Dublin, Belfield, Dublin D4, Ireland
| |
Collapse
|
22
|
Azzaz F, Yahi N, Di Scala C, Chahinian H, Fantini J. Ganglioside binding domains in proteins: Physiological and pathological mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:289-324. [PMID: 35034721 DOI: 10.1016/bs.apcsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gangliosides are anionic lipids that form condensed membrane clusters (lipid rafts) and exert major regulatory functions on a wide range of proteins. In this review, we propose a new view of the structural features of gangliosides with special emphasis on emerging properties associated with protein binding modes. We analyze the different possibilities of molecular associations of gangliosides in lipid rafts and the role of cholesterol in this organization. We are particularly interested in amide groups of N-acetylated sugars which make it possible to neutralize the negative charge of the carboxylate group of sialic acids. We refer to this effect as "NH trick" and we demonstrate that it is operative in GM1, GD1a, GD1b and GT1b gangliosides. The NH trick is key to understand the different topologies adopted by gangliosides (chalice-like at the edge of lipid rafts, condensed clusters in central areas) and their impact on protein binding. We define three major types of ganglioside-binding domains (GBDs): α-helical, loop shaped, and large flat surface. We describe the mode of interaction of each GBD with typical reference proteins: synaptotagmin, 5HT1A receptor, cholera and botulinum toxins, HIV-1 surface envelope glycoprotein gp120, SARS-CoV-2 spike protein, cellular prion protein, Alzheimer's β-amyloid peptide and Parkinson's disease associated α-synuclein. We discuss the common mechanisms and peculiarities of protein binding to gangliosides in the light of physiological and pathological conditions. We anticipate that innovative ganglioside-based therapies will soon show an exponential growth for the treatment of cancer, microbial infections, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fodil Azzaz
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Coralie Di Scala
- Neuroscience Center-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Henri Chahinian
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France.
| |
Collapse
|
23
|
Gangliosides as Biomarkers of Human Brain Diseases: Trends in Discovery and Characterization by High-Performance Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23020693. [PMID: 35054879 PMCID: PMC8775466 DOI: 10.3390/ijms23020693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Gangliosides are effective biochemical markers of brain pathologies, being also in the focus of research as potential therapeutic targets. Accurate brain ganglioside mapping is an essential requirement for correlating the specificity of their composition with a certain pathological state and establishing a well-defined set of biomarkers. Among all bioanalytical methods conceived for this purpose, mass spectrometry (MS) has developed into one of the most valuable, due to the wealth and consistency of structural information provided. In this context, the present article reviews the achievements of MS in discovery and structural analysis of gangliosides associated with severe brain pathologies. The first part is dedicated to the contributions of MS in the assessment of ganglioside composition and role in the specific neurodegenerative disorders: Alzheimer’s and Parkinson’s diseases. A large subsequent section is devoted to cephalic disorders (CD), with an emphasis on the MS of gangliosides in anencephaly, the most common and severe disease in the CD spectrum. The last part is focused on the major accomplishments of MS-based methods in the discovery of ganglioside species, which are associated with primary and secondary brain tumors and may either facilitate an early diagnosis or represent target molecules for immunotherapy oriented against brain cancers.
Collapse
|
24
|
Abstract
Glycosphingolipids (GSLs) are a subclass of glycolipids made of a glycan and a ceramide that, in turn, is composed of a sphingoid base moiety and a fatty acyl group. GSLs represent the vast majority of glycolipids in eukaryotes, and as an essential component of the cell membrane, they play an important role in many biological and pathological processes. Therefore, they are useful targets for the development of novel diagnostic and therapeutic methods for human diseases. Since sphingosine was first described by J. L. Thudichum in 1884, several hundred GSL species, not including their diverse lipid forms that can further amplify the number of individual GSLs by many folds, have been isolated from natural sources and structurally characterized. This review tries to provide a comprehensive survey of the major GSL species, especially those with distinct glycan structures and modification patterns, and the ceramides with unique modifications of the lipid chains, that have been discovered to date. In particular, this review is focused on GSLs from eukaryotic species. This review has listed 251 GSL glycans with different linkages, 127 glycans with unique modifications, 46 sphingoids, and 43 fatty acyl groups. It should be helpful for scientists who are interested in GSLs, from isolation and structural analyses to chemical and enzymatic syntheses, as well as their biological studies and applications.
Collapse
|
25
|
Geda O, Tábi T, Szökő É. Development and validation of capillary electrophoresis method for quantification of gangliosides in brain synaptosomes. J Pharm Biomed Anal 2021; 205:114329. [PMID: 34418676 DOI: 10.1016/j.jpba.2021.114329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Gangliosides are sialic acid containing glycosphingolipids of the plasma membrane with diverse biological functions. They are most abundant in neural tissues where their dysregulation has been suggested to be involved in various pathological conditions. Due to their importance, efficient analytical methods are needed to determine individual gangliosides in biological samples. Here we report a capillary electrophoresis method, optimized and validated for the simultaneous quantification of major neural gangliosides GM1, GD1a, GD1b, GT1b and GQ1b in their underivatized form. The most abundant extraneural monosialogangloside, GM3 can also be separated by this method. Micelles of the highly amphiphilic gangliosides were disrupted with cyclodextrins (CyDs) in the aqueous separation buffer. Among the tested CyDs, the best resolution was observed using 20 mM randomly methylated alpha-CyD in alkaline sodium borate buffer enabling the separation of all studied gangliosides. The method was applied for the quantification of gangliosides in rat cerebral and cerebellar synaptosomes.
Collapse
Affiliation(s)
- Orsolya Geda
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, Budapest H-1089, Hungary.
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, Budapest H-1089, Hungary.
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, Budapest H-1089, Hungary.
| |
Collapse
|
26
|
Galkina OV, Vetrovoy OV, Eschenko ND. The Role of Lipids in Implementing Specific Functions in the Central Nervous System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Fabris D, Karmelić I, Muharemović H, Sajko T, Jurilj M, Potočki S, Novak R, Vukelić Ž. Ganglioside Composition Distinguishes Anaplastic Ganglioglioma Tumor Tissue from Peritumoral Brain Tissue: Complementary Mass Spectrometry and Thin-Layer Chromatography Evidence. Int J Mol Sci 2021; 22:ijms22168844. [PMID: 34445547 PMCID: PMC8396361 DOI: 10.3390/ijms22168844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/23/2022] Open
Abstract
Gangliosides serve as antitumor therapy targets and aberrations in their composition strongly correlate with tumor growth and invasiveness. Anaplastic ganglioglioma is a rare, poorly characterized, malignant neuronal–glial tumor type. We present the first comparative characterization of ganglioside composition in anaplastic ganglioglioma vs. peritumoral and healthy brain tissues by combining mass spectrometry and thin-layer chromatography. Anaplastic ganglioglioma ganglioside composition was highly distinguishable from both peritumoral and healthy tissue despite having five to six times lower total content. Ten out of twelve MS-identified ganglioside classes, defined by unique glycan residues, were represented by a large number and considerable abundance of individual species with different fatty acid residues (C16–C24) in ceramide portions. The major structurally identified class was tumor-associated GD3 (>50%) with 11 species; GD3 (d18:1/24:0) being the most abundant. The dominant sphingoid base residue in ganglioside ceramides was sphingosine (d18:1), followed by eicosasphingosine (d20:1). The peritumoral tissue ganglioside composition was estimated as normal. Specific ganglioside composition and large variability of ganglioside ceramide structures determined in anaplastic ganglioglioma demonstrate realistic ganglioside expression patterns and correspond to the profile of high-grade malignancy brain tumors.
Collapse
Affiliation(s)
- Dragana Fabris
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
- Correspondence: (D.F.); (Ž.V.)
| | - Ivana Karmelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
| | - Hasan Muharemović
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Tomislav Sajko
- Department of Neurosurgery, University Hospital Center “Sestre Milosrdnice”, Vinogradska cesta 29, 10000 Zagreb, Croatia; (T.S.); (M.J.)
| | - Mia Jurilj
- Department of Neurosurgery, University Hospital Center “Sestre Milosrdnice”, Vinogradska cesta 29, 10000 Zagreb, Croatia; (T.S.); (M.J.)
| | - Slavica Potočki
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
| | - Ruđer Novak
- Department for Protemics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia;
| | - Željka Vukelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (I.K.); (S.P.)
- Correspondence: (D.F.); (Ž.V.)
| |
Collapse
|
28
|
Yu H, Gadi MR, Bai Y, Zhang L, Li L, Yin J, Wang PG, Chen X. Chemoenzymatic Total Synthesis of GM3 Gangliosides Containing Different Sialic Acid Forms and Various Fatty Acyl Chains. J Org Chem 2021; 86:8672-8682. [PMID: 34152144 DOI: 10.1021/acs.joc.1c00450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that have been found in the cell membranes of all vertebrates. Their important biological functions are contributed by both the glycan and the ceramide lipid components. GM3 is a major ganglioside and a precursor for many other more complex gangliosides. To obtain structurally diverse GM3 gangliosides containing various sialic acid forms and different fatty acyl chains in low cost, an improved process was developed to chemically synthesize lactosyl sphingosine from an inexpensive l-serine derivative. It was then used to obtain GM3 sphingosines from diverse modified sialic acid precursors by an efficient one-pot multienzyme sialylation system containing Pasteurella multocida sialyltransferase 3 (PmST3) with in situ generation of sugar nucleotides. A highly effective chemical acylation and facile C18-cartridge purification process was then used to install fatty acyl chains of varying lengths and different modifications. The chemoenzymatic method represents a powerful total synthetic strategy to access a library of structurally defined GM3 gangliosides to explore their functions.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuanyuan Bai
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Libo Zhang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Yin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng G Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
29
|
Lunghi G, Fazzari M, Di Biase E, Mauri L, Chiricozzi E, Sonnino S. The structure of gangliosides hides a code for determining neuronal functions. FEBS Open Bio 2021; 11:3193-3200. [PMID: 34003598 PMCID: PMC8634855 DOI: 10.1002/2211-5463.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/14/2021] [Indexed: 11/07/2022] Open
Abstract
Gangliosides are particularly abundant in the central nervous system, where they are mainly associated with the synaptic membranes. Their structure underlies a specific role in determining several cell physiological processes of the nervous system. The high number of different gangliosides available in nature suggests that their structure, related to both the hydrophobic and hydrophilic portion of the molecule, defines a code, although not completely understood, that through hydrophobic interactions and hydrogen bonds allows the transduction of signals starting at the plasma membranes. In this short review, we describe some structural aspects responsible for the role played by gangliosides in maintaining and determining neuronal functions.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| |
Collapse
|
30
|
Gobburi ALP, Kipruto EW, Inman DM, Anderson DJ. A new LC-MS/MS technique for separation of gangliosides using a phenyl-hexyl column: Systematic separation according to sialic acid class and ceramide subclass. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2020.1856136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Denise M. Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
31
|
Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconj J 2021; 38:101-117. [PMID: 33620588 PMCID: PMC7917043 DOI: 10.1007/s10719-021-09974-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
It is well over a century that glycosphingolipids are matter of interest in different fields of research. The hydrophilic oligosaccharide and the lipid moiety, the ceramide, both or separately have been considered in different moments as the crucial portion of the molecule, responsible for the role played by the glycosphingolipids associated to the plasma-membranes or to any other subcellular fraction. Glycosphingolipids are a family of compounds characterized by thousands of structures differing in both the oligosaccharide and the ceramide moieties, but among them, the nervous system monosialylated glycosphingolipid GM1, belonging to the group of gangliosides, has gained particular attention by a multitude of Scientists. In recent years, a series of studies have been conducted on the functional roles played by the hydrophilic part of GM1, its oligosaccharide, that we have named “OligoGM1”. These studies allowed to shed new light on the mechanisms underlying the properties of GM1 defining the role of the OligoGM1 in determining precise interactions with membrane proteins instrumental for the neuronal functions, leaving to the ceramide the role of correctly positioning the GM1 in the membrane crucial for the oligosaccharide-protein interactions. In this review we aim to report the recent studies on the cascade of events modulated by OligoGM1, as the bioactive portion of GM1, to support neuronal differentiation and trophism together with preclinical studies on its potential to modify the progression of Parkinson’s disease.
Collapse
|
32
|
Chaichi A, Hasan SMA, Mehta N, Donnarumma F, Ebenezer P, Murray KK, Francis J, Gartia MR. Label-free lipidome study of paraventricular thalamic nucleus (PVT) of rat brain with post-traumatic stress injury by Raman imaging. Analyst 2021; 146:170-183. [PMID: 33135036 DOI: 10.1039/d0an01615b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a widespread psychiatric injury that develops serious life-threatening symptoms like substance abuse, severe depression, cognitive impairments, and persistent anxiety. However, the mechanisms of post-traumatic stress injury in brain are poorly understood due to the lack of practical methods to reveal biochemical alterations in various brain regions affected by this type of injury. Here, we introduce a novel method that provides quantitative results from Raman maps in the paraventricular nucleus of the thalamus (PVT) region. By means of this approach, we have shown a lipidome comparison in PVT regions of control and PTSD rat brains. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was also employed for validation of the Raman results. Lipid alterations can reveal invaluable information regarding the PTSD mechanisms in affected regions of brain. We have showed that the concentration of cholesterol, cholesteryl palmitate, phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, sphingomyelin, ganglioside, glyceryl tripalmitate and sulfatide changes in the PVT region of PTSD compared to control rats. A higher concentration of cholesterol suggests a higher level of corticosterone in the brain. Moreover, concentration changes of phospholipids and sphingolipids suggest the alteration of phospholipase A2 (PLA2) which is associated with inflammatory processes in the brain. Our results have broadened the understanding of biomolecular mechanisms for PTSD in the PVT region of the brain. This is the first report regarding the application of Raman spectroscopy for PTSD studies. This method has a wide spectrum of applications and can be applied to various other brain related disorders or other regions of the brain.
Collapse
Affiliation(s)
- Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal 2020; 79:109890. [PMID: 33359087 DOI: 10.1016/j.cellsig.2020.109890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18‑carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ting Yu Amelia Yam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA; American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
34
|
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 2020; 14:572965. [PMID: 33117120 PMCID: PMC7574889 DOI: 10.3389/fnins.2020.572965] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Gangliosides are glycosphingolipids highly abundant in the nervous system, and carry most of the sialic acid residues in the brain. Gangliosides are enriched in cell membrane microdomains ("lipid rafts") and play important roles in the modulation of membrane proteins and ion channels, in cell signaling and in the communication among cells. The importance of gangliosides in the brain is highlighted by the fact that loss of function mutations in ganglioside biosynthetic enzymes result in severe neurodegenerative disorders, often characterized by very early or childhood onset. In addition, changes in the ganglioside profile (i.e., in the relative abundance of specific gangliosides) were reported in healthy aging and in common neurological conditions, including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), stroke, multiple sclerosis and epilepsy. At least in HD, PD and in some forms of epilepsy, experimental evidence strongly suggests a potential role of gangliosides in disease pathogenesis and potential treatment. In this review, we will summarize ganglioside functions that are crucial to maintain brain health, we will review changes in ganglioside levels that occur in major neurological conditions and we will discuss their contribution to cellular dysfunctions and disease pathogenesis. Finally, we will review evidence of the beneficial roles exerted by gangliosides, GM1 in particular, in disease models and in clinical trials.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Pharmacology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
35
|
Wu YF, Tsai YF, Huang YS, Shih JF. Total Synthesis of the Echinodermatous Ganglioside LLG-3 Possessing the Biological Function of Promoting the Neurite Outgrowth. Org Lett 2020; 22:7491-7495. [PMID: 32965122 DOI: 10.1021/acs.orglett.0c02692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A total synthesis of echinodermatous ganglioside LLG-3 with neuritogenic activity was accomplished by a convergent strategy. The synthesis of 2-hydroxyethyl 8-O-Me-α-sialoside 2 was started from the phenyl 7,8-di-O-Pico-thiosialoside 5, which can be chemoselectively removed the picoloyl group, and then the methyl group in 8-O-MeNeu5Ac moiety was chemoselectively prepared using TMSCHN2/FeCl3. For preparation of the terminal disialic unit, oxidative amidation was initially utilized by our group to efficiently construct the α(2,11) linkage of 8-O-Me-Neu5Acα(2,11)Neu5Gc. Herein, we also demonstrate that the synthesized ganglioside LLG-3 exhibited the neuritogenic activity toward the primary cortical neurons and that biological activity is superior to that of ganglioside DSG-A.
Collapse
Affiliation(s)
- Yu-Fa Wu
- Department of Chemistry, Chung Yuan Christian University, 200 Zhongbei Road, Chung Li District, Taoyuan City 32023, Taiwan
| | - Yow-Fu Tsai
- Department of Chemistry, Chung Yuan Christian University, 200 Zhongbei Road, Chung Li District, Taoyuan City 32023, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, 161 Section 6, Minquan East Road, Neihu District, Taipei City 11490, Taiwan
| | - Jing-Feng Shih
- Department of Chemistry, Chung Yuan Christian University, 200 Zhongbei Road, Chung Li District, Taoyuan City 32023, Taiwan
| |
Collapse
|
36
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
37
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
38
|
Wu G, Lu ZH, Seo JH, Alselehdar SK, DeFrees S, Ledeen RW. Mice deficient in GM1 manifest both motor and non-motor symptoms of Parkinson's disease; successful treatment with synthetic GM1 ganglioside. Exp Neurol 2020; 329:113284. [PMID: 32165255 DOI: 10.1016/j.expneurol.2020.113284] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/11/2020] [Accepted: 03/08/2020] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disorder characterized by a variety of non-motor symptoms in addition to the well-recognized motor dysfunctions that have commanded primary interest. We previously described a new PD mouse model based on heterozygous disruption of the B4galnt1 gene leading to partial deficiency of the GM1 family of gangliosides that manifested several nigrostriatal neuropathological features of PD as well as movement impairment. We now show this mouse also suffers three non-motor symptoms characteristic of PD involving the gastrointestinal, sympathetic cardiac, and cerebral cognitive systems. Treatment of these animals with a synthetic form of GM1 ganglioside, produced by transfected E. coli, proved ameliorative of these symptoms as well as the motor defect. These findings further suggest subnormal GM1 to be a systemic defect constituting a major risk factor in sporadic PD and indicate the B4galnt1(+/-) (HT) mouse to be a true neuropathological model that recapitulates both motor and non-motor lesions of this condition.
Collapse
Affiliation(s)
- Gusheng Wu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Zi-Hua Lu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Joon Ho Seo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Samar K Alselehdar
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | | | - Robert W Ledeen
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
39
|
Fujiwara Y, Hama K, Yokoyama K. Mass spectrometry in combination with a chiral column and multichannel-MRM allows comprehensive analysis of glycosphingolipid molecular species from mouse brain. Carbohydr Res 2020; 490:107959. [PMID: 32120021 DOI: 10.1016/j.carres.2020.107959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022]
Abstract
Glycosphingolipids (GSLs) exist exclusively in the outer leaflet of plasma membrane in mammalian cells and have diverse structures including different classes of sugars and various molecular species of ceramide moieties. Establishing methods that measure each molecular species in GSL classes should aid functional characterization of GSLs and reveal details about the mechanism of pathogenesis in glycosphingolipidoses. Using an IF-3 chiral column that has never been used for lipid analyses, we developed a liquid chromatography-mass spectrometry (LC-MS) method to separate various GSLs based on sugar and ceramide moieties. To examine GSLs in detail a multichannel-multiple reaction monitoring (multichannel-MRM) mode was used and covered a range of 500-2000 Da. Common fragment ions detected with higher collision energy in the positive ion mode were m/z 264 and 292, and are derived from d18:1 and d20:1 ions, respectively. Both species were used as product ions in the multichannel-MRM for the simultaneous measurement of neutral GSLs, gangliosides and sulfatides. Comprehensive analysis of GSLs in mouse brain using this method revealed that for gangliosides and LacCer, d18:1-C18:0 and d20:1-C18:0 were the major molecular species, whereas d18:1-C24:0 and d18:1-C24:1 were the major molecular species of sulfatides. The results revealed a diverse GSL fatty acid profile. In conclusion, by combining IF-3 chiral column and the multichannel-MRM method various molecular species of GSLs were detected successfully, and a metabolomics approach based on this LC-MS method should facilitate functional analysis of GSLs and the discovery of early biomarkers of glycosphingolipidoses at the molecular level.
Collapse
Affiliation(s)
- Yuko Fujiwara
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Kotaro Hama
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuaki Yokoyama
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
40
|
Wang WX, Whitehead SN. Imaging mass spectrometry allows for neuroanatomic-specific detection of gangliosides in the healthy and diseased brain. Analyst 2020; 145:2473-2481. [PMID: 32065183 DOI: 10.1039/c9an02270h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gangliosides have a wide variety of biological functions due to their location on the outer leaflet of plasma membranes. They form a critical component of membrane rafts, or ganglioside-enriched microdomains, where they influence the physical properties of the membrane as well as its function. Gangliosides can change their structure to meet their external and internal environmental demands. This ability to change structure makes gangliosides both fascinating and technologically challenging targets to identify and understand. A full understanding on how gangliosides are regulated within the central nervous system (CNS) is critical, as ganglioside dysregulation is observed in the aging brain as well as in several neurodegenerative injuries and diseases such as stroke, Alzheimer's disease, Parkinson's disease, Huntington's disease and several lysosomal storage disorders diseases, including Tay Sach's disease. Mass spectrometry (MS) has become a useful means to better understand ganglioside composition and function. Imaging mass spectrometry (IMS) provides the added benefit of placing analytical information within an anatomical context. This review article will discuss recent advances in MS-based detection methods, with a focus on IMS-based approaches to help understand the spatial-specific role gangliosides in the healthy brain as in CNS injuries and disease.
Collapse
Affiliation(s)
- W X Wang
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, CanadaN6A 5C1.
| | | |
Collapse
|
41
|
Chiricozzi E, Lunghi G, Di Biase E, Fazzari M, Sonnino S, Mauri L. GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration. Int J Mol Sci 2020; 21:E868. [PMID: 32013258 PMCID: PMC7037093 DOI: 10.3390/ijms21030868] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Many species of ganglioside GM1, differing for the sialic acid and ceramide content, have been characterized and their physico-chemical properties have been studied in detail since 1963. Scientists were immediately attracted to the GM1 molecule and have carried on an ever-increasing number of studies to understand its binding properties and its neurotrophic and neuroprotective role. GM1 displays a well balanced amphiphilic behavior that allows to establish strong both hydrophobic and hydrophilic interactions. The peculiar structure of GM1 reduces the fluidity of the plasma membrane which implies a retention and enrichment of the ganglioside in specific membrane domains called lipid rafts. The dynamism of the GM1 oligosaccharide head allows it to assume different conformations and, in this way, to interact through hydrogen or ionic bonds with a wide range of membrane receptors as well as with extracellular ligands. After more than 60 years of studies, it is a milestone that GM1 is one of the main actors in determining the neuronal functions that allows humans to have an intellectual life. The progressive reduction of its biosynthesis along the lifespan is being considered as one of the causes underlying neuronal loss in aged people and severe neuronal decline in neurodegenerative diseases. In this review, we report on the main knowledge on ganglioside GM1, with an emphasis on the recent discoveries about its bioactive component.
Collapse
Affiliation(s)
| | | | | | | | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Milano, Italy; (E.C.)
| | | |
Collapse
|
42
|
Vutukuri R, Koch A, Trautmann S, Schreiber Y, Thomas D, Mayser F, Meyer zu Heringdorf D, Pfeilschifter J, Pfeilschifter W, Brunkhorst R. S1P d20:1, an endogenous modulator of S1P d18:1/S1P2‐dependent signaling. FASEB J 2020; 34:3932-3942. [DOI: 10.1096/fj.201902391r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Alexander Koch
- Institute of General Pharmacology and Toxicology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Yannick Schreiber
- Fraunhofer Institute of Molecular Biology and Applied Ecology‐Project Group Translational Medicine and Pharmacology (IME‐TMP) Frankfurt am Main Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Franziska Mayser
- Department of Neurology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Dagmar Meyer zu Heringdorf
- Institute of General Pharmacology and Toxicology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Waltraud Pfeilschifter
- Department of Neurology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Robert Brunkhorst
- Department of Neurology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| |
Collapse
|
43
|
Kaya I, Jennische E, Dunevall J, Lange S, Ewing AG, Malmberg P, Baykal AT, Fletcher JS. Spatial Lipidomics Reveals Region and Long Chain Base Specific Accumulations of Monosialogangliosides in Amyloid Plaques in Familial Alzheimer's Disease Mice (5xFAD) Brain. ACS Chem Neurosci 2020; 11:14-24. [PMID: 31774647 DOI: 10.1021/acschemneuro.9b00532] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ganglioside metabolism is significantly altered in Alzheimer's disease (AD), which is a progressive neurodegenerative disease prominently characterized by one of its pathological hallmarks, amyloid deposits or "senile plaques". While the plaques mainly consist of aggregated variants of amyloid-β protein (Aβ), recent studies have revealed a number of lipid species including gangliosides in amyloid plaques along with Aβ peptides. It has been widely suggested that long chain (sphingosine) base (LCBs), C18:1-LCB and C20:1-LCB, containing gangliosides might play different roles in neuronal function in vivo. In order to elucidate region-specific aspects of amyloid-plaque associated C18:1-LCB and C20:1-LCB ganglioside accumulations, high spatial resolution (10 μm per pixel) matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) of gangliosides in amyloid plaques was performed in hippocampal and adjacent cortical regions of 12 month old 5xFAD mouse coronal brain sections from two different stereotaxic coordinates (bregma points, -2.2 and -2.7 mm). MALDI-IMS uncovered brain-region (2 and 3D) and/or LCB specific accumulations of monosialogangliosides (GMs): GM1, GM2, and GM3 in the hippocampal and cortical amyloid plaques. The results reveal monosialogangliosides to be an important component of amyloid plaques and the accumulation of different gangliosides is region and LCB specific in 12 month old 5xFAD mouse brain. This is discussed in relation to amyloid-associated AD pathogenesis such as lipid related immune changes in amyloid plaques, AD specific ganglioside metabolism, and, notably, AD-associated impaired neurogenesis in the subgranular zone.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal 43180, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden
| | - Eva Jennische
- Institute of Biomedicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Stefan Lange
- Institute of Biomedicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - John S. Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
44
|
Meng XY, Yau LF, Huang H, Chan WH, Luo P, Chen L, Tong TT, Mi JN, Yang Z, Jiang ZH, Wang JR. Improved approach for comprehensive profiling of gangliosides and sulfatides in rat brain tissues by using UHPLC-Q-TOF-MS. Chem Phys Lipids 2019; 225:104813. [DOI: 10.1016/j.chemphyslip.2019.104813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
|
45
|
Identification of novel variants in a large cohort of children with Tay–Sachs disease: An initiative of a multicentric task force on lysosomal storage disorders by Government of India. J Hum Genet 2019; 64:985-994. [DOI: 10.1038/s10038-019-0647-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/26/2019] [Accepted: 07/16/2019] [Indexed: 11/09/2022]
|
46
|
Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, Giussani P. Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Front Pharmacol 2019; 10:807. [PMID: 31427962 PMCID: PMC6689979 DOI: 10.3389/fphar.2019.00807] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is characterized by a high content of sphingolipids and by a high diversity in terms of different structures. Stage- and cell-specific sphingolipid metabolism and expression are crucial for brain development and maintenance toward adult age. On the other hand, deep dysregulation of sphingolipid metabolism, leading to altered sphingolipid pattern, is associated with the majority of neurological and neurodegenerative diseases, even those totally lacking a common etiological background. Thus, sphingolipid metabolism has always been regarded as a promising pharmacological target for the treatment of brain disorders. However, any therapeutic hypothesis applied to complex amphipathic sphingolipids, components of cellular membranes, has so far failed probably because of the high regional complexity and specificity of the different biological roles of these structures. Simpler sphingosine-based lipids, including ceramide and sphingosine 1-phosphate, are important regulators of brain homeostasis, and, thanks to the relative simplicity of their metabolic network, they seem a feasible druggable target for the treatment of brain diseases. The enzymes involved in the control of the levels of bioactive sphingoids, as well as the receptors engaged by these molecules, have increasingly allured pharmacologists and clinicians, and eventually fingolimod, a functional antagonist of sphingosine 1-phosphate receptors with immunomodulatory properties, was approved for the therapy of relapsing-remitting multiple sclerosis. Considering the importance of neuroinflammation in many other brain diseases, we would expect an extension of the use of such analogs for the treatment of other ailments in the future. Nevertheless, many aspects other than neuroinflammation are regulated by bioactive sphingoids in healthy brain and dysregulated in brain disease. In this review, we are addressing the multifaceted possibility to address the metabolism and biology of bioactive sphingosine 1-phosphate as novel targets for the development of therapeutic paradigms and the discovery of new drugs.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
47
|
Bowser LE, Young M, Wenger OK, Ammous Z, Brigatti KW, Carson VJ, Moser T, Deline J, Aoki K, Morlet T, Scott EM, Puffenberger EG, Robinson DL, Hendrickson C, Salvin J, Gottlieb S, Heaps AD, Tiemeyer M, Strauss KA. Recessive GM3 synthase deficiency: Natural history, biochemistry, and therapeutic frontier. Mol Genet Metab 2019; 126:475-488. [PMID: 30691927 DOI: 10.1016/j.ymgme.2019.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/20/2019] [Accepted: 01/20/2019] [Indexed: 11/19/2022]
Abstract
GM3 synthase, encoded by ST3GAL5, initiates synthesis of all downstream cerebral gangliosides. Here, we present biochemical, functional, and natural history data from 50 individuals homozygous for a pathogenic ST3GAL5 c.862C>T founder allele (median age 8.1, range 0.7-30.5 years). GM3 and its derivatives were undetectable in plasma. Weight and head circumference were normal at birth and mean Apgar scores were 7.7 ± 2.0 (1 min) and 8.9 ± 0.5 (5 min). Somatic growth failure, progressive microcephaly, global developmental delay, visual inattentiveness, and dyskinetic movements developed within a few months of life. Infantile-onset epileptic encephalopathy was characterized by a slow, disorganized, high-voltage background, poor state transitions, absent posterior rhythm, and spike trains from multiple independent cortical foci; >90% of electrographic seizures were clinically silent. Hearing loss affected cochlea and central auditory pathways and 76% of children tested failed the newborn hearing screen. Development stagnated early in life; only 13 (26%) patients sat independently (median age 30 months), three (6%) learned to crawl, and none achieved reciprocal communication. Incessant irritability, often accompanied by insomnia, began during infancy and contributed to high parental stress. Despite catastrophic neurological dysfunction, neuroimaging showed only subtle or no destructive changes into late childhood and hospitalizations were surprisingly rare (0.2 per patient per year). Median survival was 23.5 years. Our observations corroborate findings from transgenic mice which indicate that gangliosides might have a limited role in embryonic neurodevelopment but become vital for postnatal brain growth and function. These results have critical implications for the design and implementation of ganglioside restitution therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Thierry Morlet
- Auditory Physiology and Psychoacoustics Research Laboratory, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Ethan M Scott
- Department of Pediatrics, Akron Children's Hospital, Akron, OH, USA
| | | | | | | | - Jonathan Salvin
- Division of Pediatric Ophthalmology, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Steven Gottlieb
- Division of Pediatric Neurology, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
48
|
van Echten-Deckert G, Alam S. Sphingolipid metabolism - an ambiguous regulator of autophagy in the brain. Biol Chem 2019; 399:837-850. [PMID: 29908127 DOI: 10.1515/hsz-2018-0237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023]
Abstract
In mammals, the brain exhibits the highest lipid content in the body next to adipose tissue. Complex sphingolipids are characteristic compounds of neuronal membranes. Vital neural functions including information flux and transduction occur along these membranes. It is therefore not surprising that neuronal function and survival is dependent on the metabolism of these lipids. Autophagy is a critical factor for the survival of post-mitotic neurons. On the one hand, it fulfils homeostatic and waste-recycling functions and on the other hand, it constitutes an effective strategy to eliminate harmful proteins that cause neuronal death. A growing number of experimental data indicate that several sphingolipids as well as enzymes catalyzing their metabolic transformations efficiently but very differently affect neuronal autophagy and hence survival. This review attempts to elucidate the roles and mechanisms of sphingolipid metabolism with regard to the regulation of autophagy and its consequences for brain physiology and pathology.
Collapse
Affiliation(s)
- Gerhild van Echten-Deckert
- LIMES Institute, Unit Membrane Biology and Lipid Biochemistry, Kekulé-Institute of the University Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Shah Alam
- LIMES Institute, Unit Membrane Biology and Lipid Biochemistry, Kekulé-Institute of the University Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
49
|
Abstract
In this chapter, we briefly describe the structural features of gangliosides, and focus on the peculiar chemicophysical features of gangliosides, an important class of membrane amphipathic lipids that represent an important driving force determining the organization and properties of cellular membranes.
Collapse
|
50
|
Tsai YF, Yang DJ, Ngo TH, Shih CH, Wu YF, Lee CK, Phraekanjanavichid V, Yen SF, Kao SH, Lee HM, Huang VS, Shieh JCC, Lin YF. Ganglioside Hp-s1 Analogue Inhibits Amyloidogenic Toxicity in Alzheimer's Disease Model Cells. ACS Chem Neurosci 2019; 10:528-536. [PMID: 30346715 DOI: 10.1021/acschemneuro.8b00406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by extracellular deposition of amyloid plaques, which are predominantly composed of amyloid-β (Aβ) peptide derived from amyloid precursor protein (APP) cleavage. APP interacts with tropomyosin receptor kinase A, a neurotrophic receptor associated with gangliosides and mediating neuronal survival and differentiation through the extracellular signal-regulated protein kinase (ERK) pathway. The ganglioside Hp-s1's analogue Hp-s1A exerts neuritogenic activity; however, its effect on AD pathology remains unknown. To test the hypothesis that Hp-s1A is a potential candidate to treat AD, we established the AD-modeled cell line by expressing human Swedish and Indiana APP gene (APP-Swe/Ind) in N2a mouse neuroblastoma cells. The cells were treated with Hp-s1A or monosialoganglioside GM1 for comparison. The AD model cells expressing APP-Swe/Ind exhibited a significant reduction in viability, as well as neurite outgrowth rate, in comparison to the control cells expressing APP-695. APP C-terminal fragment-β (CTFβ) and Aβ42 were increased in the AD cell lysates and the culture media, respectively. With the treatment of either Hp-s1A or GM1 at 1 μM, the AD model cells showed a significant increase in viability; however, only Hp-s1A reduced CTFβ levels in these cells. Further analysis of the culture media revealed that Hp-s1A also reduced Aβ42 production from AD model cells. The phosphorylation of ERK was elevated and the neurite outgrowth rate was restored with Hp-s1A treatment. In conclusion, the ganglioside analogue Hp-s1A inhibited amyloidogenic processing of APP and promoted neurotrophic activity and survival of AD model cells. Hp-s1A has great potential in AD therapeutic development.
Collapse
Affiliation(s)
- Yow-Fu Tsai
- Department of Chemistry, College of Science, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Dun-Jhu Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Thi Huong Ngo
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Allergology and Clinical Immunology, Hanoi Medical University, Hanoi, Vietnam
| | - Cheng-Hua Shih
- Department of Chemistry, College of Science, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Yu-Fa Wu
- Department of Chemistry, College of Science, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Veerapol Phraekanjanavichid
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Fen Yen
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Shu-Huei Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Horng-Mo Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Vivian Shuhsien Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jonathan Chang-Cheng Shieh
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Feng Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|