1
|
Maleš P, Munivrana J, Pašalić L, Pem B, Bakarić D. Reorientation of interfacial water molecules during melting of brain sphingomyelin is associated with the phase transition of its C24:1 sphingomyelin lipids. Chem Phys Lipids 2024; 264:105434. [PMID: 39216637 DOI: 10.1016/j.chemphyslip.2024.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Melting of brain sphingomyelin (bSM) manifests as a broad feature in the DSC curve that encompasses the temperature range of 25 - 45 °C, with two distinguished maxima originating from the phase transitions of two the most abundant components: C24:1 (Tm,1) and C18:0 (Tm,2). While C24:1/C18:0 sphingomyelin transforms from the gel/ripple phase to the fluid/fluid phase, the dynamics of water molecules in the interfacial layer remain completely unknown. Therefore, we carried out a calorimetric (DSC), spectroscopic (temperature-dependent UV-Vis and fluorescence) and MD simulation study of bSM in the absence/presence of Laurdan® (bSM ± L) suspended in Britton-Robinson buffer with three different pH values, 4 (BRB4), 7 (BRB7) and 9 (BRB9), and of comparable ionic strength (I = 100 mM). According to DSC, T̅m, 1 (≈ 34.5 °C/≈ 32.1 °C) and T̅m, 2 (≈ 38.0 °C/≈ 37.2 °C) of bSM suspended in BRB4, BRB7, and BRB9 in the absence/presence of Laurdan® are found to be practically pH-independent. Turbidity-based data (UV-Vis) detected both qualitative and quantitative differences in the response of bSM suspended in BRB4/BRB7/BRB9 (T̅m: ∼ 35 °C/32.0 ± 0.2 °C/36.4 ± 0.4), suggesting an intricate interplay of weakening of van der Waals forces between their hydrocarbon chains and of increased hydration in the polar headgroups region during melting. The temperature-dependent response of Laurdan® reported a discontinuous, pH-dependent change in the reorientation of interfacial water molecules that coincides with the melting of C24:1 lipids (on average, T̅m (LTC/HTC): ≈ 31.8 °C/30.6 °C/30.5 °C). MD simulations elucidated the impact of Laurdan® on a change in the physicochemical properties of bSM lipids and characterized the hydrogen bond network at the interface at 20 °C and 50 °C.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Jana Munivrana
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | - Lea Pašalić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
2
|
Ong LL, Jan HM, Le HHT, Yang TC, Kuo CY, Feng AF, Mong KKT, Lin CH. Membrane lipid remodeling eradicates Helicobacter pylori by manipulating the cholesteryl 6'-acylglucoside biosynthesis. J Biomed Sci 2024; 31:44. [PMID: 38685037 PMCID: PMC11057186 DOI: 10.1186/s12929-024-01031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Helicobacter pylori, the main cause of various gastric diseases, infects approximately half of the human population. This pathogen is auxotrophic for cholesterol which it converts to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl α-glucoside (CAG). Since the related biosynthetic enzymes can be translocated to the host cells, the acyl chain of CAG likely comes from its precursor phosphatidylethanolamine (PE) in the host membranes. This work aims at examining how the acyl chain of CAG and PE inhibits the membrane functions, especially bacterial adhesion. METHODS Eleven CAGs that differ in acyl chains were used to study the membrane properties of human gastric adenocarcinoma cells (AGS cells), including lipid rafts clustering (monitored by immunofluorescence with confocal microscopy) and lateral membrane fluidity (by the fluorescence recovery after photobleaching). Cell-based and mouse models were employed to study the degree of bacterial adhesion, the analyses of which were conducted by using flow cytometry and immunofluorescence staining, respectively. The lipidomes of H. pylori, AGS cells and H. pylori-AGS co-cultures were analyzed by Ultraperformance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) to examine the effect of PE(10:0)2, PE(18:0)2, PE(18:3)2, or PE(22:6)2 treatments. RESULTS CAG10:0, CAG18:3 and CAG22:6 were found to cause the most adverse effect on the bacterial adhesion. Further LC-MS analysis indicated that the treatment of PE(10:0)2 resulted in dual effects to inhibit the bacterial adhesion, including the generation of CAG10:0 and significant changes in the membrane compositions. The initial (1 h) lipidome changes involved in the incorporation of 10:0 acyl chains into dihydro- and phytosphingosine derivatives and ceramides. In contrast, after 16 h, glycerophospholipids displayed obvious increase in their very long chain fatty acids, monounsaturated and polyunsaturated fatty acids that are considered to enhance membrane fluidity. CONCLUSIONS The PE(10:0)2 treatment significantly reduced bacterial adhesion in both AGS cells and mouse models. Our approach of membrane remodeling has thus shown great promise as a new anti-H. pylori therapy.
Collapse
Affiliation(s)
- Lih-Lih Ong
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001, University Road, Eastern District, Hsinchu, 300093, Taiwan
- Institute of Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hong-Hanh Thi Le
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Tsai-Chen Yang
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Chou-Yu Kuo
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Ai-Feng Feng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001, University Road, Eastern District, Hsinchu, 300093, Taiwan
| | - Kwok-Kong Tony Mong
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001, University Road, Eastern District, Hsinchu, 300093, Taiwan.
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
- Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Long chain ceramides raise the main phase transition of monounsaturated phospholipids to physiological temperature. Sci Rep 2022; 12:20803. [PMID: 36460753 PMCID: PMC9718810 DOI: 10.1038/s41598-022-25330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Little is known about the molecular mechanisms of ceramide-mediated cellular signaling. We examined the effects of palmitoyl ceramide (C16-ceramide) and stearoyl ceramide (C18-ceramide) on the phase behavior of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) using differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS, WAXS). As previously published, the presence of ceramides increased the lamellar gel-to-lamellar liquid crystalline (Lβ-Lα) phase transition temperature of POPC and POPE and decreased the Lα-to-inverted hexagonal (Lα-HII) phase transition temperature of POPE. Interestingly, despite an ~ 30° difference in the main phase transition temperatures of POPC and POPE, the Lβ-Lα phase transition temperatures were very close between POPC/C18-ceramide and POPE/C18-ceramide and were near physiological temperature. A comparison of the results of C16-ceramide in published and our own results with those of C18-ceramide indicates that increase of the carbon chain length of ceramide from 16 to 18 and/or the small difference of ceramide content in the membrane dramatically change the phase transition temperature of POPC and POPE to near physiological temperature. Our results support the idea that ceramide signaling is mediated by the alteration of lipid phase-dependent partitioning of signaling proteins.
Collapse
|
4
|
Havranek KE, Reyes Ballista JM, Hines KM, Brindley MA. Untargeted Lipidomics of Vesicular Stomatitis Virus-Infected Cells and Viral Particles. Viruses 2021; 14:v14010003. [PMID: 35062207 PMCID: PMC8778780 DOI: 10.3390/v14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
The viral lifecycle is critically dependent upon host lipids. Enveloped viral entry requires fusion between viral and cellular membranes. Once an infection has occurred, viruses may rely on host lipids for replication and egress. Upon exit, enveloped viruses derive their lipid bilayer from host membranes during the budding process. Furthermore, host lipid metabolism and signaling are often hijacked to facilitate viral replication. We employed an untargeted HILIC-IM-MS lipidomics approach and identified host lipid species that were significantly altered during vesicular stomatitis virus (VSV) infection. Many glycerophospholipid and sphingolipid species were modified, and ontological enrichment analysis suggested that the alterations to the lipid profile change host membrane properties. Lysophosphatidylcholine (LPC), which can contribute to membrane curvature and serve as a signaling molecule, was depleted during infection, while several ceramide sphingolipids were augmented during infection. Ceramide and sphingomyelin lipids were also enriched in viral particles, indicating that sphingolipid metabolism is important during VSV infection.
Collapse
Affiliation(s)
- Katherine E. Havranek
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.E.H.); (J.M.R.B.)
| | - Judith Mary Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.E.H.); (J.M.R.B.)
| | - Kelly Marie Hines
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
- Correspondence: (K.M.H.); (M.A.B.); Tel.: +1-706-542-1966 (K.M.H.); +1-706-542-5796 (M.A.B.)
| | - Melinda Ann Brindley
- Department of Infectious Diseases, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence: (K.M.H.); (M.A.B.); Tel.: +1-706-542-1966 (K.M.H.); +1-706-542-5796 (M.A.B.)
| |
Collapse
|
5
|
Lee H, Choi SQ. Sphingomyelinase-Mediated Multitimescale Clustering of Ganglioside GM1 in Heterogeneous Lipid Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101766. [PMID: 34473415 PMCID: PMC8529493 DOI: 10.1002/advs.202101766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Indexed: 05/05/2023]
Abstract
Several signaling processes in the plasma membrane are intensified by ceramides that are formed by sphingomyelinase-mediated hydrolysis of sphingomyelin. These ceramides trigger clustering of signaling-related biomolecules, but how they concentrate such biomolecules remains unclear. Here, the spatiotemporal localization of ganglioside GM1, a glycolipid receptor involved in signaling, during sphingomyelinase-mediated hydrolysis is described. Real-time visualization of the dynamic remodeling of the heterogeneous lipid membrane that occurs due to sphingomyelinase action is used to examine GM1 clustering, and unexpectedly, it is found that it is more complex than previously thought. Specifically, lipid membranes generate two distinct types of condensed GM1: 1) rapidly formed but short-lived GM1 clusters that are formed in ceramide-rich domains nucleated from the liquid-disordered phase; and 2) late-onset yet long-lasting, high-density GM1 clusters that are formed in the liquid-ordered phase. These findings suggest that multiple pathways exist in a plasma membrane to synergistically facilitate the rapid amplification and persistence of signals.
Collapse
Affiliation(s)
- Hyun‐Ro Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- KAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
6
|
Gutiérrez-Nájera NA, Saucedo-García M, Noyola-Martínez L, Vázquez-Vázquez C, Palacios-Bahena S, Carmona-Salazar L, Plasencia J, El-Hafidi M, Gavilanes-Ruiz M. Sphingolipid Effects on the Plasma Membrane Produced by Addition of Fumonisin B1 to Maize Embryos. PLANTS (BASEL, SWITZERLAND) 2020; 9:E150. [PMID: 31979343 PMCID: PMC7076497 DOI: 10.3390/plants9020150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
Fumonisin B1 is a mycotoxin produced by Fusarium verticillioides that modifies the membrane properties from animal cells and inhibits complex sphingolipids synthesis through the inhibition of ceramide synthase. The aim of this work was to determine the effect of Fumonisin B1 on the plant plasma membrane when the mycotoxin was added to germinating maize embryos. Fumonisin B1 addition to the embryos diminished plasma membrane fluidity, increased electrolyte leakage, caused a 7-fold increase of sphinganine and a small decrease in glucosylceramide in the plasma membrane, without affecting phytosphingosine levels or fatty acid composition. A 20%-30% inhibition of the plasma membrane H+-ATPase activity was observed when embryos were germinated in the presence of the mycotoxin. Such inhibition was only associated to the decrease in glucosylceramide and the addition of exogenous ceramide to the embryos relieved the inhibition of Fumonisin B1. These results indicate that exposure of the maize embryos for 24 h to Fumonisin B1 allowed the mycotoxin to target ceramide synthase at the endoplasmic reticulum, eliciting an imbalance of endogenous sphingolipids. The latter disrupted membrane properties and inhibited the plasma membrane H+-ATPase activity. Altogether, these results illustrate the mode of action of the pathogen and a plant defense strategy.
Collapse
Affiliation(s)
- Nora A. Gutiérrez-Nájera
- Instituto Nacional de Medicina Genómica. Periférico Sur 4124, Torre 2, 5° piso. Álvaro Obregón 01900, Cd. de México, Mexico;
| | - Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad Km. 1, Rancho Universitario, Tulancingo-Santiago, Tulantepec, Tulancingo 43600, Hidalgo, Mexico;
| | - Liliana Noyola-Martínez
- Departamento de Bioquímica, Facultad de Química, UNAM. Cd. Universitaria. Coyoacán 04510, Cd. de México, Mexico; (L.N.-M.); (C.V.-V.); (S.P.-B.); (L.C.-S.); (J.P.)
| | - Christian Vázquez-Vázquez
- Departamento de Bioquímica, Facultad de Química, UNAM. Cd. Universitaria. Coyoacán 04510, Cd. de México, Mexico; (L.N.-M.); (C.V.-V.); (S.P.-B.); (L.C.-S.); (J.P.)
| | - Silvia Palacios-Bahena
- Departamento de Bioquímica, Facultad de Química, UNAM. Cd. Universitaria. Coyoacán 04510, Cd. de México, Mexico; (L.N.-M.); (C.V.-V.); (S.P.-B.); (L.C.-S.); (J.P.)
| | - Laura Carmona-Salazar
- Departamento de Bioquímica, Facultad de Química, UNAM. Cd. Universitaria. Coyoacán 04510, Cd. de México, Mexico; (L.N.-M.); (C.V.-V.); (S.P.-B.); (L.C.-S.); (J.P.)
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, UNAM. Cd. Universitaria. Coyoacán 04510, Cd. de México, Mexico; (L.N.-M.); (C.V.-V.); (S.P.-B.); (L.C.-S.); (J.P.)
| | - Mohammed El-Hafidi
- Departamento de Bioquímica. Instituto Nacional de Cardiología “Ignacio Chávez”. Juan Badiano 1. Tlalpan 14080, Cd. de México, Mexico;
| | - Marina Gavilanes-Ruiz
- Departamento de Bioquímica, Facultad de Química, UNAM. Cd. Universitaria. Coyoacán 04510, Cd. de México, Mexico; (L.N.-M.); (C.V.-V.); (S.P.-B.); (L.C.-S.); (J.P.)
| |
Collapse
|
7
|
The influence of ceramide and its dihydro analog on the physico-chemical properties of sphingomyelin bilayers. Chem Phys Lipids 2020; 226:104835. [DOI: 10.1016/j.chemphyslip.2019.104835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
|
8
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Bennett MK, Wallington-Beddoe CT, Pitson SM. Sphingolipids and the unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1483-1494. [PMID: 31176037 DOI: 10.1016/j.bbalip.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
The unfolded protein response (UPR) is a response by the endoplasmic reticulum to stress, classically caused by any disruption to cell homeostasis that results in an accumulation in unfolded proteins. However, there is an increasing body of research demonstrating that the UPR can also be activated by changes in lipid homeostasis, including changes in sphingolipid metabolism. Sphingolipids are a family of bioactive lipids with important roles in both the formation and integrity of cellular membranes, and regulation of key cellular processes, including cell proliferation and apoptosis. Bi-directional interactions between sphingolipids and the UPR have now been observed in a range of diseases, including cancer, diabetes and liver disease. Determining how these two key cellular components influence each other could play an important role in deciphering the causes of these diseases and potentially reveal new therapeutic approaches.
Collapse
Affiliation(s)
- Melissa K Bennett
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia
| | - Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia; Flinders Medical Centre, Bedford Park, SA 5042, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
10
|
Enhanced Ordering in Monolayers Containing Glycosphingolipids: Impact of Carbohydrate Structure. Biophys J 2019. [PMID: 29539397 DOI: 10.1016/j.bpj.2017.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influence of carbohydrate structure on the ordering of glycosphingolipids (GSLs) and surrounding phospholipids was investigated in monolayers at the air-water interface. Binary mixtures composed of GSLs, chosen to span a range of carbohydrate complexity, and zwitterionic dipalmitoylphosphatidylcholine phospholipid, were studied. X-ray reflectivity was used to measure the out-of-plane structure of the monolayers and characterize the extension and conformation of the GSL carbohydrates. Using synchrotron grazing incidence x-ray diffraction, the in-plane packing of the lipid acyl chains and the area per molecule within ordered domains were characterized at different mole ratios of the two components. Our findings indicate that GSL-containing mixtures, regardless of the carbohydrate size, enhance the ordering of the surrounding lipids, resulting in a larger fraction of ordered phase of the monolayer and greater dimensions of the ordered domains. Reduction of the averaged area per molecule within the ordered domains was also observed but only in the cases where there was a size mismatch between the phospholipid headgroups and GSL components, suggesting that the condensation mechanism involves the relief of steric interactions between headgroups in mixtures.
Collapse
|
11
|
Watanabe N, Goto Y, Suga K, Nyholm TKM, Slotte JP, Umakoshi H. Solvatochromic Modeling of Laurdan for Multiple Polarity Analysis of Dihydrosphingomyelin Bilayer. Biophys J 2019; 116:874-883. [PMID: 30819567 DOI: 10.1016/j.bpj.2019.01.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 01/28/2023] Open
Abstract
The hydration properties of the interface between lipid bilayers and bulk water are important for determining membrane characteristics. Here, the emission properties of a solvent-sensitive fluorescence probe, 6-lauroyl-2-dimethylamino naphthalene (Laurdan), were evaluated in lipid bilayer systems composed of the sphingolipids D-erythro-N-palmitoyl-sphingosylphosphorylcholine (PSM) and D-erythro-N-palmitoyl-dihydrosphingomyelin (DHPSM). The glycerophospholipids 1-palmitoyl-2-palmitoyl-sn-glycero-3-phosphocholine and 1-oleoyl-2-oleoyl-sn-glycero-3-phosphocholine were used as controls. The fluorescence properties of Laurdan in sphingolipid bilayers indicated multiple excited states according to the results obtained from the emission spectra, fluorescence anisotropy, and the center-of-mass spectra during the decay time. Deconvolution of the Laurdan emission spectra into four components based on the solvent model enabled us to identify the varieties of hydration and the configurational states derived from intermolecular hydrogen bonding in sphingolipids. Sphingolipids showed specific, interfacial hydration properties stemming from their intra- and intermolecular hydrogen bonds. Particularly, the Laurdan in DHPSM revealed more hydrated properties compared to PSM, even though DHPSM has a higher Tm than PSM. Because DHPSM forms hydrogen bonds with water molecules (in 2NH configurational functional groups), the interfacial region of the DHPSM bilayer was expected to be in a highly polar environment. The careful analysis of Laurdan emission spectra through the four-component deconvolution in this study provides important insights for understanding the multiple polarity in the lipid membrane.
Collapse
Affiliation(s)
- Nozomi Watanabe
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yuka Goto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Keishi Suga
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Thomas K M Nyholm
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - J Peter Slotte
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Hiroshi Umakoshi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
12
|
Delle Bovi RJ, Kim J, Suresh P, London E, Miller WT. Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:819-826. [PMID: 30682326 DOI: 10.1016/j.bbamem.2019.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 01/02/2023]
Abstract
The plasma membrane is a dynamic environment with a complex composition of lipids, proteins, and cholesterol. Areas enriched in cholesterol and sphingolipids are believed to form lipid rafts, domains of highly ordered lipids. The unique physical properties of these domains have been proposed to influence many cellular processes. Here, we demonstrate that the activation of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) depends critically on the structures of membrane sterols. IR and IGF1R autophosphorylation in vivo was inhibited by cholesterol depletion, and autophosphorylation was restored by the replacement with exogenous cholesterol. We next screened a variety of sterols for effects on IR activation. The ability of sterols to support IR autophosphorylation was strongly correlated to the propensity of the sterols to form ordered domains. IR autophosphorylation was fully restored by the incorporation of ergosterol, dihydrocholesterol, 7-dehydrocholesterol, lathosterol, desmosterol, and allocholesterol, partially restored by epicholesterol, and not restored by lanosterol, coprostanol, and 4-cholesten-3-one. These data support the hypothesis that the ability to form ordered domains is sufficient for a sterol to support ligand-induced activation of IR and IGF1R in intact mammalian cells.
Collapse
Affiliation(s)
- Richard J Delle Bovi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, United States of America
| | - JiHyun Kim
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States of America
| | - Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States of America
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States of America.
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, United States of America; Department of Veterans Affairs Medical Center, Northport, NY 11768, United States of America.
| |
Collapse
|
13
|
Murthy AVR, Guyomarc'h F, Lopez C. Palmitoyl ceramide promotes milk sphingomyelin gel phase domains formation and affects the mechanical properties of the fluid phase in milk-SM/DOPC supported membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:635-644. [DOI: 10.1016/j.bbamem.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023]
|
14
|
Wang E, Klauda JB. Molecular Dynamics Simulations of Ceramide and Ceramide-Phosphatidylcholine Bilayers. J Phys Chem B 2017; 121:10091-10104. [PMID: 29017324 DOI: 10.1021/acs.jpcb.7b08967] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies in lipid raft formation and stratum corneum permeability have focused on the role of ceramides (CER). In this study, we use the all-atom CHARMM36 (C36) force field to simulate bilayers using N-palmitoylsphingosine (CER16) or α-hydroxy-N-stearoyl phytosphingosine (CER[AP]) in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), which serve as general membrane models. Conditions are replicated from experimental studies for comparison purposes, and concentration (XCER) is varied to probe the effect of CER on these systems. Comparisons with experiment based on deuterium order parameters and bilayer thickness demonstrate good agreement, thus supporting further use of the C36 force field. CER concentration is shown to have a profound effect on nearly all membrane properties including surface area per lipid, chain order and tilt, area compressibility moduli, bilayer thickness, hydrogen bonding, and lipid clustering. Hydrogen bonding in particular can significantly affect other membrane properties and can even encourage transition to a gel phase. Despite CER's tendency to condense the membrane, an expansion of CER lipids with increasing XCER is possible depending on how the balance between various hydrogen-bond pairs and lipid clustering is perturbed. Based on gel phase transitions, support is given for phytosphingosine's role as a hydrogen-bond bridge between sphingosine ordered domains in the stratum corneum.
Collapse
Affiliation(s)
- Eric Wang
- Department of Chemical and Biomolecular Engineering and ‡Biophysics Graduate Program, University of Maryland , College Park, Maryland 20742, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and ‡Biophysics Graduate Program, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
15
|
Doroudgar M, Lafleur M. Ceramide-C16 Is a Versatile Modulator of Phosphatidylethanolamine Polymorphism. Biophys J 2017; 112:2357-2366. [PMID: 28591608 DOI: 10.1016/j.bpj.2017.04.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022] Open
Abstract
Ceramide-C16 (CerC16) is a sphingolipid associated with several diseases like diabetes, obesity, Parkinson disease, and certain types of cancers. As a consequence, research efforts are devoted to identify the impact of CerC16 on the behavior of membranes, and to understand how it is involved in these diseases. In this work, we investigated the impacts of CerC16 (up to 20 mol %) on the lipid polymorphism of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), using differential scanning calorimetry, and sequential 2H and 31P solid-state nuclear magnetic resonance spectroscopy. A partial phase diagram is proposed. The results indicate that the presence of CerC16 leads to an upshift of the temperature of the gel-to-liquid crystalline (Lβ - Lα) phase transition, leading to a large Lβ/Lα phase coexistence region where gel-phase domains contain ∼35 mol % CerC16. It also leads to a downshift of the temperature of the lamellar-to-inverted hexagonal (L - HII) phase transition of POPE. The opposite influence on the two-phase transitions of POPE brings a three-phase coexistence line when the two transitions overlap. The resulting HII phase can be ceramide enriched, coexisting with a Lα phase, or ceramide depleted, coexisting with a Lβ phase, depending on the CerC16 proportions. The uncommon capability of CerC16 to modulate the membrane fluidity, its curvature propensity, and the membrane interface properties highlights its potential as a versatile messenger in cell membrane events.
Collapse
Affiliation(s)
- Mahmoudreza Doroudgar
- Department of Chemistry, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Rodriguez-Cuenca S, Pellegrinelli V, Campbell M, Oresic M, Vidal-Puig A. Sphingolipids and glycerophospholipids - The "ying and yang" of lipotoxicity in metabolic diseases. Prog Lipid Res 2017; 66:14-29. [PMID: 28104532 DOI: 10.1016/j.plipres.2017.01.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/30/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Abstract
Sphingolipids in general and ceramides in particular, contribute to pathophysiological mechanisms by modifying signalling and metabolic pathways. Here, we present the available evidence for a bidirectional homeostatic crosstalk between sphingolipids and glycerophospholipids, whose dysregulation contributes to lipotoxicity induced metabolic stress. The initial evidence for this crosstalk originates from simulated models designed to investigate the biophysical properties of sphingolipids in plasma membrane representations. In this review, we reinterpret some of the original findings and conceptualise them as a sort of "ying/yang" interaction model of opposed/complementary forces, which is consistent with the current knowledge of lipid homeostasis and pathophysiology. We also propose that the dysregulation of the balance between sphingolipids and glycerophospholipids results in a lipotoxic insult relevant in the pathophysiology of common metabolic diseases, typically characterised by their increased ceramide/sphingosine pools.
Collapse
Affiliation(s)
- S Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK.
| | - V Pellegrinelli
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK
| | - M Campbell
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK
| | - M Oresic
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI -20520 Turku, Finland
| | - A Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge. Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
17
|
Gillams RJ, Lorenz CD, McLain SE. Comparative atomic-scale hydration of the ceramide and phosphocholine headgroup in solution and bilayer environments. J Chem Phys 2017; 144:225101. [PMID: 27306021 DOI: 10.1063/1.4952444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previous studies have used neutron diffraction to elucidate the hydration of the ceramide and the phosphatidylcholine headgroup in solution. These solution studies provide bond-length resolution information on the system, but are limited to liquid samples. The work presented here investigates how the hydration of ceramide and phosphatidylcholine headgroups in a solution compares with that found in a lipid bilayer. This work shows that the hydration patterns seen in the solution samples provide valuable insight into the preferential location of hydrating water molecules in the bilayer. There are certain subtle differences in the distribution, which result from a combination of the lipid conformation and the lipid-lipid interactions within the bilayer environment. The lipid-lipid interactions in the bilayer will be dependent on the composition of the bilayer, whereas the restricted exploration of conformational space is likely to be applicable in all membrane environments. The generalized description of hydration gathered from the neutron diffraction studies thus provides good initial estimation for the hydration pattern, but this can be further refined for specific systems.
Collapse
Affiliation(s)
- Richard J Gillams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Sylvia E McLain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
18
|
Varela ARP, Ventura AE, Carreira AC, Fedorov A, Futerman AH, Prieto M, Silva LC. Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes. Phys Chem Chem Phys 2017; 19:340-346. [DOI: 10.1039/c6cp07227e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Accumulation of glucosylceramide decreases membrane fluidity in artificial membranes and in cell models of Gaucher disease.
Collapse
Affiliation(s)
- Ana R. P. Varela
- iMed.ULisboa – Research Institute for Medicines
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Ana E. Ventura
- iMed.ULisboa – Research Institute for Medicines
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Ana C. Carreira
- iMed.ULisboa – Research Institute for Medicines
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Aleksander Fedorov
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Anthony H. Futerman
- Department of Biomolecular Sciences
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Liana C. Silva
- iMed.ULisboa – Research Institute for Medicines
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|
19
|
Can 'calpain-cathepsin hypothesis' explain Alzheimer neuronal death? Ageing Res Rev 2016; 32:169-179. [PMID: 27306474 DOI: 10.1016/j.arr.2016.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023]
Abstract
Neurons are highly specialized post-mitotic cells, so their homeostasis and survival depend on the tightly-regulated, continuous protein degradation, synthesis, and turnover. In neurons, autophagy is indispensable to facilitate recycling of long-lived, damaged proteins and organelles in a lysosome-dependent manner. Since lysosomal proteolysis under basal conditions performs an essential housekeeping function, inhibition of the proteolysis exacerbates level of neurodegeneration. The latter is characterized by an accumulation of abnormal proteins or organelles within autophagic vacuoles which reveal as 'granulo-vacuolar degenerations' on microscopy. Heat-shock protein70.1 (Hsp70.1), as a means of molecular chaperone and lysosomal stabilizer, is a potent survival protein that confers neuroprotection against diverse stimuli, but its depletion induces neurodegeneration via autophagy failure. In response to hydroxynonenal generated from linoleic or arachidonic acids by the reactive oxygen species, a specific oxidative injury 'carbonylation' occurs at the key site Arg469 of Hsp70.1. Oxidative stress-induced carbonylation of Hsp70.1, in coordination with the calpain-mediated cleavage, leads to lysosomal destabilization/rupture and release of cathepsins with the resultant neuronal death. Hsp70.1 carbonylation which occurs anywhere in the brain is indispensable for neuronal death, but extent of calpain activation should be more crucial for determining the cell death fate. Importantly, not only acute ischemia during stroke but also chronic ischemia due to ageing may cause calpain activation. Here, role of Hsp70.1-mediated lysosomal rupture is discussed by comparing ischemic and Alzheimer neuronal death. A common neuronal death cascade may exist between cerebral ischemia and Alzheimer's disease.
Collapse
|
20
|
An evaluation of the impact of urban air pollution on paint dosimeters by tracking changes in the lipid MALDI-TOF mass spectra profile. Talanta 2016; 155:53-61. [DOI: 10.1016/j.talanta.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 11/24/2022]
|
21
|
Torretta E, Fania C, Vasso M, Gelfi C. HPTLC-MALDI MS for (glyco)sphingolipid multiplexing in tissues and blood: A promising strategy for biomarker discovery and clinical applications. Electrophoresis 2016; 37:2036-49. [DOI: 10.1002/elps.201600094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health; University of Milan; Milan Italy
- IRCCS Policlinico San Donato; Piazza Edmondo Malan; San Donato Milanese Milan Italy
| | - Chiara Fania
- IRCCS Policlinico San Donato; Piazza Edmondo Malan; San Donato Milanese Milan Italy
| | - Michele Vasso
- Institute of Molecular Bioimaging and Physiology (IBFM); CNR Milan Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health; University of Milan; Milan Italy
- IRCCS Policlinico San Donato; Piazza Edmondo Malan; San Donato Milanese Milan Italy
| |
Collapse
|
22
|
Abstract
The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed.
Collapse
Affiliation(s)
- N D'Avanzo
- Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
23
|
Tran PN, Brown SHJ, Rug M, Ridgway MC, Mitchell TW, Maier AG. Changes in lipid composition during sexual development of the malaria parasite Plasmodium falciparum. Malar J 2016; 15:73. [PMID: 26852399 PMCID: PMC4744411 DOI: 10.1186/s12936-016-1130-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/23/2016] [Indexed: 01/13/2023] Open
Abstract
Background The development of differentiated sexual stages (gametocytes) within human red blood cells is essential for the propagation of the malaria parasite, since only mature gametocytes will survive in the mosquito’s midgut. Hence gametocytogenesis is a pre-requisite for transmission of the disease. Physiological changes involved in sexual differentiation are still enigmatic. In particular the lipid metabolism—despite being central to cellular regulation and development—is not well explored. Methods Here the lipid profiles of red blood cells infected with the five different sexual stages of Plasmodium falciparum were analysed by mass spectrometry and compared to those from uninfected and asexual trophozoite infected erythrocytes. Results Fundamental differences between erythrocytes infected with the different parasite stages were revealed. In mature gametocytes many lipids that decrease in the trophozoite and early gametocyte infected red blood cells are regained. In particular, regulators of membrane fluidity, cholesterol and sphingomyelin, increased significantly during gametocyte maturation. Neutral lipids (serving mainly as caloriometric reserves) increased from 3 % of total lipids in uninfected to 27 % in stage V gametocyte infected red blood cells. The major membrane lipid class (phospholipids) decreased during gametocyte development. Conclusions The lipid profiles of infected erythrocytes are characteristic for the particular parasite life cycle and maturity stages of gametocytes. The obtained lipid profiles are crucial in revealing the lipid metabolism of malaria parasites and identifying targets to interfere with this deadly disease. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1130-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phuong N Tran
- Research School of Biology, The Australian National University, Canberra, ACT, Australia. .,La Trobe Institute of Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| | - Simon H J Brown
- School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.
| | - Melanie Rug
- Research School of Biology, The Australian National University, Canberra, ACT, Australia. .,Centre for Advanced Microscopy, The Australian National University, Canberra, ACT, Australia.
| | - Melanie C Ridgway
- Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - Todd W Mitchell
- School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
24
|
The importance of hydrogen bonding in sphingomyelin's membrane interactions with co-lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:304-10. [DOI: 10.1016/j.bbamem.2015.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/16/2015] [Accepted: 12/03/2015] [Indexed: 01/10/2023]
|
25
|
Carreira AC, Ventura AE, Varela AR, Silva LC. Tackling the biophysical properties of sphingolipids to decipher their biological roles. Biol Chem 2015; 396:597-609. [DOI: 10.1515/hsz-2014-0283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/01/2015] [Indexed: 11/15/2022]
Abstract
Abstract
From the most simple sphingoid bases to their complex glycosylated derivatives, several sphingolipid species were shown to have a role in fundamental cellular events and/or disease. Increasing evidence places lipid-lipid interactions and membrane structural alterations as central mechanisms underlying the action of these lipids. Understanding how these molecules exert their biological roles by studying their impact in the physical properties and organization of membranes is currently one of the main challenges in sphingolipid research. Herein, we review the progress in the state-of-the-art on the biophysical properties of sphingolipid-containing membranes, focusing on sphingosine, ceramides, and glycosphingolipids.
Collapse
|
26
|
Sovová Ž, Berka K, Otyepka M, Jurečka P. Coarse-grain simulations of skin ceramide NS with newly derived parameters clarify structure of melted phase. J Phys Chem B 2015; 119:3988-98. [PMID: 25679231 DOI: 10.1021/jp5092366] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ceramides are lipids that are involved in numerous biologically important structures (e.g., the stratum corneum and ceramide-rich platforms) and processes (e.g., signal transduction and membrane fusion), but their behavior is not fully understood. We report coarse-grain force field parameters for N-lignocerylsphingosine (ceramide NS, also known as ceramide 2) that are consistent with the Martini force field. These parameters were optimized for simulations in the gel phase and validated against atomistic simulations. Coarse-grained simulations with our parameters provide areas per lipid, membrane thicknesses, and electron density profiles that are in good agreement with atomistic simulations. Properties of the simulated membranes are compared with available experimental data. The obtained parameters were used to model the phase behavior of ceramide NS as a function of temperature and hydration. At low water content and above the main phase transition temperature, the bilayer melts into an irregular phase, which may correspond to the unstructured melted-chain phase observed in X-ray diffraction experiments. The developed parameters also reproduce the extended conformation of ceramide, which may occur in the stratum corneum. The parameters presented herein will facilitate studies on important complex functional structures such as the uppermost layer of the skin and ceramide-rich platforms in phospholipid membranes.
Collapse
Affiliation(s)
- Žofie Sovová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University , 17 Listopadu 12, 77146 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
27
|
Justice MJ, Petrusca DN, Rogozea AL, Williams JA, Schweitzer KS, Petrache I, Wassall SR, Petrache HI. Effects of lipid interactions on model vesicle engulfment by alveolar macrophages. Biophys J 2014; 106:598-609. [PMID: 24507600 DOI: 10.1016/j.bpj.2013.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/11/2013] [Accepted: 12/23/2013] [Indexed: 01/18/2023] Open
Abstract
The engulfment function of macrophages relies on complex molecular interactions involving both lipids and proteins. In particular, the clearance of apoptotic bodies (efferocytosis) is enabled by externalization on the cell target of phosphatidylserine lipids, which activate receptors on macrophages, suggesting that (local) specific lipid-protein interactions are required at least for the initiation of efferocytosis. However, in addition to apoptotic cells, macrophages can engulf foreign bodies that vary substantially in size from a few nanometers to microns, suggesting that nonspecific interactions over a wide range of length scales could be relevant. Here, we use model lipid membranes (made of phosphatidylcholine, phosphatidylserine, and ceramide) and rat alveolar macrophages to show how lipid bilayer properties probed by small-angle x-ray scattering and solid-state (2)H NMR correlate with engulfment rates measured by flow cytometry. We find that engulfment of protein-free model lipid vesicles is promoted by the presence of phosphatidylserine lipids but inhibited by ceramide, in accord with a previous study of apoptotic cells. We conclude that the roles of phosphatidylserine and ceramide in phagocytosis is based, at least in part, on lipid-mediated modification of membrane physical properties, including interactions at large length scales as well as local lipid ordering and possible domain formation.
Collapse
Affiliation(s)
- Matthew J Justice
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniela N Petrusca
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adriana L Rogozea
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Justin A Williams
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Kelly S Schweitzer
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Irina Petrache
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medicine, Richard L. Roudebush Veterans' Affairs Medical Center, Indianapolis, Indiana
| | - Stephen R Wassall
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Horia I Petrache
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
28
|
Dutagaci B, Becker-Baldus J, Faraldo-Gómez JD, Glaubitz C. Ceramide-lipid interactions studied by MD simulations and solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2511-9. [PMID: 24882733 DOI: 10.1016/j.bbamem.2014.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/08/2023]
Abstract
Ceramides play a key modulatory role in many cellular processes, which results from their effect on the structure and dynamics of biological membranes. In this study, we investigate the influence of C16-ceramide (C16) on the biophysical properties of DMPC lipid bilayers using solid-state NMR and atomistic molecular dynamics (MD) simulations. MD simulations and NMR measurements were carried out for a pure DMPC bilayer and for a 20% DMPC-C16 mixture. Calculated key structural properties, namely area per lipid, chain order parameters, and mass density profiles, indicate that C16 has an ordering effect on the DMPC bilayer. Furthermore, the simulations predict that specific hydrogen-bonds form between DMPC and C16 molecules. Multi-nuclear solid-state NMR was used to verify these theoretical predictions. Chain order parameters extracted from (13)C(1)H dipole couplings were measured for both lipid and ceramide and follow the trend suggested by the MD simulations. Furthermore, (1)H-MAS NMR experiments showed a direct contact between ceramide and lipids.
Collapse
Affiliation(s)
- Bercem Dutagaci
- Institute of Biophysical Chemistry, J.W. Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, J.W. Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Section, National Heart, Lung & Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, J.W. Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
29
|
Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 2014; 54:53-67. [PMID: 24513486 DOI: 10.1016/j.plipres.2014.01.004] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
Ceramides are involved in a variety of cellular processes and in disease. Their biological functions are thought to depend on ceramides' unique biophysical properties, which promote strong alterations of cell membrane properties and consequent triggering of signaling events. Over the last decades, efforts were made to understand the impact of ceramide on membrane biophysical features. Several studies, performed in a multitude of membrane models, address ceramides' specific interactions, the effect of their acyl chain structure and the influence of membrane lipid composition and properties on ceramide biophysical outcome. In this review, a rationale for the multiple and complex changes promoted by ceramide is provided, highlighting, on a comprehensive and critical manner, the interactions between ceramides and specific lipids and/or lipid phases. Focus is also given to the interplay between ceramide and cholesterol, particularly in lipid raft-mimicking mixtures, an issue of intense debate due to the urgent need to understand the biophysical impact of ceramide formation in models resembling the cell membrane. The implications of ceramide-induced biophysical changes on lipid-protein interactions and cell signaling are also discussed, together with the emerging evidence for the existence of ceramide-gel like domains in cellular membranes.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Liana C Silva
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
30
|
Fiedorowicz A, Prokopiuk S, Zendzian-Piotrowska M, Chabowski A, Car H. Sphingolipid profiles are altered in prefrontal cortex of rats under acute hyperglycemia. Neuroscience 2013; 256:282-91. [PMID: 24161280 DOI: 10.1016/j.neuroscience.2013.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/12/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Abstract
Diabetes type 1 is a common autoimmune disease manifesting by insulin deficiency and hyperglycemia, which can lead to dementia-like brain dysfunctions. The factors triggering the pathological processes in hyperglycemic brain remain unknown. We reported in this study that brain areas with different susceptibility to diabetes (prefrontal cortex (PFC), hippocampus, striatum and cerebellum) revealed differential alterations in ceramide (Cer) and sphingomyelin (SM) profiles in rats with streptozotocin-induced hyperglycemia. Employing gas-liquid chromatography, we found that level of total Cer increased significantly only in the PFC of diabetic animals, which also exhibited a broad spectrum of sphingolipid (SLs) changes, such as elevations of Cer-C16:0, -C18:0, -C20:0, -C22:0, -C18:1, -C24:1 and SM-C16:0 and -C18:1. In opposite, only minor changes were noted in other examined structures. In addition, de novo synthesis pathway could play a role in generation of Cer containing monounsaturated fatty acids in PFC during hyperglycemia. In turn, simultaneous accumulation of Cers and their SM counterparts may suggest that overproduced Cers are converted to SMs to avoid excessive Cer-mediated cytotoxicity. We conclude that broad changes in SLs compositions in PFC induced by hyperglycemia may provoke membrane rearrangements in some cell populations, which can disturb cellular signaling and cause tissue damage.
Collapse
Affiliation(s)
- A Fiedorowicz
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - S Prokopiuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - M Zendzian-Piotrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - A Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - H Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland.
| |
Collapse
|
31
|
Artetxe I, Sergelius C, Kurita M, Yamaguchi S, Katsumura S, Slotte JP, Maula T. Effects of sphingomyelin headgroup size on interactions with ceramide. Biophys J 2013; 104:604-12. [PMID: 23442911 DOI: 10.1016/j.bpj.2012.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/13/2012] [Accepted: 12/12/2012] [Indexed: 11/15/2022] Open
Abstract
Sphingomyelins (SMs) and ceramides are known to interact favorably in bilayer membranes. Because ceramide lacks a headgroup that could shield its hydrophobic body from unfavorable interactions with water, accommodation of ceramide under the larger phosphocholine headgroup of SM could contribute to their favorable interactions. To elucidate the role of SM headgroup for SM/ceramide interactions, we explored the effects of reducing the size of the phosphocholine headgroup (removing one, two, or three methyls on the choline moiety, or the choline moiety itself). Using differential scanning calorimetry and fluorescence spectroscopy, we found that the size of the SM headgroup had no marked effect on the thermal stability of ordered domains formed by SM analog/palmitoyl ceramide (PCer) interactions. In more complex bilayers composed of a fluid glycerophospholipid, SM analog, and PCer, the thermal stability and molecular order of the laterally segregated gel domains were roughly identical despite variation in SM headgroup size. We suggest that that the association between PCer and SM analogs was stabilized by ceramide's aversion for disordered phospholipids, by interfacial hydrogen bonding between PCer and the SM analogs, and by attractive van der Waals' forces between saturated chains of PCer and SM analogs.
Collapse
Affiliation(s)
- Ibai Artetxe
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
32
|
Maula T, Artetxe I, Grandell PM, Slotte JP. Importance of the sphingoid base length for the membrane properties of ceramides. Biophys J 2013. [PMID: 23199915 DOI: 10.1016/j.bpj.2012.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The sphingoid bases of sphingolipids, including ceramides, can vary in length from 12 to >20 carbons. To study how such length variation affects the bilayer properties of ceramides, we synthesized ceramides consisting of a C12-, C14-, C16-, C18-, or C20-sphing-4-enin derivative coupled to palmitic acid. The ceramides were studied in mixtures with palmitoyloleoylphosphocholine (POPC) and/or palmitoylsphingomyelin (PSM), and in more complex bilayers also containing cholesterol. The trans-parinaric acid lifetimes showed that 12:1- and 14:1-PCer failed to increase the order of POPC bilayers, whereas 16:1-, 18:1-, and 20:1-PCer induced ordered- or gel-phase formation. Nevertheless, all of the analogs were able to thermally stabilize PSM, and a chain-length-dependent increase in the main phase transition temperature of equimolar PSM/Cer bilayers was revealed by differential scanning calorimetry. Similar thermal stabilization of PSM-rich domains by the ceramides was observed in POPC bilayers with a trans-parinaric acid-quenching assay. A cholestatrienol-quenching assay and sterol partitioning experiments showed that 18:1- and 20:1-PCer formed sterol-excluding gel phases with PSM, reducing the overall bilayer affinity of sterol. The effect of 16:1-PCer on sterol distribution was less dramatic, and no displacement of sterol from the PSM environment was observed with 12:1- and 14:1-PCer. The results are discussed in relation to other structural features that affect the bilayer properties of ceramides.
Collapse
Affiliation(s)
- Terhi Maula
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland.
| | | | | | | |
Collapse
|
33
|
Gaur PK, Purohit S, Kumar Y, Mishra S, Bhandari A. Preparation, characterization and permeation studies of a nanovesicular system containing diclofenac for transdermal delivery. Pharm Dev Technol 2013; 19:48-54. [DOI: 10.3109/10837450.2012.751406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Interaction of selected anthocyanins with erythrocytes and liposome membranes. Cell Mol Biol Lett 2012; 17:289-308. [PMID: 22396139 PMCID: PMC6275648 DOI: 10.2478/s11658-012-0010-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 03/01/2012] [Indexed: 11/20/2022] Open
Abstract
Anthocyanins are one of the main flavonoid groups. They are responsible for, e.g., the color of plants and have antioxidant features and a wide spectrum of medical activity. The subject of the study was the following compounds that belong to the anthocyanins and which can be found, e.g., in strawberries and chokeberries: callistephin chloride (pelargonidin-3-O-glucoside chloride) and ideain chloride (cyanidin-3-O-galactoside chloride). The aim of the study was to determine the compounds’ antioxidant activity towards the erythrocyte membrane and changes incurred by the tested anthocyanins in the lipid phase of the erythrocyte membrane, in liposomes composed of erythrocyte lipids and in DPPC, DPPC/cholesterol and egg lecithin liposomes. In particular, we studied the effect of the two selected anthocyanins on red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC and DPPC/cholesterol liposomes. Fluorimetry with the Laurdan and Prodan probes indicated increased packing density in the hydrophilic phase of the membrane in the presence of anthocyanins. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The compounds slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The study has shown that both anthocyanins are incorporated into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The investigation proved that the compounds penetrate only the outer part of the external lipid layer of liposomes composed of erythrocyte lipids, DPPC, DPPC/cholesterol and egg lecithin lipids, changing its packing order. Fluorimetry studies with DPH-PA proved that the tested anthocyanins are very effective antioxidants. The antioxidant activity of the compounds was comparable with the activity of Trolox®.
Collapse
|
35
|
Maula T, Kurita M, Yamaguchi S, Yamamoto T, Katsumura S, Slotte JP. Effects of sphingosine 2N- and 3O-methylation on palmitoyl ceramide properties in bilayer membranes. Biophys J 2011; 101:2948-56. [PMID: 22208193 DOI: 10.1016/j.bpj.2011.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022] Open
Abstract
To study the role of the interfacial properties of ceramides in their interlipid interactions, we synthesized palmitoylceramide (PCer) analogs in which a methyl group was introduced to the amide-nitrogen or the C3-oxygen of the sphingosine backbone. A differential scanning calorimetry analysis of equimolar mixtures of palmitoylsphingomyelin (PSM) and PCer showed that these sphingolipids formed a complex gel phase that melted between 67°C and 74°C. The PCer analogs also formed gel phases with PSM, but they melted at lower temperatures compared with the system with PCer. In complex bilayers composed of an unsaturated glycerophospholipid, PSM, and cholesterol, the 3O-methylated ceramide formed a cholesterol-poor ordered phase with PSM. However, the 2N-methylated and doubly methylated (2N and 3O) PCer analogs failed to displace sterol from interactions with PSM. Like PCer, the analogs reduced sterol affinity for the complex bilayers, but this effect was most pronounced for the 3O-methylated ceramide. Taken together, our results show that 2N-methylation weakened the ceramide-PSM interactions, whereas the 3O-methylated ceramide behaved more like PCer in interactions with PSM. Our findings are compatible with the view that interlipid interactions between the amide-nitrogen and neighboring lipids are important for the cohesive properties of sphingolipids in membranes, and this also appears to be a valid model for ceramide.
Collapse
Affiliation(s)
- Terhi Maula
- Department of Biosciences, Åbo Akademi University, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
36
|
The effects of N-acyl chain methylations on ceramide molecular properties in bilayer membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:857-63. [DOI: 10.1007/s00249-011-0702-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/22/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
|
37
|
Rituper B, Davletov B, Zorec R. Lipid–protein interactions in exocytotic release of hormones and neurotransmitters. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Pires ACS, Soares NDFF, da Silva LHM, da Silva MCH, Mageste AB, Soares RF, Teixeira ÁVNC, Andrade NJ. Thermodynamic Study of Colorimetric Transitions in Polydiacetylene Vesicles Induced by the Solvent Effect. J Phys Chem B 2010; 114:13365-71. [DOI: 10.1021/jp105604t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana Clarissa S. Pires
- Departamento de Tecnologia de Alimentos, Departamento de Química, and Departamento de Física, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-000 Brazil
| | - Nilda de Fátima F. Soares
- Departamento de Tecnologia de Alimentos, Departamento de Química, and Departamento de Física, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-000 Brazil
| | - Luis Henrique M. da Silva
- Departamento de Tecnologia de Alimentos, Departamento de Química, and Departamento de Física, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-000 Brazil
| | - Maria C. Hespanhol da Silva
- Departamento de Tecnologia de Alimentos, Departamento de Química, and Departamento de Física, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-000 Brazil
| | - Aparecida B. Mageste
- Departamento de Tecnologia de Alimentos, Departamento de Química, and Departamento de Física, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-000 Brazil
| | - Rêmili F. Soares
- Departamento de Tecnologia de Alimentos, Departamento de Química, and Departamento de Física, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-000 Brazil
| | - Álvaro V. N. C. Teixeira
- Departamento de Tecnologia de Alimentos, Departamento de Química, and Departamento de Física, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-000 Brazil
| | - Nélio J. Andrade
- Departamento de Tecnologia de Alimentos, Departamento de Química, and Departamento de Física, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-000 Brazil
| |
Collapse
|
39
|
Abdul-Hammed M, Breiden B, Adebayo MA, Babalola JO, Schwarzmann G, Sandhoff K. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J Lipid Res 2010; 51:1747-60. [PMID: 20179319 PMCID: PMC2882726 DOI: 10.1194/jlr.m003822] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We examined the effect of Niemann-Pick disease type 2 (NPC2) protein and some late endosomal lipids [sphingomyelin, ceramide and bis(monoacylglycero)phosphate (BMP)] on cholesterol transfer and membrane fusion. Of all lipid-binding proteins tested, only NPC2 transferred cholesterol at a substantial rate, with no transfer of ceramide, GM3, galactosylceramide, sulfatide, phosphatidylethanolamine, or phosphatidylserine. Cholesterol transfer was greatly stimulated by BMP, little by ceramide, and strongly inhibited by sphingomyelin. Cholesterol and ceramide were also significantly transferred in the absence of protein. This spontaneous transfer of cholesterol was greatly enhanced by ceramide, slightly by BMP, and strongly inhibited by sphingomyelin. In our transfer assay, biotinylated donor liposomes were separated from fluorescent acceptor liposomes by streptavidin-coated magnetic beads. Thus, the loss of fluorescence indicated membrane fusion. Ceramide induced spontaneous fusion of lipid vesicles even at very low concentrations, while BMP and sphingomyelin did so at about 20 mol% and 10 mol% concentrations, respectively. In addition to transfer of cholesterol, NPC2 induced membrane fusion, although less than saposin-C. In this process, BMP and ceramide had a strong and mild stimulating effect, and sphingomyelin an inhibiting effect, respectively. Note that the effects of the lipids on cholesterol transfer mediated by NPC2 were similar to their effect on membrane fusion induced by NPC2 and saposin-C.
Collapse
Affiliation(s)
- Misbaudeen Abdul-Hammed
- Membrane Biology and Biochemistry Unit, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Stancevic B, Kolesnick R. Ceramide-rich platforms in transmembrane signaling. FEBS Lett 2010; 584:1728-40. [PMID: 20178791 DOI: 10.1016/j.febslet.2010.02.026] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 01/08/2023]
Abstract
Recent evidence suggests that ceramide regulates stress signaling via reorganization of the plasma membrane. The focus of this review will be to discuss the mechanism by which acid sphingomyelinase (ASMase)-generated ceramide initiates transmembrane signaling in the plasma membrane exoplasmic leaflet. In particular, we review the unique biophysical properties of ceramide that render it proficient in formation of signaling domains termed ceramide-rich platforms (CRPs), and the role of CRPs in the pathophysiology of various diseases. The biomedical significance of CRPs makes these structures an attractive therapeutic target.
Collapse
Affiliation(s)
- Branka Stancevic
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
41
|
Transbilayer (flip-flop
) lipid motion and lipid scrambling in membranes. FEBS Lett 2009; 584:1779-86. [DOI: 10.1016/j.febslet.2009.12.049] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/18/2009] [Indexed: 12/24/2022]
|
42
|
Ceramide acyl chain length markedly influences miscibility with palmitoyl sphingomyelin in bilayer membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1117-28. [DOI: 10.1007/s00249-009-0562-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/21/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
|
43
|
Kolter T, Sandhoff K. Lysosomal degradation of membrane lipids. FEBS Lett 2009; 584:1700-12. [PMID: 19836391 DOI: 10.1016/j.febslet.2009.10.021] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/09/2009] [Indexed: 01/05/2023]
Abstract
The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes.
Collapse
Affiliation(s)
- Thomas Kolter
- LiMES - Life and Medical Sciences Institute, Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany
| | | |
Collapse
|
44
|
Maula T, Westerlund B, Slotte JP. Differential ability of cholesterol-enriched and gel phase domains to resist benzyl alcohol-induced fluidization in multilamellar lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2454-61. [PMID: 19766094 DOI: 10.1016/j.bbamem.2009.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/17/2009] [Accepted: 08/31/2009] [Indexed: 12/11/2022]
Abstract
Benzyl alcohol (BA) has a well-known fluidizing effect on both artificial and cellular membranes. BA is also likely to modulate the activities of certain membrane proteins by decreasing the membrane order. This phenomenon is presumably related to the ability of BA to interrupt interactions between membrane proteins and the surrounding lipids by fluidizing the lipid bilayer. The components of biological membranes are laterally diversified into transient assemblies of varying content and order, and many proteins are suggested to be activated or inactivated by their localization in or out of membrane domains displaying different physical phases. We studied the ability of BA to fluidize artificial bilayer membranes representing liquid-disordered, cholesterol-enriched and gel phases. Multilamellar vesicles were studied by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and trans-parinaric acid, which display different phase partitioning. Domains of different degree of order and thermal stability showed varying abilities to resist fluidization by BA. In bilayers composed of mixtures of an unsaturated phosphatidylcholine, a saturated high melting temperature lipid (sphingomyelin or phosphatidylcholine) and cholesterol, BA fluidized and lowered the melting temperature of the ordered and gel phase domains. In general, cholesterol-enriched domains were more resistant to BA than pure gel phase domains. In contrast, bilayers containing high melting temperature gel phase domains containing a ceramide or a galactosylceramide proved to be the most effective in resisting fluidization. The results of our study suggest that the ability of BA to affect the fluidity and lateral organization of the membranes was dependent on the characteristic features of the membrane compositions studied and related to the intermolecular cohesion in the domains.
Collapse
Affiliation(s)
- Terhi Maula
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland.
| | | | | |
Collapse
|
45
|
Castro BM, Silva LC, Fedorov A, de Almeida RFM, Prieto M. Cholesterol-rich fluid membranes solubilize ceramide domains: implications for the structure and dynamics of mammalian intracellular and plasma membranes. J Biol Chem 2009; 284:22978-87. [PMID: 19520848 DOI: 10.1074/jbc.m109.026567] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A uniquely sensitive method for ceramide domain detection allowed us to study in detail cholesterol-ceramide interactions in lipid bilayers with low (physiological) ceramide concentrations, ranging from low or no cholesterol (a situation similar to intracellular membranes, such as endoplasmic reticulum) to high cholesterol (similar to mammalian plasma membrane). Diverse fluorescence spectroscopy and microscopy experiments were conducted showing that for low cholesterol amounts ceramide segregates into gel domains that disappear upon increasing cholesterol levels. This was observed in different raft (sphingomyelin/cholesterol-containing) and non-raft (sphingomyelin-absent) membranes, i.e. mimicking different types of cell membranes. Cholesterol-ceramide interactions have been described mainly as raft sphingomyelin-dependent. Here sphingomyelin independence is demonstrated. In addition, ceramide-rich domains re-appear when either cholesterol is converted by cholesterol oxidase to cholestenone or the temperature is decreased. Ceramide is more soluble in cholesterol-rich fluid membranes than in cholesterol-poor ones, thereby increasing the chemical potential of cholesterol. Ceramide solubility depends on the average gel-fluid transition temperature of the remaining membrane lipids. The inability of cholestenone-rich membranes to dissolve ceramide gel domains shows that the cholesterol ordering and packing properties are fundamental to the mixing process. We also show that the solubility of cholesterol in ceramide domains is low. The results are rationalized by a ternary phospholipid/ceramide/cholesterol phase diagram, providing the framework for the better understanding of biochemical phenomena modulated by cholesterol-ceramide interactions such as cholesterol oxidase activity, lipoprotein metabolism, and lipid targeting in cancer therapy. It also suggests that the lipid compositions of different organelles are such that ceramide gel domains are not formed unless a stress or pathological situation occurs.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Complexo I, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
46
|
Staneva G, Momchilova A, Wolf C, Quinn PJ, Koumanov K. Membrane microdomains: Role of ceramides in the maintenance of their structure and functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:666-75. [DOI: 10.1016/j.bbamem.2008.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/13/2008] [Accepted: 10/29/2008] [Indexed: 12/12/2022]
|
47
|
Petelska AD, Naumowicz M, Figaszewski ZA. Complex Formation Equilibria in Two-Component Bilayer Lipid Membrane: Interfacial Tension Method. J Membr Biol 2009; 228:71-7. [DOI: 10.1007/s00232-009-9160-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 02/02/2009] [Indexed: 11/28/2022]
Affiliation(s)
- Aneta D Petelska
- Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | | | | |
Collapse
|
48
|
Naumowicz M, Figaszewski ZA. Impedance spectroscopic investigation of the bilayer lipid membranes formed from the phosphatidylserine-ceramide mixture. J Membr Biol 2009; 227:67-75. [PMID: 19122973 DOI: 10.1007/s00232-008-9144-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/22/2008] [Indexed: 10/21/2022]
Abstract
Electrochemical impedance spectroscopy was used for the study of two-component lipid membranes. Phosphatidylserine and ceramide were to be investigated because they play an important biochemical role in cell membranes. The research on biolipid interaction was focused on a quantitative description of processes that take part in a bilayer. Assumed models of interaction between amphiphilic molecules and the equilibria that take place there were described by mathematical equations for the studied system. The possibility of complex formation for a two-component system forming bilayers was assumed, which could explain the deviation from the additivity rule. The molecular area and the equilibrium constant of the complex were determined.
Collapse
Affiliation(s)
- Monika Naumowicz
- Institute of Chemistry, University of Bialystok, Al. J. Pilsudskiego 11/4, 15-443, Bialystok, Poland
| | | |
Collapse
|
49
|
|
50
|
Goñi FM, Alonso A. Effects of ceramide and other simple sphingolipids on membrane lateral structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:169-77. [PMID: 18848519 DOI: 10.1016/j.bbamem.2008.09.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
The available data concerning the ability of ceramide and other simple sphingolipids to segregate laterally into rigid, gel-like domains in a fluid bilayer has been reviewed. Ceramides give rise to rigid ceramide-enriched domains when their N-acyl chain is longer than C12. The high melting temperature of hydrated ceramides, revealing a tight intermolecular interaction, is probably responsible for their lateral segregation. Ceramides compete with cholesterol for the formation of domains with lipids such as sphingomyelin or saturated phosphatidylcholines; under these conditions displacement of cholesterol by ceramide involves a transition from a liquid-ordered to a gel-like phase in the domains involved. When ceramide is generated in situ by a sphingomyelinase, instead of being premixed with the other lipids, gel-like domain formation occurs as well, although the topology of the domains may not be the same, the enzyme causing clustering of domains that is not detected with premixed ceramide. Ceramide-1-phosphate is not likely to form domains in fluid bilayers, and the same is true of sphingosine and of sphingosine-1-phosphate. However, sphingosine does rigidify pre-existing gel domains in mixed bilayers.
Collapse
Affiliation(s)
- Félix M Goñi
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| | | |
Collapse
|