1
|
Müller M, Mayrhofer S, Sudjarwo WAA, Gibisch M, Tauer C, Berger E, Brocard C, Toca-Herrera JL, Striedner G, Hahn R, Cserjan-Puschmann M. Antimicrobial peptide plectasin recombinantly produced in Escherichia coli disintegrates cell walls of gram-positive bacteria, as proven by transmission electron and atomic force microscopy. J Bacteriol 2025; 207:e0045624. [PMID: 40183576 PMCID: PMC12096834 DOI: 10.1128/jb.00456-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Plectasin, an antimicrobial peptide, was initially isolated from the saprophytic fungus Pseudoplectania nigrella. This peptide, a member of the cysteine-stabilized α-helix and β-sheet family, has demonstrated potent antimicrobial activity against gram-positive pathogens, including strains resistant to conventional antibiotics. Our CASPON platform process enables the production of substantial quantities of plectasin, facilitating investigations on the activity and the mode of action of this recombinantly produced peptide. To this end, we developed an activity assay that reflects the growth inhibition of selected model bacteria, allowing for statistical analysis and evaluation of reproducibility. The mode of action was investigated using transmission electron microscopy and atomic force microscopy. The latter provided new insights into alterations in the cell surface of gram-positive bacteria treated with plectasin at the single-cell level. While the cell diameter remained unaltered, the roughness increased by up to twofold, and the cell stiffness decreased by approximately one-third in the four gram-positive bacterial strains tested. Statistical analysis of these morphological changes provides further insights into the effects and efficiency of antimicrobial peptides targeting pathogen cell walls. IMPORTANCE The rise of antibiotic-resistant bacteria is a major threat to global health. Antimicrobial peptides (AMPs) offer a promising way to combat this. With the CASPON technology, we produced the AMP plectasin comprising three disulfide bonds using Escherichia coli. The activity of purified plectasin with and without a CASPON fusion tag was determined for four gram-positive and four gram-negative bacteria. As anticipated, only gram-positive bacteria showed a growth inhibition response to un-tagged plectasin. Plectasin treatment on gram-positive bacteria was visualized via electron microscopy. Evaluation of atomic force microscopy indicated that plectasin treatment led to increased roughness but maintained thickness. Based on our study, we assume that the CASPON technology can be employed in the future for the production and characterization of medical-grade AMPs.
Collapse
Affiliation(s)
- Matthias Müller
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, BOKU University, Vienna, Austria
| | - Sigrid Mayrhofer
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
| | | | - Martin Gibisch
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, BOKU University, Vienna, Austria
| | - Christopher Tauer
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
| | - Eva Berger
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, BOKU University, Vienna, Austria
| | - Cécile Brocard
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse, Vienna, Austria
| | | | - Gerald Striedner
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, BOKU University, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, BOKU University, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, BOKU University, Vienna, Austria
| |
Collapse
|
2
|
Teodoro JA, Senra MVX, Amaral DT. In silico bioprospecting of the Neotropical Plant Mandacaru (Cereus) for antimicrobial properties. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10580-9. [PMID: 40388104 DOI: 10.1007/s12602-025-10580-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
The mandacaru is a cactus species complex widely known in Brazil, with extensive applications in medicinal, food, and agricultural fields. Although it is used medicinally by traditional populations, to treat several diseases, knowledge about its biomolecules of biotechnological potential is still limited, specifically regarding antimicrobial and healing properties. The bacterial resistance to conventional antibiotics presents a significant challenge in modern medicine. In light of this scenario, bioprospecting mandacaru for biotechnological applications as an antimicrobial has emerged as a new and promising research area. In this study, transcriptomic data from three Cereus species (C. fernambucensis, C. hildmannianus, and C. jamacaru) were combined with bioinformatic approaches, including protein modeling, molecular docking, and molecular dynamics simulations, to identify proteins with therapeutic potential for treating wound infections. Our findings highlighted peptides as particularly promising antimicrobial agents, demonstrating efficacy against a range of pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi. Those peptides showed strong interactions with the streptolydigin and sodium ligands, with the streptolydigin ligand emerging as the most promising for enhancing antimicrobial activity. Molecular dynamics revealed that while CF15 exhibited limited stability, CF267, CF48, CH167, and CH176 displayed superior stability, positioning them as the most promising candidates for further investigation. Future work will focus on synthesizing these peptides and evaluating their antimicrobial properties through in vitro and in vivo analyses, to develop them into potent therapeutic agents.
Collapse
Affiliation(s)
- João A Teodoro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, bloco A, 504-3 room, São Paulo, Santo André, 09210-580, Brazil
| | - Marcus V X Senra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, bloco A, 504-3 room, São Paulo, Santo André, 09210-580, Brazil
| | - Danilo T Amaral
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, bloco A, 504-3 room, São Paulo, Santo André, 09210-580, Brazil.
| |
Collapse
|
3
|
Abdallah K, Fliss O, Pham NP, Guay LD, Gingras H, Godin C, Leprohon P, Biron E, Fliss I, Ouellette M. Antimicrobial Activity of a Synthetic Brevibacillin Analog Against Multidrug-Resistant Campylobacter spp. Int J Mol Sci 2025; 26:4657. [PMID: 40429801 PMCID: PMC12111383 DOI: 10.3390/ijms26104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Campylobacter spp. is one of the most prevalent causes of zoonotic foodborne infections associated with diarrhea in humans. The growing threat of antibiotic resistance calls for innovative approaches. The antimicrobial lipopeptide brevibacillin produced by Brevibacillus laterosporus and its synthetic analog brevibacillin Thr1 showed promising activity against Salmonella and E. coli. The latter is a 1602.13 Da positively charged (+3) synthetic peptide of 13 residues that showed reduced cytotoxicity (IC50 of 32.2 µg/mL against Caco-2 cells) and hemolytic activity (1.2% hemolysis at 128 µg/mL) compared to the native peptide. It contains an N-terminal L-isoleucic fatty acid chain and four non-proteinogenic amino acids and ends with valinol at its C-terminus. One key structural modification is the substitution of α,β-dehydrobutyric acid with threonine. We investigated the antimicrobial potential of the synthetic brevibacillin Thr1 analog against a collection of 44 clinical Campylobacter spp. that were obtained from two reference laboratories. Susceptibility testing revealed marked resistance to ciprofloxacin, tetracycline, and ampicillin among the strains, with more than half expressing a multidrug-resistant phenotype. The genomes of the 44 strains were sequenced to study the genes responsible for their antimicrobial resistance. Tetracycline resistance was associated with tet(O), ciprofloxacin resistance with mutations in gyrA and regulatory sequences modulating the expression of an efflux system, and aminoglycoside resistance with genes of the aph family. The brevibacillin Thr1 analog was produced by chemical synthesis, and evaluation of its activity against a subset of clinical strains by microdilution revealed minimum inhibitory concentration and minimum bactericidal concentration ranging from 8 µg/mL to 64 µg/mL. The peptide was active against multidrug-resistant isolates with a bactericidal effect. Of note, despite numerous attempts, it proved impossible to select Campylobacter spp. for resistance to the brevibacillin Thr1 analog. These results underline the potential of lipopeptides, notably brevibacillin, as antimicrobial alternatives against antibiotic-resistant Campylobacter bacterial infections.
Collapse
Affiliation(s)
- Khaled Abdallah
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec et Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G2, Canada; (K.A.); (N.P.P.)
- Département des Sciences des Aliments et de Nutrition, Université Laval, Québec City, QC G1V 0E8, Canada
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Omar Fliss
- Département des Sciences des Aliments et de Nutrition, Université Laval, Québec City, QC G1V 0E8, Canada
- Faculté de Pharmacie, Université Laval et Laboratoire de Chimie Médicale, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada (E.B.)
| | - Nguyen Phuong Pham
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec et Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G2, Canada; (K.A.); (N.P.P.)
| | - Louis David Guay
- Faculté de Pharmacie, Université Laval et Laboratoire de Chimie Médicale, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada (E.B.)
| | - Hélène Gingras
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec et Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G2, Canada; (K.A.); (N.P.P.)
| | - Chantal Godin
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec et Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G2, Canada; (K.A.); (N.P.P.)
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec et Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G2, Canada; (K.A.); (N.P.P.)
| | - Eric Biron
- Faculté de Pharmacie, Université Laval et Laboratoire de Chimie Médicale, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada (E.B.)
| | - Ismail Fliss
- Département des Sciences des Aliments et de Nutrition, Université Laval, Québec City, QC G1V 0E8, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec et Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 4G2, Canada; (K.A.); (N.P.P.)
| |
Collapse
|
4
|
Zhu S, Wang Y, Chong SMS, Wohland T. A Live Bacterial Screening Assay for Membrane-Active Antimicrobial Compounds Using Imaging Fluorescence Correlation Spectroscopy. Anal Chem 2025; 97:9648-9654. [PMID: 40306620 PMCID: PMC12079629 DOI: 10.1021/acs.analchem.4c05698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
There is a growing need in the personal hygiene industry to develop a new generation of effective antimicrobial actives, to be used as functional antibacterial ingredients and preservatives. Antimicrobials that attack bacterial membranes are an attractive target due to the relatively conserved structure compositions of the bacterial membrane, which bacteria cannot easily change without influences on the function of membrane-embedded proteins. However, current screening is slow and there is a demand for rapid screening methodologies to overcome the time-consuming nature of existing screening tools. Imaging total internal reflection-fluorescence correlation spectroscopy (ITIR-FCS) is a powerful technique that can measure membrane dynamics and identify changes with high accuracy and precision. We therefore combine ITIR-FCS with a segmentation algorithm to automatically identify bacterial cells to screen the effect of antimicrobial compounds on the dynamics of bacterial membranes as a function of antimicrobial concentration and incubation time. This allows to assess membrane activity within less than 30 min and generates dose-response curves within a span of 2 h. The technique detects antimicrobial activity at lower concentrations and an order of magnitude faster than commonly used susceptibility testing assays.
Collapse
Affiliation(s)
- Shiwen Zhu
- Centre
for BioImaging Sciences, National University
of Singapore, Singapore 117557, Singapore
- Department
of Biological Sciences, National University
of Singapore, Singapore 117558, Singapore
| | - Yu Wang
- Beauty
Revealed, Procter & Gamble International
Operations SA Singapore Branch, Singapore 138547, Singapore
| | - Shi Min Sherilyn Chong
- Beauty
Revealed, Procter & Gamble International
Operations SA Singapore Branch, Singapore 138547, Singapore
| | - Thorsten Wohland
- Centre
for BioImaging Sciences, National University
of Singapore, Singapore 117557, Singapore
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Department
of Biological Sciences, National University
of Singapore, Singapore 117558, Singapore
| |
Collapse
|
5
|
Dad N, Elsawy MA, Humphreys G, Pluen A, Lu JR, McBain AJ. A critical view of antimicrobial peptides: exploring their potential and the barriers to realization. J Appl Microbiol 2025; 136:lxaf087. [PMID: 40205522 DOI: 10.1093/jambio/lxaf087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/07/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025]
Abstract
The global rise of multidrug-resistant infections highlights the urgent need for innovative therapeutic strategies beyond traditional antibiotics. Antimicrobial peptides (AMPs), naturally occurring in all forms of life and synthetically producible, have garnered significant attention for their broad-spectrum antimicrobial properties and diverse mechanisms of action, including membrane disruption, immune modulation, and biofilm formation inhibition and disruption. Despite great potential, the clinical deployment of AMPs faces significant challenges, including cytotoxicity, low chemical stability, high production costs, and stringent regulatory demands. Innovative strategies, such as AMP-antibiotic conjugation, offer potential solutions to some of these challenges by enhancing efficacy, reducing toxicity, and broadening antimicrobial activity. This review critically evaluates the promise and limitations of AMPs as therapeutic antibacterial agents. We also explore the potential of AMP-antibiotic conjugates, highlighting their potential synergistic effects and the obstacles to their clinical application. Antimicrobial self-assembling peptides are also discussed, with their ability to form nanostructures that may disrupt biofilms and inhibit bacterial communication, representing a promising but complex avenue. A critical evaluation of these emerging strategies, grounded in their practical applicability and translational challenges, is essential to drive meaningful progress in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Navid Dad
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Mohamed A Elsawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Gavin Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Alain Pluen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Schuster Building, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
6
|
Meethong M, Ekchaweng K, Obchoei S, Jakkawanpitak C, Runsaeng P. The acidic latex protein from Hevea brasiliensis serves as an anionic antimicrobial peptide. PeerJ 2025; 13:e19242. [PMID: 40247836 PMCID: PMC12005194 DOI: 10.7717/peerj.19242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/11/2025] [Indexed: 04/19/2025] Open
Abstract
Background Hev b5 is a unique acidic protein identified as an allergen in natural latex and latex gloves, known for stimulating histamine release from human basophils sensitized with serum from latex-allergic individuals. It is rich in glutamic acid and proline residues arranged in repeated motifs. The protein's unusual amino acid composition includes 48% negatively charged residues and 13% positively charged residues. Methods The recombinant form of Hev b5 (rHev b5) was produced in Escherichia coli. Its chitinase activity, which may provide antifungal properties by breaking down chitin in phytopathogen cell walls, was assessed. Additionally, the antibacterial activity of rHev b5 against Gram-positive and Gram-negative bacteria, including Bacillus cereus, Staphylococcus aureus, E. coli and Salmonella typhi, was evaluated. The potential enhancement of this activity in the presence of calcium or zinc ions was investigated to understand the underlying mechanism involving binding to microbial membranes via metal ion-mediated cationic salt bridges. Results rHev b5 exhibited significant chitinase activity and demonstrated substantial antibacterial effects against both Gram-positive and Gram-negative bacteria. The antibacterial activity was notably enhanced in the presence of zinc or calcium ions, suggesting that rHev b5 binds to microbial membranes through metal ion-mediated cationic salt bridges, leading to cell lysis and microbial death. Conclusion Antimicrobial properties and chitinase activity of Hev b5 underline its potential as an anionic antimicrobial peptide, offering both antifungal and antibacterial defenses. These findings position Hev b5 as a promising candidate for further research in antimicrobial peptide applications.
Collapse
Affiliation(s)
- Methaporn Meethong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Kitiya Ekchaweng
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Sumalee Obchoei
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Chanawee Jakkawanpitak
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Phanthipha Runsaeng
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| |
Collapse
|
7
|
Hong M. Solid-State NMR of Virus Membrane Proteins. Acc Chem Res 2025; 58:847-860. [PMID: 40019485 DOI: 10.1021/acs.accounts.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Enveloped viruses encode ion-conducting pores that permeabilize the host cell membranes and mediate the budding of new viruses. These viroporins are some of the essential membrane proteins of viruses, and have high sequence conservation, making them important targets of antiviral drugs. High-resolution structures of viroporins are challenging to determine by X-ray crystallography and cryoelectron microscopy, because these proteins are small, hydrophobic, and prone to induce membrane curvature. Solid-state NMR (ssNMR) spectroscopy is an ideal method for elucidating the structure, dynamics, and mechanism of action of viroporins in phospholipid membranes. This Account describes our investigations of influenza M2 proteins and the SARS-CoV-2 E protein using solid-state NMR.M2 proteins form acid-activated tetrameric proton channels that initiate influenza uncoating in the cell. 15N and 13C exchange NMR revealed that M2 shuttles protons into the virion using a crucial histidine, whose imidazole nitrogens pick up and release protons on the microsecond time scale at acidic pH. This proton exchange is synchronized with and facilitated by imidazole reorientation, which is observed in NMR spectra. Quantitative 15N NMR spectra yielded the populations of neutral and cationic histidines as a function of pH, giving four proton dissociation constants (pKa's). The pKa's of influenza AM2 indicate that the +3 charged channel has the highest time-averaged single-channel conductance; thus the third protonation event defines channel activation. In comparison, influenza BM2 exhibits lower pKa's due to a second, peripheral histidine, which accelerates proton dissociation from the central proton-selective histidine. Amantadine binding to AM2 suppressed proton exchange and imidazole reorientation, indicating that this antiviral drug acts by inhibiting proton shuttling. Solid-state NMR 13C-2H distance measurements revealed that amantadine binds the N-terminal pore of the channel near a crucial Ser31, whose mutation to asparagine causes amantadine resistance in circulating influenza A viruses. A second binding site, on the lipid-facing surface of the protein, only occurs when amantadine is in large excess in lipid bilayers. M2 not only functions as a proton channel but also conducts membrane scission during influenza budding in a cholesterol-dependent manner. Solid-state NMR distance experiments revealed that two cholesterol molecules bind asymmetrically to the surface of the tetrameric channel, thus recruiting the protein to the cholesterol-rich budding region of the cell membrane to cause membrane scission.To accelerate full structure determination of viroporins, we developed a suite of 19F solid-state NMR techniques that measure interatomic distances to 1-2 nm. Using this approach, we determined the atomic structures of influenza BM2, SARS-CoV-2 E, and EmrE, a multidrug-resistance bacterial transporter. pH-induced structural changes of these proteins gave detailed insights into the activation mechanisms of BM2 and E and the proton-coupled substrate transport mechanism of EmrE. The SARS-CoV-2 E protein forms pentameric helical bundles whose structures are distinct between the closed state at neutral pH and the open state at acidic pH. These 19F-enabled distance NMR experiments are also instrumental for identifying the binding mode and binding site of hexamethylene amiloride in E, paving the way for developing new antiviral drugs that target these pathogenic virus ion channels.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, Hu Y, Shi J. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther 2025; 10:74. [PMID: 40038239 PMCID: PMC11880366 DOI: 10.1038/s41392-024-02107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/01/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025] Open
Abstract
The successful approval of peptide-based drugs can be attributed to a collaborative effort across multiple disciplines. The integration of novel drug design and synthesis techniques, display library technology, delivery systems, bioengineering advancements, and artificial intelligence have significantly expedited the development of groundbreaking peptide-based drugs, effectively addressing the obstacles associated with their character, such as the rapid clearance and degradation, necessitating subcutaneous injection leading to increasing patient discomfort, and ultimately advancing translational research efforts. Peptides are presently employed in the management and diagnosis of a diverse array of medical conditions, such as diabetes mellitus, weight loss, oncology, and rare diseases, and are additionally garnering interest in facilitating targeted drug delivery platforms and the advancement of peptide-based vaccines. This paper provides an overview of the present market and clinical trial progress of peptide-based therapeutics, delivery platforms, and vaccines. It examines the key areas of research in peptide-based drug development through a literature analysis and emphasizes the structural modification principles of peptide-based drugs, as well as the recent advancements in screening, design, and delivery technologies. The accelerated advancement in the development of novel peptide-based therapeutics, including peptide-drug complexes, new peptide-based vaccines, and innovative peptide-based diagnostic reagents, has the potential to promote the era of precise customization of disease therapeutic schedule.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wenjie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junyi Mao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yonghe Hu
- School of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
9
|
Thakral P, Rana N, Singh N, Das SS, Koley M, Gupta J, Malik D, Sen I. Validation of Radiosynthesis and First in-Human Dosimetry of 68Ga-NOTA-UBI-29-41: A Proof of Concept Study. Cancer Biother Radiopharm 2025; 40:104-113. [PMID: 39509166 DOI: 10.1089/cbr.2024.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Background: Antimicrobial peptides (AMPs) such as UBI-29-41 offer a distinctive approach for precise detection due to their unique interactions with bacteria and makes them promising candidates for specific and selective imaging. The study was aimed to corroborate the in-house manual synthesis of 68Ga-NOTA-UBI-29-41, evaluate its uptake in patients with suspected infection, and estimate of patient-specific dosimetry to ensure optimal clinical application. Materials and Methods: 68Ga-NOTA-UBI-29-41 was synthesized by using a variable amount of UBI-29-41 (60-90 μg) to 555 MBq of 68Ga in 0.05 M hydrochloric acid (HCl) and heating the reaction sample for 12 min at 90°C at pH: 3.5-4 to obtain the radiopeptide with high yield and high radiochemical purity (RCP). 68Ga-NOTA-UBI-29-41 positron emission tomography/computed tomography (PET/CT) scans at variable timepoints were done to evaluate its biodistribution and maximum uptake time. Furthermore, patient-specific dosimetric estimation was done using the HERMES software. Results: A total of 5 μg/37 MBq (5 μg/mCi) of NOTA-UBI-29-41 for 12 min at 90°C were the optimal parameters to obtain 88%-90% of yield and 98%-99 % of RCP. 68Ga-NOTA-UBI-29-41 showed expeditious blood clearance and high renal excretion. The optimal time for imaging of infection with 68Ga-NOTA-UBI-29-41 was found to be at 60 min postinjection (n = 8). The critical organ was the urinary bladder, receiving an average dose of 138.02 ± 45.92 µSv/MBq, followed by 53.81 ± 13.72 µSv/MBq for kidneys with a mean effective dose of 1.52 ± 0.64 mSv. Conclusion: The protocol for in-house manual labeling of 68Ga-NOTA-UBI-29-41 was reproducible, providing high yield and RCP. 68Ga-NOTA-UBI-29-41 administration was found to be safe and nontoxic. The favorable biodistribution and the first-in-human patient-specific dosimetry ensure optimal clinical application.
Collapse
Affiliation(s)
- Parul Thakral
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| | - Nishant Rana
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| | - Navneet Singh
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| | - Subha Shankar Das
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| | - Mrinalini Koley
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| | - Jatin Gupta
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| | - Dharmender Malik
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| | - Ishita Sen
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| |
Collapse
|
10
|
Mochnáčová E, Bhide K, Kucková K, Jozefiaková J, Maľarik T, Bhide M. Antimicrobial cyclic peptides effectively inhibit multiple forms of Borrelia and cross the blood-brain barrier model. Sci Rep 2025; 15:6147. [PMID: 39979461 PMCID: PMC11842550 DOI: 10.1038/s41598-025-90605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Infection caused by neuroinvasive Borrelia often manifests long-term CNS disorders and is difficult to treat as most antibiotics fail to attain an effective concentration within the brain or cannot kill the persister forms of Borrelia (cysts and round bodies). Thus, this study focused on developing antimicrobial cyclic peptides (AMPs) from a combinatorial phage display library that target phosphatidylcholine of the borrelial cell membrane. Isolated cyclic peptides with anti-Borrelia properties were then fused with the CNS homing peptide developed in this study (designated as O-BBB) to facilitate AMP transport across the blood-brain barrier. Among all O-BBB fused AMPs, Bor-18 had half maximal effective concentration (EC50) 0.83 µM when tested against spirochetal Borrelia. Bor-16, Bor-18, and Bor-26 inhibited the cystic form with EC50 0.83 µM, while Bor-11 had EC50 0.41 µM. Within an hour, all four peptides caused a permeability breach in the borrelial cell membrane, causing depolarization of the membrane. Bor peptides did not inhibit eukaryotic cell metabolism or proliferation, nor did they cause erythrocyte lysis. Peptides were stable in serum, could cross the BBB in-vitro, and remained effective against Borrelia. Cyclic AMPs fused with a CNS homing moiety, the Bor peptides, deserve further investigation for their potential use in neuroborreliosis therapy.
Collapse
Affiliation(s)
- Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Katarína Kucková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Jana Jozefiaková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Tomáš Maľarik
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia.
- Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
11
|
Ramamourthy G, Ishida H, Vogel HJ. Antibiofilm Activities of Tritrpticin Analogs Against Pathogenic Pseudomonas aeruginosa PA01 Strains. Molecules 2025; 30:826. [PMID: 40005137 PMCID: PMC11858513 DOI: 10.3390/molecules30040826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
In our previous work, we showed that short antimicrobial hexapeptides (AMPs) containing three Trp and three Arg residues had a potent antibiofilm activity against a pathogenic Gram-positive Staphylococcus aureus MRSA strain. However, the activity of these hexapeptides against a Gram-negative Pseudomonas aeruginosa PA01 strain was relatively poor. Herein, we tested the longer 13-residue synthetic AMP tritrpticin-NH2 (Tritrp) and several of its analogs as potential antibiofilm agents that can prevent biofilm formation (MBIC) and/or cause biofilm dissolution (MBEC) for two P. aeruginosa PA01 strains, one of which expressed the GFP protein. Tritrp, a porcine cathelicidin, is currently the only known naturally occurring cationic AMP that has three Trp in sequence (WWW), a feature that was found to be important in our previous study. Our results show that several Tritrp analogs were effective. In particular, analogs with Pro substitutions that had altered peptide backbone structures compared to the naturally occurring amphipathic two-turn structure showed more potent MBIC and MBEC antibiofilm activities. Selectivity of the peptides towards P. aeruginosa could be improved by introducing the non-proteinogenic amino acid 2,3-diaminopropionic acid, rather than Arg or Lys, as the positively charged residues. Using 1H NMR spectroscopy, we also reinvestigated the role of the two Pro residues in cis-trans isomerism of the peptide in aqueous solution. Overall, our results show that the WWW motif embedded in longer cationic AMPs has considerable potential to combat biofilm formation in pathogenic Gram-negative strains.
Collapse
Affiliation(s)
| | | | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.I.)
| |
Collapse
|
12
|
Noe MM, Rodríguez JA, Barredo Vacchelli GR, Camperi SA, Franchi AN, Turina AV, Perillo MA, Nolan V. Whey-Derived Antimicrobial Anionic Peptide Interaction with Model Membranes and Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:242-252. [PMID: 39757468 DOI: 10.1021/acs.langmuir.4c03391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The present work focuses on one of the possible target mechanisms of action of the anionic antimicrobial peptide β-lg125-135 derived from trypsin hydrolysis of β-lactoglobulin. After confirmation of bactericidal activity against a pathogenic Gram(+) strain and demonstration of the innocuousness on a eukaryotic cell line, we investigated the interaction of β-lg125-135 with monolayers and bilayers of dpPC and dpPC:dpPG as model membranes of eukaryotic and bacterial membranes, respectively. In monolayers, compared to zwitterionic dpPC, in the negatively charged dpPC-dpPG, β-lg125-135 injected into the subphase penetrated up to higher surface pressures and showed greater extents of penetration with increasing concentration in the subphase. Additionally, the rate constants for β-lg125-135 adsorption and desorption were 1 order of magnitude higher, and the resultant thermodynamic association constant was 1 order of magnitude lower. In turn, the compression isotherms of monolayers prepared with the β-lg125-135 present in the mixture spread over the air-water interface, remained in the monolayer and showed positive deviations from ideality, a greater decrease in the surface compressibility modulus, and an increase in the surface potential of both interfaces, more pronounced on dpPC:dpPG. In SUVs, fluorescence anisotropy (FA) assays using DPH and TMA-DPM indicated that β-lg125-135 tended to disrupt the gel phase of dpPC bilayers. Conversely, in dpPC:dpPG, the peptide increased the FA of both probes. These results reflect a relatively high tendency of the β-lg125-135 to approach the negative interface, with a favorable electrostatic orientation but low stability and short residence time. Once inside the membrane, it stiffens dpPG-containing bilayers.
Collapse
Affiliation(s)
- Melania M Noe
- Departamento de Química, Catedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba 5000, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Jésica A Rodríguez
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Gabriela R Barredo Vacchelli
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Silvia A Camperi
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Buenos Aires 1113, Argentina
| | - Anahí N Franchi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba 5000, Argentina
- Departamento de Fisiología, Catedra de Biología Celular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Anahí V Turina
- Departamento de Química, Catedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba 5000, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - María A Perillo
- Departamento de Química, Catedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba 5000, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Verónica Nolan
- Departamento de Química, Catedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba 5000, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
13
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
14
|
Lall S, Balaram P, Mathew MK, Gosavi S. Sequence of the SARS-CoV-2 Spike Transmembrane Domain Encodes Conformational Dynamics. J Phys Chem B 2025; 129:194-209. [PMID: 39692154 DOI: 10.1021/acs.jpcb.4c05270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The homotrimeric SARS-CoV-2 spike protein enables viral infection by undergoing a large conformational transition, which facilitates the fusion of the viral envelope with the host cell membrane. The spike protein is anchored to the SARS-CoV-2 envelope by its transmembrane domain (TMD), composed of three TM helices, each contributed by one of the protomers of spike. Although the TMD is known to be important for viral fusion, whether it is a passive anchor of the spike or actively promotes fusion remains unknown. Specifically, it is unclear if the TMD and its dynamics facilitate the prefusion to postfusion conformational transition of the spike. Here, we computationally study the dynamics and self-assembly of the SARS-CoV-2 spike TMD in homogeneous POPC and cholesterol containing membranes. Atomistic simulations of a long TM helix-containing protomer segment show that the membrane-embedded segment bobs, tilts and gains and loses helicity, locally thinning the membrane. Coarse-grained multimerization simulations using representative TM helix structures from the atomistic simulations exhibit diverse trimer populations whose architecture depends on the structure of the TM helix protomer. While a symmetric conformation reflects the symmetry of the resting spike, an asymmetric TMD conformation could promote membrane fusion through the stabilization of a fusion intermediate. Together, our simulations demonstrate that the sequence and length of the SARS-CoV-2 spike TM segment make it inherently dynamic, that trimerization does not abrogate these dynamics and that the various observed TMD conformations may enable viral fusion.
Collapse
Affiliation(s)
- Sahil Lall
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - M K Mathew
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
15
|
Ramamourthy G, Vogel HJ. Antibiofilm activities of lactoferricin-related Trp- and Arg-rich antimicrobial hexapeptides against pathogenic Staphylococcus aureus and Pseudomonas aeruginosa strains. Biochem Cell Biol 2025; 103:1-18. [PMID: 39418670 DOI: 10.1139/bcb-2024-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Recently, several antimicrobial peptides (AMPs), varying in length from 12 to 37 residues, have been shown to act as antibiofilm agents. Here, we report a study of 23 hexapeptides modeled after four different Trp- and Arg-rich AMPs, including the RRWQWR-NH2 peptide, derived from bovine lactoferrin. They were tested against the pathogenic Gram-negative Pseudomonas aeruginosa PAO1 strain and a Gram-positive Staphylococcus aureus MRSA strain. Both strains were engineered to express the green fluorescent protein (GFP) protein, and fluorescence detection was used to measure the ability of the peptides to prevent biofilm formation (minimum biofilm inhibitory concentration (MBIC)) or to cause the breakdown of established biofilms (minimum biofilm eradication concentration (MBEC)). Similar antibiofilm activities were obtained with the standard crystal violet dye assay. Most Trp- and Arg-rich hexapeptides displayed a potent antibiofilm activity against the Gram-positive S. aureus MRSA strain. In particular, hexapeptides with 3 Arg and 3 Trp were very effective, especially when they contained the three Trp in sequence. Somewhat unexpectedly, the antimicrobial (MIC) values correlated with the MBIC and MBEC values, which has not been seen for several other AMP/antibiofilm peptides. Our results demonstrate that short Trp- and Arg-rich peptides merit further studies as antibiofilm agents that could be deployed to address part of the antimicrobial resistance problem.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
16
|
Rocha KCA, de Arruda Brasil MCO, Cilli EM, Salay LC. Molecular Interactions of the Antimicrobial Peptide Tritrpticin with Mixed Nanoaggregates: A Fluorescence Spectroscopy Study. Protein Pept Lett 2025; 32:152-160. [PMID: 39878116 DOI: 10.2174/0109298665359223241226091327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Tritrpticin (TRP3) is a peptide belonging to the cathelicidin family and has a broad spectrum of antimicrobial activity. However, this class of biomolecules can be easily degraded in the body, making it necessary to use an efficient transport system. The ability to form stable nanostructures from the interaction of glycyrrhizin saponin with the pluronic polymer F127 was demonstrated, forming mixed biopolymeric micelles, highly promising as drug carriers. OBJECTIVE The present work sought to understand the physicochemical interaction of the antimicrobial peptide TRP3 with the mixed polymeric micelle made from pluronic F127 and the saponin glycyrrhizin. METHODS The interaction of tritrpticin with mixed nanostructured micelles was evaluated through fluorescence spectroscopy and fluorescence quenching with acrylamide. The experiments were performed at room temperature (25 ± 1°C), adopting an excitation wavelength set to 280 nm and emission between 300 and 500 nm, with a slit of 5 nm. RESULTS The interaction of the cationic peptide tritrpticin with the mixed biopolymeric micelles was observed through the blue shift of the fluorescence emission to shorter wavelengths, proving the change of tryptophan to a more hydrophobic environment. Through the fluorescence suppression technique, it was possible to indicate the location of the peptide in the mixed micelles, proving tritrpticin to be partially inserted inside them. CONCLUSION It was concluded that tritrpticin interacted with mixed nanostructured micelles, forming a promising system for biotechnological applications.
Collapse
Affiliation(s)
- Kaio César Antunes Rocha
- Department of Biological Sciences, State University of Santa Cruz - UESC, Rodovia Jorge Amado Km 16, CEP: 45662-900, Ilhéus - BA, Brazil
| | - Maria Carolina Oliveira de Arruda Brasil
- Department of Organic Chemistry and Biochemistry, Institute of Chemistry, São Paulo State University - UNESP, Rua Prof. Francisco Degni, 55, Cep: 14800-900, Araraquara - SP, Brazil
| | - Eduardo Maffud Cilli
- Department of Organic Chemistry and Biochemistry, Institute of Chemistry, São Paulo State University - UNESP, Rua Prof. Francisco Degni, 55, Cep: 14800-900, Araraquara - SP, Brazil
| | - Luiz Carlos Salay
- Department of Exact Sciences, State University of Santa Cruz - UESC, Rodovia Jorge Amado Km 16, CEP: 45662-900, Ilhéus - BA, Brazil
| |
Collapse
|
17
|
Halder A, Pasupuleti R, Sivagnanam S, Das P, Mukherjee O. Boc-Protected Phenylalanine and Tryptophan-Based Dipeptides: A Broad Spectrum Anti-Bacterial Agent. Biopolymers 2025; 116:e23649. [PMID: 39718897 DOI: 10.1002/bip.23649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024]
Abstract
Dipeptides were constructed using hydrophobic amino acid residues following AMP prediction. After that Boc-modification was performed on the screened peptides and finally Boc-Phe-Trp-OMe and Boc-Trp-Trp-OMe were synthesized. Even though no inhibition zones were observed in agar well diffusion assays, minimum inhibitory concentration (MIC) analysis revealed anti-bacterial activity against both Gram-positive and Gram-negative bacteria, with MIC90 ranging from 230 to 400 μg/mL. The crystal violet assay confirmed the dipeptides' biofilm eradication and disruption capabilities. Furthermore, membrane permeabilization assays indicated outer and inner membrane permeabilization, while SEM analysis revealed the formation of fibril and spherical nanostructures, likely contributing to this effect. The peptides also exhibited resistance to protein adsorption, non-cytotoxicity, and non-hemolytic properties, making them promising broad-spectrum anti-bacterial agents with biofilm eradication and disruption potential. This study concludes that Boc-protected phenylalanine- and tryptophan-based dipeptides can self-assemble and can be used as broad-spectrum anti-bacterial agents. The self-assembly of these peptides offers a versatile platform for designing biomaterials with tailored properties and functionalities. Research exploring the anti-bacterial potential of Boc-protected dipeptides has been limited, prompting our investigation to shed light on this overlooked area. Our analysis of synthesized Boc-protected dipeptides revealed notable anti-bacterial activity, marking a significant advancement. This finding suggests that these dipeptides could emerge as potent, broad-spectrum anti-bacterial agents, addressing the urgent need for effective treatments against bacterial resistance and opening new avenues in therapy. This study not only enhances our understanding of these dipeptides but also highlights their potential as innovative and efficacious anti-bacterial agents, making a substantial impact in the clinical field.
Collapse
Affiliation(s)
- Arpita Halder
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | | | | | - Priyadip Das
- Department of Chemistry, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| |
Collapse
|
18
|
Yang CH, Chen YL, Cheung TH, Chuang LY. Multi-Objective Optimization Accelerates the De Novo Design of Antimicrobial Peptide for Staphylococcus aureus. Int J Mol Sci 2024; 25:13688. [PMID: 39769451 PMCID: PMC11728188 DOI: 10.3390/ijms252413688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Humans have long used antibiotics to fight bacteria, but increasing drug resistance has reduced their effectiveness. Antimicrobial peptides (AMPs) are a promising alternative with natural broad-spectrum activity against bacteria and viruses. However, their instability and hemolysis limit their medical use, making the design and improvement of AMPs a key research focus. Designing antimicrobial peptides with multiple desired properties using machine learning is still challenging, especially with limited data. This study utilized a multi-objective optimization method, the non-dominated sorting genetic algorithm II (NSGA-II), to enhance the physicochemical properties of peptide sequences and identify those with improved antimicrobial activity. Combining NSGA-II with neural networks, the approach efficiently identified promising AMP candidates and accurately predicted their antibacterial effectiveness. This method significantly advances by optimizing factors like hydrophobicity, instability index, and aliphatic index to improve peptide stability. It offers a more efficient way to address the limitations of AMPs, paving the way for the development of safer and more effective antimicrobial treatments.
Collapse
Affiliation(s)
- Cheng-Hong Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (C.-H.Y.); (Y.-L.C.); (T.-H.C.)
- Department of Information Management, Tainan University of Technology, Tainan 710302, Taiwan
- Ph.D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yi-Ling Chen
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (C.-H.Y.); (Y.-L.C.); (T.-H.C.)
| | - Tin-Ho Cheung
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (C.-H.Y.); (Y.-L.C.); (T.-H.C.)
| | - Li-Yeh Chuang
- Department of Chemical Engineering & Institute of Biotechnology Engineering and Chemical Engineering, I-Shou University, Kaohsiung 824005, Taiwan
| |
Collapse
|
19
|
Taher MA, Hasnat H, Alam S, Shompa SA, Afroze M, Khan M, Shao C, Wang S, Geng P, Mamun AA. Indian Shot ( Canna Indica L). Leaves Provide Valuable Insights into the Management of Inflammation and Other Associated Disorders Offering Health Benefits. J Inflamm Res 2024; 17:10943-10989. [PMID: 39677290 PMCID: PMC11646432 DOI: 10.2147/jir.s491700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Background Throughout history, plants have played a crucial role in advancing medicinal treatments by providing a diverse range of compounds for the development of innovative therapies. Canna indica L. a tropical herb of the Cannaceae family, also known as Indian shot, has a rich history of traditional use in treating ailments like inflammation, malaria, dysentery, fever, dropsy, and diarrhea. Objective This comprehensive research invesigates the extract preparation of C. indica leaves using multidisciplinary analytical approaches for this extract in order to shed light on its therapeutic potentials. Methods The research, an international collaboration involving researchers from Bangladesh and China, utilized GC-MS/MS analysis to identify bioactive compounds across different C. indica extracts. Biological assays were conducted to assess antimicrobial activity using the disc diffusion method (in vitro), cytotoxicity through the brine shrimp lethality assay (in vitro), analgesic effects via the acetic acid-induced writhing test (in vivo), and antidiarrheal activity with the castor oil-induced diarrhea model (in vivo). Molecular docking studies were performed to determine binding affinities with Epidermal Growth Factor Receptor (EGFR), Dihydrofolate Reductase (DHFR), Delta Opioid Receptor (DOR), Tumor Necrosis Factor-alpha (TNF-α), and Cyclooxygenase-2 (COX-2) receptors. Results The GC-MS/MS analysis identified 35, 43, 27, and 20 compounds in dichloromethane, aqueous, petroleum ether, and ethyl acetate extracts, respectively. The aqueous (AQSF) and dichloromethane (DCMSF) extracts showed notable antimicrobial activity, particularly against gram-negative bacteria. Cytotoxicity tests indicated that ethyl acetate (EASF) and dichloromethane (DCMSF) fractions were potent. Analgesic activity was highest in DCMSF, and antidiarrheal effects were dose-dependent, with DCMSF showing the greatest efficacy. Molecular docking revealed strong affinities of Ergostane-3,5,6,12,25-pentol, 25-acetate, (3.beta.,5.alpha.,6.beta.,12.beta).- for EGFR and Norgestrel for COX-2. Conclusion This research provides valuable insights into the bioactivity evaluation of C. indica, bridging the gap between its chemical composition and diverse biological effects. The findings contribute to the growing body of knowledge in natural product-based drug discovery and underscore the significance of C. indica as a potential source of novel therapeutic agents to treat inflammation and other disease states.
Collapse
Affiliation(s)
- Mohammad Abdullah Taher
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000Bangladesh
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, 1205Bangladesh
| | - Hasin Hasnat
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1207Bangladesh
| | - Safaet Alam
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000Bangladesh
- Chemical Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Suriya Akter Shompa
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1207Bangladesh
| | - Mirola Afroze
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, 1205Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, 1205Bangladesh
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| |
Collapse
|
20
|
Conde-Torres D, Calvelo M, Rovira C, Piñeiro Á, Garcia-Fandino R. Unlocking the specificity of antimicrobial peptide interactions for membrane-targeted therapies. Comput Struct Biotechnol J 2024; 25:61-74. [PMID: 38695015 PMCID: PMC11061258 DOI: 10.1016/j.csbj.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024] Open
Abstract
Antimicrobial peptides (AMPs) are increasingly recognized as potent therapeutic agents, with their selective affinity for pathological membranes, low toxicity profile, and minimal resistance development making them particularly attractive in the pharmaceutical landscape. This study offers a comprehensive analysis of the interaction between specific AMPs, including magainin-2, pleurocidin, CM15, LL37, and clavanin, with lipid bilayer models of very different compositions that have been ordinarily used as biological membrane models of healthy mammal, cancerous, and bacterial cells. Employing unbiased molecular dynamics simulations and metadynamics techniques, we have deciphered the intricate mechanisms by which these peptides recognize pathogenic and pathologic lipid patterns and integrate into lipid assemblies. Our findings reveal that the transverse component of the peptide's hydrophobic dipole moment is critical for membrane interaction, decisively influencing the molecule's orientation and expected therapeutic efficacy. Our approach also provides insight on the kinetic and dynamic dependence on the peptide orientation in the axial and azimuthal angles when coming close to the membrane. The aim is to establish a robust framework for the rational design of peptide-based, membrane-targeted therapies, as well as effective quantitative descriptors that can facilitate the automated design of novel AMPs for these therapies using machine learning methods.
Collapse
Affiliation(s)
- Daniel Conde-Torres
- Center for Research in Biological Chemistry and Molecular Materials, Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Carme Rovira
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandino
- Center for Research in Biological Chemistry and Molecular Materials, Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
21
|
Sankaran SV, Saiba R, Sikdar S, Vemparala S. Correlation Between Antimicrobial Structural Classes and Membrane Partitioning: Role of Emerging Lipid Packing Defects. J Membr Biol 2024; 257:307-321. [PMID: 39037449 PMCID: PMC11584508 DOI: 10.1007/s00232-024-00318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
In this study, a combination of bioinformatics and molecular dynamics simulations is employed to investigate the partitioning behavior of different classes of antimicrobial peptides (AMPs) into model membranes. The main objective is to identify any correlations between the structural characteristics of AMPs and their membrane identification and early-stage partitioning mechanisms. The simulation results reveal distinct membrane interactions among the various structural classes of AMPs, particularly in relation to the generation and subsequent interaction with lipid packing defects. Notably, AMPs with a structure-less coil conformation generate a higher number of deep and shallow defects, which are larger in size compared to other classes of AMPs. AMPs with helical component demonstrated the deepest insertion into the membrane. On the other hand, AMPs with a significant percentage of beta sheets tend to adsorb onto the membrane surface, suggesting a potentially distinct partitioning mechanism attributed to their structural rigidity. These findings highlight the diverse membrane interactions and partitioning mechanisms exhibited by different structural classes of AMPs.
Collapse
Affiliation(s)
- S V Sankaran
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Roni Saiba
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Samapan Sikdar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
22
|
Neghabi Hajigha M, Hajikhani B, Vaezjalali M, Samadi Kafil H, Kazemzadeh Anari R, Goudarzi M. Antiviral and antibacterial peptides: Mechanisms of action. Heliyon 2024; 10:e40121. [PMID: 39748995 PMCID: PMC11693924 DOI: 10.1016/j.heliyon.2024.e40121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025] Open
Abstract
Antimicrobial peptides (AMPs) present promising alternatives for addressing bacterial and viral multidrug resistance due to their distinctive properties. Understanding the mechanisms of these compounds is essential for achieving this objective. Therefore, this comprehensive review aims to highlight primary natural sources of AMPs and elucidate various aspects of the modes of action of antiviral and antibacterial peptides (ABPs). It emphasizes that antiviral peptides (AVPs) can disrupt the replication cycle of both enveloped and non-enveloped viruses at several stages, including pre-fusion, fusion, and post-entry into the host cell. Additionally, the review discusses the inhibitory effects of ABPs on bacterial growth, outlining their extracellular actions as well as their intracellular activities following membrane translocation. Factors such as structure, size, electric charge, environmental factors, degrading enzymes, and microbial resistance against AMPs can affect the function of AMPs.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajigha
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Kazemzadeh Anari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Hernández‐Adame PL, Bertrand B, Escamilla‐Ruiz MI, Ruiz‐García J, Munoz‐Garay C. Molecular and energetic analysis of the interaction and specificity of Maximin 3 with lipid membranes: In vitro and in silico assessments. Protein Sci 2024; 33:e5188. [PMID: 39473071 PMCID: PMC11633330 DOI: 10.1002/pro.5188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 12/13/2024]
Abstract
In this study, the interaction of antimicrobial peptide Maximin 3 (Max3) with three different lipid bilayer models was investigated to gain insight into its mechanism of action and membrane specificity. Bilayer perturbation assays using liposome calcein leakage dose-response curves revealed that Max3 is a selective membrane-active peptide. Dynamic light scattering recordings suggest that the peptide incorporates into the liposomal structure without producing a detergent effect. Langmuir monolayer compression assays confirmed the membrane inserting capacity of the peptide. Attenuated total reflection-Fourier transform infrared spectroscopy showed that the fingerprint signals of lipid phospholipid hydrophilic head groups and hydrophobic acyl chains are altered due to Max3-membrane interaction. On the other hand, all-atom molecular dynamics simulations (MDS) of the initial interaction with the membrane surface corroborated peptide-membrane selectivity. Peptide transmembrane MDS shed light on how the peptide differentially modifies lipid bilayer properties. Molecular mechanics Poisson-Boltzmann surface area calculations revealed a specific electrostatic interaction fingerprint of the peptide for each membrane model with which they were tested. The data generated from the in silico approach could account for some of the differences observed experimentally in the activity and selectivity of Max3.
Collapse
Affiliation(s)
| | - Brandt Bertrand
- Instituto de Ciencias FísicasUniversidad Nacional Autónoma de México (ICF‐UNAM)CuernavacaMorelosMéxico
| | - Martha Itzel Escamilla‐Ruiz
- Laboratorio de Física Biológica, Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíSan Luis PotosíMéxico
| | - Jaime Ruiz‐García
- Laboratorio de Física Biológica, Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíSan Luis PotosíMéxico
| | - Carlos Munoz‐Garay
- Instituto de Ciencias FísicasUniversidad Nacional Autónoma de México (ICF‐UNAM)CuernavacaMorelosMéxico
| |
Collapse
|
24
|
Yadav N, Chauhan VS. Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections. Adv Colloid Interface Sci 2024; 333:103282. [PMID: 39276418 DOI: 10.1016/j.cis.2024.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
In recent years, multidrug-resistant pathogenic microorganisms (MDROs) have emerged as a severe threat to human health, exhibiting robust resistance to traditional antibiotics. This has created a formidable challenge in modern medicine as we grapple with limited options to combat these resilient bacteria. Despite extensive efforts by scientists to develop new antibiotics targeting these pathogens, the quest for novel antibacterial molecules has become increasingly arduous. Fortunately, nature offers a potential solution in the form of cationic antimicrobial peptides (AMPs) and their synthetic counterparts. AMPs, naturally occurring peptides, have displayed promising efficacy in fighting bacterial infections by disrupting bacterial cell membranes, hindering their survival and reproduction. These peptides, along with their synthetic mimics, present an exciting alternative in combating antibiotic resistance. They hold the potential to emerge as a formidable tool against MDROs, offering hope for improved strategies to protect communities. Extensive research has explored the diversity, history, and structure-properties relationship of AMPs, investigating their amphiphilic nature for membrane disruption and mechanisms of action. However, despite their therapeutic promise, AMPs face several documented limitations. Among these challenges, poor pharmacokinetic properties stand out, impeding the attainment of therapeutic levels in the body. Additionally, some AMPs exhibit toxicity and susceptibility to protease cleavage, leading to a short half-life and reduced efficacy in animal models. These limitations pose obstacles in developing effective treatments based on AMPs. Furthermore, the high manufacturing costs associated with AMPs could significantly hinder their widespread use. In this review, we aim to present experimental and theoretical insights into different AMPs, focusing specifically on antibacterial peptides (ABPs). Our goal is to offer a concise overview of peptide-based drug candidates, drawing from a wide array of literature and peer-reviewed studies. We also explore recent advancements in AMP development and discuss the challenges researchers face in moving these molecules towards clinical trials. Our main objective is to offer a comprehensive overview of current AMP and ABP research to guide the development of more precise and effective therapies for bacterial infections.
Collapse
Affiliation(s)
- Nitin Yadav
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| | - Virander S Chauhan
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| |
Collapse
|
25
|
Shi J, Lei Y, Li Z, Jia L, He P, Cheng Q, Zhang Z, Lei Z. Alteration of Cecal Microbiota by Antimicrobial Peptides Enhances the Rational and Efficient Utilization of Nutrients in Holstein Bulls. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10379-0. [PMID: 39441337 DOI: 10.1007/s12602-024-10379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
We previously observed that supplementation with antimicrobial peptides facilitated the average daily weight gain, net meat, and carcass weights of Holstein bulls. To expand our knowledge of the possible impact of antimicrobial peptides on cecum microbiota, further investigations were conducted. In this study, 18 castrated Holstein bulls with insignificant weight differences and 10 months of age were split randomly into two groups. The control group (CK) was fed a basic diet, whereas the antimicrobial peptide group (AP) was supplemented with 8 g of antimicrobial peptides for 270 days. After slaughter, metagenomic and metabolomic sequencing analyses were performed on the cecum contents. The results showed significantly higher levels of amylase, cellulase, protease, and lipase in the CK than in the AP group (P ≤ 0.05). The levels of β-glucosidase and xylanase (P ≤ 0.05), and acetic and propionic acids (P ≤ 0.01), were considerably elevated in the AP than in the CK group. The metagenome showed variations between the two groups only at the bacterial level, and 3258 bacteria with differences were annotated. A total of 138 differential abundant genes (P < 0.05) were identified in the CAZyme map, with 65 genes more abundant in the cecum of the AP group and 48 genes more abundant in the cecum of the CK group. Metabolomic analysis identified 68 differentially expressed metabolites. Conjoint analysis of microorganisms and metabolites revealed that Lactobacillus had the greatest impact on metabolites in the AP group and Brumimicrobium in the CK group. The advantageous strains of the AP group Firmicutes bacterium CAG:110 exhibited a strong symbiotic relationship with urodeoxycholic acid and hyodeoxycholic acid. This study identified the classification characteristics, functions, metabolites, and interactions of cecal microbiota with metabolites that contribute to host growth performance. Antimicrobial peptides affect the cecal microorganisms, making the use of nutrients more efficient. The utilization of hemicellulose in the cecum of ruminants may contribute more than cellulose to their production performance.
Collapse
Affiliation(s)
- Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yu Lei
- Northwest A&F University, College of Animal Science and Technology, Yangling, 712100, China
| | - Zemin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Shandong Agricultural University, College of Animal Science and Technology, Taian, 271000, China
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Forestry Voctech university, College of Environmental Engineering, Tianshui, 741000, China
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiang Cheng
- Jingchuan Xukang Food Co., Ltd, Pingliang, 744300, China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd, Zhangye, 734500, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
26
|
Meogrossi G, Tollapi E, Rencinai A, Brunetti J, Scali S, Paccagnini E, Gentile M, Lupetti P, Pollini S, Rossolini GM, Bernini A, Pini A, Bracci L, Falciani C. Antibacterial and Anti-Inflammatory Activity of Branched Peptides Derived from Natural Host Defense Sequences. J Med Chem 2024; 67:16145-16156. [PMID: 39260445 PMCID: PMC11440494 DOI: 10.1021/acs.jmedchem.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Antibiotic resistance is a major global health threat, necessitating the development of new treatments and diverse molecules to combat severe infections and preserve the efficacy of existing drugs. Antimicrobial peptides (AMPs) offer a versatile arsenal against bacteria, and peptide structure branching can enhance their resistance to proteases and improve their overall efficacy. A small library of peptides derived from natural host defense peptides and synthesized in a tetrabranched form was selected against E. coli. Six selected branched peptides were further studied for antibacterial activity against a panel of strains, biofilm inhibition, protease resistance, and cytotoxicity. Their structure was predicted computationally and their mechanism of action was investigated by electron microscopy and by using fluorescent dyes. The peptide BAMP2 showed promise in a mouse skin infection model, indicating the potential for local infection treatment.
Collapse
Affiliation(s)
- Giada Meogrossi
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| | - Eva Tollapi
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| | - Alessandro Rencinai
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| | - Jlenia Brunetti
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| | - Silvia Scali
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| | | | | | - Pietro Lupetti
- Department
of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Simona Pollini
- Department
of Experimental and Clinical Medicine, University
of Florence, 50134 Florence, Italy
- Microbiology
and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Gian Maria Rossolini
- Department
of Experimental and Clinical Medicine, University
of Florence, 50134 Florence, Italy
- Microbiology
and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Andrea Bernini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alessandro Pini
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
- Laboratory
of Clinical Pathology, Santa Maria alle
Scotte University Hospital, 53100 Siena, Italy
- Setlance
srl, Via Fiorentina 1, 53100 Siena, Italy
| | - Luisa Bracci
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
- Laboratory
of Clinical Pathology, Santa Maria alle
Scotte University Hospital, 53100 Siena, Italy
| | - Chiara Falciani
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| |
Collapse
|
27
|
Thombare VJ, Swarbrick JD, Azad MAK, Zhu Y, Lu J, Yu HY, Wickremasinghe H, He X, Bandiatmakur M, Li R, Bergen PJ, Velkov T, Wang J, Roberts KD, Li J, Patil NA. Exploring Structure-Activity Relationships and Modes of Action of Laterocidine. ACS CENTRAL SCIENCE 2024; 10:1703-1717. [PMID: 39345814 PMCID: PMC11428279 DOI: 10.1021/acscentsci.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024]
Abstract
A significant increase in life-threatening infections caused by Gram-negative "superbugs" is a serious threat to global health. With a dearth of new antibiotics in the developmental pipeline, antibiotics with novel mechanisms of action are urgently required to prevent a return to the preantibiotic era. A key strategy to develop novel anti-infective treatments is to discover new natural scaffolds with distinct mechanisms of action. Laterocidine is a unique cyclic lipodepsipeptide with activity against multiple problematic multidrug-resistant Gram-negative pathogens, including Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacterales. Here, we developed a total chemical synthesis methodology for laterocidine and undertook systematic structure-activity relationship studies with chemical biology and NMR. We discovered important structural features that drive the antimicrobial activity of laterocidine, leading to the discovery of an engineered peptide surpassing the efficacy of the original peptide. This engineered peptide demonstrated complete inhibition of the growth of a polymyxin-resistant strain of Pseudomonas aeruginosa in static time-kill experiments.
Collapse
Affiliation(s)
- Varsha J Thombare
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - James D Swarbrick
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Mohammad A K Azad
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jing Lu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Heidi Y Yu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Xiaoji He
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Mahimna Bandiatmakur
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Rong Li
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jiping Wang
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
28
|
Das Gupta B, Halder A, Vijayakanth T, Ghosh N, Konar R, Mukherjee O, Gazit E, Mondal S. A broad-spectrum antibacterial hydrogel based on the synergistic action of Fmoc-phenylalanine and Fmoc-lysine in a co-assembled state. J Mater Chem B 2024; 12:8444-8453. [PMID: 39102005 DOI: 10.1039/d4tb00948g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Multicomponent biomolecular self-assembly is fundamental for accomplishing complex functionalities of biosystems. Self-assembling peptides, amino acids, and their conjugates serve as a versatile platform for developing biomaterials. However, the co-assembly of multiple building blocks showing synergistic interplay between individual components and producing biomaterials with emergent functional attributes is much less explored. In this study, we have formulated minimalistic co-assembled hydrogels composed of Fmoc-phenylalanine and Fmoc-lysine. The co-assembled systems display broad-spectrum antimicrobial potency, a feature absent in individual building blocks. A comprehensive biophysical analysis demonstrates the physicochemical features of the hydrogels eliciting the antibacterial response. MD simulation further reveals a unique fibrillar architecture with Fmoc-phenylalanine forming the fibril core surrounded by positively charged Fmoc-lysine surface residues, thereby enhancing the interaction with negatively charged bacterial membranes, causing membrane disruption and cell death. Thus, this study provides molecular-level insight into the emergent properties of a multicomponent system, affording an excellent paradigm for developing novel biomaterials.
Collapse
Affiliation(s)
- Bodhisattwa Das Gupta
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India.
| | - Arpita Halder
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India.
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nandita Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India.
| | - Ranik Konar
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India.
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India.
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sudipta Mondal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India.
| |
Collapse
|
29
|
Alam S, Richi FT, Hasnat H, Ahmed F, Emon NU, Uddin MJ, Rana GMM, Wang S, Yeasmin MS, Ahmed NU, Khan MS, Al Mamun A. Chemico-pharmacological evaluations of the dwarf elephant ear ( Colocasia affinis Schott) plant metabolites and extracts: health benefits from vegetable source. Front Pharmacol 2024; 15:1428341. [PMID: 39193333 PMCID: PMC11347761 DOI: 10.3389/fphar.2024.1428341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction: Colocasia affinis Schott (Family: Araceae), found in the Asian region, is a traditional root vegetable consumed by the locals and well-known as Dwarf Elephant Ear. Methods: For the pharmacological exploration of this root vegetable, four kupchan fractions (i.e. HSF, DCMSF, EASF, and AQSF) from ethanolic extract of C. affinis were employed to in vitro i.e. antioxidant, cytotoxicity, and antimicrobial and in vivo i.e. antidiarrheal and analgesic assays, followed by phytochemical screening and GC-MS protocol. Result and Discussion: In the antioxidant assay, the AQSF showed promising potential with an IC50 value of 29.4 μg/mL and additionally, it exhibited the greatest overall phenolic content, measuring 57.23 mg GAE/gm. of extract among other fractions. The AQSF also revealed promising cytotoxic activity in brine shrimp lethality assay with an LC50 value of 1.36 μg/mL. Both AQSF and EASF exhibited substantial antimicrobial efficacy against both gram-positive and gram-negative bacteria as well as various fungus species with a remarkable zone of inhibitions compared to standards. Whereas, during both the castor oil-induced antidiarrheal and acetic acid-induced writhing assay, the DCMSF at 400 mg/kg dose exhibited the highest 51.16% reduction of diarrhea and 52.33% reduction of writhing. Phytochemical screening revealed several chemical groups while GC-MS study of different fractions of dwarf elephant ear ethanolic extract revealed 48 different bioactive phytochemicals in total. Several targets such as KAS, DHFR for anti-microbial activities, GLR, URO for antioxidant activities, EGFR, BCL-2 for cytotoxicity, KOR, DOR for antidiarrheal activities and COX-2, TNF-α for analgesic activities are considered for molecular docking against identified phytocompounds and standards along with ADME/T studies to ascertain their safety, efficacy and drug likeliness profiles. Conclusion: To recapitulate, our study revealed that vegetables such as dwarf elephant ear can be considered as a prospective source of therapeutics and drug development besides their nutritive food values.
Collapse
Affiliation(s)
- Safaet Alam
- Chemical Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | | | - Hasin Hasnat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Firoj Ahmed
- Bangladesh Council of Scientific and Industrial Research, Rajshahi, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Md. Jasim Uddin
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - G. M. Masud Rana
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, The First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| | - Mst. Sarmina Yeasmin
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Nazim Uddin Ahmed
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md. Salim Khan
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, The First Affiliated Hospital of Lishui University, Lishui, Zhejiang, China
| |
Collapse
|
30
|
Rosa L, Ianiro G, Conte AL, Conte MP, Ottolenghi L, Valenti P, Cutone A. Antibacterial, anti-invasive, and anti-inflammatory activity of bovine lactoferrin extracted from milk or colostrum versus whole colostrum. Biochem Cell Biol 2024; 102:331-341. [PMID: 38810276 DOI: 10.1139/bcb-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Lactoferrin (Lf), a multifunctional cationic glycoprotein extracted from milk or colostrum, is able to chelate two ferric ions per molecule, inhibit the formation of reactive oxygen species, interact with the anionic components of bacteria or host cells, and enter inside host cell nucleus, thereby exerting antibacterial, anti-invasive, and anti-inflammatory activities. By virtue of Lf presence, bovine colostrum is expected to perform analogous functions to pure Lf, along with additional activities attributable to other bioactive constituents. The present research aims to compare the antibacterial, anti-invasive, and anti-inflammatory activities of bovine Lf purified from milk (mbLf) and colostrum (cbLf) in comparison to those exhibited by whole bovine colostrum (wbc). The results demonstrated a major efficacy of mbLf in inhibiting pathogenic bacteria and in exerting anti-invasive and anti-survival activities with respect to cbLf and wbc. Furthermore, mbLf lowered IL-6 levels to those of uninfected cells, while a less evident decrease was observed upon cbLf treatment. Conversely, wbc managed to slightly lower IL-6 levels compared to those synthesized by infected cells. These data demonstrate that, to obtain maximum effectiveness in such activities, Lf should be formulated/used without addition of other substances and should be sourced from bovine milk rather than colostrum.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | | | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Livia Ottolenghi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| |
Collapse
|
31
|
Taheri-Araghi S. Synergistic action of antimicrobial peptides and antibiotics: current understanding and future directions. Front Microbiol 2024; 15:1390765. [PMID: 39144233 PMCID: PMC11322369 DOI: 10.3389/fmicb.2024.1390765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024] Open
Abstract
Antibiotic resistance is a growing global problem that requires innovative therapeutic approaches and strategies for administering antibiotics. One promising approach is combination therapy, in which two or more drugs are combined to combat an infection. Along this line, the combination of antimicrobial peptides (AMPs) with conventional antibiotics has gained attention mainly due to the complementary mechanisms of action of AMPs and conventional antibiotics. In this article, we review both in vitro and in vivo studies that explore the synergy between AMPs and antibiotics. We highlight several mechanisms through which synergy is observed in in vitro experiments, including increasing membrane permeability, disrupting biofilms, directly potentiating antibiotic efficacy, and inhibiting resistance development. Moreover, in vivo studies reveal additional mechanisms such as enhanced/modulated immune responses, reduced inflammation, and improved tissue regeneration. Together, the current literature demonstrates that AMP-antibiotic combinations can substantially enhance efficacy of antibiotic therapies, including therapies against resistant bacteria, which represents a valuable enhancement to current antimicrobial strategies.
Collapse
Affiliation(s)
- Sattar Taheri-Araghi
- Department of Physics and Astronomy, California State University, Northridge, CA, United States
| |
Collapse
|
32
|
Kong X, Vishwanath V, Neelakantan P, Ye Z. Harnessing antimicrobial peptides in endodontics. Int Endod J 2024; 57:815-840. [PMID: 38441321 DOI: 10.1111/iej.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 06/13/2024]
Abstract
Endodontic therapy includes various procedures such as vital pulp therapy, root canal treatment and retreatment, surgical endodontic treatment and regenerative endodontic procedures. Disinfection and tissue repair are crucial for the success of these therapies, necessitating the development of therapeutics that can effectively target microbiota, eliminate biofilms, modulate inflammation and promote tissue repair. However, no current endodontic agents can achieve these goals. Antimicrobial peptides (AMPs), which are sequences of amino acids, have gained attention due to their unique advantages, including reduced susceptibility to drug resistance, broad-spectrum antibacterial properties and the ability to modulate the immune response of the organism effectively. This review systematically discusses the structure, mechanisms of action, novel designs and limitations of AMPs. Additionally, it highlights the efforts made by researchers to overcome peptide shortcomings and emphasizes the potential applications of AMPs in endodontic treatments.
Collapse
Affiliation(s)
- Xinzi Kong
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| | - Vijetha Vishwanath
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| | - Prasanna Neelakantan
- Department of Endodontics, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, California, USA
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| |
Collapse
|
33
|
Alimohamadi H, Luo EWC, Gupta S, de Anda J, Yang R, Mandal T, Wong GCL. Comparing Multifunctional Viral and Eukaryotic Proteins for Generating Scission Necks in Membranes. ACS NANO 2024; 18:15545-15556. [PMID: 38838261 PMCID: PMC11846687 DOI: 10.1021/acsnano.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is M2 viroporin, a proton pump from the influenza A virus that is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging small-angle X-ray scattering structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemifission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Elizabeth Wei-Chia Luo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Rena Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
34
|
Liu W, Sun Y, Zhou B, Chen Y, Liu M, Wang L, Qi M, Liu B, Dong B. Near-infrared light triggered upconversion nanocomposites with multifunction of enhanced antimicrobial photodynamic therapy and gas therapy for inflammation regulation. J Colloid Interface Sci 2024; 663:834-846. [PMID: 38447398 DOI: 10.1016/j.jcis.2024.02.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Antibacterial photodynamic therapy (aPDT) is highly effective in killing bacteria, while the problem of hypoxia and limited light penetration in deep tissue has not been properly solved. In addition, few aPDT works take into account the regulation of inflammation, which is an important regulatory process after antimicrobial therapy and the final purpose of treatment. In this work, to address the above isssues, we have designed a multi-functional composite UCNPs-Ce6-Mn(CO)5Br@Silane (referred to as UCM@Si), which consists of several key components: Up-conversion nanoparticles (UCNPs: NaErF4:Tm3+@NaYF4:Yb3+), Chlorin e6 (Ce6) and Manganese pentacarbonyl bromide (Mn(CO)5Br). When exposed to near-infrared (NIR) light (980 nm), the UCNPs can emit strong red light at 655 nm which further trigger the aPDT of Ce6. The generated reactive oxygen (ROS) subsequently break the metal carbonyl bond of Mn(CO)5Br, leading to the production of carbon monoxide (CO) molecules as well as manganese ions (Mn2+), which further decomposes hydrogen peroxide (H2O2) in the microenvironment to oxygen (O2). Therefore, this simple nanocomposite not only provides substantial self-oxygen replenishment for enhanced aPDT, but also facilitates effective inflammation regulation via CO across a wide range of deep infections. This approach leverages the unique properties of these materials to combat bacterial infections by simultaneously killing bacteria, regulating inflammation, and enhancing the oxygen levels in the affected microenvironment. This O2 and CO gas based aPDT treatment system offers a promising approach to comprehensively address microbial-induced infectious diseases, particularly deep infections, holding the potential clinical applications.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Yue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Bingshuai Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Yifan Chen
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Min Liu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Bailong Liu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China.
| |
Collapse
|
35
|
Cirillo S, Zhang B, Brown S, Zhao X. Antimicrobial peptide A 9K as a gene delivery vector in cancer cells. Eur J Pharm Biopharm 2024; 198:114244. [PMID: 38467336 DOI: 10.1016/j.ejpb.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Designed peptides are promising biomaterials for biomedical applications. The amphiphilic cationic antimicrobial peptide (AMP), A9K, can self-assemble into nano-rod structures and has shown cancer cell selectivity and could therefore be a promising candidate for therapeutic delivery into cancer cells. In this paper, we investigate the selectivity of A9K for cancer cell models, examining its effect on two human cancer cell lines, A431 and HCT-116. Little or no activity was observed on the control, human dermal fibroblasts (HDFs). In the cancer cell lines the peptide inhibited cellular growth through changes in mitochondrial morphology and membrane potential while remaining harmless towards HDFs. In addition, the peptide can bind to and protect nucleic acids while transporting them into both 2D cultures and 3D spheroids of cancer cells. A9K showed high efficiency in delivering siRNA molecules into the centre of the spheroids. A9K was also explored in vivo, using a zebrafish (Danio rerio) development toxicity assay, showing that the peptide is safe at low doses. Finally, a high-content imaging screen, using RNA interference (RNAi) targeted towards cellular uptake, in HCT-116 cells was carried out. Our findings suggest that active cellular uptake is involved in peptide internalisation, mediated through clathrin-mediated endocytosis. These new discoveries make A9K attractive for future developments in clinical and biotechnological applications.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Bo Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- The Sheffield RNAi Screening Facility, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
36
|
Barbosa JRM, Santos ASGG, Viana AT, Gonçalves AG, Nunes OC, Pereira MFR, Soares OSGP. Carbon-based materials for water disinfection and heavy metals removal. ENVIRONMENTAL TECHNOLOGY 2024; 45:1810-1828. [PMID: 36469607 DOI: 10.1080/09593330.2022.2154173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The presence of heavy metals and/or harmful bacteria in drinking water represents significant risks to human health. This study aimed to develop a low-cost water treatment technology using synthesized nanocomposites with metal nanoparticles supported on activated carbon (AC) for bacteria and heavy metal removal. In addition, the performance of the developed nanomaterials was compared with that of commercial materials - carbon fibers of three different typologies. The chemical and textural properties of all tested materials were characterized. To simulate a technology to be applied in a water outlet point, removal tests were carried out in a continuous system using suspensions of Escherichia coli and/or Staphylococcus aureus, wherein the contact time with the two phases was minimal (1 min). The obtained results revealed that iron and copper oxides supported on AC with a calcination treatment (CuFeO/AC-C) was the nanocomposite with the best performance, achieving a 6 log reduction for both bacteria in the same suspension up to 9 h operation. A mix of bacteria and heavy metals, simulating a real water, was treated with CuFeO/AC-C obtaining a 6 log reduction of bacteria, a Pb2+ removal >99.9% and Cd2+ removal between 97 and 98% over 180 passage times.
Collapse
Affiliation(s)
- José R M Barbosa
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Universidade do Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - A Sofia G G Santos
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Universidade do Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - A T Viana
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Universidade do Porto, Porto, Portugal
| | | | - Olga C Nunes
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Universidade do Porto, Porto, Portugal
| | - M Fernando R Pereira
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Universidade do Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - O Salomé G P Soares
- Departamento de Engenharia Química, Faculdade de Engenharia, Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Universidade do Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Agha MM, Aziziyan F, Uversky VN. Each big journey starts with a first step: Importance of oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:111-141. [PMID: 38811079 DOI: 10.1016/bs.pmbts.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein oligomers, widely found in nature, have significant physiological and pathological functions. They are classified into three groups based on their function and toxicity. Significant advancements are being achieved in the development of functional oligomers, with a focus on various applications and their engineering. The antimicrobial peptides oligomers play roles in death of bacterial and cancer cells. The predominant pathogenic species in neurodegenerative disorders, as shown by recent results, are amyloid oligomers, which are the main subject of this chapter. They are generated throughout the aggregation process, serving as both intermediates in the subsequent aggregation pathways and ultimate products. Some of them may possess potent cytotoxic properties and through diverse mechanisms cause cellular impairment, and ultimately, the death of cells and disease progression. Information regarding their structure, formation mechanism, and toxicity is limited due to their inherent instability and structural variability. This chapter aims to provide a concise overview of the current knowledge regarding amyloid oligomers.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United Staes.
| |
Collapse
|
38
|
Belagal P. Current alternative therapies for treating drug-resistant Neisseria gonorrhoeae causing ophthalmia neonatorum. Future Microbiol 2024; 19:631-647. [PMID: 38512111 PMCID: PMC11229588 DOI: 10.2217/fmb-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/03/2024] [Indexed: 03/22/2024] Open
Abstract
Ophthalmia neonatorum is a microbial contraction, damaging eyesight, occurring largely among neonates. Infants are particularly vulnerable to bacterial infections acquired during birth from infected mothers, especially from Neisseria gonorrhoeae and Chlamydia trachomatis. Over the decades, N. gonorrhoeae is alarmingly developing a resistance to most antibiotics currently prescribed. To counter this challenge, it is imperative to find potent and cost-effective therapeutic agents for prophylaxis and treatment, to which the N. gonorrhoeae cannot easily develop resistance. This review showcases alternate therapies such as antimicrobial-fatty acids, -peptides, -nano-formulations etc., currently evident against N. gonorrhoeae-mediated ophthalmia neonatorum, which remains a major cause of ocular morbidity, blindness and even death among neonates in developing countries.
Collapse
|
39
|
Dong J, Chen F, Yao Y, Wu C, Ye S, Ma Z, Yuan H, Shao D, Wang L, Wang Y. Bioactive mesoporous silica nanoparticle-functionalized titanium implants with controllable antimicrobial peptide release potentiate the regulation of inflammation and osseointegration. Biomaterials 2024; 305:122465. [PMID: 38190768 DOI: 10.1016/j.biomaterials.2023.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Bacterial infection and delayed osseointegration are two major challenges for titanium-based orthopedic implants. In the present study, we developed a functionalized titanium implant Ti-M@A by immobilizing antimicrobial peptide (AMP) HHC36-loaded diselenide-bridged mesoporous silica nanoparticles (MSNs) on the surface, which showed good long-term and mechanical stability. The functionalized implants can realize the sustained release of AMP over 30 days and exhibit over 95.71 % antimicrobial activity against four types of clinical bacteria (S. aureus, E. coli, P. aeruginosa and MRSA), which arose from the capability to destroy the bacterial membranes. Moreover, Ti-M@A can efficiently inhibit the biofilm formation of the bacteria. The functionalized implants can also significantly promote the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) because of the Se in MSNs. Notably, it can trigger macrophages toward M2 polarization in vitro by scavenging ROS in LPS-activated macrophages. Consequently, in vivo assays with infection and non-infection bone defect models demonstrated that such bioactive implants can not only kill over 98.82 % of S. aureus, but also promote osseointegration. Hence, this study provides a combined strategy to resolve bacterial infection and delayed osseointegration for titanium implants.
Collapse
Affiliation(s)
- Jiyu Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yuying Yao
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Congcong Wu
- Jinan Center for Disease Control and Prevention, Jinan 250001, China
| | - Silin Ye
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Zunwei Ma
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Haipeng Yuan
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
40
|
Bhatnagar A, Chopra U, Raja S, Das KD, Mahalingam S, Chakravortty D, Srinivasula SM. TLR-mediated aggresome-like induced structures comprise antimicrobial peptides and attenuate intracellular bacterial survival. Mol Biol Cell 2024; 35:ar34. [PMID: 38170582 PMCID: PMC10916861 DOI: 10.1091/mbc.e23-09-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Immune cells employ diverse mechanisms for host defense. Macrophages, in response to TLR activation, assemble aggresome-like induced structures (ALIS). Our group has shown TLR4-signaling transcriptionally upregulates p62/sequestome1, which assembles ALIS. We have demonstrated that TLR4-mediated autophagy is, in fact, selective-autophagy of ALIS. We hypothesize that TLR-mediated autophagy and ALIS contribute to host-defense. Here we show that ALIS are assembled in macrophages upon exposure to different bacteria. These structures are associated with pathogen-containing phagosomes. Importantly, we present evidence of increased bacterial burden, where ALIS assembly is prevented with p62-specific siRNA. We have employed 3D-super-resolution structured illumination microscopy (3D-SR-SIM) and mass-spectrometric (MS) analyses to gain insight into the assembly of ALIS. Ultra-structural analyses of known constituents of ALIS (p62, ubiquitin, LC3) reveal that ALIS are organized structures with distinct patterns of alignment. Furthermore, MS-analyses of ALIS identified, among others, several proteins of known antimicrobial properties. We have validated MS data by testing the association of some of these molecules (Bst2, IFITM2, IFITM3) with ALIS and the phagocytosed-bacteria. We surmise that AMPs enrichment in ALIS leads to their delivery to bacteria-containing phagosomes and restricts the bacteria. Our findings in this paper support hitherto unknown functions of ALIS in host-defense.
Collapse
Affiliation(s)
- Anushree Bhatnagar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Krishanu Dey Das
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - S. Mahalingam
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Dipshikha Chakravortty
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Srinivasa Murty Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
41
|
Watts S, Hänni E, Smith GN, Mahmoudi N, Freire RVM, Lim S, Salentinig S. Human antimicrobial peptide inactivation mechanism of enveloped viruses. J Colloid Interface Sci 2024; 657:971-981. [PMID: 38096780 DOI: 10.1016/j.jcis.2023.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/02/2024]
Abstract
HYPOTHESIS Enveloped viruses are pivotal in causing various illnesses, including influenza and COVID-19. The antimicrobial peptide LL-37, a critical part of the human innate immune system, exhibits potential as an antiviral agent capable of thwarting these viral threats. Its mode of action involves versatile and non-specific interactions that culminate in dismantling the viral envelope, ultimately rendering the viruses inert. However, the exact mechanism of action is not yet understood. EXPERIMENTS Here, the mechanism of LL-37 triggered changes in the structure and function of an enveloped virus is investigated. The bacteriophage "Phi6" is used as a surrogate for pathogenic enveloped viruses. Small angle X-ray and neutron scattering combined with light scattering techniques demonstrate that LL-37 actively integrates into the virus's lipid envelope. FINDINGS LL-37 addition to Phi6 leads to curvature modification in the lipid bilayer, ultimately separating the envelope from the nucleocapsid. Additional biological assays confirm the loss of virus infectivity in the presence of LL-37, which coincides with the structural transformations. The results provide a fundamental understanding of the structure-activity relationship related to enveloped viruses. The knowledge of peptide-virus interactions can guide the design of future peptide-based antiviral drugs and therapies.
Collapse
Affiliation(s)
- Samuel Watts
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland; School of Chemistry, Chemical Engineering and Biotechnology, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457, Singapore
| | - Eliane Hänni
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Gregory N Smith
- ISIS Neutron and Muon Souce, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Najet Mahmoudi
- ISIS Neutron and Muon Souce, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Rafael V M Freire
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457, Singapore
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
42
|
Tsai CT, Lin CW, Ye GL, Wu SC, Yao P, Lin CT, Wan L, Tsai HHG. Accelerating Antimicrobial Peptide Discovery for WHO Priority Pathogens through Predictive and Interpretable Machine Learning Models. ACS OMEGA 2024; 9:9357-9374. [PMID: 38434814 PMCID: PMC10905719 DOI: 10.1021/acsomega.3c08676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
The escalating menace of multidrug-resistant (MDR) pathogens necessitates a paradigm shift from conventional antibiotics to innovative alternatives. Antimicrobial peptides (AMPs) emerge as a compelling contender in this arena. Employing in silico methodologies, we can usher in a new era of AMP discovery, streamlining the identification process from vast candidate sequences, thereby optimizing laboratory screening expenditures. Here, we unveil cutting-edge machine learning (ML) models that are both predictive and interpretable, tailored for the identification of potent AMPs targeting World Health Organization's (WHO) high-priority pathogens. Furthermore, we have developed ML models that consider the hemolysis of human erythrocytes, emphasizing their therapeutic potential. Anchored in the nuanced physical-chemical attributes gleaned from the three-dimensional (3D) helical conformations of AMPs, our optimized models have demonstrated commendable performance-boasting an accuracy exceeding 75% when evaluated against both low-sequence-identified peptides and recently unveiled AMPs. As a testament to their efficacy, we deployed these models to prioritize peptide sequences stemming from PEM-2 and subsequently probed the bioactivity of our algorithm-predicted peptides vis-à-vis WHO's priority pathogens. Intriguingly, several of these new AMPs outperformed the native PEM-2 in their antimicrobial prowess, thereby underscoring the robustness of our modeling approach. To elucidate ML model outcomes, we probe via Shapley Additive exPlanations (SHAP) values, uncovering intricate mechanisms guiding diverse actions against bacteria. Our state-of-the-art predictive models expedite the design of new AMPs, offering a robust countermeasure to antibiotic resistance. Our prediction tool is available to the public at https://ai-meta.chem.ncu.edu.tw/amp-meta.
Collapse
Affiliation(s)
- Cheng-Ting Tsai
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Chia-Wei Lin
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Gen-Lin Ye
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Shao-Chi Wu
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
| | - Philip Yao
- Aurora
High School, 109 W Pioneer Trail, Aurora, Ohio 44202, United States
| | - Ching-Ting Lin
- School
of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Lei Wan
- School
of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Hui-Hsu Gavin Tsai
- Department
of Chemistry, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan 32001, Taiwan
- Research
Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
43
|
Liu C, Han J, Li Z, Liu Y, Wu R, Cao S, Wu D. Imidazolium-Based Main-Chain Copolymers With Alternating Sequences for Broad-Spectrum Bactericidal Activity and Eradication of Bacterial Biofilms. Macromol Biosci 2024:e2300489. [PMID: 38261742 DOI: 10.1002/mabi.202300489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Indexed: 01/25/2024]
Abstract
In response to the escalating challenge of bacterial drug resistance, the imperative to counteract planktonic cell proliferation and eliminate entrenched biofilms underscores the necessity for cationic polymeric antibacterials. However, limited efficacy and cytotoxicity challenge their practical use. Here, novel imidazolium-based main-chain copolymers with imidazolium (PIm+ ) as the cationic component are introduced. By adjusting precursor molecules, hydrophobicity and cationic density of each unit are fine-tuned, resulting in broad-spectrum bactericidal activity against clinically relevant pathogens. PIm+ 1 stands out for its potent antibacterial performance, with a minimum inhibitory concentration of 32 µg mL-1 against Methicillin-resistant Staphylococcus aureus (MRSA), and substantial biofilm reduction in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilms. The bactericidal mechanism involves disrupting the outer and cytoplasmic membranes, depolarizing the cytoplasmic membrane, and triggering intracellular reactive oxygen species (ROS) generation. Collectively, this study postulates the potential of imidazolium-based main-chain copolymers, systematically tailored in their sequences, to serve as a promising candidate in combatting drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Changjiang Liu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Jialei Han
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Zeyuan Li
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Yadong Liu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Ruodai Wu
- Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Shuaishuai Cao
- Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Dalin Wu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Shenzhen, 518107, China
| |
Collapse
|
44
|
Moral R, Paul S. Exploring Cyclic Peptide Nanotube Stability Across Diverse Lipid Bilayers and Unveiling Water Transport Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:882-895. [PMID: 38134046 DOI: 10.1021/acs.langmuir.3c03030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Cyclic Peptide Nanotubes (CPNTs) have emerged as compelling candidates for various applications, particularly as nanochannels within lipid bilayers. In this study, the stability of two CPNTs, namely 8 × [(Cys-Gly-Met-Gly)2] and 8 × [(Gly-Leu)4], are comprehensively investigated across different lipid bilayers, including 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a mixed model membrane (POPE/POPG), and a realistic yeast model membrane. The results demonstrate that both CPNTs maintain their tubular structures in all lipid bilayers, with [(Cys-Gly-Met-Gly)2] showing increased stability over an extended period in these lipid membranes. The insertion of CPNTs shows negligible impact on lipid bilayer properties, including area per lipid, volume per lipid, and bilayer thickness. The study demonstrates that the CPNT preserves its two-line water movement pattern within all the lipid membranes, reaffirming their potential as water channels. The MSD curves further reveal that the dynamics of water molecules inside the nanotube are similar for all the bilayer systems with minor differences that arise due to different lipid environments.
Collapse
Affiliation(s)
- Rimjhim Moral
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
45
|
Alimohamadi H, Luo EWC, Gupta S, de Anda J, Yang R, Mandal T, Wong GCL. Comparing multifunctional viral and eukaryotic proteins for generating scission necks in membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574447. [PMID: 38260291 PMCID: PMC10802413 DOI: 10.1101/2024.01.05.574447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is the M2 viroporin, a proton pump from the influenza A virus which is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging Small-Angle X-ray Scattering (SAXS) structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemi-fission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.
Collapse
|
46
|
Struts AV, Barmasov AV, Fried SDE, Hewage KSK, Perera SMDC, Brown MF. Osmotic stress studies of G-protein-coupled receptor rhodopsin activation. Biophys Chem 2024; 304:107112. [PMID: 37952496 DOI: 10.1016/j.bpc.2023.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 11/14/2023]
Abstract
We summarize and critically review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Although small amounts of structural water are present in these receptors, the effect of bulk water on their function remains uncertain. Studies of the influences of osmotic stress on the GPCR archetype rhodopsin have given insights into the functional role of water in receptor activation. Experimental work has discovered that osmolytes shift the metarhodopsin equilibrium after photoactivation, either to the active or inactive conformations according to their molar mass. At least 80 water molecules are found to enter rhodopsin in the transition to the photoreceptor active state. We infer that this movement of water is both necessary and sufficient for receptor activation. If the water influx is prevented, e.g., by large polymer osmolytes or by dehydration, then the receptor functional transition is back shifted. These findings imply a new paradigm in which rhodopsin becomes solvent swollen in the activation mechanism. Water thus acts as an allosteric modulator of function for rhodopsin-like receptors in lipid membranes.
Collapse
Affiliation(s)
- Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Laboratory of Biomolecular NMR, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Alexander V Barmasov
- Department of Biophysics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia; Department of Physics, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Steven D E Fried
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kushani S K Hewage
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
47
|
Bonvin E, Personne H, Paschoud T, Reusser J, Gan BH, Luscher A, Köhler T, van Delden C, Reymond JL. Antimicrobial Peptide-Peptoid Hybrids with and without Membrane Disruption. ACS Infect Dis 2023; 9:2593-2606. [PMID: 38062792 PMCID: PMC10714400 DOI: 10.1021/acsinfecdis.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Among synthetic analogues of antimicrobial peptides (AMPs) under investigation to address antimicrobial resistance, peptoids (N-alkylated oligoglycines) have been reported to act both by membrane disruption and on intracellular targets. Here we gradually introduced peptoid units into the membrane-disruptive undecapeptide KKLLKLLKLLL to test a possible transition toward intracellular targeting. We found that selected hybrids containing up to five peptoid units retained the parent AMP's α-helical folding, membrane disruption, and antimicrobial effects against Gram-negative bacteria including multidrug-resistant (MDR) strains of Pseudomonas aeruginosa and Klebsiella pneumoniae while showing reduced hemolysis and cell toxicities. Furthermore, some hybrids containing as few as three peptoid units as well as the full peptoid lost folding, membrane disruption, hemolysis, and cytotoxicity but displayed strong antibacterial activity under dilute medium conditions typical for proline-rich antimicrobial peptides (PrAMPs), pointing to intracellular targeting. These findings parallel previous reports that partially helical amphiphilic peptoids are privileged oligomers for antibiotic development.
Collapse
Affiliation(s)
- Etienne Bonvin
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Hippolyte Personne
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Thierry Paschoud
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jérémie Reusser
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Bee-Ha Gan
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Alexandre Luscher
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Thilo Köhler
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Christian van Delden
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
48
|
Alimohamadi H, de Anda J, Lee MW, Schmidt NW, Mandal T, Wong GCL. How Cell-Penetrating Peptides Behave Differently from Pore-Forming Peptides: Structure and Stability of Induced Transmembrane Pores. J Am Chem Soc 2023; 145:26095-26105. [PMID: 37989570 PMCID: PMC11870675 DOI: 10.1021/jacs.3c08014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Peptide-induced transmembrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions, and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore-forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small-angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that although AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
| | - Nathan W Schmidt
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Gallardo-Becerra L, Cervantes-Echeverría M, Cornejo-Granados F, Vazquez-Morado LE, Ochoa-Leyva A. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota. MICROBIAL ECOLOGY 2023; 87:8. [PMID: 38036921 PMCID: PMC10689560 DOI: 10.1007/s00248-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Changes in the structure and function of the microbiota are associated with various human diseases. These microbial changes can be mediated by antimicrobial peptides (AMPs), small peptides produced by the host and their microbiota, which play a crucial role in host-bacteria co-evolution. Thus, by studying AMPs produced by the microbiota (microbial AMPs), we can better understand the interactions between host and bacteria in microbiome homeostasis. Additionally, microbial AMPs are a new source of compounds against pathogenic and multi-resistant bacteria. Further, the growing accessibility to metagenomic and metatranscriptomic datasets presents an opportunity to discover new microbial AMPs. This review examines the structural properties of microbiota-derived AMPs, their molecular action mechanisms, genomic organization, and strategies for their identification in any microbiome data as well as experimental testing. Overall, we provided a comprehensive overview of this important topic from the microbial perspective.
Collapse
Affiliation(s)
- Luigui Gallardo-Becerra
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Melany Cervantes-Echeverría
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Luis E Vazquez-Morado
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
50
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|