1
|
Binte Hanafi Z, Mei Y, Teo HY, Zhu Y, Yong Lionel CC, Chiu JW, Lu J, Liu H. Calpain 2 regulates IL-1α secretion and inhibits tumor development via modulating calpain 1 expression in the tumor microenvironment. Oncoimmunology 2025; 14:2451444. [PMID: 39803956 PMCID: PMC11730618 DOI: 10.1080/2162402x.2025.2451444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Tumor-promoting inflammation significantly impacts cancer progression, and targeting inflammatory cytokines has emerged as a promising therapeutic approach in clinical trials. Interleukin (IL)-1α, a member of the IL-1 cytokine family, plays a crucial role in both inflammation and carcinogenesis. How IL-1α is secreted in the tumor microenvironment has been poorly understood, and we previously showed that calpain 1 cleaves pro-IL-1α for mature IL-1α secretion, which exacerbates hepatocellular carcinoma by recruiting myeloid-derived suppressor cells. In this study, we report that calpain 2 also modulates IL-1α secretion. Notably, a deficiency in calpain 2 resulted in enhanced hepatocellular carcinoma development within an IL-1α-enriched tumor microenvironment. Further investigations revealed that calpain 2 deficiency increased calpain 1 expression, implying a compensatory mechanism between the two calpains. Mechanistically, calpain 2 deficiency led to increased expression of FoxO3, which is a forkhead transcription factor that promotes calpain 1 expression. Collectively, these results suggest that calpain 2 modulates calpain 1 expression, and therefore IL-1α secretion through the induction of FoxO3, offering novel potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Zuhairah Binte Hanafi
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Mei
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Yee Teo
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Zhu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chew Chin Yong Lionel
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Wen Chiu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinhua Lu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
3
|
Curtis GH, Reeve RE, Crespi EJ. Leptin signaling promotes blood vessel formation in the Xenopus tail during the embryo-larval transition. Dev Biol 2024; 512:26-34. [PMID: 38705558 DOI: 10.1016/j.ydbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
The signals that regulate peripheral blood vessel formation during development are still under investigation. The hormone leptin promotes blood vessel formation, adipose tissue establishment and expansion, tumor growth, and wound healing, but the underlying mechanisms for these actions are currently unknown. We investigated whether leptin promotes angiogenesis in the developing tail fin using embryonic transgenic xflk-1:GFP Xenopus laevis, which express a green fluorescent protein on vascular endothelial cells to mark blood vessels. We found that leptin protein is expressed in endothelial cells of developing blood vessels and that leptin treatment via injection increased phosphorylated STAT3 signaling, which is indicative of leptin activation of its receptor, in blood vessels of the larval tail fin. Leptin administration via media increased vessel length, branching, and reconnection with the cardinal vein, while decreased leptin signaling via immunoneutralization had an opposing effect on vessel development. We also observed disorganization of major vessels and microvessels of the tail fin and muscle when leptin signaling was decreased. Reduced leptin signaling lowered mRNA expression of cenpk, gpx1, and mmp9, markers for cell proliferation, antioxidation, and extracellular matrix remodeling/cell migration, respectively, in the developing tail, providing insight into three possible mechanisms underlying leptin's promotion of angiogenesis. Together these results illustrate that leptin levels are correlated with embryonic angiogenesis and that leptin coordinates multiple aspects of blood vessel growth and development, showing that leptin is an important morphogen during embryonic development.
Collapse
Affiliation(s)
- Grace H Curtis
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA, 99164.
| | - Robyn E Reeve
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA, 99164
| | - Erica J Crespi
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA, 99164
| |
Collapse
|
4
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
5
|
Ajabnoor GMA. The Molecular and Genetic Interactions between Obesity and Breast Cancer Risk. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1338. [PMID: 37512149 PMCID: PMC10384495 DOI: 10.3390/medicina59071338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Breast cancer (BC) is considered the leading cause of death among females worldwide. Various risk factors contribute to BC development, such as age, genetics, reproductive factors, obesity, alcohol intake, and lifestyle. Obesity is considered to be a pandemic health problem globally, affecting millions of people worldwide. Obesity has been associated with a high risk of BC development. Determining the impact of obesity on BC development risk in women by demonstrating the molecular and genetic association in pre- and post-menopause females and risk to BC initiation is crucial in order to improve the diagnosis and prognosis of BC disease. In epidemiological studies, BC in premenopausal women was shown to be protective in a certain pattern. These altered effects between the two phases could be due to various physiological changes, such as estrogen/progesterone fluctuating levels. In addition, the relationship between BC risk and obesity is indicated by different molecular alterations as metabolic pathways and genetic mutation or epigenetic DNA changes supporting a strong connection between obesity and BC risk. However, these molecular and genetic alteration remain incompletely understood. The aim of this review is to highlight and elucidate the different molecular mechanisms and genetic changes occurring in obese women and their association with BC risk and development.
Collapse
Affiliation(s)
- Ghada M A Ajabnoor
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Food, Nutrition and Lifestyle Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21551, Saudi Arabia
- Saudi Diabetes Research Group, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Herrspiegel C, Plastino F, Lardner E, Seregard S, Williams PA, André H, Stålhammar G. A serum protein signature at the time of Uveal Melanoma diagnosis predicts long-term patient survival. BMC Cancer 2023; 23:277. [PMID: 36973672 PMCID: PMC10044715 DOI: 10.1186/s12885-023-10757-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
PURPOSE To develop a prognostic test based on a single blood sample obtained at the time of uveal melanoma diagnosis. METHODS 83 patients diagnosed with posterior uveal melanoma between 1996 and 2000 were included. Peripheral serum samples were obtained at diagnosis and kept at -80 °C until this analysis. Protein profiling of 84 cancer-related proteins was used to screen for potential biomarkers and a prognostic test that stratifies patients into metastatic risk categories was developed (serUM-Px) in a training cohort and then tested in a validation cohort. RESULTS Low serum leptin levels and high osteopontin levels were found to identify patients with poor prognosis and were therefore selected for inclusion in the final test. In the validation cohort, patient sex and American Joint Committee on Cancer stages were similarly distributed between the low, intermediate, and high metastatic risk categories. With increasing metastatic risk category, patients had shorter metastasis-free- and overall survival, as well as greater cumulative incidence of uveal melanoma-related mortality in competing risk analysis (P = 0.007, 0.018 and 0.029, respectively). In multivariate Cox regression, serUM-Px was an independent predictor of metastasis with tumor size and patient sex as covariates (hazard ratio 3.2, 95% CI 1.5-6.9). CONCLUSIONS A prognostic test based on a single peripheral venous blood sample at the time of uveal melanoma diagnosis stratifies patients into low, intermediate, and high metastatic risk categories. Prospective validation will facilitate its clinical utility.
Collapse
Affiliation(s)
- Christina Herrspiegel
- St. Erik Eye Hospital, Eugeniavägen 12, 4078, Stockholm, 171 64, Sweden
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, 171 77, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, 171 77, Sweden
| | - Emma Lardner
- St. Erik Eye Hospital, Eugeniavägen 12, 4078, Stockholm, 171 64, Sweden
| | - Stefan Seregard
- St. Erik Eye Hospital, Eugeniavägen 12, 4078, Stockholm, 171 64, Sweden
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, 171 77, Sweden
| | - Pete A Williams
- St. Erik Eye Hospital, Eugeniavägen 12, 4078, Stockholm, 171 64, Sweden
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, 171 77, Sweden
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, 171 77, Sweden
| | - Gustav Stålhammar
- St. Erik Eye Hospital, Eugeniavägen 12, 4078, Stockholm, 171 64, Sweden.
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, 171 77, Sweden.
| |
Collapse
|
7
|
Stålhammar G, Williams PA, Landelius T. The prognostic implication of latitude in uveal melanoma: a nationwide observational cohort study of all patients born in Sweden between 1947 and 1989. Discov Oncol 2022; 13:116. [PMID: 36310339 PMCID: PMC9618472 DOI: 10.1007/s12672-022-00584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The incidence of uveal melanoma increases with latitude. In this study, we examine the importance of latitude for uveal melanoma prognosis. METHODS All uveal melanoma patients born in Sweden between 1947 and 1990 were included (n = 745). The latitude of patients' birthplaces and home counties at the time of uveal melanoma diagnosis were collected. For all latitudes, data on sunlight and UV intensity parameters, temperature, daytime length variations, and socioeconomic factors were added. The prognostic implication of birthplace latitude and of moving > 1 degree of latitude was examined with multivariate Cox regressions and competing risk analyses. FINDINGS There were no significant differences in patient sex, age, tumor size, T-category, or BAP-1 immunoexpression between patients born in the south, central or northern regions of Sweden. Decreasing birthplace latitude was a predictor of uveal melanoma-related mortality in multivariate Cox regression. Patients that were born in southern regions or moved > 1 degree south between birth and diagnosis had higher incidence of uveal melanoma-related mortality in competing risk analysis. The sum of yearly sunshine hours, global sunlight radiation, average daily ultraviolet light intensity, average annual temperature, or net wealth were not predictors of uveal melanoma-related mortality. INTERPRETATION Latitude is a prognostic factor in uveal melanoma. This does not seem to be related to variations in patient or tumor characteristics at presentation, in management, in sunlight intensity, in ultraviolet light irradiance, in temperature, or in wealth. Future studies should examine if periodical changes in daylight hours or other factors could explain the prognostic implication.
Collapse
Affiliation(s)
- Gustav Stålhammar
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 171 64, Stockholm, Sweden.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 171 64, Stockholm, Sweden
| | - Tomas Landelius
- Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden
| |
Collapse
|
8
|
Bunnell BA, Martin EC, Matossian MD, Brock CK, Nguyen K, Collins-Burow B, Burow ME. The effect of obesity on adipose-derived stromal cells and adipose tissue and their impact on cancer. Cancer Metastasis Rev 2022; 41:549-573. [PMID: 35999486 DOI: 10.1007/s10555-022-10063-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Margarite D Matossian
- Department of Microbiology, Immunology and Genetics, University of Chicago, IL, Chicago, USA
| | - Courtney K Brock
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bridgette Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
9
|
Duraiyarasan S, Adefuye M, Manjunatha N, Ganduri V, Rajasekaran K. Colon Cancer and Obesity: A Narrative Review. Cureus 2022; 14:e27589. [PMID: 36059323 PMCID: PMC9433794 DOI: 10.7759/cureus.27589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 11/05/2022] Open
Abstract
Obesity has played a crucial role in the pathogenesis of various cancers, including colorectal cancer (CRC). Obesity has shown to increase the blood levels of insulin, insulin-like growth factor-1 (IGF-1), leptin, resistin, inflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) which in turn acts via various signaling pathways to induce colonic cell proliferation and in turn CRC development. It has been shown that estrogen can prevent and cause CRC based on which receptor it acts. Obese patients have relatively low levels of ghrelin and adiponectin that inhibit cell proliferation which further adds to their risk of developing CRC. Obesity can alter the microbial flora of the gut in such a way as to favor carcinogenesis. Weight loss and good physical activity have been related to a reduced incidence of CRC; obese individuals should be screened for CRC and counseled about the importance of weight reduction, diet, and exercise. The best way of screening is using BMI and waist circumference (WC) to calculate the CRC risk in obese people. This study has reviewed the association between obesity and its pathophysiological association with CRC development.
Collapse
|
10
|
Ngwa VM, Edwards DN, Hwang Y, Karno B, Wang X, Yan C, Richmond A, Brantley-Sieders DM, Chen J. Loss of vascular endothelial glutaminase inhibits tumor growth and metastasis, and increases sensitivity to chemotherapy. CANCER RESEARCH COMMUNICATIONS 2022; 2:694-705. [PMID: 36381236 PMCID: PMC9645801 DOI: 10.1158/2767-9764.crc-22-0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 02/02/2023]
Abstract
Glutamine is the most abundant non-essential amino acid in blood stream; yet it's concentration in tumor interstitium is markedly lower than that in the serum, reflecting the huge demand of various cell types in tumor microenvironment for glutamine. While many studies have investigated glutamine metabolism in tumor epithelium and infiltrating immune cells, the role of glutamine metabolism in tumor blood vessels remains unknown. Here, we report that inducible genetic deletion of glutaminase (GLS) specifically in host endothelium, GLSECKO, impairs tumor growth and metastatic dissemination in vivo. Loss of GLS decreased tumor microvascular density, increased perivascular support cell coverage, improved perfusion, and reduced hypoxia in mammary tumors. Importantly, chemotherapeutic drug delivery and therapeutic efficacy were improved in tumor-bearing GLSECKO hosts or in combination with GLS inhibitor, CB839. Mechanistically, loss of GLS in tumor endothelium resulted in decreased leptin levels, and exogenous recombinant leptin rescued tumor growth defects in GLSECKO mice. Together, these data demonstrate that inhibition of endothelial glutamine metabolism normalizes tumor vessels, reducing tumor growth and metastatic spread, improving perfusion, and reducing hypoxia, and enhancing chemotherapeutic delivery. Thus, targeting glutamine metabolism in host vasculature may improve clinical outcome in patients with solid tumors.
Collapse
Affiliation(s)
- Verra M. Ngwa
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Deanna N. Edwards
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yoonha Hwang
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Breelyn Karno
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Xiaoyong Wang
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chi Yan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ann Richmond
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dana M. Brantley-Sieders
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jin Chen
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
11
|
Role of Obesity, Physical Exercise, Adipose Tissue-Skeletal Muscle Crosstalk and Molecular Advances in Barrett's Esophagus and Esophageal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23073942. [PMID: 35409299 PMCID: PMC8999972 DOI: 10.3390/ijms23073942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the United States and Western Europe in recent years. EAC is a classic example of obesity-related cancer where the risk of EAC increases with increasing body mass index. Pathologically altered visceral fat in obesity appears to play a key role in this process. Visceral obesity may promote EAC by directly affecting gastroesophageal reflux disease and Barrett’s esophagus (BE), as well as a less reflux-dependent effect, including the release of pro-inflammatory adipokines and insulin resistance. Deregulation of adipokine production, such as the shift to an increased amount of leptin relative to “protective” adiponectin, has been implicated in the pathogenesis of BE and EAC. This review discusses not only the epidemiology and pathophysiology of obesity in BE and EAC, but also molecular alterations at the level of mRNA and proteins associated with these esophageal pathologies and the potential role of adipokines and myokines in these disorders. Particular attention is given to discussing the possible crosstalk of adipokines and myokines during exercise. It is concluded that lifestyle interventions to increase regular physical activity could be helpful as a promising strategy for preventing the development of BE and EAC.
Collapse
|
12
|
Li L, Meng X, Liu L, Xiang Y, Wang F, Yu L, Zhou F, Zheng C, Zhou W, Cui S, Tian F, Fan Z, Geng C, Cao X, Yang Z, Wang X, Liang H, Wang S, Jiang H, Duan X, Wang H, Li G, Wang Q, Zhang J, Jin F, Tang J, Li L, Zhu S, Zuo W, Ye C, Yin G, Ma Z, Huang S, Yu Z. Single-Nucleotide Polymorphisms in LEP and LEPR Associated With Breast Cancer Risk: Results From a Multicenter Case-Control Study in Chinese Females. Front Oncol 2022; 12:809570. [PMID: 35223490 PMCID: PMC8866686 DOI: 10.3389/fonc.2022.809570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Leptin (LEP) plays a physiological role through its specific receptor (LEPR) and is involved in the occurrence and development of breast cancer. Our current study aimed at determining the influence of single-nucleotide polymorphisms (SNPs) in the genes coding for LEP and LEPR on breast cancer risk. Methods In the present study, 963 breast cancer cases and 953 controls were enrolled. Five SNPs of LEP and two of LEPR were chosen to evaluate the correlation of selected SNPs with breast cancer susceptibility among women in northern and eastern China. Analyses were further stratified by body mass index (BMI), waist–hip rate (WHR), estrogen receptor, and progesterone receptor status. The expression patterns of risk variant-associated genes were detected by expression quantitative trait locus (eQTL) analysis with eQTLGen and The Cancer Genome Atlas database. Results There were significant differences between breast cancer cases and control groups in the menopausal status and family history of breast cancer. Two SNPs (rs1137101 and rs4655555) of the LEPR gene decreased overall breast cancer risk, and other five SNPs showed no significant association with breast cancer risk. rs1137101 (GA vs. GG; adjusted OR = 0.719, 95% CI = 0.578–0.894, p = 0.003) and rs4655555 (TT vs. AA; adjusted OR = 0.574, 95% CI = 0.377–0.873, p = 0.009) significantly decreased breast cancer risk after Bonferroni correction for multiple testing. In subgroup analyses, the GA and GA + AA genotypes of LEPR rs1137101 associated with decreased breast cancer risk in the subgroup of BMI ≤ 24 kg/m2 or WHR ≥ 0.85 after Bonferroni correction. Furthermore, we found that the expressions of rs4655555-associated gene LEPR and leptin receptor overlapping transcript (LEPROT) were upregulated in breast cancer tumor tissues compared with adjacent normal tissues, and a higher expression of LEPR in tumor tissues was correlated with poor prognosis of breast cancer patients using The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) data. Conclusion Our study demonstrated that the polymorphisms rs1137101 and rs4655555 located in the LEPR gene decreased breast cancer risk in Chinese females, which might be a research-worthy bio-diagnostic marker and applied for early prediction and risk assessment of breast cancer.
Collapse
Affiliation(s)
- Liang Li
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Xingchen Meng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Wenzhong Zhou
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Shude Cui
- Department of Breast Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuguo Tian
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Cuizhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuchen Cao
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiang Wang
- Department of Breast Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Liang
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Shu Wang
- Department of Breast Disease Center, Peking University People's Hospital, Beijing, China
| | - Hongchuan Jiang
- Department of General Surgery, Beijing Chaoyang Hospital, Beijing, China
| | - Xuening Duan
- Department of Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Haibo Wang
- Department of Breast Center, Qingdao University Affiliated Hospital, Qingdao, China
| | - Guolou Li
- Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Qitang Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Qingdao Medical College, Qingdao Central Hospital, Qingdao, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinhai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Liang Li
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, Zibo, China
| | - Shiguang Zhu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Wenshu Zuo
- Department of Breast Cancer Center, Shandong Cancer Hospital, Jinan, China
| | - Chunmiao Ye
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gengshen Yin
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| |
Collapse
|
13
|
Llanos AA, Aremu JB, Cheng TYD, Chen W, Chekmareva MA, Cespedes Feliciano EM, Qin B, Lin Y, Omene C, Khoury T, Hong CC, Yao S, Ambrosone CB, Bandera EV, Demissie K. Greater Body Fatness Is Associated With Higher Protein Expression of LEPR in Breast Tumor Tissues: A Cross-Sectional Analysis in the Women's Circle of Health Study. Front Endocrinol (Lausanne) 2022; 13:879164. [PMID: 35846306 PMCID: PMC9277012 DOI: 10.3389/fendo.2022.879164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The mechanisms underlying the association of overall and central body fatness with poorer breast cancer outcomes remain unclear; altered gene and/or protein expression of the adipokines and their receptors in breast tumors might play a role. METHODS In a sample of Black and White women with primary invasive breast cancer, we investigated associations of body mass index (BMI), waist circumference, hip circumference, waist-to-hip ratio (WHR), fat mass index (FMI), and percent body fat with protein expression (log-transformed, n = 722) and gene expression (log2-transformed, n = 148) of leptin (LEP), leptin receptor (LEPR), adiponectin (ADIPOQ), and adiponectin receptors 1 and 2 (ADIPOR1, ADIPOR2). Multivariable linear models, adjusting for race, menopausal status, and estrogen receptor status, were used to assess these associations, with Bonferroni correction for multiple comparisons. RESULTS In multivariable models, we found that increasing BMI (β = 0.0529, 95% CI: 0.0151, 0.0906) and FMI (β = 0.0832, 95% CI: 0.0268, 0.1397) were associated with higher LEP gene expression, corresponding to 34.5% and 38.3% increases in LEP gene expression for a standard deviation (SD) increase in BMI and FMI, respectively. Increasing BMI (β = 0.0028, 95% CI: 0.0011, 0.0045), waist circumference (β = 0.0013, 95% CI: 0.0005, 0.0022), hip circumference (β = 0.0015, 95% CI: 0.0007, 0.0024), and FMI (β = 0.0041, 95% CI: 0.0015, 0.0067) were associated with higher LEPR protein expression. These associations equate to 16.8%, 17.6%, 17.7%, 17.2% increases in LEPR protein expression for a 1-SD increase in BMI, waist circumference, hip circumference, and FMI, respectively. Further, these associations were stronger among White and postmenopausal women and ER+ cases; formal tests of interaction yielded evidence of effect modification by race. No associations of body fatness with LEP protein expression, LEPR gene expression, or protein or gene expression of ADIPOQ, ADIPOR1, and ADIPOR2 were found. CONCLUSIONS These findings support an association of increased body fatness - beyond overall body size measured using BMI - with higher LEP gene expression and higher LEPR protein expression in breast tumor tissues. Clarifying the impact of adiposity-related adipokine and adipokine receptor expression in breast tumors on long-term breast cancer outcomes is a critical next step.
Collapse
Affiliation(s)
- Adana A.M. Llanos
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Adana A.M. Llanos,
| | - John B. Aremu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Ting-Yuan David Cheng
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Wenjin Chen
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Marina A. Chekmareva
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | | | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Yong Lin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Coral Omene
- Department of Medicine, Rutgers Robert Wood Johnson Medical School and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Thaer Khoury
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elisa V. Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, NY, United States
| |
Collapse
|
14
|
Holm JB, Rosendahl AH, Borgquist S. Local Biomarkers Involved in the Interplay between Obesity and Breast Cancer. Cancers (Basel) 2021; 13:cancers13246286. [PMID: 34944905 PMCID: PMC8699696 DOI: 10.3390/cancers13246286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Breast cancer is the second most common cancer in women worldwide. The risk of developing breast cancer depends on various mechanisms, such as age, heredity, reproductive factors, physical inactivity, and obesity. Obesity increases the risk of breast cancer and worsens outcomes for breast cancer patients. The rate of obesity is increasing worldwide, stressing the need for awareness of the association between obesity and breast cancer. In this review, we outline the biomarkers—including cellular and soluble factors—in the breast, associated with obesity, that affect the risk of breast cancer and breast cancer prognosis. Through these biomarkers, we aim to better identify patients with obesity with a higher risk of breast cancer and an inferior prognosis. Abstract Obesity is associated with an increased risk of breast cancer, which is the most common cancer in women worldwide (excluding non-melanoma skin cancer). Furthermore, breast cancer patients with obesity have an impaired prognosis. Adipose tissue is abundant in the breast. Therefore, breast cancer develops in an adipose-rich environment. During obesity, changes in the local environment in the breast occur which are associated with breast cancer. A shift towards a pro-inflammatory state is seen, resulting in altered levels of cytokines and immune cells. Levels of adipokines, such as leptin, adiponectin, and resistin, are changed. Aromatase activity rises, resulting in higher levels of potent estrogen in the breast. Lastly, remodeling of the extracellular matrix takes place. In this review, we address the current knowledge on the changes in the breast adipose tissue in obesity associated with breast cancer initiation and progression. We aim to identify obesity-associated biomarkers in the breast involved in the interplay between obesity and breast cancer. Hereby, we can improve identification of women with obesity with an increased risk of breast cancer and an impaired prognosis. Studies investigating mammary adipocytes and breast adipose tissue in women with obesity versus women without obesity are, however, sparse and further research is needed.
Collapse
Affiliation(s)
- Jonas Busk Holm
- Department of Oncology, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Correspondence: (J.B.H.); (S.B.)
| | - Ann H. Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Barngatan 4, 221 85 Lund, Sweden;
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Barngatan 4, 221 85 Lund, Sweden;
- Correspondence: (J.B.H.); (S.B.)
| |
Collapse
|
15
|
García-Estevez L, González-Martínez S, Moreno-Bueno G. The Leptin Axis and Its Association With the Adaptive Immune System in Breast Cancer. Front Immunol 2021; 12:784823. [PMID: 34868066 PMCID: PMC8634160 DOI: 10.3389/fimmu.2021.784823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
Adipose tissue secretes various peptides, including leptin. This hormone acts through the leptin receptor (Ob-R), which is expressed ubiquitously on the surface of various cells, including breast cancer cells and immune cells. Increasing evidence points to an interaction between the tumor microenvironment, tumor cells, and the immune system. Leptin plays an important role in breast cancer tumorigenesis and may be implicated in activation of the immune system. While breast cancer cannot be considered an immunogenic cancer, the triple-negative subtype is an exception. Specific immune cells - tumor infiltrating lymphocytes - are involved in the immune response and act as predictive and prognostic factors in certain breast cancer subtypes. The aim of this article is to review the interaction between adipose tissue, through the expression of leptin and its receptor, and the adaptive immune system in breast cancer.
Collapse
Affiliation(s)
- Laura García-Estevez
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,MD Anderson International Foundation, Madrid, Spain
| | - Silvia González-Martínez
- Pathology Department, Hospital Ramón y Cajal, Madrid, Spain.,Fundación Contigo Contra el Cáncer de la Mujer, Madrid, Spain
| | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,MD Anderson International Foundation, Madrid, Spain.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, Madrid, Spain
| |
Collapse
|
16
|
Renna ME, Shrout MR, Madison AA, Jaremka LM, Alfano CM, Povoski SP, Agnese DM, Carson WE, Kiecolt-Glaser JK. Fluctuations in depression and anxiety predict dysregulated leptin among obese breast cancer survivors. J Cancer Surviv 2021; 15:847-854. [PMID: 33409856 DOI: 10.1007/s11764-020-00977-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Leptin influences inflammation and tumor growth and leptin signaling is often dysregulated among obese breast cancer survivors. This leads to a lack of satiety and, ultimately, risk for further weight gain. Breast cancer survivors also experience high rates of depression and anxiety, which are linked to leptin production. This study examined how a woman's anxiety and depressive symptoms, in combination with their obesity status, were associated with leptin. METHODS Breast cancer survivors (n = 200, stages 0-IIIa) completed a baseline visit before treatment and two follow-up visits, 6 and 18 months after treatment ended. Women completed anxiety and depression measures, and blood samples provided leptin data at each visit. This study related fluctuations in a survivor's own depression and anxiety (i.e., within-person effects), as well as average effects of depression and anxiety (i.e., between-person effects) to changes in leptin depending on BMI. RESULTS Obese survivors' leptin was significantly higher at visits when they had higher anxiety and depression symptoms than their own average level of symptoms. In contrast, within-person fluctuations in depression and anxiety were not related to leptin levels among non-obese survivors. No significant between-person effects of depression or anxiety on leptin emerged. CONCLUSIONS Leptin is a critical risk factor for recurrence and further health consequences. Our findings highlight how psychological health influences leptin production among breast cancer survivors. IMPLICATIONS FOR CANCER SURVIVORS These results highlight a biological pathway that may facilitate further weight gain and health risks among distressed, obese breast cancer survivors.
Collapse
Affiliation(s)
- Megan E Renna
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - M Rosie Shrout
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Annelise A Madison
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Lisa M Jaremka
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Catherine M Alfano
- Northwell Health Cancer Institute & Center for Personalized Health, New York, NY, USA
| | - Stephen P Povoski
- Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Doreen M Agnese
- Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - William E Carson
- Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Janice K Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
17
|
Jin TY, Saindane M, Park KS, Kim S, Nam S, Yoo Y, Yang JH, Yun I. LEP as a potential biomarker in prognosis of breast cancer: Systemic review and meta analyses (PRISMA). Medicine (Baltimore) 2021; 100:e26896. [PMID: 34414945 PMCID: PMC8376305 DOI: 10.1097/md.0000000000026896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 05/16/2021] [Accepted: 07/17/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Obesity strongly affects the prognosis of various malignancies, including breast cancer. Leptin (LEP) may be associated with obesity and breast cancer prognosis. The purpose of our study was to determine the prognostic value of LEP in breast cancer. METHOD We conducted a multi-omic analysis to determine the prognostic role of LEP. Different public bioinformatics platforms (Oncomine, Gene Expression Profiling Interactive Analysis, University of California Santa Cruz Xena, bc-GenExMiner, PrognoScan database, R2-Kaplan-Meier Scanner, UALCAN, Search Tool for the Retrieval of Interacting Genes/Proteins database , and The Database for Annotation, Visualization and Integrated Discovery) were used to evaluate the roles of LEP. Clinicopathological variables were evaluated. RESULTS LEP was downregulated in breast cancer tissues compared to levels in normal tissues. By co-expressed gene analysis, a positive correlation between LEP and SLC19A3 was observed. Based on the clinicopathological analysis, low LEP expression was associated with older age, higher stage, lymph node status, human epidermal growth factor receptor 2 (HER2) status, estrogen receptor (ER+) positivity, and progesterone receptor (PR+) positivity. Kaplan-Meier survival analysis showed that low LEP expression indicated a poorer prognosis. LEP is hypermethylated in breast cancer tissues in PrognoScan and R2-Kaplan Meier Scanner, and low LEP expression was correlated with poor prognosis. LEP protein-protein interactions were analyzed using Search Tool for the Retrieval of Interacting Genes/Proteins database. Gene ontology analysis results showed that cellular component is mainly associated with the endosome lumen, cytosol, and secretory granules and is upregulated. For the biological process energy reserve, metabolic processes exhibited the greatest regulation compared to the others. In molecular function, it was mainly enriched in a variety of combinations, but hormone activity showed the highest regulation. CONCLUSION Our study provides evidence for the prognostic role of LEP in breast cancer and as a novel potential therapeutic target in such malignancies. Nevertheless, further validation is required.
Collapse
Affiliation(s)
- Tong Yi Jin
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Madhuri Saindane
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - SeongHoon Kim
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - SangEun Nam
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - YoungBum Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - Jung-Hyun Yang
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - IkJin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| |
Collapse
|
18
|
Álvarez-Artime A, García-Soler B, Sainz RM, Mayo JC. Emerging Roles for Browning of White Adipose Tissue in Prostate Cancer Malignant Behaviour. Int J Mol Sci 2021; 22:5560. [PMID: 34074045 PMCID: PMC8197327 DOI: 10.3390/ijms22115560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.
Collapse
Affiliation(s)
- Alejandro Álvarez-Artime
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Belén García-Soler
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
| | - Rosa María Sainz
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Juan Carlos Mayo
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
19
|
Llanos AAM, Yao S, Singh A, Aremu JB, Khiabanian H, Lin Y, Omene C, Omilian AR, Khoury T, Hong CC, Ganesan S, Foran DJ, Higgins MJ, Ambrosone CB, Bandera EV, Demissie K. Gene expression of adipokines and adipokine receptors in the tumor microenvironment: associations of lower expression with more aggressive breast tumor features. Breast Cancer Res Treat 2020; 185:785-798. [PMID: 33067778 DOI: 10.1007/s10549-020-05972-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Limited epidemiologic data are available on the expression of adipokines leptin (LEP) and adiponectin (ADIPOQ) and adipokine receptors (LEPR, ADIPOR1, ADIPOR2) in the breast tumor microenvironment (TME). The associations of gene expression of these biomarkers with tumor clinicopathology are not well understood. METHODS NanoString multiplexed assays were used to assess the gene expression levels of LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 within tumor tissues among 162 Black and 55 White women with newly diagnosed breast cancer. Multivariate mixed effects models were used to estimate associations of gene expression with breast tumor clinicopathology (overall and separately among Blacks). RESULTS Black race was associated with lower gene expression of LEPR (P = 0.002) and ADIPOR1 (P = 0.01). Lower LEP, LEPR, and ADIPOQ gene expression were associated with higher tumor grade (P = 0.0007, P < 0.0001, and P < 0.0001, respectively) and larger tumor size (P < 0.0001, P = 0.0005, and P < 0.0001, respectively). Lower ADIPOQ expression was associated with ER- status (P = 0.0005), and HER2-enriched (HER2-E; P = 0.0003) and triple-negative (TN; P = 0.002) subtypes. Lower ADIPOR2 expression was associated with Ki67+ status (P = 0.0002), ER- status (P < 0.0001), PR- status (P < 0.0001), and TN subtype (P = 0.0002). Associations of lower adipokine and adipokine receptor gene expression with ER-, HER2-E, and TN subtypes were confirmed using data from The Cancer Genome Atlas (P-values < 0.005). CONCLUSION These findings suggest that lower expression of ADIPOQ, ADIPOR2, LEP, and LEPR in the breast TME might be indicators of more aggressive breast cancer phenotypes. Validation of these findings are warranted to elucidate the role of the adipokines and adipokine receptors in long-term breast cancer prognosis.
Collapse
Affiliation(s)
- Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Physics and Astronomy, School of Graduate Studies, Rutgers University, New Brunswick, NJ, USA
| | - John B Aremu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yong Lin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Coral Omene
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - David J Foran
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, NY, USA
| |
Collapse
|
20
|
Munteanu R, Onaciu A, Moldovan C, Zimta AA, Gulei D, Paradiso AV, Lazar V, Berindan-Neagoe I. Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms. Pharmaceutics 2020; 12:E402. [PMID: 32354024 PMCID: PMC7284545 DOI: 10.3390/pharmaceutics12050402] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated adipocytes have functional roles in tumor development through secreted adipocyte-derived factors and exosomes and also through metabolic symbiosis, where the malignant cells take up the lactate, fatty acids and glutamine produced by the neighboring adipocytes. Recent research has demonstrated the value of adipocytes as cell-based delivery platforms for drugs (or prodrugs), nucleic acids or loaded nanoparticles for cancer therapy. This strategy takes advantage of the biocompatibility of the delivery system, its ability to locate the tumor site and also the predisposition of cancer cells to come in functional contact with the adipocytes from the tumor microenvironment for metabolic sustenance. Also, their exosomal content can be used in the context of cancer stem cell reprogramming or as a delivery vehicle for different cargos, like non-coding nucleic acids. Moreover, the process of adipocytes isolation, processing and charging is quite straightforward, with minimal economical expenses. The present review comprehensively presents the role of adipocytes in cancer (in the context of obese and non-obese individuals), the main methods for isolation and characterization and also the current therapeutic applications of these cells as delivery platforms in the oncology sector.
Collapse
Affiliation(s)
- Raluca Munteanu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Anca Onaciu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Cristian Moldovan
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Angelo V. Paradiso
- Oncologia Sperimentale, Istituto Tumori G Paolo II, IRCCS, 70125 Bari, Italy
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France
| | - Ioana Berindan-Neagoe
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Biochemical study on modifying role of variants of leptin gene and its receptor on serum leptin levels in breast cancer. Mol Biol Rep 2020; 47:3807-3820. [PMID: 32279213 DOI: 10.1007/s11033-020-05436-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
The leptin is discharged from breast adipose tissue and is overexpressed in breast cancer (BC). Conflicting relation of leptin with BC was reported. We investigated this association and its impact on leptin level and disease characteristics. The study included 70 females (40 women with pathological proof of invasive BC patients and 30 controls). LEP and LEPR polymorphisms were evaluated by real-time PCR. Serum leptin was estimated by ELISA. Both LEPR and LEP disturbances increase the danger of BC where GG genotype and G allele frequencies of LEPR were higher in patients vs. control. GG genotype increases BC risk with OR (9.1) while G allele predisposes to disease with OR (3.8). Furthermore, LEP A allele was uniquely elevated in patients than healthy ones with OR (2.06). Precise relation of circulating leptin and its polymorphisms with predicting BC may authorize its utilization in early screening.
Collapse
|
22
|
Llanos AAM, Lin Y, Chen W, Yao S, Norin J, Chekmareva MA, Omene C, Cong L, Omilian AR, Khoury T, Hong CC, Ganesan S, Foran DJ, Higgins M, Ambrosone CB, Bandera EV, Demissie K. Immunohistochemical analysis of adipokine and adipokine receptor expression in the breast tumor microenvironment: associations of lower leptin receptor expression with estrogen receptor-negative status and triple-negative subtype. Breast Cancer Res 2020; 22:18. [PMID: 32046756 PMCID: PMC7014630 DOI: 10.1186/s13058-020-1256-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The molecular mechanisms underlying the association between increased adiposity and aggressive breast cancer phenotypes remain unclear, but likely involve the adipokines, leptin (LEP) and adiponectin (ADIPOQ), and their receptors (LEPR, ADIPOR1, ADIPOR2). METHODS We used immunohistochemistry (IHC) to assess LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 expression in breast tumor tissue microarrays among a sample of 720 women recently diagnosed with breast cancer (540 of whom self-identified as Black). We scored IHC expression quantitatively, using digital pathology analysis. We abstracted data on tumor grade, tumor size, tumor stage, lymph node status, Ki67, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) from pathology records, and used ER, PR, and HER2 expression data to classify breast cancer subtype. We used multivariable mixed effects models to estimate associations of IHC expression with tumor clinicopathology, in the overall sample and separately among Blacks. RESULTS Larger proportions of Black than White women were overweight or obese and had more aggressive tumor features. Older age, Black race, postmenopausal status, and higher body mass index were associated with higher LEPR IHC expression. In multivariable models, lower LEPR IHC expression was associated with ER-negative status and triple-negative subtype (P < 0.0001) in the overall sample and among Black women only. LEP, ADIPOQ, ADIPOR1, and ADIPOR2 IHC expression were not significantly associated with breast tumor clinicopathology. CONCLUSIONS Lower LEPR IHC expression within the breast tumor microenvironment might contribute mechanistically to inter-individual variation in aggressive breast cancer clinicopathology, particularly ER-negative status and triple-negative subtype.
Collapse
Affiliation(s)
- Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | - Yong Lin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Wenjin Chen
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jorden Norin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Cell Biology and Neuroscience, Rutgers School of Arts and Sciences, New Brunswick, NJ, USA
| | - Marina A Chekmareva
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Coral Omene
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lei Cong
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Pharmacology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - David J Foran
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Michael Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, NY, USA
| |
Collapse
|
23
|
Mangini V, Maggi V, Trianni A, Melle F, De Luca E, Pennetta A, Del Sole R, Ventura G, Cataldi TRI, Fiammengo R. Directional Immobilization of Proteins on Gold Nanoparticles Is Essential for Their Biological Activity: Leptin as a Case Study. Bioconjug Chem 2019; 31:74-81. [PMID: 31851492 DOI: 10.1021/acs.bioconjchem.9b00748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gold nanomaterials hold great potential for biomedical applications. While this field is evolving rapidly, little attention has been paid to precise nanoparticle design and functionalization. Here, we show that when using proteins as targeting moieties, it is fundamental to immobilize them directionally to preserve their biological activity. Using full-length leptin as a case study, we have developed two alternative conjugation strategies for protein immobilization based on either a site-selective or a nonselective derivatization approach. We show that only nanoparticles with leptin immobilized site-selectively fully retain the ability to interact with the cognate leptin receptor. These results demonstrate the importance of a specified molecular design when preparing nanoparticles labeled with proteins.
Collapse
Affiliation(s)
- Vincenzo Mangini
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Vito Maggi
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy.,Dipartimento di Ingegneria dell'Innovazione , Università del Salento , Via per Monteroni Km 1 , 73100 Lecce , Italy
| | - Alberta Trianni
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Francesca Melle
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Elisa De Luca
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| | - Antonio Pennetta
- Dipartimento di Ingegneria dell'Innovazione , Università del Salento , Via per Monteroni Km 1 , 73100 Lecce , Italy.,Dipartimento di Beni Culturali , Università del Salento , Via Dalmazio Birago 64 , 73100 Lecce , Italy
| | - Roberta Del Sole
- Dipartimento di Ingegneria dell'Innovazione , Università del Salento , Via per Monteroni Km 1 , 73100 Lecce , Italy
| | - Giovanni Ventura
- Dipartimento di Chimica , Università degli Studi di Bari Aldo Moro , via Orabona 4 , 70126 Bari , Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica , Università degli Studi di Bari Aldo Moro , via Orabona 4 , 70126 Bari , Italy.,Centro Interdipartimentale SMART , Università degli Studi di Bari Aldo Moro , via Orabona 4 , 70126 Bari , Italy
| | - Roberto Fiammengo
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , 73010 Arnesano, Lecce , Italy
| |
Collapse
|
24
|
Gholami M, Larijani B, Zahedi Z, Mahmoudian F, Bahrami S, Omran SP, Saadatian Z, Hasani-Ranjbar S, Taslimi R, Bastami M, Amoli MM. Inflammation related miRNAs as an important player between obesity and cancers. J Diabetes Metab Disord 2019; 18:675-692. [PMID: 31890692 PMCID: PMC6915181 DOI: 10.1007/s40200-019-00459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
The growing trend in addition to their burden, prevalence, and death has made obesity and cancer two of the most concerning diseases worldwide. Obesity is an important risk factor for common types of cancers where the risk of some cancers is directly related to the obesity. Various inflammatory mechanisms and increased level of pro-inflammatory cytokines have been investigated in many previous studies, which play key roles in the pathophysiology and development of both of these conditions. On the other hand, in the recent years, many studies have individually focused on the biomarker's role and therapeutic targeting of microRNAs (miRNAs) in different types of cancers and obesity including newly discovered small noncoding RNAs (sncRNAs) which regulate gene expression and RNA silencing. This study is a comprehensive review of the main inflammation related miRNAs in obesity/obesity related traits. For the first time, the main roles of miRNAs in obesity related cancers have been discussed in response to the question raised in the following hypothesis; do the main inflammatory miRNAs link obesity with obesity-related cancers regarding their role as biomarkers? Graphical abstractConceptual design of inflammatory miRNAs which provide link between obesity and cancers.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Zahedi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Parvizi Omran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| | - Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| |
Collapse
|
25
|
Xu Y, Tan M, Tian X, Zhang J, Zhang J, Chen J, Xu W, Sheng H. Leptin receptor mediates the proliferation and glucose metabolism of pancreatic cancer cells via AKT pathway activation. Mol Med Rep 2019; 21:945-952. [PMID: 31789415 DOI: 10.3892/mmr.2019.10855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/04/2019] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer‑related mortality worldwide. Leptin is an adipokine that is significantly increased in obese patients and that functions in various biological processes of cancer, such as tumor growth and metastasis. However, its role in PC cell proliferation and glucose metabolism and the underlying mechanisms remain unclear. In the present study, in vitro leptin treatment significantly promoted cell proliferation and increased glucose uptake and lactate production of human PC and healthy pancreas cells in a dose‑dependent manner, accompanied by increased expression of the glycolytic enzymes hexokinase II and glucose transporter 1. Furthermore, leptin receptor‑specific short hairpin RNAs were used to silence leptin receptor expression in PC cells, which had the opposite effect to leptin stimulation and decreased AKT phosphorylation. In addition, the effects of leptin stimulation were significantly counteracted by the AKT inhibitor LY294002, whereas the effects of leptin silencing were counteracted by AKT activator insulin‑like growth factor 1. The results of the present study suggested that leptin may contribute to cell proliferation and glucose metabolism of human PC cells, which may be through activation of the AKT pathway.
Collapse
Affiliation(s)
- Yingjie Xu
- Department of Surgery, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Meiyu Tan
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Xiaoyu Tian
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Jun Zhang
- Digestive Disease Research Institute, Shanghai Huashan Hospital, Shanghai 200041, P.R. China
| | - Jie Zhang
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Jiajie Chen
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Weihong Xu
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Huiming Sheng
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| |
Collapse
|
26
|
Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor- α breast cancer mouse model. Br J Nutr 2019; 125:1-9. [PMID: 31685042 DOI: 10.1017/s0007114519002757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The role of adiponectin and leptin signalling pathways has been suggested to play important roles in the protective effects of energy restriction (ER) on mammary tumour (MT) development. To study the effects of ER on the methylation levels in adiponectin receptor 1 (AdipoR1) and leptin receptor overlapping transcript (Leprot) genes using the pyrosequencing method in mammary fat pad tissue, mouse mammary tumour virus-transforming growth factor-α (MMTV-TGF-α) female mice were randomly assigned to ad libitum (AL), chronic ER (CER, 15 % ER) or intermittent ER (3 weeks AL and 1 week 60 % ER in cyclic periods) groups at 10 weeks of age until 82 weeks of age. The methylation levels of AdipoR1 in the CER group were higher than those in the AL group at week 49/50 (P < 0·05), while the levels of methylation for AdipoR1 and Leprot genes were similar among the other groups. Also, the methylation levels at CpG2 and CpG3 regions of the promoter region of the AdipoR1 gene in the CER group were three times higher (P < 0·05), while CpG1 island of Leprot methylation was significantly lower compared with the other groups (P < 0·05). Adiponectin and leptin gene expression levels were consistent with the methylation levels. We also observed a change with ageing in methylation levels of these genes. These results indicate that different types of ER modify methylation levels of AdipoR1 and Leprot in different ways and CER had a more significant effect on methylation levels of both genes. Epigenetic regulation of these genes may play important roles in the preventive effects of ER against MT development and ageing processes.
Collapse
|
27
|
Geriki S, Bitla AR, SrinivasaRao PVLN, Hulikal N, Yootla M, Sachan A, Amancharla Yadagiri L, Asha T, Manickavasagam M, Kannan T, Kumari AP. Association of single nucleotide polymorphisms of adiponectin and leptin genes with breast cancer. Mol Biol Rep 2019; 46:6287-6297. [PMID: 31538300 DOI: 10.1007/s11033-019-05070-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/10/2019] [Indexed: 01/26/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in adiponectin gene [rs1501299 (+276G/T) and rs266729 (-11377C/G)] and one SNP of leptin gene [rs7799039 (-2548G/A)] are known to influence plasma levels of adiponectin and leptin respectively. Literature is scarce on the association of adiponectin gene polymorphism rs266729 with breast cancer. The present study was taken up to study these polymorphisms and their association with breast cancer. Ninety-three patients diagnosed with malignant breast cancer were included as cases along with 186 age matched healthy controls. Adiponectin +276G/T, -11377C/G and leptin -2548G/A polymorphism were studied using polymerase chain reaction (PCR) based restriction fragment length polymorphism (RFLP). Adipokine levels in blood were measured using enzyme linked immunosorbent assay. Adiponectin +276G/T and leptin -2548G/A showed a significant increased risk for breast cancer even after adjusting for confounding variables like present age, age at menarche, age at first child birth and age at menopause. In the subset analysis, based on menopausal state, stronger association was observed between SNP in adiponectin gene +276G/T with the breast cancer in post-menopausal women after adjusting for all other variables. No association was found with adiponectin -11377C/G. No association of the gene polymorphisms with adipokine levels was observed. Also, no significant association was seen for the effect of gene-environment interaction i.e. presence of polymorphism with obesity and menopausal state for any of the SNPs studied. Adiponectin +276G/T is strongly associated with breast cancer in postmenopausal women while leptin -2548G/A polymorphisms is significantly associated with breast cancer irrespective of the menopausal state in south Indian subjects.
Collapse
Affiliation(s)
- Sarvari Geriki
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Aparna R Bitla
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, India.
| | - P V L N SrinivasaRao
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Narendra Hulikal
- Department of Surgical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Mutheeswaraiah Yootla
- Department of Surgery, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Alok Sachan
- Department of Endocrinology and Metabolism, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | | | - T Asha
- Department of Pathology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - M Manickavasagam
- Department of Medical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - T Kannan
- Department of Medical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Aruna P Kumari
- Department of Pathology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| |
Collapse
|
28
|
Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and Breast Cancer: Role of Leptin. Front Oncol 2019; 9:596. [PMID: 31380268 PMCID: PMC6657346 DOI: 10.3389/fonc.2019.00596] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/17/2019] [Indexed: 01/08/2023] Open
Abstract
Obesity-related breast cancer is an important threat that affects especially post-menopausal women. The link between obesity and breast cancer seems to be relying on the microenvironment generated at adipose tissue level, which includes inflammatory cytokines. In addition, its association with systemic endocrine changes, including hyperinsulinemia, increased estrogens levels, and hyperleptinemia may be key factors for tumor development. These factors may promote tumor initiation, tumor primary growth, tissue invasion, and metastatic progression. Although the relationship between obesity and breast cancer is already established, the different pathophysiological mechanisms involved are not clear. Obesity-related insulin resistance is a well-known risk factor for breast cancer development in post-menopausal women. However, the role of inflammation and other adipokines, especially leptin, is less studied. Leptin, like insulin, appears to be a growth factor for breast cancer cells. There exists a link between leptin and metabolism of estrogens and between leptin and other factors in a more complex network. As a result, obesity-associated hyperleptinemia has been suggested as an important mediator in the pathophysiology of breast cancer. On the other hand, recent data on the paradoxical effect of obesity on cancer immunotherapy efficacy has brought some controversy, since the proinflammatory effect of leptin may help the effect of immune checkpoint inhibitors. Therefore, a better knowledge of the molecular mechanisms that mediate leptin action may be helpful to understand the underlying processes which link obesity to breast cancer in post-menopausal women, as well as the possible role of leptin in the response to immunotherapy in obese patients.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Department of Clinical Oncology, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| |
Collapse
|
29
|
Sabol RA, Bowles AC, Côté A, Wise R, O'Donnell B, Matossian MD, Hossain FM, Burks HE, Del Valle L, Miele L, Collins-Burow BM, Burow ME, Bunnell BA. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res 2019; 21:67. [PMID: 31118047 PMCID: PMC6530039 DOI: 10.1186/s13058-019-1153-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Background Breast cancer is the second leading cause of cancer deaths in the USA. Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer with high rates of metastasis, tumor recurrence, and resistance to therapeutics. Obesity, defined by a high body mass index (BMI), is an established risk factor for breast cancer. Women with a high BMI have increased incidence and mortality of breast cancer; however, the mechanisms(s) by which obesity promotes tumor progression are not well understood. Methods In this study, obesity-altered adipose stem cells (obASCs) were used to evaluate obesity-mediated effects of TNBC. Both in vitro and in vivo analyses of TNBC cell lines were co-cultured with six pooled donors of obASCs (BMI > 30) or ASCs isolated from lean women (lnASCs) (BMI < 25). Results We found that obASCs promote a pro-metastatic phenotype by upregulating genes associated with epithelial-to-mesenchymal transition and promoting migration in vitro. We confirmed our findings using a TNBC patient-derived xenograft (PDX) model. PDX tumors grown in the presence of obASCS in SCID/beige mice had increased circulating HLA1+ human cells as well as increased numbers of CD44+CD24− cancer stem cells in the peripheral blood. Exposure of the TNBC PDX to obASCs also increased the formation of metastases. The knockdown of leptin expression in obASCs suppressed the pro-metastatic effects of obASCs. Conclusions Leptin signaling is a potential mechanism through which obASCs promote metastasis of TNBC in both in vitro and in vivo analyses. Electronic supplementary material The online version of this article (10.1186/s13058-019-1153-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachel A Sabol
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Annie C Bowles
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Alex Côté
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Rachel Wise
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Benjamen O'Donnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Margarite D Matossian
- Department of Medicine, Section of Hematology and Oncology, Tulane University, New Orleans, LA, USA
| | - Fokhrul M Hossain
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana Cancer Research Center (LCRC), LSUSHC, New Orleans, LA, USA
| | - Hope E Burks
- Department of Medicine, Section of Hematology and Oncology, Tulane University, New Orleans, LA, USA
| | - Luis Del Valle
- Stanley S. Scott Cancer Center, Louisiana Cancer Research Center (LCRC), LSUSHC, New Orleans, LA, USA.,Department of Pathology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana Cancer Research Center (LCRC), LSUSHC, New Orleans, LA, USA
| | | | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University, New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
30
|
Isyraqiah F, K Kutty M, Durairajanayagam D, Salim N, Singh H. Leptin induces the expression of tumorigenic genes in the gastric mucosa of male Sprague-Dawley rats. Exp Biol Med (Maywood) 2018; 243:1118-1124. [PMID: 30449153 DOI: 10.1177/1535370218813909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Leptin promotes the growth of gastric cancer cells in vitro. It is, however, unknown if leptin induces gastric cancer in vivo. This study therefore investigated the effect of leptin on the histology and expression of tumorigenic genes in the stomach of rats following 40 weeks of leptin treatment. Male Sprague-Dawley rats, aged 6 weeks, were randomized into control and experimental groups ( n = 8 per group). The experimental group was given intraperitoneal injections of leptin (60 µg/kg/day) once daily for 40 weeks, whereas the control group received intraperitoneal injection of an equal volume of normal saline daily. Rats were housed in polypropylene cages for the duration of the study. Body weight was measured weekly. Upon completion of treatment, rats were euthanized and their stomachs were collected for histopathological examination, microarray, and RT-qPCR. Data were analyzed using one-way ANOVA and Fisher’s exact test. On histology, one rat (12.5%) in the leptin-treated group had a large red-colored tumor nodule at the pyloric antrum of the stomach. Microscopically, stomachs of two leptin-treated rats (25%) showed hyperplasia or dysplasia. Microarray analysis revealed significant upregulation of a number of genes in the stomachs of leptin-treated rats that have been shown to be associated with tumorigenesis in other tissues, including Furin (protein maturation), Eef1a1 and Eif4g2 (translation factors), Tmed2 (vesicular trafficking), Rab7a (plasma membrane trafficking), Rfwd2 (protein degradation), Fth1 and Ftl1 (oxygen transport), Tspan8, Tspan1, Fxyd3, and Rack1 (cell migration), Pde4d (signal transduction), Nupr1 and Ybx1 (transcription factors), Ptma and Tmem134 (oncogenes), Srsf2 (mRNA maturation), and Reep5 (cell proliferation). None of the known oncogenes were, however, significantly up-regulated. In conclusion, although the overall effect of leptin on gastric carcinogenesis seems inconclusive, the findings of dysplasia and the up-regulation of some of the cancer-related genes nevertheless warrant further scrutiny on the role of leptin in gastric cancer. Impact statement Gastric cancer is the third most common cause of death due to cancer in the world. Obese individuals are at risk of developing gastric cancer, and the reason for this is unknown. Serum leptin levels are high in obese individuals and leptin is known to induce proliferation of gastric cancer cells in vitro. However, to date, no reports exist on the tumorigenic effects of leptin on the stomach in vivo. This study therefore determines if chronic leptin administration induces gastric carcinogenesis in non-obese rats, which might serve as a useful animal model for future studies. Although the findings are somewhat inconclusive, to our knowledge, however, this is the first study to show the up-regulation of numerous potential driver genes that highlight the potential role of leptin in the higher prevalence of gastric cancer among obese individuals. The findings certainly necessitate further scrutiny of leptin gastric cancer.
Collapse
Affiliation(s)
- Faizatul Isyraqiah
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Methil K Kutty
- Faculty of Medicine, Lincoln University College, Petaling Jaya 47301, Malaysia
| | | | - Norita Salim
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Harbindarjeet Singh
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia.,IMMB, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia.,I-PPerFORM, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| |
Collapse
|
31
|
Crean-Tate KK, Reizes O. Leptin Regulation of Cancer Stem Cells in Breast and Gynecologic Cancer. Endocrinology 2018; 159:3069-3080. [PMID: 29955847 PMCID: PMC6669812 DOI: 10.1210/en.2018-00379] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
It is well established that obesity increases the incidence and worsens the prognosis of women's cancer. For breast cancer, women with obesity exhibit more than a twofold increase in the odds of being diagnosed with cancer, with a greater risk of advanced stage at diagnosis, and ≤40% greater risk of recurrence and death than their normal-weight counterparts. These findings are similar in gynecologic cancers, where women who are obese with a body mass index (BMI) >40 kg/m2 have up to six times greater risk of developing endometrial cancer and a 9.2% increase in mortality with every 10% increase in BMI. Likewise, patients with obesity exhibit a twofold higher risk of premenopausal ovarian cancer, and patients who are obese with advanced stage ovarian cancer have shown a shorter time to recurrence and poorer overall survival. Obesity is accompanied by changes in expression of adipose factors that act on local tissues and systemically. Once obesity was recognized as a factor in cancer incidence and progression, the adipose cytokine (adipokine) leptin became the focus of intense investigation as a putative link, with nearly 3000 publications on the topic. Leptin has been shown to increase cell proliferation, inhibit apoptosis, promote angiogenesis, and increase therapeutic resistance. These characteristics are associated with a subset of cells in both liquid and solid tumors known as cancer stem cells (CSCs), or tumor initiating cells. We will review the literature discussing leptin's role in breast and gynecologic cancer, focusing on its role in CSCs, and consider goals for targeting future therapy in this arena to disrupt tumor initiation and progression in women's cancer.
Collapse
Affiliation(s)
- Katie K Crean-Tate
- Department of Obstetrics and Gynecology, Women’s Health Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Correspondence: Ofer Reizes, PhD, Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC10, Cleveland, Ohio 44195. E-mail:
| |
Collapse
|
32
|
Shinde A, Libring S, Alpsoy A, Abdullah A, Schaber JA, Solorio L, Wendt MK. Autocrine Fibronectin Inhibits Breast Cancer Metastasis. Mol Cancer Res 2018; 16:1579-1589. [PMID: 29934326 DOI: 10.1158/1541-7786.mcr-18-0151] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022]
Abstract
Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are linked to metastasis via their ability to increase invasiveness and enhance tumor-initiating capacity. Growth factors, cytokines, and chemotherapies present in the tumor microenvironment (TME) are capable of inducing EMT, but the role of the extracellular matrix (ECM) in this process remains poorly understood. Here, a novel tessellated three-dimensional (3D) polymer scaffolding is used to produce a fibrillar fibronectin matrix that induces an EMT-like event that includes phosphorylation of STAT3 and requires expression of β1 integrin. Consistent with these findings, analysis of the METABRIC dataset strongly links high-level fibronectin (FN) expression to decreased patient survival. In contrast, in vitro analysis of the MCF-10A progression series indicated that intracellular FN expression was associated with nonmetastatic cells. Therefore, differential bioluminescent imaging was used to track the metastasis of isogenic epithelial and mesenchymal cells within heterogeneous tumors. Interestingly, mesenchymal tumor cells do not produce a FN matrix and cannot complete the metastatic process, even when grown within a tumor containing epithelial cells. However, mesenchymal tumor cells form FN-containing cellular fibrils capable of supporting the growth and migration of metastatic-competent tumor cells. Importantly, depletion of FN allows mesenchymal tumor cells to regain epithelial characteristics and initiate in vivo tumor growth within a metastatic microenvironment.Implications: In contrast to the tumor-promoting functions of fibronectin within the ECM, these data suggest that autocrine fibronectin production inhibits the metastatic potential of mesenchymal tumor cells. Mol Cancer Res; 16(10); 1579-89. ©2018 AACR.
Collapse
Affiliation(s)
- Aparna Shinde
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Sarah Libring
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Ammara Abdullah
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - James A Schaber
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | - Luis Solorio
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana. .,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Michael K Wendt
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana. .,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
33
|
|
34
|
Stone TW, McPherson M, Gail Darlington L. Obesity and Cancer: Existing and New Hypotheses for a Causal Connection. EBioMedicine 2018; 30:14-28. [PMID: 29526577 PMCID: PMC5952217 DOI: 10.1016/j.ebiom.2018.02.022] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Existing explanations of obesity-associated cancer emphasise direct mutagenic effects of dietary components or hormonal imbalance. Some of these hypotheses are reviewed briefly, but recent evidence suggests a major role for chronic inflammation in cancer risk, possibly involving dietary content. These ideas include the inflammation-induced activation of the kynurenine pathway and its role in feeding and metabolism by activation of the aryl hydrocarbon receptor (AHR) and by modulating synaptic transmission in the brain. Evidence for a role of the kynurenine pathway in carcinogenesis then provides a potentially major link between obesity and cancer. A second new hypothesis is based on evidence that serine proteases can deplete cells of the tumour suppressors Deleted in Colorectal Cancer (DCC) and neogenin. These enzymes include mammalian chymotryptic proteases released by pro-inflammatory neutrophils and macrophages. Blood levels of chymotrypsin itself increase in parallel with food intake. The mechanistically similar bacterial enzyme subtilisin is widespread in the environment, animal probiotics, meat processing and cleaning products. Simple public health schemes in these areas, with selective serine protease inhibitors and AHR antagonists and could prevent a range of intestinal and other cancers.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Megan McPherson
- School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
35
|
González-González A, Mediavilla MD, Sánchez-Barceló EJ. Melatonin: A Molecule for Reducing Breast Cancer Risk. Molecules 2018; 23:E336. [PMID: 29415446 PMCID: PMC6017232 DOI: 10.3390/molecules23020336] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 01/10/2023] Open
Abstract
The objective of this article is to review the basis supporting the usefulness of melatonin as an adjuvant therapy for breast cancer (BC) prevention in several groups of individuals at high risk for this disease. Melatonin, as a result of its antiestrogenic and antioxidant properties, as well as its ability to improve the efficacy and reduce the side effects of conventional antiestrogens, could safely be associated with the antiestrogenic drugs presently in use. In individuals at risk of BC due to night shift work, the light-induced inhibition of melatonin secretion, with the consequent loss of its antiestrogenic effects, would be countered by administering this neurohormone. BC risk from exposure to metalloestrogens, such as cadmium, could be treated with melatonin supplements to individuals at risk of BC due to exposure to this xenoestrogen. The BC risk related to obesity may be reduced by melatonin which decrease body fat mass, inhibits the enhanced aromatase expression in obese women, increases adiponectin secretion, counteracts the oncogenic effects of elevated concentrations of leptin; and decreases blood glucose levels and insulin resistance. Despite compelling experimental evidence of melatonin's oncostatic actions being susceptible to lowering BC risk, there is still a paucity of clinical trials focused on this subject.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| | - María Dolores Mediavilla
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| | - Emilio J Sánchez-Barceló
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| |
Collapse
|
36
|
Haque I, Ghosh A, Acup S, Banerjee S, Dhar K, Ray A, Sarkar S, Kambhampati S, Banerjee SK. Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway. BMC Cancer 2018; 18:99. [PMID: 29370782 PMCID: PMC5785848 DOI: 10.1186/s12885-018-3993-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background In menopausal women, one of the critical risk factors for breast cancer is obesity/adiposity. It is evident from various studies that leptin, a 16 kDa protein hormone overproduced in obese people, plays the critical role in neovascularization and tumorigenesis in breast and other organs. However, the mechanisms by which obesity influences the breast carcinogenesis remained unclear. In this study, by analyzing different estrogen receptor-α (ER-α)-positive and ER-α-negative BC cell lines, we defined the role of CCN5 in the leptin-mediated regulation of growth and invasive capacity. Methods We analyzed the effect of leptin on cell viability of ER-α-positive MCF-7 and ZR-75-1 cell lines and ER-α-negative MDA-MB-231 cell line. Additionally, we also determined the effect of leptin on the epithelial-mesenchymal transition (EMT) bio-markers, in vitro invasion and sphere-formation of MCF-7 and ZR-75-1 cell lines. To understand the mechanism, we determined the impact of leptin on CCN5 expression and the functional role of CCN5 in these cells by the treatment of human recombinant CCN5 protein(hrCCN5). Moreover, we also determined the role of JAK-STAT and AKT in the regulation of leptin-induced suppression of CCN5 in BC cells. Results Present studies demonstrate that leptin can induce cell viability, EMT, sphere-forming ability and migration of MCF-7 and ZR-75-1 cell lines. Furthermore, these studies found that leptin suppresses the expression of CCN5 at the transcriptional level. Although the CCN5 suppression has no impact on the constitutive proliferation of MCF-7 and ZR-75-1 cells, it is critical for leptin-induced viability and necessary for EMT, induction of in vitro migration and sphere formation, as the hrCCN5 treatment significantly inhibits the leptin-induced viability, EMT, migration and sphere-forming ability of these cells. Mechanistically, CCN5-suppression by leptin is mediated via activating JAK/AKT/STAT-signaling pathways. Conclusions These studies suggest that CCN5 serves as a gatekeeper for leptin-dependent growth and progression of luminal-type (ER-positive) BC cells. Leptin may thus need to destroy the CCN5-barrier to promote BC growth and progression via activating JAK/AKT/STAT signaling. Therefore, these observations suggest a therapeutic potency of CCN5 by restoration or treatment in obese-related luminal-type BC growth and progression.
Collapse
Affiliation(s)
- Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Acup
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.
| | - Kakali Dhar
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Present Address: Syngene International Ltd, Clinical Development, Tower 1, Semicon Park, Phase II, Electronics City, Hosur Road, Bangalore, Karnataka, 560100, India.,Present Address: Saint James School of Medicine, Anguilla, British West Indies, USA
| | - Amitabha Ray
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Present Address: Syngene International Ltd, Clinical Development, Tower 1, Semicon Park, Phase II, Electronics City, Hosur Road, Bangalore, Karnataka, 560100, India.,Present Address: Saint James School of Medicine, Anguilla, British West Indies, USA
| | - Sandipto Sarkar
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.
| |
Collapse
|
37
|
Kasiappan R, Rajarajan D. Role of MicroRNA Regulation in Obesity-Associated Breast Cancer: Nutritional Perspectives. Adv Nutr 2017; 8:868-888. [PMID: 29141971 PMCID: PMC5682994 DOI: 10.3945/an.117.015800] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Breast cancer is the most common malignancy diagnosed in women, and the incidence of breast cancer is increasing every year. Obesity has been identified as one of the major risk factors for breast cancer progression. The mechanisms by which obesity contributes to breast cancer development is not yet understood; however, there are a few mechanisms counted as potential producers of breast cancer in obesity, including insulin resistance, chronic inflammation and inflammatory cytokines, adipokines, and sex hormones. Recent emerging evidence suggests that alterations in microRNA (miRNA) expressions are found in several diseases, including breast cancer and obesity; however, miRNA roles in obesity-linked breast cancer are beginning to unravel. miRNAs are thought to be potential noninvasive biomarkers for diagnosis and prognosis of cancer patients with comorbid conditions of obesity as well as therapeutic targets. Recent studies have evidenced that nutrients and other dietary factors protect against cancer and obesity through modulation of miRNA expressions. Herein, we summarize a comprehensive overview of up-to-date information related to miRNAs and their molecular targets involved in obesity-associated breast cancer. We also address the mechanisms by which dietary factors modulate miRNA expression and its protective roles in obesity-associated breast cancer. It is hoped that this review would provide new therapeutic strategies for the treatment of obesity-associated breast cancer to reduce the burden of breast cancer.
Collapse
Affiliation(s)
- Ravi Kasiappan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Dheeran Rajarajan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| |
Collapse
|
38
|
Theriau CF, Sauvé OS, Beaudoin MS, Wright DC, Connor MK. Proliferative endocrine effects of adipose tissue from obese animals on MCF7 cells are ameliorated by resveratrol supplementation. PLoS One 2017; 12:e0183897. [PMID: 28873415 PMCID: PMC5584954 DOI: 10.1371/journal.pone.0183897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022] Open
Abstract
Obesity is clearly associated with an increased risk of breast cancer in postmenopausal women. The purpose was to determine if obesity alters the adipocyte adipokine secretion profile, thereby altering the adipose-dependent paracrine/endocrine growth microenvironment surrounding breast cancer cells (MCF7). Additionally, we determined whether resveratrol (RSV) supplementation can counteract any obesity-dependent effects on breast cancer tumor growth microenvironment. Obese ZDF rats received standard chow diet or diet supplemented with 200 mg/kg body weight RSV. Chow-fed Zucker rats served as lean controls. After 6 weeks, conditioned media (CM) prepared from inguinal subcutaneous adipose tissue (scAT) was added to MCF7 cells for 24 hrs. Experiments were also conducted using purified isolated adipocytes to determine whether any endocrine effects could be attributed specifically to the adipocyte component of adipose tissue. scAT from ZDF rats promoted cell cycle entry in MCF7 cells which was counteracted by RSV supplementation. RSV-CM had a higher ratio of ADIPO:LEP compared to ZDF-CM. This altered composition of the CM led to increased levels of pAMPKT172, p27, p27T198 and AdipoR1 while decreasing pAktT308 in MCF7 cells grown in RSV-CM compared to ZDF-CM. RSV-CM increased number of cells in G0/G1 and decreased cells in S-phase compared to ZDF-CM. Co-culture experiments revealed that these obesity-dependent effects were driven by the adipocyte component of the adipose tissue. Obesity decreased the ratio of adiponectin:leptin secreted by adipocytes, altering the adipose-dependent growth microenvironment resulting in increased breast cancer cell proliferation. Supplementation with RSV reversed these adipose-dependent effects suggesting a potential for RSV as a nutritional supplementation to improve breast cancer treatment in obese patients.
Collapse
Affiliation(s)
- Christopher F. Theriau
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - O’Llenecia S. Sauvé
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Marie-Soleil Beaudoin
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - David C. Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Michael K. Connor
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
39
|
Expression of AdipoR1 and AdipoR2 Receptors as Leptin-Breast Cancer Regulation Mechanisms. DISEASE MARKERS 2017; 2017:4862016. [PMID: 29311755 PMCID: PMC5605926 DOI: 10.1155/2017/4862016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022]
Abstract
The development of breast cancer is influenced by the adipose tissue through the proteins leptin and adiponectin. However, there is little research concerning AdipoR1 and AdipoR2 receptors and the influence of leptin over them. The objective of this work was to analyze the expression of AdipoR1 and AdipoR2, modulated by differential concentrations of leptin in an obesity model (10 ng/mL, 100 ng/mL, and 1000 ng/mL) associated with breast cancer in MCF-7 and HCC1937 cell lines. Each cell line was characterized through immunohistochemistry, and the expression of AdipoR1 and AdipoR2 was analyzed by PCR in real time using TaqMan® probes. Leptin induced an increase in cell population of MCF-7 (23.8%, 10 ng/mL, 48 h) and HCC1937 (17.24%, 1000 ng/mL, 72 h). In MCF-7, the expression of AdipoR1 decreased (3.81%, 1000 ng/mL) and the expression of AdipoR2 increased by 13.74 times (10 ng/mL) with regard to the control. In HCC1937, the expression of AdipoR1 decreased by 86.28% (10 ng/mL), as well as the expression of AdipoR2 (50.3%, 100 ng/mL). In regard to the results obtained, it could be concluded that leptin has an effect over the expression of AdipoR1 and AdipoR2 mRNA.
Collapse
|
40
|
Penrose HM, Heller S, Cable C, Nakhoul H, Baddoo M, Flemington E, Crawford SE, Savkovic SD. High-fat diet induced leptin and Wnt expression: RNA-sequencing and pathway analysis of mouse colonic tissue and tumors. Carcinogenesis 2017; 38:302-311. [PMID: 28426873 DOI: 10.1093/carcin/bgx001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/06/2017] [Indexed: 12/11/2022] Open
Abstract
Obesity, an immense epidemic affecting approximately half a billion adults, has doubled in prevalence in the last several decades. Epidemiological data support that obesity, due to intake of a high-fat, western diet, increases the risk of colon cancer; however, the mechanisms underlying this risk remain unclear. Here, utilizing next generation RNA sequencing, we aimed to determine the high-fat diet (HFD) mediated expression profile in mouse colon and the azoxymethane/dextran sulfate sodium model of colon cancer. Mice on HFD had significantly higher colonic inflammation, tumor burden, and a number of differentially expressed transcripts compared to mice on regular diet (RD). We identified 721 transcripts differentially expressed in mouse HFD colon that were in a shared pattern with colonic tumors (RD and HFD). Importantly, in mouse colon, HFD stimulated an expression signature strikingly similar to human colon cancer, especially those with inflammatory microsatellite instability. Furthermore, pathway analysis of these transcripts demonstrated their association with active inflammation and colon cancer signaling, with leptin and Wnt as the top two transcripts elevated in mouse HFD colon shared with tumors. Moreover, in mouse colon, HFD-stimulated tumorigenic Wnt pathway activation was further validated by upregulation of β-catenin transcriptional targets. Finally, in human colon cancer, upregulation of leptin pathway members was shown with a large network of dysregulated transcripts being linked with worse overall survival.
Collapse
Affiliation(s)
- Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA and
| | - Sandra Heller
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA and
| | - Chloe Cable
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA and
| | - Hani Nakhoul
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA and
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA and
| | - Erik Flemington
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA and
| | - Susan E Crawford
- Department of Pathology, St Louis University, St Louis, MO 63104, USA
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA and
| |
Collapse
|
41
|
Theriau CF, Connor MK. Voluntary physical activity counteracts the proliferative tumor growth microenvironment created by adipose tissue via high-fat diet feeding in female rats. Physiol Rep 2017; 5:5/13/e13325. [PMID: 28676553 PMCID: PMC5506521 DOI: 10.14814/phy2.13325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/24/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
The adipokine secretion profile created from adipose tissue may represent the molecular mechanism behind the obesity‐breast cancer association. Two adipokines, adiponectin (ADIPO), and leptin (LEP), are altered with obesity and exert antagonistic effects on breast cancer proliferation. We set out to determine whether the adipose‐dependent tumor promoting growth environment created by a high‐fat diet (HFD) in female Sprague‐Dawley rats is altered compared to established responses in male rats and whether voluntary physical activity (PA) ameliorates any HFD‐dependent effects. We found that conditioned media (CM) created from the adipose tissue of female HFD‐fed rats increased the proliferation of MCF7 cells compared to those cells grown in CM prepared from lean adipose tissue. HFD‐CM inhibited AMPK and activated Akt signaling, decreased p27 phosphorylation at T198, reduced total p27 and AdiporR1 protein levels and promoted cell‐cycle entry. PA reversed the proliferative effects of HFD‐CM on MCF7 cells by preventing the effects of HFD on AMPK, Akt, p27 and AdipoR1, ultimately resulting in cell‐cycle withdrawal. Overexpressing AdipoR1 abolished the proliferative effects of the HFD‐CM on MCF7 cells and enhanced the anti‐proliferative effects PA on the HFD‐CM. Thus, PA represents a means to prevent deleterious obesity‐related alterations in tumor growth environment which are brought about by changes in adipokine secretion profile from adipose tissue in the presence of estrogen. Furthermore, although adipose produces hundreds of adipokines, the ADIPO:LEP ratio may serve to indicate the contribution of adipose in creating a tumor growth microenvironment.
Collapse
Affiliation(s)
- Christopher F Theriau
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Michael K Connor
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada .,Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
42
|
Kim HG, Jin SW, Kim YA, Khanal T, Lee GH, Kim SJ, Rhee SD, Chung YC, Hwang YJ, Jeong TC, Jeong HG. Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells. Food Chem Toxicol 2017; 106:232-241. [PMID: 28571770 DOI: 10.1016/j.fct.2017.05.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 11/16/2022]
Abstract
Leptin plays a key role in the control of adipocyte formation, as well as in the associated regulation of energy intake and expenditure. The goal of this study was to determine if leptin-induced aromatase enhances estrogen production and induces tumor cell growth stimulation. To this end, breast cancer cells were incubated with leptin in the absence or presence of inhibitor pretreatment, and changes in aromatase and cyclooxygenase-2 (COX-2) expression were evaluated at the mRNA and protein levels. Transient transfection assays were performed to examine the aromatase and COX-2 gene promoter activities and immunoblot analysis was used to examine protein expression. Leptin induced aromatase expression, estradiol production, and promoter activity in breast cancer cells. Protein levels of phospho-STAT3, PKA, Akt, ERK, and JNK were increased by leptin. Leptin also significantly increased cAMP levels, cAMP response element (CRE) activation, and CREB phosphorylation. In addition, leptin induced COX-2 expression, promoter activity, and increased the production of prostaglandin E2. Finally, a COX-2 inhibitor and aromatase inhibitor suppressed leptin-induced cell proliferation in MCF-7 breast cancer cells. Together, our data show that leptin increased aromatase expression in breast cancer cells, which was correlated with COX-2 upregulation, mediated through CRE activation and cooperation among multiple signaling pathways.
Collapse
Affiliation(s)
- Hyung Gyun Kim
- Department Research Planning Team, Mokpo Marine Food-industry Research Center, Mokpo, Republic of Korea; Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Yong An Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Tilak Khanal
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Se Jong Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Dal Rhee
- Research Center for Drug Discovery Technology, Division of Bio & Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Young Jung Hwang
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
43
|
Lee SA, Sung H, Han W, Noh DY, Ahn SH, Kang D. Serum adiponectin but not leptin at diagnosis as a predictor of breast cancer survival. Asian Pac J Cancer Prev 2017; 15:6137-43. [PMID: 25124587 DOI: 10.7314/apjcp.2014.15.15.6137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Limited numbers of epidemiological studies have examined the relationship between adipokines and breast cancer survival. Preoperative serum levels of obesity-related adipokines (leptin and adiponectin) were here measured in 370 breast cancer patients, recruited from two hospitals in Korea. We examined the association between those adipokines and disease-free survival (DFS). The TNM stage, ER status and histological grade were aslo assessed in relation to breast cancer survival. Elevated adiponectin levels were associated with reduced DFS of breast cancer (Ptrend=0.03) among patients with normal body weight, predominantly in postmenopausal women. There was no association of leptin with breast cancer survival. In conclusion, our study suggests that high levels of adiponectin at diagnosis are associated with breast cancer survival among women with normal body weight.
Collapse
Affiliation(s)
- Sang-Ah Lee
- Department of Preventive Medicine, Kangwon National University School of Medicine, Korea E-mail :
| | | | | | | | | | | |
Collapse
|
44
|
Samanta SK, Sehrawat A, Kim SH, Hahm ER, Shuai Y, Roy R, Pore SK, Singh KB, Christner SM, Beumer JH, Davidson NE, Singh SV. Disease Subtype-Independent Biomarkers of Breast Cancer Chemoprevention by the Ayurvedic Medicine Phytochemical Withaferin A. J Natl Cancer Inst 2016; 109:2758643. [PMID: 28040797 DOI: 10.1093/jnci/djw293] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/02/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
Background A nontoxic chemopreventive intervention efficacious against different subtypes of breast cancer is still a clinically unmet need. The present study was undertaken to determine the efficacy of an Ayurvedic medicine phytochemical (Withaferin A, [WA]) for chemoprevention of breast cancer and to elucidate its mode of action. Methods Chemopreventive efficacy of WA (4 and 8 mg/kg body weight) was determined using a rat model of breast cancer induced by N-methyl-N-nitrosourea (MNU; n = 14 for control group, n = 15 for 4 mg/kg group, and n = 18 for 8 mg/kg group). The mechanisms underlying breast cancer chemoprevention by WA were elucidated by immunoblotting, biochemical assays, immunohistochemistry, and cytokine profiling using plasma and tumors from the MNU-rat (n = 8-12 for control group, n = 7-11 for 4 mg/kg group, and n = 8-12 for 8 mg/kg group) and/or mouse mammary tumor virus-neu (MMTV-neu) models (n = 4-11 for control group and n = 4-21 for 4 mg/kg group). Inhibitory effect of WA on exit from mitosis and leptin-induced oncogenic signaling was determined using MCF-7 and/or MDA-MB-231 cells. All statistical tests were two-sided. Results Incidence, multiplicity, and burden of breast cancer in rats were decreased by WA administration. For example, the tumor weight in the 8 mg/kg group was lower by about 68% compared with controls (8 mg/kg vs control, mean = 2.76 vs 8.59, difference = -5.83, 95% confidence interval of difference = -9.89 to -1.76, P = .004). Mitotic arrest and apoptosis induction were some common determinants of breast cancer chemoprevention by WA in the MNU-rat and MMTV-neu models. Cytokine profiling showed suppression of plasma leptin levels by WA in rats. WA inhibited leptin-induced oncogenic signaling in cultured breast cancer cells. Conclusions WA is a promising chemopreventative phytochemical with the ability to inhibit at least two different subtypes of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Yongli Shuai
- Department of Biostatistics.,University of Pittsburgh Cancer Institute
| | - Ruchi Roy
- Department of Pharmacology and Chemical Biology
| | | | | | | | - Jan H Beumer
- University of Pittsburgh Cancer Institute.,Department of Pharmaceutical Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nancy E Davidson
- Department of Pharmacology and Chemical Biology.,University of Pittsburgh Cancer Institute
| | - Shivendra V Singh
- Department of Pharmacology and Chemical Biology.,University of Pittsburgh Cancer Institute
| |
Collapse
|
45
|
Cleary MP, Juneja SC, Phillips FC, Hu X, Grande JP, Maihle NJ. Leptin Receptor-Deficient MMTV-TGF-α/Leprdb Leprdb Female Mice Do Not Develop Oncogene-Induced Mammary Tumors. Exp Biol Med (Maywood) 2016; 229:182-93. [PMID: 14734797 DOI: 10.1177/153537020422900207] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Being overweight is a risk factor for postmenopausal breast cancer and is associated with an increased incidence and shortened latency of spontaneous and chemically Induced mammary tumors in rodents. However, leptin-deficient obese Lepob Lepob female mice have reduced incidences of spontaneous and oncogene-induced mammary tumors. Of interest, leptin enhances the proliferation of human breast cancer cell lines in which leptin receptors are expressed, which suggests that leptin signaling plays a role in tumor development. We evaluated oncogene-induced mammary tumor development in obese MMTV-TGF-α/Leprdb Leprdb mice that exhibit a defect in OB-Rb, which is considered to be the major signaling isoform of the leptin receptor. Lepr and MMTV-TGF-α mice were crossed, and the offspring were genotyped for oncogene expression and the determination of Lepr status. Lean MMTV-TGF-α/Lepr+ Lepr+ (homozygous) and MMTV-TGF-α/Lepr+ Leprdb (heterozygous) mice and obese MMTV-TGF-α/Leprdb Leprdb mice were monitored until age 104 weeks. Body weights of MMTV-TGF-α/Leprdb Leprdb mice were significantly heavier than those of the lean groups. No mammary tumors were detected in MMTV-TGF-α/LeprdbLeprdb mice, whereas the incidence of mammary tumors in MMTV-TGF-α/Lepr+ Lepr+ and MMTV-TGF-α/Lepr+ Leprdb mice was 69% and 82%, respectively. Examination of mammary tissue whole mounts indicated an absence of duct formation and branching for MMTV-TGF-α/Leprdb Leprdb mice. Both age at mammary tumor detection and tumor burden (tumors/mouse and tumor weights) were similar for the lean genotypes. Serum leptin levels of MMTV-TGF-α/Leprdb Leprdb mice were 12-20-fold higher than levels of lean mice. Thus, despite elevated serum leptin levels, leptin receptor-deficient MMTV-TGF-α/Leprdb Leprdb mice do not develop mammary tumors. This study provides additional evidence that leptin and its cognate receptor may be involved in mammary tumorigenesis.
Collapse
MESH Headings
- Animals
- Body Weight
- Disease Models, Animal
- Female
- Leptin/blood
- Leptin/metabolism
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Obesity/genetics
- Obesity/pathology
- Oncogenes/genetics
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/physiology
- Receptors, Leptin
- Survival Analysis
- Transforming Growth Factor alpha/genetics
Collapse
Affiliation(s)
- Margot P Cleary
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche. Neoplasia 2016; 17:849-861. [PMID: 26696367 PMCID: PMC4688564 DOI: 10.1016/j.neo.2015.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/OBJECTIVES Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche.
Collapse
|
47
|
Amjadi F, Mehdipoor R, Zarkesh-Esfahani H, Javanmard SH. Leptin serves as angiogenic/mitogenic factor in melanoma tumor growth. Adv Biomed Res 2016; 5:127. [PMID: 27563637 PMCID: PMC4976532 DOI: 10.4103/2277-9175.187005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background: Tumor development is angiogenesis dependent. There is evidence that leptin contributes to tumor growth. However, all the mechanisms by which leptin does this has not been clearly established. The objective of the present study was to test the hypothesis that leptin enhances melanoma tumor growth through inducing angiogenesis and cell proliferation. Materials and Methods: We injected 2 × 106 B16F10 melanoma cells subcutaneously to 32 C57BL6 mice. The mice were randomly divided into four groups of eight animals, on day 8. Two groups received twice daily intraperitoneal (i.p.) injections of either phosphate buffered saline or recombinant murine leptin (1 μg/g initial body weight). Two groups received i.p. injections of either 9F8 an anti leptin receptor antibody or the control mouse IgG at 50 μg/injection every 3 consecutive days. By the end of the 2nd week, the animals were euthanized and blood samples and tumors were analyzed. Angiogenesis and proliferation were assessed by immunohistochemical staining for CD31 and Ki-67 respectively. Results: Tumors size, capillary density, plasma levels of vascular endothelial growth factor, and the number of Ki-67-positive stained cells were significantly more in the leptin than 9F8 and both control groups (P < 0.05). Conclusion: Taken together, our findings reinforce the idea that leptin acts as an angiogenic and mitogenic factor to promote melanoma growth.
Collapse
Affiliation(s)
- Fatemehsadat Amjadi
- Department of Physiology, Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Anatomy, Tehran University of Medical Science, Tehran, Iran
| | - Roshanak Mehdipoor
- Isfahan Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Zarkesh-Esfahani
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, School of Medicine, Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
48
|
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, de la Cruz L, Virizuela JA, Sánchez-Margalet V. Sam68 Mediates the Activation of Insulin and Leptin Signalling in Breast Cancer Cells. PLoS One 2016; 11:e0158218. [PMID: 27415018 PMCID: PMC4944952 DOI: 10.1371/journal.pone.0158218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/13/2016] [Indexed: 12/23/2022] Open
Abstract
Obesity is a well-known risk factor for breast cancer development in postmenopausal women. High insulin and leptin levels seem to have a role modulating the growth of these tumours. Sam68 is an RNA-binding protein with signalling functions that has been found to be overexpressed in breast cancer. Moreover, Sam68 may be recruited to insulin and leptin signalling pathways, mediating its effects on survival, growth and proliferation in different cellular types. We aimed to study the expression of Sam68 and its phosphorylation level upon insulin and leptin stimulation, and the role of Sam68 in the proliferative effect and signalling pathways that are activated by insulin or leptin in human breast adenocarcinoma cells. In the human breast adenocarcinoma cell lines MCF7, MDA-MB-231 and BT-474, Sam68 protein quantity and gene expression were increased upon leptin or insulin stimulation, as it was checked by qPCR and immunoblot. Moreover, both insulin and leptin stimulation promoted an increase in Sam68 tyrosine phosphorylation and negatively regulated its RNA binding capacity. siRNA was used to downregulate Sam68 expression, which resulted in lower proliferative effects of both insulin and leptin, as well as a lower activation of MAPK and PI3K pathways promoted by both hormones. These effects may be partly explained by the decrease in IRS-1 expression by down-regulation of Sam68. These results suggest the participation of Sam68 in both leptin and insulin receptor signaling in human breast cancer cells, mediating the trophic effects of these hormones in proliferation and cellular growth.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Luis de la Cruz
- UGC Clinical Oncology, Virgen Macarena University Hospital, Seville, Spain
| | - Juan A. Virizuela
- UGC Clinical Oncology, Virgen Macarena University Hospital, Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| |
Collapse
|
49
|
Hosoi T, Kohda T, Matsuzaki S, Ishiguchi M, Kuwamura A, Akita T, Tanaka J, Ozawa K. Key role of heat shock protein 90 in leptin-induced STAT3 activation and feeding regulation. Br J Pharmacol 2016; 173:2434-45. [PMID: 27205876 DOI: 10.1111/bph.13520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Leptin, an important regulator of the energy balance, acts on the brain to inhibit feeding. However, the mechanisms involved in leptin signalling have not yet been fully elucidated. Heat shock protein 90 (HSP90) is a molecular chaperone that is involved in regulating cellular homeostasis. In the present study, we investigated the possible involvement of HSP90 in leptin signal transduction. EXPERIMENTAL APPROACH HEK293 and SH-SY5Y cell lines stably transfected with the Ob-Rb leptin receptor (HEK293 Ob-Rb, SH-SY5Y Ob-Rb) were used in the present study. Phosphorylation of JAK2 and STAT3 was analysed by western blotting. An HSP90 inhibitor was administered i.c.v. into rats and their food intake was analysed. KEY RESULTS The knock-down of HSP90 in the HEK293 Ob-Rb cell line attenuated leptin-induced JAK2 and STAT3 signalling. Moreover, leptin-induced JAK2/STAT3 phosphorylation was markedly attenuated by the HSP90 inhibitors geldanamycin, radicicol and novobiocin. However, these effects were not mediated through previously known factors, which are known to be involved in the development of leptin resistance, such as suppressor of cytokine signalling 3 or endoplasmic reticulum stress. The infusion of an HSP90 inhibitor into the CNS blunted the anorexigenic actions of leptin in rats (male Wister rat). CONCLUSIONS AND IMPLICATIONS HSP90 may be a novel factor involved in leptin-mediated signalling that is linked to anorexia.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshiko Kohda
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Syu Matsuzaki
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mizuho Ishiguchi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ayaka Kuwamura
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
50
|
Theriau CF, Shpilberg Y, Riddell MC, Connor MK. Voluntary physical activity abolishes the proliferative tumor growth microenvironment created by adipose tissue in animals fed a high fat diet. J Appl Physiol (1985) 2016; 121:139-53. [PMID: 27150834 DOI: 10.1152/japplphysiol.00862.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/01/2016] [Indexed: 01/21/2023] Open
Abstract
The molecular mechanisms behind the obesity-breast cancer association may be regulated via adipokine secretion by white adipose tissue. Specifically, adiponectin and leptin are altered with adiposity and exert antagonistic effects on cancer cell proliferation. We set out to determine whether altering adiposity in vivo via high fat diet (HFD) feeding changed the tumor growth supporting nature of adipose tissue and whether voluntary physical activity (PA) could ameliorate these HFD-dependent effects. We show that conditioned media (CM) created from the adipose tissue of HFD fed animals caused an increase in the proliferation of MCF7 cells compared with cells exposed to CM prepared from the adipose of lean chow diet fed counterparts. This increased proliferation was driven within the MCF7 cells by an HFD-dependent antagonism between AMP-activated protein kinase (AMPK) and protein kinase B (Akt) signaling pathways, decreasing p27 protein levels via reduced phosphorylation at T198 and downregulation of adiponectin receptor 1 (AdipoR1). PA can ameliorate these proliferative effects of HFD-CM on MCF7 cells, increasing p27(T198) by AMPK, reducing pAkt(T308), and increasing AdipoR1, resulting in cell cycle withdrawal in a manner that depends on the PA intensity. High physical activity (>3 km/day) completely abolished the effects of HFD feeding. In addition, AdipoR1 overexpression mimics the effects of exercise, abolishing the proliferative effects of the HFD-CM on MCF7 cells and further enhancing the antiproliferative effects of PA on the HFD-CM. Thus voluntary PA represents a means to counteract the proliferative effects of adipose tissue on breast cancers in obese patients.
Collapse
Affiliation(s)
- Christopher F Theriau
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | | | - Michael C Riddell
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Michael K Connor
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|