1
|
Vašková J, Kováčová G, Pudelský J, Palenčár D, Mičková H. Methylglyoxal Formation-Metabolic Routes and Consequences. Antioxidants (Basel) 2025; 14:212. [PMID: 40002398 PMCID: PMC11852113 DOI: 10.3390/antiox14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Methylglyoxal (MGO), a by-product of glycolysis, plays a significant role in cellular metabolism, particularly under stress conditions. However, MGO is a potent glycotoxin, and its accumulation has been linked to the development of several pathological conditions due to oxidative stress, including diabetes mellitus and neurodegenerative diseases. This paper focuses on the biochemical mechanisms by which MGO contributes to oxidative stress, particularly through the formation of advanced glycation end products (AGEs), its interactions with antioxidant systems, and its involvement in chronic diseases like diabetes, neurodegeneration, and cardiovascular disorders. MGO exerts its effects through multiple signaling pathways, including NF-κB, MAPK, and Nrf2, which induce oxidative stress. Additionally, MGO triggers apoptosis primarily via intrinsic and extrinsic pathways, while endoplasmic reticulum (ER) stress is mediated through PERK-eIF2α and IRE1-JNK signaling. Moreover, the activation of inflammatory pathways, particularly through RAGE and NF-κB, plays a crucial role in the pathogenesis of these conditions. This study points out the connection between oxidative and carbonyl stress due to increased MGO formation, and it should be an incentive to search for a marker that could have prognostic significance or could be a targeted therapeutic intervention in various diseases.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Gabriela Kováčová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik, 040 11 Košice, Slovakia; (G.K.)
| | - Jakub Pudelský
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik, 040 11 Košice, Slovakia; (G.K.)
| | - Drahomír Palenčár
- Department of Plastic Surgery, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Helena Mičková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
2
|
Chapman S, Brunet T, Mourier A, Habermann BH. MitoMAMMAL: a genome scale model of mammalian mitochondria predicts cardiac and BAT metabolism. BIOINFORMATICS ADVANCES 2024; 5:vbae172. [PMID: 39758828 PMCID: PMC11696703 DOI: 10.1093/bioadv/vbae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/07/2025]
Abstract
Motivation Mitochondria are essential for cellular metabolism and are inherently flexible to allow correct function in a wide range of tissues. Consequently, dysregulated mitochondrial metabolism affects different tissues in different ways leading to challenges in understanding the pathology of mitochondrial diseases. System-level metabolic modelling is useful in studying tissue-specific mitochondrial metabolism, yet despite the mouse being a common model organism in research, no mouse specific mitochondrial metabolic model is currently available. Results Building upon the similarity between human and mouse mitochondrial metabolism, we present mitoMammal, a genome-scale metabolic model that contains human and mouse specific gene-product reaction rules. MitoMammal is able to model mouse and human mitochondrial metabolism. To demonstrate this, using an adapted E-Flux algorithm, we integrated proteomic data from mitochondria of isolated mouse cardiomyocytes and mouse brown adipocyte tissue, as well as transcriptomic data from in vitro differentiated human brown adipocytes and modelled the context specific metabolism using flux balance analysis. In all three simulations, mitoMammal made mostly accurate, and some novel predictions relating to energy metabolism in the context of cardiomyocytes and brown adipocytes. This demonstrates its usefulness in research in cardiac disease and diabetes in both mouse and human contexts. Availability and implementation The MitoMammal Jupyter Notebook is available at: https://gitlab.com/habermann_lab/mitomammal.
Collapse
Affiliation(s)
- Stephen Chapman
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Theo Brunet
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
| | - Arnaud Mourier
- Université de Bordeaux, IBGC UMR 5095, Bordeaux 33077, France
| | - Bianca H Habermann
- Aix-Marseille University, CNRS, IBDM UMR7288, Turing Center for Living Systems (CENTURI), Marseille 13009, France
| |
Collapse
|
3
|
Yang X, Chen YH, Liu L, Gu Z, You Y, Hao JR, Sun N, Gao C. Regulation of glycolysis-derived L-lactate production in astrocytes rescues the memory deficits and Aβ burden in early Alzheimer's disease models. Pharmacol Res 2024; 208:107357. [PMID: 39159732 DOI: 10.1016/j.phrs.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Aberrant energy metabolism in the brain is a common pathological feature in the preclinical Alzheimer's Disease (AD). Recent studies have reported the early elevations of glycolysis-involved enzymes in AD brain and cerebrospinal fluid according to a large-scale proteomic analysis. It's well-known that astrocytes exhibit strong glycolytic metabolic ability and play a key role in the regulation of brain homeostasis. However, its relationship with glycolytic changes and cognitive deficits in early AD patients is unclear. Here, we investigated the mechanisms by which astrocyte glycolysis is involved in early AD and its potential as a therapeutic target. Our results suggest that Aβ-activated microglia can induce glycolytic-enhanced astrocytes in vitro, and that these processes are dependent on the activation of the AKT-mTOR-HIF-1α pathway. In early AD models, the increase in L-lactate produced by enhanced glycolysis of astrocytes leads to spatial cognitive impairment by disrupting synaptic plasticity and accelerating Aβ aggregation. Furthermore, we find rapamycin, the mTOR inhibitor, can rescue the impaired spatial memory and Aβ burden by inhibiting the glycolysis-derived L-lactate in the early AD models. In conclusion, we highlight that astrocytic glycolysis plays a critical role in the early onset of AD and that the modulation of glycolysis-derived L-lactate by rapamycin provides a new strategy for the treatment of AD.
Collapse
Affiliation(s)
- Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuan-Hao Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zheng Gu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
4
|
Rodriguez-Muñoz A, Motahari-Rad H, Martin-Chaves L, Benitez-Porres J, Rodriguez-Capitan J, Gonzalez-Jimenez A, Insenser M, Tinahones FJ, Murri M. A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle. Curr Obes Rep 2024; 13:403-438. [PMID: 38703299 PMCID: PMC11306592 DOI: 10.1007/s13679-024-00561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW The present study aims to review the existing literature to identify pathophysiological proteins in obesity by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications. RECENT FINDINGS Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a review presents a significant challenge for researchers trying to interpret the existing literature. This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identified proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins (catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential biomarkers and the development of personalized medicine in obesity.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Hanieh Motahari-Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Laura Martin-Chaves
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Javier Benitez-Porres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Jorge Rodriguez-Capitan
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Maria Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Francisco J Tinahones
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mora Murri
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Pal A, Grossmann D, Glaß H, Zimyanin V, Günther R, Catinozzi M, Boeckers TM, Sterneckert J, Storkebaum E, Petri S, Wegner F, Grill SW, Pan-Montojo F, Hermann A. Glycolic acid and D-lactate-putative products of DJ-1-restore neurodegeneration in FUS - and SOD1-ALS. Life Sci Alliance 2024; 7:e202302535. [PMID: 38760174 PMCID: PMC11101837 DOI: 10.26508/lsa.202302535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.
Collapse
Affiliation(s)
- Arun Pal
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Dajana Grossmann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Vitaly Zimyanin
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - René Günther
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Dresden, Germany
| | - Marica Catinozzi
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, as well as Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden as well as Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Erik Storkebaum
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Francisco Pan-Montojo
- Department of Psychiatrie and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Maggi G, Chiaradia E, Vullo A, Seccaroni M, Valli L, Busechian S, Caivano D, Porciello F, Caloiero S, Marchesi MC. Serum D-Lactate Concentrations in Dogs with Inflammatory Bowel Disease. Animals (Basel) 2024; 14:1704. [PMID: 38891751 PMCID: PMC11171325 DOI: 10.3390/ani14111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The D-enantiomer of lactic acid (D-lactate) is normally produced from bacterial fermentation in the gastrointestinal tract in mammals. In humans, increased D-lactate concentrations are related to gastrointestinal disease, including short bowel syndrome and malabsorptive syndrome. Similarly, increased D-lactate concentrations have been described in calves affected by diarrhea, in cats with gastrointestinal diseases, and in dogs with parvoviral enteritis. The purpose of the present study was to measure the serum D-lactate concentrations in dogs with inflammatory bowel disease (IBD). We retrospectively reviewed data from the database of the VTH of Perugia University, and dogs affected by IBD with serum samples stored at -80 °C were considered eligible for inclusion. A total of 18 dogs with IBD and 10 healthy dogs were included in the study. The dogs with IBD were divided into three subcategories based on the severity of the disease. Serum D-lactate concentrations (μM) were determined using a commercially available colorimetric assay kit (D-Lactate Colorimetric Assay Kit; Catalog #K667-100, BioVision Inc., Milpitas, CA, USA). Our results showed no significant difference (p > 0.05) in the serum concentrations of D-lactate between dogs with various degrees of IBD and healthy dogs. However, the wide variability of the D-lactate concentrations in dogs with IBD and evidence of increased serum D-lactate concentrations in dogs with confirmed dysbiosis encourage further studies on this topic to understand potential factors influencing the serum D-lactate concentrations in dogs affected by IBD.
Collapse
Affiliation(s)
- Giulia Maggi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (G.M.); (E.C.); (A.V.); (M.S.); (S.B.); (F.P.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (G.M.); (E.C.); (A.V.); (M.S.); (S.B.); (F.P.)
| | - Alice Vullo
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (G.M.); (E.C.); (A.V.); (M.S.); (S.B.); (F.P.)
| | - Matteo Seccaroni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (G.M.); (E.C.); (A.V.); (M.S.); (S.B.); (F.P.)
| | | | - Sara Busechian
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (G.M.); (E.C.); (A.V.); (M.S.); (S.B.); (F.P.)
| | - Domenico Caivano
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (G.M.); (E.C.); (A.V.); (M.S.); (S.B.); (F.P.)
| | - Francesco Porciello
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (G.M.); (E.C.); (A.V.); (M.S.); (S.B.); (F.P.)
| | - Sabrina Caloiero
- Kennel Training Course Castiglione del Lago of Financial Guard, Via Lungolago 46, 06061 Castiglione del Lago, Italy;
| | - Maria Chiara Marchesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (G.M.); (E.C.); (A.V.); (M.S.); (S.B.); (F.P.)
| |
Collapse
|
7
|
Stefan A, Mucchi A, Hochkoeppler A. The catalytic action of human d-lactate dehydrogenase is severely inhibited by oxalate and is impaired by mutations triggering d-lactate acidosis. Arch Biochem Biophys 2024; 754:109932. [PMID: 38373542 DOI: 10.1016/j.abb.2024.109932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
d-lactate dehydrogenases are known to be expressed by prokaryotes and by eukaryotic invertebrates, and over the years the functional and structural features of some bacterial representatives of this enzyme ensemble have been investigated quite in detail. Remarkably, a human gene coding for a putative d-lactate dehydrogenase (DLDH) was identified and characterized, disclosing the occurrence of alternative splicing of its primary transcript. This translates into the expression of two human DLDH (hDLDH) isoforms, the molecular mass of which is expected to differ by 2.7 kDa. However, no information on these two hDLDH isoforms is available at the protein level. Here we report on the catalytic action of these enzymes, along with a first analysis of their structural features. In particular, we show that hDLDH is strictly stereospecific, with the larger isoform (hDLDH-1) featuring higher activity at the expense of d-lactate when compared to its smaller counterpart (hDLDH-2). Furthermore, we found that hDLDH is strongly inhibited by oxalate, as indicated by a Ki equal to 1.2 μM for this dicarboxylic acid. Structurally speaking, hDLDH-1 and hDLDH-2 were determined, by means of gel filtration and dynamic light scattering experiments, to be a hexamer and a tetramer, respectively. Moreover, in agreement with previous studies performed with human mitochondria, we identified FAD as the cofactor of hDLDH, and we report here a model of FAD binding by the human d-lactate dehydrogenase. Interestingly, the mutations W323C and T412 M negatively affect the activity of hDLDH, most likely by impairing the enzyme electron-acceptor site.
Collapse
Affiliation(s)
- Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Alberto Mucchi
- Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, 40136, Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
8
|
Coukos JS, Lee CW, Pillai KS, Shah H, Moellering RE. PARK7 Catalyzes Stereospecific Detoxification of Methylglyoxal Consistent with Glyoxalase and Not Deglycase Function. Biochemistry 2023; 62:3126-3133. [PMID: 37884446 PMCID: PMC10634309 DOI: 10.1021/acs.biochem.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
The protein PARK7 (also known as DJ-1) has been implicated in several diseases, with the most notable being Parkinson's disease. While several molecular and cellular roles have been ascribed to DJ-1, there is no real consensus on what its true cellular functions are and how the loss of DJ-1 function may contribute to the pathogenesis of Parkinson's disease. Recent reports have implicated DJ-1 in the detoxification of several reactive metabolites that are produced during glycolytic metabolism, with the most notable being the α-oxoaldehyde species methylglyoxal. While it is generally agreed that DJ-1 is able to metabolize methylglyoxal to lactate, the mechanism by which it does so is hotly debated with potential implications for cellular function. In this work, we provide definitive evidence that recombinant DJ-1 produced in human cells prevents the stable glycation of other proteins through the conversion of methylglyoxal or a related alkynyl dicarbonyl probe to their corresponding α-hydroxy carboxylic acid products. This protective action of DJ-1 does not require a physical interaction with a target protein, providing direct evidence for a glutathione-free glyoxalase and not a deglycase mechanism of methylglyoxal detoxification. Stereospecific liquid chromatography-mass spectrometry (LC-MS) measurements further uncovered the existence of nonenzymatic production of racemic lactate from MGO under physiological buffer conditions, whereas incubation with DJ-1 predominantly produces l-lactate. Collectively, these studies provide direct support for the stereospecific conversion of MGO to l-lactate by DJ-1 in solution with negligible or no contribution of direct protein deglycation.
Collapse
Affiliation(s)
- John S. Coukos
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Chris W. Lee
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Kavya S. Pillai
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Hardik Shah
- University
of Chicago Medicine Comprehensive Cancer Center Metabolomics Platform, The University of Chicago, 900 E. 57th Street, Chicago, Illinois 60637, United States
| | - Raymond E. Moellering
- Department
of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United States
- University
of Chicago Medicine Comprehensive Cancer Center Metabolomics Platform, The University of Chicago, 900 E. 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Ouyang J, Wang H, Huang J. The role of lactate in cardiovascular diseases. Cell Commun Signal 2023; 21:317. [PMID: 37924124 PMCID: PMC10623854 DOI: 10.1186/s12964-023-01350-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023] Open
Abstract
Cardiovascular diseases pose a major threat worldwide. Common cardiovascular diseases include acute myocardial infarction (AMI), heart failure, atrial fibrillation (AF) and atherosclerosis. Glycolysis process often has changed during these cardiovascular diseases. Lactate, the end-product of glycolysis, has been overlooked in the past but has gradually been identified to play major biological functions in recent years. Similarly, the role of lactate in cardiovascular disease is gradually being recognized. Targeting lactate production, regulating lactate transport, and modulating circulating lactate levels may serve as potential strategies for the treatment of cardiovascular diseases in the future. The purpose of this review is to integrate relevant clinical and basic research on the role of lactate in the pathophysiological process of cardiovascular disease in recent years to clarify the important role of lactate in cardiovascular disease and to guide further studies exploring the role of lactate in cardiovascular and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| | - Jiangnan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
10
|
Cai X, Ng CP, Jones O, Fung TS, Ryu KW, Li D, Thompson CB. Lactate activates the mitochondrial electron transport chain independently of its metabolism. Mol Cell 2023; 83:3904-3920.e7. [PMID: 37879334 PMCID: PMC10752619 DOI: 10.1016/j.molcel.2023.09.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Lactate has long been considered a cellular waste product. However, we found that as extracellular lactate accumulates, it also enters the mitochondrial matrix and stimulates mitochondrial electron transport chain (ETC) activity. The resulting increase in mitochondrial ATP synthesis suppresses glycolysis and increases the utilization of pyruvate and/or alternative respiratory substrates. The ability of lactate to increase oxidative phosphorylation does not depend on its metabolism. Both L- and D-lactate are effective at enhancing ETC activity and suppressing glycolysis. Furthermore, the selective induction of mitochondrial oxidative phosphorylation by unmetabolized D-lactate reversibly suppressed aerobic glycolysis in both cancer cell lines and proliferating primary cells in an ATP-dependent manner and enabled cell growth on respiratory-dependent bioenergetic substrates. In primary T cells, D-lactate enhanced cell proliferation and effector function. Together, these findings demonstrate that lactate is a critical regulator of the ability of mitochondrial oxidative phosphorylation to suppress glucose fermentation.
Collapse
Affiliation(s)
- Xin Cai
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles P Ng
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia Jones
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dayi Li
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
11
|
Jin S, Chen X, Yang J, Ding J. Lactate dehydrogenase D is a general dehydrogenase for D-2-hydroxyacids and is associated with D-lactic acidosis. Nat Commun 2023; 14:6638. [PMID: 37863926 PMCID: PMC10589216 DOI: 10.1038/s41467-023-42456-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Mammalian lactate dehydrogenase D (LDHD) catalyzes the oxidation of D-lactate to pyruvate. LDHD mutations identified in patients with D-lactic acidosis lead to deficient LDHD activity. Here, we perform a systematic biochemical study of mouse LDHD (mLDHD) and determine the crystal structures of mLDHD in FAD-bound form and in complexes with FAD, Mn2+ and a series of substrates or products. We demonstrate that mLDHD is an Mn2+-dependent general dehydrogenase which exhibits catalytic activity for D-lactate and other D-2-hydroxyacids containing hydrophobic moieties, but no activity for their L-isomers or D-2-hydroxyacids containing hydrophilic moieties. The substrate-binding site contains a positively charged pocket to bind the common glycolate moiety and a hydrophobic pocket with some elasticity to bind the varied hydrophobic moieties of substrates. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of LDHD, and the functional roles of mutations in the pathogenesis of D-lactic acidosis.
Collapse
Affiliation(s)
- Shan Jin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Xingchen Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Jun Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| |
Collapse
|
12
|
Colucci ACM, Tassinari ID, Loss EDS, de Fraga LS. History and Function of the Lactate Receptor GPR81/HCAR1 in the Brain: A Putative Therapeutic Target for the Treatment of Cerebral Ischemia. Neuroscience 2023; 526:144-163. [PMID: 37391123 DOI: 10.1016/j.neuroscience.2023.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
GPR81 is a G-protein coupled receptor (GPCR) discovered in 2001, but deorphanized only 7 years later, when its affinity for lactate as an endogenous ligand was demonstrated. More recently, GPR81 expression and distribution in the brain were also confirmed and the function of lactate as a volume transmitter has been suggested since then. These findings shed light on a new function of lactate acting as a signaling molecule in the central nervous system, in addition to its well-known role as a metabolic fuel for neurons. GPR81 seems to act as a metabolic sensor, coupling energy metabolism, synaptic activity, and blood flow. Activation of this receptor leads to Gi-mediated downregulation of adenylyl cyclase and subsequent reduction in cAMP levels, regulating several downstream pathways. Recent studies have also suggested the potential role of lactate as a neuroprotective agent, mainly under brain ischemic conditions. This effect is usually attributed to the metabolic role of lactate, but the underlying mechanisms need further investigation and could be related to lactate signaling via GPR81. The activation of GPR81 showed promising results for neuroprotection: it modulates many processes involved in the pathophysiology of ischemia. In this review, we summarize the history of GPR81, starting with its deorphanization; then, we discuss GPR81 expression and distribution, signaling transduction cascades, and neuroprotective roles. Lastly, we propose GPR81 as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Anna Clara Machado Colucci
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental (LABENEX), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil.
| |
Collapse
|
13
|
Zhang Y, Zhang T, Zhao Y, Wu H, Zhen Q, Zhu S, Hou S. Lactate dehydrogenase D serves as a novel biomarker for prognosis and immune infiltration in lung adenocarcinoma. BMC Cancer 2023; 23:759. [PMID: 37587457 PMCID: PMC10428593 DOI: 10.1186/s12885-023-11221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Lung cancer is reported to be the leading cause of death in males and females, globally. Increasing evidence highlights the paramount importance of Lactate dehydrogenase D (LDHD) in different types of cancers, though it's role in lung adenocarcinoma (LUAD) is still inadequately explored. In this study, we aimed to investigate and determine the relationship between LDHD and LUAD. METHODS The collection of the samples was guided by The Cancer Genome Atlas (TCGA) datasets and Gene Expression Omnibus (GEO). To ascertain various aspects around LDHD function, we analyzed different expression genes (DEGs), functional enrichment, and protein-protein interaction (PPI) networks. The predictive values for LDHD were collectively determined using the Kaplan-Meier method, Cox regression analysis, and a nomogram. Evaluation of the immune infiltration analysis was completed using Estimate and ssGSEA. The prediction of the immunotherapy response was based on TIDE and IPS. The LDHD expression levels in LUAD were validated through Western blot, qPCR, and immunohistochemistry methods. Wound healing and transwell assays were also performed to illustrate the aggressive features in LUAD cell lines. RESULTS The results showed that LDHD was generally downregulated in LUAD patients, with the low LDHD group presenting a decline in OS, DSS, and PFI. Enriched pathways, which include pyruvate metabolism, central carbon metabolism, and oxidative phosphorylation were observed through KEGG analysis. It was also noted that the expression of LDHD expression was inversely related to immune cell infiltration and typical checkpoints. The high LDHD group's response to immunotherapy was remarkable, particularly in CTAL4 + /PD1- therapy. In vitro studies revealed that the overexpression of LDHD caused tumor migration and invasion to be suppressed. CONCLUSION In conclusion, our study revealed that LDHD might be an effective predictor of prognosis and immune filtration, possibly leading to better choices for immunotherapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Tianyi Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yingdong Zhao
- Liaocheng Third People's Hospital, Liaocheng, Shandong, 252000, China
| | - Hongdi Wu
- Department of Fundamental, Air Force Communications NCO Academy, Dalian, Liaoning, 116000, China
| | - Qiang Zhen
- College of Pharmacy, Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Suwei Zhu
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Shaoshuai Hou
- Department of Pharmacy, Tengzhou Central People's Hospital, Tengzhou, Shandong, 277500, China.
| |
Collapse
|
14
|
Cai X, Ng CC, Jones O, Fung TS, Ryu K, Li D, Thompson CB. Lactate activates the mitochondrial electron transport chain independent of its metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551712. [PMID: 37577602 PMCID: PMC10418154 DOI: 10.1101/2023.08.02.551712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Lactate has long been considered a cellular waste product. However, we found that as extracellular lactate accumulates, it also enters the mitochondrial matrix and stimulates mitochondrial electron transport chain (ETC) activity. The resulting increase in mitochondrial ATP synthesis suppresses glycolysis and increases the utilization of pyruvate and/or alternative respiratory substrates. The ability of lactate to increase oxidative phosphorylation does not depend on its metabolism. Both L- and D-lactate are effective at enhancing ETC activity and suppressing glycolysis. Furthermore, the selective induction of mitochondrial oxidative phosphorylation by unmetabolized D-lactate reversibly suppressed aerobic glycolysis in both cancer cell lines and proliferating primary cells in an ATP-dependent manner and enabled cell growth on respiratory-dependent bioenergetic substrates. In primary T cells, D-lactate enhanced cell proliferation and effector function. Together, these findings demonstrate that lactate is a critical regulator of the ability of mitochondrial oxidative phosphorylation to suppress glucose fermentation.
Collapse
|
15
|
Lefèvre CR, Turban A, Luque Paz D, Penven M, René C, Langlois B, Pawlowski M, Collet N, Piau C, Cattoir V, Bendavid C. Early detection of plasma d-lactate: Toward a new highly-specific biomarker of bacteraemia? Heliyon 2023; 9:e16466. [PMID: 37265627 PMCID: PMC10230201 DOI: 10.1016/j.heliyon.2023.e16466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Background Bloodstream infections are a leading cause of mortality. Their detection relies on blood cultures (BCs) but time to positivity is often between tens of hours and days. d-lactate is a metabolite widely produced by bacteria but very few in human. We aimed to evaluate d-lactate, d-lactate/l-lactate ratio and d-lactate/total lactate ratio in plasma as potential early biomarkers of bacteraemia on a strictly biological standpoint. Methods A total of 228 plasma specimens were collected from patients who had confirmed bacteraemia (n = 131) and healthy outpatients (n = 97). Specific l-lactate and d-lactate analyses were performed using enzymatic assays and analytical performances of d-lactate, d-lactate/total lactate and d-lactate/l-lactate ratios for the diagnosis of bacteraemia were assessed. Results A preliminary in vitro study confirmed that all strains of Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus were able to produce d-lactate at significant levels. In patients, plasma d-lactate level was the most specific biomarker predicting a bacteraemia profile with a specificity and predictive positive value of 100% using a cut-off of 131 μmol.L-1. However, sensitivity and negative predictive value were rather low, estimated at 31% and 52%, respectively. d-lactate displayed an Area Under Receiver Operating Characteristic (AUROC) curve of 0.696 with a P value < 0.0001. There was no difference of d-lactate levels between BCs bottles positive for Gram-positive or Gram-negative bacteria (p = 0.55). Conclusion d-lactate shows promise as a specific early biomarker of bacterial metabolism. The development of rapid automated assays could raise clinical applications for infectious diseases diagnosis including early bacteraemia prediction.
Collapse
Affiliation(s)
- Charles R. Lefèvre
- Biochemistry Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Adrien Turban
- Bacteriology Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - David Luque Paz
- Infectious Diseases and Intensive Care Unit, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Malo Penven
- Bacteriology Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Céline René
- Biochemistry Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | | | - Maxime Pawlowski
- Biochemistry Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Nicolas Collet
- Biochemistry Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Caroline Piau
- Bacteriology Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Vincent Cattoir
- Bacteriology Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Claude Bendavid
- Biochemistry Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| |
Collapse
|
16
|
Remund B, Yilmaz B, Sokollik C. D-Lactate: Implications for Gastrointestinal Diseases. CHILDREN (BASEL, SWITZERLAND) 2023; 10:945. [PMID: 37371177 DOI: 10.3390/children10060945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
D-lactate is produced in very low amounts in human tissues. However, certain bacteria in the human intestine produce D-lactate. In some gastrointestinal diseases, increased bacterial D-lactate production and uptake from the gut into the bloodstream take place. In its extreme, excessive accumulation of D-lactate in humans can lead to potentially life-threatening D-lactic acidosis. This metabolic phenomenon is well described in pediatric patients with short bowel syndrome. Less is known about a subclinical rise in D-lactate. We discuss in this review the pathophysiology of D-lactate in the human body. We cover D-lactic acidosis in patients with short bowel syndrome as well as subclinical elevations of D-lactate in other diseases affecting the gastrointestinal tract. Furthermore, we argue for the potential of D-lactate as a marker of intestinal barrier integrity in the context of dysbiosis. Subsequently, we conclude that there is a research need to establish D-lactate as a minimally invasive biomarker in gastrointestinal diseases.
Collapse
Affiliation(s)
- Barblin Remund
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Christiane Sokollik
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
17
|
Understanding the Contribution of Lactate Metabolism in Cancer Progress: A Perspective from Isomers. Cancers (Basel) 2022; 15:cancers15010087. [PMID: 36612084 PMCID: PMC9817756 DOI: 10.3390/cancers15010087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Lactate mediates multiple cell-intrinsic effects in cancer metabolism in terms of development, maintenance, and metastasis and is often correlated with poor prognosis. Its functions are undertaken as an energy source for neighboring carcinoma cells and serve as a lactormone for oncogenic signaling pathways. Indeed, two isomers of lactate are produced in the Warburg effect: L-lactate and D-lactate. L-lactate is the main end-production of glycolytic fermentation which catalyzes glucose, and tiny D-lactate is fabricated through the glyoxalase system. Their production inevitably affects cancer development and therapy. Here, we systematically review the mechanisms of lactate isomers production, and highlight emerging evidence of the carcinogenic biological effects of lactate and its isomers in cancer. Accordingly, therapy that targets lactate and its metabolism is a promising approach for anticancer treatment.
Collapse
|
18
|
Kocianova E, Piatrikova V, Golias T. Revisiting the Warburg Effect with Focus on Lactate. Cancers (Basel) 2022; 14:cancers14246028. [PMID: 36551514 PMCID: PMC9776395 DOI: 10.3390/cancers14246028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Rewired metabolism is acknowledged as one of the drivers of tumor growth. As a result, aerobic glycolysis, or the Warburg effect, is a feature of many cancers. Increased glucose uptake and glycolysis provide intermediates for anabolic reactions necessary for cancer cell proliferation while contributing sufficient energy. However, the accompanying increased lactate production, seemingly wasting glucose carbon, was originally explained only by the need to regenerate NAD+ for successive rounds of glycolysis by the lactate dehydrogenase (LDH) reaction in the cytosol. After the discovery of a mitochondrial LDH isoform, lactate oxidation entered the picture, and lactate was recognized as an important oxidative fuel. It has also been revealed that lactate serves a variety of signaling functions and helps cells adapt to the new environment. Here, we discuss recent findings on lactate metabolism and signaling in cancer while attempting to explain why the Warburg effect is adopted by cancer cells.
Collapse
Affiliation(s)
- Eva Kocianova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Viktoria Piatrikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Tereza Golias
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
19
|
Quiroga J, Alarcón P, Manosalva C, Teuber S, Carretta MD, Burgos RA. d-lactate-triggered extracellular trap formation in cattle polymorphonuclear leucocytes is glucose metabolism dependent. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104492. [PMID: 35830898 DOI: 10.1016/j.dci.2022.104492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
D-lactic acidosis is a metabolic disease of cattle caused by the digestive overgrowth of bacteria that are highly producers of d-lactate, a metabolite that then reaches and accumulates in the bloodstream. d-lactate is a proinflammatory agent in cattle that induces the formation of extracellular traps (ETs) in polymorphonuclear leucocytes (PMN), although information on PMN metabolic requirements for this response mechanism is insufficient. In the present study, metabolic pathways involved in ET formation induced by d-lactate were studied. We show that d-lactate but not l-lactate induced ET formation in cattle PMN. We analyzed the metabolomic changes induced by d-lactate in bovine PMN using gas chromatography-mass spectrometry (GC-MS). Several metabolic pathways were altered, including glycolysis/gluconeogenesis, amino sugar and nucleotide sugar metabolism, galactose metabolism, starch and sucrose metabolism, fructose and mannose metabolism, and pentose phosphate pathway. d-lactate increased intracellular levels of glucose and glucose-6-phosphate, and increased uptake of the fluorescent glucose analog 2-NBDG, suggesting improved glycolytic activity. In addition, using an enzymatic assay and transmission electron microscopy (TEM), we observed that d-lactate was able to decrease intracellular glycogen levels and the presence of glycogen granules. Relatedly, d-lactate increased the expression of enzymes of glycolysis, gluconeogenesis and glycogen metabolism. In addition, 2DG (a hexokinase inhibitor), 3PO (a 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 inhibitor), MB05032 (inhibitor of fructose-1,6-bisphosphatase) and CP-91149 (inhibitor of glycogen phosphorylase) reduced d-lactate-triggered ETosis. Taken together, these results suggest that d-lactate induces a metabolic rewiring that increases glycolysis, gluconeogenesis and glycogenolysis, all of which are required for d-lactate-induced ET release in cattle PMN.
Collapse
Affiliation(s)
- John Quiroga
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
20
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022; 7:305. [PMID: 36050306 PMCID: PMC9434547 DOI: 10.1038/s41392-022-01151-3] [Citation(s) in RCA: 482] [Impact Index Per Article: 160.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao’s research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Collapse
Affiliation(s)
- Xiaolu Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaotong Lin
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Jian-Xun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
21
|
Cai M, Wang H, Song H, Yang R, Wang L, Xue X, Sun W, Hu J. Lactate Is Answerable for Brain Function and Treating Brain Diseases: Energy Substrates and Signal Molecule. Front Nutr 2022; 9:800901. [PMID: 35571940 PMCID: PMC9099001 DOI: 10.3389/fnut.2022.800901] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Research to date has provided novel insights into lactate's positive role in multiple brain functions and several brain diseases. Although notable controversies and discrepancies remain, the neurobiological role and the metabolic mechanisms of brain lactate have now been described. A theoretical framework on the relevance between lactate and brain function and brain diseases is presented. This review begins with the source and route of lactate formation in the brain and food; goes on to uncover the regulatory effect of lactate on brain function; and progresses to gathering the application and concentration variation of lactate in several brain diseases (diabetic encephalopathy, Alzheimer's disease, stroke, traumatic brain injury, and epilepsy) treatment. Finally, the dual role of lactate in the brain is discussed. This review highlights the biological effect of lactate, especially L-lactate, in brain function and disease studies and amplifies our understanding of past research.
Collapse
Affiliation(s)
- Ming Cai
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbiao Wang
- Department of Physical Education, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Haihan Song
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Ruoyu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Liyan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wanju Sun
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
- *Correspondence: Wanju Sun
| | - Jingyun Hu
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
- Jingyun Hu
| |
Collapse
|
22
|
Kumar S, Kumar A, Huhn S, DeVine L, Cole R, Du Z, Betenbaugh M. A Proteomics Approach to Decipher a Sticky CHO Situation. Biotechnol Bioeng 2022; 119:2064-2075. [PMID: 35470426 PMCID: PMC9546176 DOI: 10.1002/bit.28108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 11/08/2022]
Abstract
Chinese hamster ovary (CHO) cells serve as protein therapeutics workhorses, so it is useful to understand what intrinsic properties make certain host cell lines and clones preferable for scale up and production of target proteins. In this study, two CHO host cell lines (H1, H2), and their respective clones were evaluated using comparative TMT‐proteomics. The clones obtained from host H1 showed increased productivity (6.8 times higher) in comparison to clones from host H2. Based on fold‐change analyses, we observed differential regulation in pathways including cell adhesion, aggregation, and cellular metabolism among others. In particular, the cellular adhesion pathway was downregulated in H1, in which podoplanin, an antiadhesion molecule, was upregulated the most in host H1 and associated clones. Phenotypically, these cells were less likely to aggregate and adhere to surfaces. In addition, enzymes involved in cellular metabolism such as isocitrate dehydrogenase (IDH) and mitochondrial‐d‐lactate dehydrogenase (
d‐LDHm) were also found to be differentially regulated. IDH plays a key role in TCA cycle and isocitrate‐alpha‐ketoglutarate cycle while
d‐LDHm aids in the elimination of toxic metabolite methylglyoxal, involved in protein degradation. These findings will enhance our efforts towards understanding why certain CHO cell lines exhibit enhanced performance and perhaps provide future cell engineering targets.
Collapse
Affiliation(s)
- Swetha Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Amit Kumar
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Steven Huhn
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Lauren DeVine
- Mass Spectrometry and Proteomics Facility, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Robert Cole
- Mass Spectrometry and Proteomics Facility, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Zhimei Du
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Allosteric transitions of rabbit skeletal muscle lactate dehydrogenase induced by pH-dependent dissociation of the tetrameric enzyme. Biochimie 2022; 199:23-35. [DOI: 10.1016/j.biochi.2022.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
|
24
|
Human lactate dehydrogenase A undergoes allosteric transitions under pH conditions inducing the dissociation of the tetrameric enzyme. Biosci Rep 2022; 42:230681. [PMID: 35048959 PMCID: PMC8799922 DOI: 10.1042/bsr20212654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
The aerobic energetic metabolism of eukaryotic cells relies on the glycolytic generation of pyruvate, which is subsequently channelled to the oxidative phosphorylation taking place in mitochondria. However, under conditions limiting oxidative phosphorylation pyruvate is coupled to alternative energetic pathways, e.g. its reduction to lactate catalysed by lactate dehydrogenases (LDHs). This biochemical process is known to induce a significant decrease of cytosolic pH, and is accordingly denoted lactic acidosis. Nevertheless, the mutual dependence of LDHs action and lactic acidosis is far from being fully understood. Using human LDH-A, here we show that when exposed to acidic pH this enzyme is subjected to homotropic allosteric transitions triggered by pyruvate. Conversely, human LDH-A features Michaelis-Menten kinetics at pH values equal to 7.0 or higher. Further, citrate, isocitrate, and malate were observed to activate human LDH-A, both at pH 5.0 and 6.5, with citrate and isocitrate being responsible for major effects. Dynamic light scattering experiments revealed that the occurrence of allosteric kinetics in human LDH-A is mirrored by a consistent dissociation of the enzyme tetramer, suggesting that pyruvate promotes tetramer association under acidic conditions. Finally, using the human liver cancer cell line HepG2 we isolated cells featuring cytosolic pH equal to 7.3 or 6.5, and we observed a concomitant decrease of cytosolic pH and lactate secretion. Overall, our observations indicate the occurrence of a negative feedback between lactic acidosis and human LDH-A activity, and a complex regulation of this feedback by pyruvate and by some intermediates of the Krebs cycle.
Collapse
|
25
|
Cisterna B, Malatesta M, Zancanaro C, Boschi F. A computational approach to quantitatively define sarcomere dimensions and arrangement in skeletal muscle. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 211:106437. [PMID: 34624632 DOI: 10.1016/j.cmpb.2021.106437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The skeletal muscle is composed of integrated tissues mainly composed of myofibers i.e., long, cylindrical syncytia, whose cytoplasm is mostly occupied by parallel myofibrils. In section, each myofibril is organized in serially end-to-end arranged sarcomeres connected by Z lines. In muscle disorders, these structural and functional units can undergo structural alterations in terms of Z-line and sarcomere lengths, as well as lateral alignment of Z-line among adjacent myofibrils. In this view, objectifying alterations of the myofibril and sarcomere architecture would provide a solid foundation for qualitative observations. In this work, specific quantitative parameters characterizing the sarcomere and myofibril arrangement were defined using a computerized analysis of ultrastructural images. METHODS computerized analysis was carried out on transmission electron microscopy pictures of the murine vastus lateralis muscle. Samples from both euploid (control) and trisomic (showing myofiber alterations) Ts65Dn mice were used. Two routines were written in MATLAB to measure specific structural parameters on sarcomeres and myofibrils. The output included the Z-line, M-line, and sarcomere lengths, the Aspect Ratio (AsR) and Curviness (Cur) sarcomere shape parameters, myofibril axis (α angle), and the H parameter (evaluation of sequence of Z-lines of adjacent myofibrils). RESULTS Both routines worked well in control (euploid) skeletal muscle yielding consistent quantitative data of sarcomere and myofibril structural organization. In comparison with euploid, trisomic muscle showed statistically significant lower Z-line length, similar M-line length, and statistically significant lower sarcomere length. Both AsR and Cur were statistically significantly lower in trisomic muscle, suggesting the sarcomere is barrel-shaped in the latter. The angle (α) distribution showed that the sarcomere axes are almost parallel in euploid muscle, while a large variability occurs in trisomic tissue. The mean value of H was significantly higher in trisomic versus euploid muscle indicating that Z-lines are not perfectly aligned in trisomic muscle. CONCLUSIONS Our procedure allowed us to accurately extract and quantify sarcomere and myofibril parameters from the high-resolution electron micrographs thereby yielding an effective tool to quantitatively define trisomy-associated muscle alterations. These results pave the way to future objective quantification of skeletal muscle changes in pathological conditions. SHORT ABSTRACT The skeletal muscle is composed of integrated tissues mainly composed of myofibers i.e., long, cylindrical syncytia, whose cytoplasm is mostly occupied by parallel myofibrils organized in serially end-to-end arranged sarcomeres. Several pieces of evidence have highlighted that in muscle disorders and diseases the sarcomere structure may be altered. Therefore, objectifying alterations of the myofibril and sarcomere architecture would provide a solid foundation for qualitative observations. A computerized analysis was carried out on transmission electron microscopy images of euploid (control) and trisomic (showing myofiber alterations) skeletal muscle. Two routines were written in MATLAB to measure nine sarcomere and myofibril structural parameters. Our computational method confirmed and expanded on previous qualitative ultrastructural findings defining several trisomy-associated skeletal muscle alterations. The proposed procedure is a potentially useful tool to quantitatively define skeletal muscle changes in pathological conditions involving the sarcomere.
Collapse
Affiliation(s)
- Barbara Cisterna
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Manuela Malatesta
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Carlo Zancanaro
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| |
Collapse
|
26
|
Alfarouk KO, Alqahtani SS, Alshahrani S, Morgenstern J, Supuran CT, Reshkin SJ. The possible role of methylglyoxal metabolism in cancer. J Enzyme Inhib Med Chem 2021; 36:2010-2015. [PMID: 34517737 PMCID: PMC8451662 DOI: 10.1080/14756366.2021.1972994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tumours reprogram their metabolism to acquire an evolutionary advantage over normal cells. However, not all such metabolic pathways support energy production. An example of these metabolic pathways is the Methylglyoxal (MG) one. This pathway helps maintain the redox state, and it might act as a phosphate sensor that monitors the intracellular phosphate levels. In this work, we discuss the biochemical step of the MG pathway and interrelate it with cancer.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- Department of Evolutionary Pharmacology, and Tumor Metabolism, Hala Alfarouk Cancer Center, Khartoum, Sudan
| | - Saad S Alqahtani
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, KSA
| | - Saeed Alshahrani
- Pharmacology and Toxicology Department, College of Pharmacy, Jazan University, Jazan, KSA
| | - Jakob Morgenstern
- Department of Internal Medicine I, Endocrinology and Metabolism, Heidelberg University, Germany
| | - Claudiu T Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Stephan J Reshkin
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
27
|
Kwong AK, Wong SS, Rodenburg RJT, Smeitink J, Chan GCF, Fung C. Human d-lactate dehydrogenase deficiency by LDHD mutation in a patient with neurological manifestations and mitochondrial complex IV deficiency. JIMD Rep 2021; 60:15-22. [PMID: 34258137 PMCID: PMC8260477 DOI: 10.1002/jmd2.12220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND d-lactate, one of the isomers of lactate, exists in a low concentration in healthy individuals and it can be oxidized to pyruvate catalyzed by d-lactate dehydrogenase. Excessive amount of d-lactate causes d-lactate acidosis associated with neurological manifestations. METHODS AND RESULTS We report here a patient with developmental delay, cerebellar ataxia, and transient hepatomegaly. Enzyme analysis in the patient's skin fibroblast showed decreased mitochondrial complex IV activity. Using whole exome sequencing, we identified compound heterozygous variants in the LDHD gene, which encodes the d-lactate dehydrogenase, consisting of a splice site variant c.469+1dupG and a missense variant c.752C>T, p.(Thr251Met) which are pathogenic and likely pathogenic respectively according to the American College of Medical Genetics and Genomics (ACMG) classification. The serum d-lactate level was subsequently detected to be elevated (0.61 mmol/L, reference value: 0-0.25 mmol/L). CONCLUSION This is the third report on LDHD mutations associated with d-lactate elevation and was first reported to have decreased mitochondrial complex IV activity. The study provides more information on this rare metabolic condition but the association of LDHD deficiency with the clinical presentations requires further investigations.
Collapse
Affiliation(s)
- Anna Ka‐Yee Kwong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Sheila Suet‐Na Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Department of Paediatrics and Adolescent MedicineHong Kong Children's HospitalHong Kong SARChina
| | - Richard J. T. Rodenburg
- Radboud Centre for Mitochondrial Medicine, Department of PaediatricsRadboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Jan Smeitink
- Radboud Centre for Mitochondrial Medicine, Department of PaediatricsRadboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Department of Paediatrics and Adolescent MedicineHong Kong Children's HospitalHong Kong SARChina
| | - Cheuk‐Wing Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Department of Paediatrics and Adolescent MedicineHong Kong Children's HospitalHong Kong SARChina
| |
Collapse
|
28
|
Quiroga J, Alarcón P, Manosalva C, Teuber S, Taubert A, Hermosilla C, Hidalgo MA, Carretta MD, Burgos RA. Metabolic Reprogramming and Inflammatory Response Induced by D-Lactate in Bovine Fibroblast-Like Synoviocytes Depends on HIF-1 Activity. Front Vet Sci 2021; 8:625347. [PMID: 33796579 PMCID: PMC8007789 DOI: 10.3389/fvets.2021.625347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Acute ruminal acidosis (ARA) occurs after an excessive intake of rapidly fermentable carbohydrates and is characterized by the overproduction of D-lactate in the rumen that reaches the bloodstream. Lameness presentation, one of the primary consequences of ARA in cattle, is associated with the occurrence of laminitis and aseptic polysynovitis. Fibroblast-like synoviocytes (FLS) are predominant cells of synovia and play a key role in the pathophysiology of joint diseases, thus increasing the chances of the release of pro-inflammatory cytokines. Increased D-lactate levels and disturbances in the metabolism of carbohydrates, pyruvates, and amino acids are observed in the synovial fluid of heifers with ARA-related polysynovitis prior to neutrophil infiltration, suggesting an early involvement of metabolic disturbances in joint inflammation. We hypothesized that D-lactate induces metabolic reprogramming, along with an inflammatory response, in bovine exposed FLS. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics revealed that D-lactate disrupts the metabolism of bovine FLS, mainly enhancing glycolysis and gluconeogenesis, pyruvate metabolism, and galactose metabolism. The reverse-transcription quantitative PCR (RT-qPCR) analysis revealed an increased expression of metabolic-related genes, including hypoxia-inducible factor 1 (HIF-1)α, glucose transporter 1 (Glut-1), L-lactate dehydrogenase subunit A (L-LDHA), and pyruvate dehydrogenase kinase 1 (PDK-1). Along with metabolic disturbances, D-lactate also induced an overexpression and the secretion of IL-6. Furthermore, the inhibition of HIF-1, PI3K/Akt, and NF-κB reduced the expression of IL-6 and metabolic-related genes. The results of this study reveal a potential role for D-lactate in bFLS metabolic reprogramming and support a close relationship between inflammation and metabolism in cattle.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Anja Taubert
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - María Angélica Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
29
|
Interplay among Oxidative Stress, Methylglyoxal Pathway and S-Glutathionylation. Antioxidants (Basel) 2020; 10:antiox10010019. [PMID: 33379155 PMCID: PMC7824032 DOI: 10.3390/antiox10010019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are produced constantly inside the cells as a consequence of nutrient catabolism. The balance between ROS production and elimination allows to maintain cell redox homeostasis and biological functions, avoiding the occurrence of oxidative distress causing irreversible oxidative damages. A fundamental player in this fine balance is reduced glutathione (GSH), required for the scavenging of ROS as well as of the reactive 2-oxoaldehydes methylglyoxal (MGO). MGO is a cytotoxic compound formed constitutively as byproduct of nutrient catabolism, and in particular of glycolysis, detoxified in a GSH-dependent manner by the glyoxalase pathway consisting in glyoxalase I and glyoxalase II reactions. A physiological increase in ROS production (oxidative eustress, OxeS) is promptly signaled by the decrease of cellular GSH/GSSG ratio which can induce the reversible S-glutathionylation of key proteins aimed at restoring the redox balance. An increase in MGO level also occurs under oxidative stress (OxS) conditions probably due to several events among which the decrease in GSH level and/or the bottleneck of glycolysis caused by the reversible S-glutathionylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. In the present review, it is shown how MGO can play a role as a stress signaling molecule in response to OxeS, contributing to the coordination of cell metabolism with gene expression by the glycation of specific proteins. Moreover, it is highlighted how the products of MGO metabolism, S-D-lactoylglutathione (SLG) and D-lactate, which can be taken up and metabolized by mitochondria, could play important roles in cell response to OxS, contributing to cytosol-mitochondria crosstalk, cytosolic and mitochondrial GSH pools, energy production, and the restoration of the GSH/GSSG ratio. The role for SLG and glyoxalase II in the regulation of protein function through S-glutathionylation under OxS conditions is also discussed. Overall, the data reported here stress the need for further studies aimed at understanding what role the evolutionary-conserved MGO formation and metabolism can play in cell signaling and response to OxS conditions, the aberration of which may importantly contribute to the pathogenesis of diseases associated to elevated OxS.
Collapse
|
30
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
31
|
Quinn WJ, Jiao J, TeSlaa T, Stadanlick J, Wang Z, Wang L, Akimova T, Angelin A, Schäfer PM, Cully MD, Perry C, Kopinski PK, Guo L, Blair IA, Ghanem LR, Leibowitz MS, Hancock WW, Moon EK, Levine MH, Eruslanov EB, Wallace DC, Baur JA, Beier UH. Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cell Rep 2020; 33:108500. [PMID: 33326785 PMCID: PMC7830708 DOI: 10.1016/j.celrep.2020.108500] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Immune cell function is influenced by metabolic conditions. Low-glucose, high-lactate environments, such as the placenta, gastrointestinal tract, and the tumor microenvironment, are immunosuppressive, especially for glycolysis-dependent effector T cells. We report that nicotinamide adenine dinucleotide (NAD+), which is reduced to NADH by lactate dehydrogenase in lactate-rich conditions, is a key point of metabolic control in T cells. Reduced NADH is not available for NAD+-dependent enzymatic reactions involving glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate dehydrogenase (PGDH). We show that increased lactate leads to a block at GAPDH and PGDH, leading to the depletion of post-GAPDH glycolytic intermediates, as well as the 3-phosphoglycerate derivative serine that is known to be important for T cell proliferation. Supplementing serine rescues the ability of T cells to proliferate in the presence of lactate-induced reductive stress. Directly targeting the redox state may be a useful approach for developing novel immunotherapies in cancer and therapeutic immunosuppression. Quinn et al. report that lactate has an acidity-independent suppressive effect on effector T cell proliferation mediated through a shift from NAD+ to NADH (lactate-induced reductive stress). This impairs glycolysis and glucose-derived serine production, which is required for effector T cell proliferation.
Collapse
Affiliation(s)
- William J Quinn
- Department of Physiology and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jing Jiao
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara TeSlaa
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Jason Stadanlick
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhonglin Wang
- Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Patrick M Schäfer
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michelle D Cully
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caroline Perry
- Department of Physiology and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Piotr K Kopinski
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lili Guo
- Penn SRP Center, Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Penn SRP Center, Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Louis R Ghanem
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Leibowitz
- Division of Oncology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edmund K Moon
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew H Levine
- Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joseph A Baur
- Department of Physiology and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ulf H Beier
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Santos AA, Afonso MB, Ramiro RS, Pires D, Pimentel M, Castro RE, Rodrigues CM. Host miRNA-21 promotes liver dysfunction by targeting small intestinal Lactobacillus in mice. Gut Microbes 2020; 12:1-18. [PMID: 33300439 PMCID: PMC7733982 DOI: 10.1080/19490976.2020.1840766] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
New evidence shows that host-microbiota crosstalk can be modulated via endogenous miRNAs. We have previously reported that miR-21 ablation protects against liver injury in cholestasis. In this study, we investigated the role of miR-21 in modulating the gut microbiota during cholestasis and its effects in liver dysfunction. Mice lacking miR-21 had reduced liver damage and were protected against small intestinal injury as well as from gut microbiota dysbiosis when subjected to bile duct ligation surgery. The unique microbiota profile of miR-21KO mice was characterized by an increase in Lactobacillus, a key microbiome genus for gut homeostasis. Interestingly, in vitro incubation of synthetic miR-21 directly reduced Lactobacillus load. Moreover, supplementation with Lactobacillus reuteri revealed reduced liver fibrosis in acute bile duct-ligated mice, mimicking the protective effects in miR-21 knockout mice. D-lactate, a main product of Lactobacillus, regulates gut homeostasis that may link with reduced liver fibrosis. Altogether, our results demonstrate that miR-21 promotes liver dysfunction through direct modulation of the gut microbiota and highlight the potential therapeutic effects of Lactobacillus supplementation in gut and liver homeostasis.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - David Pires
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Drabkin M, Yogev Y, Zeller L, Zarivach R, Zalk R, Halperin D, Wormser O, Gurevich E, Landau D, Kadir R, Perez Y, Birk OS. Hyperuricemia and gout caused by missense mutation in d-lactate dehydrogenase. J Clin Invest 2020; 129:5163-5168. [PMID: 31638601 DOI: 10.1172/jci129057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023] Open
Abstract
Gout is caused by deposition of monosodium urate crystals in joints when plasma uric acid levels are chronically elevated beyond the saturation threshold, mostly due to renal underexcretion of uric acid. Although molecular pathways of this underexcretion have been elucidated, its etiology remains mostly unknown. We demonstrate that gout can be caused by a mutation in LDHD within the putative catalytic site of the encoded d-lactate dehydrogenase, resulting in augmented blood levels of d-lactate, a stereoisomer of l-lactate, which is normally present in human blood in miniscule amounts. Consequent excessive renal secretion of d-lactate in exchange for uric acid reabsorption culminated in hyperuricemia and gout. We showed that LDHD expression is enriched in tissues with a high metabolic rate and abundant mitochondria and that d-lactate dehydrogenase resides in the mitochondria of cells overexpressing the human LDHD gene. Notably, the p.R370W mutation had no effect on protein localization. In line with the human phenotype, injection of d-lactate into naive mice resulted in hyperuricemia. Thus, hyperuricemia and gout can result from the accumulation of metabolites whose renal excretion is coupled to uric acid reabsorption.
Collapse
Affiliation(s)
- Max Drabkin
- The Morris Kahn Laboratory of Human Genetics at the Faculty of Health Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the Faculty of Health Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lior Zeller
- Division of Internal Medicine, Soroka University Medical Center, Beer-Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences and.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ran Zalk
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics at the Faculty of Health Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics at the Faculty of Health Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evgenia Gurevich
- Rahat Children's Health Center, Clalit Health Services, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Landau
- Department of Pediatrics B and Pediatric Nephrology Unit, Schneider Children's Medical Center of Israel, Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics at the Faculty of Health Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics at the Faculty of Health Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the Faculty of Health Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Genetics Institute, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
34
|
de Bari L, Atlante A, Armeni T, Kalapos MP. Synthesis and metabolism of methylglyoxal, S-D-lactoylglutathione and D-lactate in cancer and Alzheimer's disease. Exploring the crossroad of eternal youth and premature aging. Ageing Res Rev 2019; 53:100915. [PMID: 31173890 DOI: 10.1016/j.arr.2019.100915] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Both cancer and Alzheimer's disease (AD) are emerging as metabolic diseases in which aberrant/dysregulated glucose metabolism and bioenergetics occur, and play a key role in disease progression. Interestingly, an enhancement of glucose uptake, glycolysis and pentose phosphate pathway occurs in both cancer cells and amyloid-β-resistant neurons in the early phase of AD. However, this metabolic shift has its adverse effects. One of them is the increase in methylglyoxal production, a physiological cytotoxic by-product of glucose catabolism. Methylglyoxal is mainly detoxified via cytosolic glyoxalase route comprising glyoxalase 1 and glyoxalase 2 with the production of S-D-lactoylglutathione and D-lactate as intermediate and end-product, respectively. Due to the existence of mitochondrial carriers and intramitochondrial glyoxalase 2 and D-lactate dehydrogenase, the transport and metabolism of both S-D-lactoylglutathione and D-lactate in mitochondria can contribute to methylglyoxal elimination, cellular antioxidant power and energy production. In this review, it is supposed that the different ability of cancer cells and AD neurons to metabolize methylglyoxal, S-D-lactoylglutathione and D-lactate scores cell fate, therefore being at the very crossroad of the "eternal youth" of cancer and the "premature death" of AD neurons. Understanding of these processes would help to elaborate novel metabolism-based therapies for cancer and AD treatment.
Collapse
|
35
|
Lactate Dehydrogenases as Metabolic Links between Tumor and Stroma in the Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11060750. [PMID: 31146503 PMCID: PMC6627402 DOI: 10.3390/cancers11060750] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a metabolic disease in which abnormally proliferating cancer cells rewire metabolic pathways in the tumor microenvironment (TME). Molecular reprogramming in the TME helps cancer cells to fulfill elevated metabolic demands for bioenergetics and cellular biosynthesis. One of the ways through which cancer cell achieve this is by regulating the expression of metabolic enzymes. Lactate dehydrogenase (LDH) is the primary metabolic enzyme that converts pyruvate to lactate and vice versa. LDH also plays a significant role in regulating nutrient exchange between tumor and stroma. Thus, targeting human lactate dehydrogenase for treating advanced carcinomas may be of benefit. LDHA and LDHB, two isoenzymes of LDH, participate in tumor stroma metabolic interaction and exchange of metabolic fuel and thus could serve as potential anticancer drug targets. This article reviews recent research discussing the roles of lactate dehydrogenase in cancer metabolism. As molecular regulation of LDHA and LDHB in different cancer remains obscure, we also review signaling pathways regulating LDHA and LDHB expression. We highlight on the role of small molecule inhibitors in targeting LDH activity and we emphasize the development of safer and more effective LDH inhibitors. We trust that this review will also generate interest in designing combination therapies based on LDH inhibition, with LDHA being targeted in tumors and LDHB in stromal cells for better treatment outcome.
Collapse
|
36
|
Urbańska K, Orzechowski A. Unappreciated Role of LDHA and LDHB to Control Apoptosis and Autophagy in Tumor Cells. Int J Mol Sci 2019; 20:ijms20092085. [PMID: 31035592 PMCID: PMC6539221 DOI: 10.3390/ijms20092085] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Tumor cells possess a high metabolic plasticity, which drives them to switch on the anaerobic glycolysis and lactate production when challenged by hypoxia. Among the enzymes mediating this plasticity through bidirectional conversion of pyruvate and lactate, the lactate dehydrogenase A (LDHA) and lactate dehydrogenase B (LDHB), are indicated. LDHA has a higher affinity for pyruvate, preferentially converting pyruvate to lactate, and NADH to NAD+ in anaerobic conditions, whereas LDHB possess a higher affinity for lactate, preferentially converting lactate to pyruvate, and NAD+ to NADH, when oxygen is abundant. Apart from the undisputed role of LDHA and LDHB in tumor cell metabolism and adaptation to unfavorable environmental or cellular conditions, these enzymes participate in the regulation of cell death. This review presents the latest progress made in this area on the roles of LDHA and LDHB in apoptosis and autophagy of tumor cells. Several examples of how LDHA and LDHB impact on these processes, as well as possible molecular mechanisms, will be discussed in this article. The information included in this review points to the legitimacy of modulating LDHA and/or LDHB to target tumor cells in the context of human and veterinary medicine.
Collapse
Affiliation(s)
- Kaja Urbańska
- Department of Morphological Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Arkadiusz Orzechowski
- Department of Physiological Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
37
|
Ugurel E, Danis O, Mutlu O, Yuce-Dursun B, Gunduz C, Turgut-Balik D. Inhibitory effects of arylcoumarin derivatives on Bacteroides fragilisd‑lactate dehydrogenase. Int J Biol Macromol 2019; 127:197-203. [PMID: 30639654 DOI: 10.1016/j.ijbiomac.2019.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 11/26/2022]
Abstract
Bacteroides fragilis is an anaerobic bacterium naturally hosted in the human colon flora. B. fragilisd‑lactate dehydrogenase (Bfd‑LDH) is an important enzyme which catalyzes the conversion of d‑lactate to pyruvate and regulates anaerobic glycolysis. In this study Bfd‑LDH has been targeted for structure based drug design. B. fragilisd‑lactate dehydrogenase has been expressed, purified and inhibitory activities of 25 coumarin derivatives previously synthetize for their antioxidant activity were evaluated. Among the 25 coumarin derivatives, compound 6a, 5l, and 6b exhibited the highest inhibitory activity with IC50 values of 0,47 μM, 0,57 μM ve 0,057 μM, respectively. The results indicate that the mechanism by which 6a, 5l and 6b coumarin derivatives inhibit Bfd‑LDH by reversible non-competitive inhibition. Docking experiments were carried out to further explain the results and compare the theoretical and experimental affinity of these compounds to the Bfd‑LDH protein. According to docking results, all coumarins bind to the site occupied by pyruvate and the nicotinamide ring of NADH.
Collapse
Affiliation(s)
- Erennur Ugurel
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210/Esenler, Istanbul, Turkey
| | - Ozkan Danis
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, Goztepe Campus, 34722/Kadıkoy, Istanbul, Turkey
| | - Ozal Mutlu
- Marmara University, Faculty of Arts and Sciences, Department of Biology, Goztepe Campus, 34722/Kadikoy, Istanbul, Turkey
| | - Basak Yuce-Dursun
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, Goztepe Campus, 34722/Kadıkoy, Istanbul, Turkey
| | - Cihan Gunduz
- Manhattan College, Department of Chemistry & Biochemistry, 10471, Riverdale, New York, U.S.A
| | - Dilek Turgut-Balik
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210/Esenler, Istanbul, Turkey.
| |
Collapse
|
38
|
Identification of human D lactate dehydrogenase deficiency. Nat Commun 2019; 10:1477. [PMID: 30931947 PMCID: PMC6443703 DOI: 10.1038/s41467-019-09458-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 03/07/2019] [Indexed: 11/24/2022] Open
Abstract
Phenotypic and biochemical categorization of humans with detrimental variants can provide valuable information on gene function. We illustrate this with the identification of two different homozygous variants resulting in enzymatic loss-of-function in LDHD, encoding lactate dehydrogenase D, in two unrelated patients with elevated D-lactate urinary excretion and plasma concentrations. We establish the role of LDHD by demonstrating that LDHD loss-of-function in zebrafish results in increased concentrations of D-lactate. D-lactate levels are rescued by wildtype LDHD but not by patients’ variant LDHD, confirming these variants’ loss-of-function effect. This work provides the first in vivo evidence that LDHD is responsible for human D-lactate metabolism. This broadens the differential diagnosis of D-lactic acidosis, an increasingly recognized complication of short bowel syndrome with unpredictable onset and severity. With the expanding incidence of intestinal resection for disease or obesity, the elucidation of this metabolic pathway may have relevance for those patients with D-lactic acidosis. D-lactic acidosis typically occurs in the context of short bowel syndrome; excess D-lactate is produced by intestinal bacteria. Here, the authors identify two point mutations in the human lactate dehydrogenase D (LDHD) gene that cause enzymatic loss of function and are associated with elevated plasma D-lactate.
Collapse
|
39
|
Rosenstein PG, Tennent-Brown BS, Hughes D. Clinical use of plasma lactate concentration. Part 1: Physiology, pathophysiology, and measurement. J Vet Emerg Crit Care (San Antonio) 2018. [PMID: 29533512 DOI: 10.1111/vec.12708] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To review the current literature with respect to the physiology, pathophysiology, and measurement of lactate. DATA SOURCES Data were sourced from veterinary and human clinical trials, retrospective studies, experimental studies, and review articles. Articles were retrieved without date restrictions and were sourced primarily via PubMed, Scopus, and CAB Abstracts as well as by manual selection. HUMAN AND VETERINARY DATA SYNTHESIS Lactate is an important energy storage molecule, the production of which preserves cellular energy production and mitigates the acidosis from ATP hydrolysis. Although the most common cause of hyperlactatemia is inadequate tissue oxygen delivery, hyperlactatemia can, and does occur in the face of apparently adequate oxygen supply. At a cellular level, the pathogenesis of hyperlactatemia varies widely depending on the underlying cause. Microcirculatory dysfunction, mitochondrial dysfunction, and epinephrine-mediated stimulation of Na+ -K+ -ATPase pumps are likely important contributors to hyperlactatemia in critically ill patients. Ultimately, hyperlactatemia is a marker of altered cellular bioenergetics. CONCLUSION The etiology of hyperlactatemia is complex and multifactorial. Understanding the relevant pathophysiology is helpful when characterizing hyperlactatemia in clinical patients.
Collapse
Affiliation(s)
- Patricia G Rosenstein
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| | - Brett S Tennent-Brown
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| | - Dez Hughes
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
40
|
Eprintsev AT, Larchenkov VM, Komarova NR, Kovaleva EV, Mitkevich AV, Falaleeva MI, Kompantseva EI. Purification and Investigation of Physicochemical and Regulatory Properties of Homogeneous L-Lactate: Cytochrom c Oxidoreductase Obtained from the Nonsulfur Purple Bacterium Rhodovulum steppense. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Song KJ, Yu XN, Lv T, Chen YL, Diao YC, Liu SL, Wang YK, Yao Q. Expression and prognostic value of lactate dehydrogenase-A and -D subunits in human uterine myoma and uterine sarcoma. Medicine (Baltimore) 2018; 97:e0268. [PMID: 29620641 PMCID: PMC5902263 DOI: 10.1097/md.0000000000010268] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE This study aimed to determine the expression of lactate dehydrogenase (LDH)-A and LDH-D in patients with uterine myoma, cellular leiomyoma (CLM), and uterine sarcoma and to evaluate their prognostic significance. METHODS Protein expression levels of LDH-A and LDH-D were determined in tissue samples from 86 patients (26 uterine myoma, 10 CLM, 50 uterine sarcoma) by immunohistochemistry and their associations with clinicopathologic parameters and outcomes were analyzed in patients with uterine sarcoma. RESULTS The positivity rates for LDH-A and LDH-D were significantly higher in patients with uterine sarcoma compared with those with uterine myoma or CLM (P < .05). Patients with uterine sarcoma were classified as having uterine leiomyosarcoma (LMS), malignant endometrial stromal sarcoma, and malignant mixed Mullerian tumor, with 5-year overall survival rates of 59%, 71%, and 29%, respectively (P < .05). Univariate analysis showed that patients younger than 50 years and with stage I-II had better clinical prognoses. LDH-A-positive LMS patients had a poorer prognosis than LDH-A-negative patients (P = .03). The median survival time of LDH-A-positive patients was 35 months. CONCLUSIONS We demonstrated that LDH-D was expressed in patients with uterine sarcoma. Furthermore, the overexpressions of LDH-A and LDH-D in uterine sarcoma patients may contribute to further understanding of the mechanism of LDH in tumor metabolism in uterine sarcoma. Positive expression of LDH-A in patients with LMS may act as a potential prognostic biomarker in these patients.
Collapse
Affiliation(s)
- Ke-juan Song
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Xiao-ni Yu
- Department of Gynecology, the Ninth People's Hospital of Qingdao,shinan District, Qingdao City, Shandong Province, China
| | - Teng Lv
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Yu-long Chen
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Yu-chao Diao
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Su-li Liu
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Yan-kui Wang
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Qin Yao
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| |
Collapse
|
42
|
Toyoda Y, Cattin CJ, Stewart MP, Poser I, Theis M, Kurzchalia TV, Buchholz F, Hyman AA, Müller DJ. Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding. Nat Commun 2017; 8:1266. [PMID: 29097687 PMCID: PMC5668354 DOI: 10.1038/s41467-017-01147-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023] Open
Abstract
To divide, most animal cells drastically change shape and round up against extracellular confinement. Mitotic cells facilitate this process by generating intracellular pressure, which the contractile actomyosin cortex directs into shape. Here, we introduce a genome-scale microcantilever- and RNAi-based approach to phenotype the contribution of > 1000 genes to the rounding of single mitotic cells against confinement. Our screen analyzes the rounding force, pressure and volume of mitotic cells and localizes selected proteins. We identify 49 genes relevant for mitotic rounding, a large portion of which have not previously been linked to mitosis or cell mechanics. Among these, depleting the endoplasmic reticulum-localized protein FAM134A impairs mitotic progression by affecting metaphase plate alignment and pressure generation by delocalizing cortical myosin II. Furthermore, silencing the DJ-1 gene uncovers a link between mitochondria-associated Parkinson's disease and mitotic pressure. We conclude that mechanical phenotyping is a powerful approach to study the mechanisms governing cell shape.
Collapse
Affiliation(s)
- Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.,Division of Cell Biology, Life Science Institute, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka, 839-0864, Japan
| | - Cedric J Cattin
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin P Stewart
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.,Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139-4307, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139-4307, USA
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Mirko Theis
- UCC, Medical System biology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Am Tatzberg 47/49, 01307, Dresden, Germany
| | - Teymuras V Kurzchalia
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.,UCC, Medical System biology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Am Tatzberg 47/49, 01307, Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
43
|
Zhang D, Qiu W, Wang P, Zhang P, Zhang F, Wang P, Sun Y. Autophagy can alleviate severe burn-induced damage to the intestinal tract in mice. Surgery 2017. [PMID: 28624177 DOI: 10.1016/j.surg.2017.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The present study was designed to examine the effect of autophagy and apoptosis on intestinal injury in mice after severe burns. METHODS Kunming mice were subjected to third degree burns over 30% of the total body surface area. Damage to the intestine was assessed by examining changes in intestinal mucosal morphology, enzyme-linked immunosorbent assay of serum d-lactate, diamine oxidase, lipopolysaccharide, interleukin-6, and tumor necrosis factor α (marker of intestinal damage), hematoxylin and eosin staining, and Western blotting under 4 experimental conditions: control group, burn only (burn group), burn and administration of rapamycin to stimulate intestinal autophagy (rapamycin group), or burn and administration of 3-methyladenine to inhibit intestinal autophagy (3-methyladenine group). RESULTS At day 1 postburn, the expression levels of light chain 3 II, beclin-1, and cleaved caspase-3 were significantly greater in all 3 groups of mice subjected to the burn injury than in the control group 1 day postburn; while the levels of light chain 3 II and beclin-1 were significantly greater and those of cleaved caspase-3 were significantly less in the rapamycin group than in the burn group. In contrast, light chain 3 II and beclin-1 levels were significantly less and those of cleaved caspase-3 significantly greater in the 3-methyladenine group. All 3 groups subjected to burn injury showed significantly increased levels of d-lactate, diamine oxidase, lipopolysaccharide, interleukin-6, and tumor necrosis factor α. Of the 3 groups, the rapamycin group exhibited the least observed levels, the 3-methyladenine group the greatest, and the burn group intermediate. Pathologic sections of the intestinal tissue showed that all 3 burn groups exhibited severe intestinal mucosal damage at 1 day postburn. The condition of the 3-methyladenine treatment group was worse than that of the rapamycin treatment group, but better than that of the burn group. CONCLUSION Intestinal autophagy is activated in response to intestinal apoptosis after severe burns and may alleviate burn-induced intestinal injury.
Collapse
Affiliation(s)
- Duanyang Zhang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China.
| | - Wei Qiu
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Peng Wang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Pan Zhang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Fang Zhang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - PeiP Wang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Yong Sun
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China; and the Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| |
Collapse
|
44
|
Huang YS, Li YC, Tsai PY, Lin CE, Chen CM, Chen SM, Lee JA. Accumulation of methylglyoxal and d
-lactate in Pb-induced nephrotoxicity in rats. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yu-Shen Huang
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Yi-Chieh Li
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Pei-Yun Tsai
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Chia-En Lin
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Chien-Ming Chen
- Department of Electro-Optical Engineering; National Taipei University of Technology; Taipei Taiwan
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Jen-Ai Lee
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
45
|
A probable dual mode of action for both L- and D-lactate neuroprotection in cerebral ischemia. J Cereb Blood Flow Metab 2015; 35:1561-9. [PMID: 26036941 PMCID: PMC4640320 DOI: 10.1038/jcbfm.2015.115] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/08/2023]
Abstract
Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate.
Collapse
|
46
|
Aquaporin 9 expression is required for l-lactate to maintain retinal neuronal survival. Neurosci Lett 2015; 589:185-90. [PMID: 25637697 DOI: 10.1016/j.neulet.2015.01.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/09/2014] [Accepted: 01/25/2015] [Indexed: 11/22/2022]
Abstract
Aquaporin 9 (AQP9), an aquaglyceroporin, is not only permeable to water but also to non-charged solutes, such as lactate. Lactate can be an energy source for retinal neurons. This study aimed to evaluate the effect of the downregulation of AQP9 expression on the survival rates and reactive oxygen species accumulation in RGC-5 cells cultured in a medium containing lactate. The Live/Dead assay revealed that the cell death rate of RGC-5 cells transfected with the control siRNA (siControl) was 3.65%±0.75% in the 5-mM glucose medium. The death rate was significantly increased by five-fold in the no glucose and 10-mM d-lactate media but not in the 10-mM l-lactate medium. In comparison, the death rate of cells transfected with siRNA targeting AQP9 (siAQP9) was 8.07%±1.01% in the 5-mM glucose medium, which was significantly increased by two-fold in the other medium conditions, indicating that the downregulation of AQP9 expression eliminated the prosurvival effect of l-lactate. Few RGC-5 cells transfected with siControl showed dichlorofluorescein (DCF) fluorescence when cultured in 5-mM glucose and 10-mM l-lactate media. However, approximately 70% of those showed DCF fluorescence when cultured in the no glucose and 10-mM d-lactate media. The downregulation of AQP9 significantly increased the DCF fluorescence rate to 50.44%±6.13% in the 10-mM l-lactate medium, whereas, it did not increase the rate in the other medium conditions. These results demonstrate that AQP9 expression is required for l-lactate to maintain retinal neuronal survival.
Collapse
|
47
|
Choi D, Kim J, Ha S, Kwon K, Kim EH, Lee HY, Ryu KS, Park C. Stereospecific mechanism of DJ-1 glyoxalases inferred from their hemithioacetal-containing crystal structures. FEBS J 2014; 281:5447-62. [PMID: 25283443 DOI: 10.1111/febs.13085] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/20/2014] [Accepted: 09/29/2014] [Indexed: 01/07/2023]
Abstract
UNLABELLED DJ-1 family proteins have recently been characterized as novel glyoxalases, although their cofactor-free catalytic mechanisms are not fully understood. Here, we obtained crystals of Arabidopsis thaliana DJ-1d (atDJ-1d) and Homo sapiens DJ-1 (hDJ-1) covalently bound to glyoxylate, an analog of methylglyoxal, forming a hemithioacetal that presumably mimics an intermediate structure in catalysis of methylglyoxal to lactate. The deuteration level of lactate supported the proton transfer mechanism in the enzyme reaction. Differences in the enantiomeric specificity of d/l-lactacte formation observed for the DJ-1 superfamily proteins are explained by the presence of a His residue in the active site with essential Cys and Glu residues. The model for the stereospecificity was further evaluated by a molecular modeling simulation with methylglyoxal hemithioacetal superimposed on the glyoxylate hemithioacetal. The mechanism of DJ-1 glyoxalase provides a basis for understanding the His residue-based stereospecificity. DATABASE Structural data have been submitted to the Protein Data Bank under accession numbers 4OFW (structure of atDJ-1d), 4OGF (structure of hDJ-1 with glyoxylate) and 4OGG (structure of atDJ-1d with glyoxylate).
Collapse
Affiliation(s)
- Dongwook Choi
- Division of Magnetic Resonance Research, Korea Basic Science Institute, Chungcheongbuk-Do, South Korea; Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Langlois I, Planché A, Boysen SR, Abeysekara S, Zello GA. Blood concentrations of d
- and l
-lactate in healthy rabbits. J Small Anim Pract 2014; 55:451-6. [DOI: 10.1111/jsap.12247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/14/2014] [Accepted: 05/26/2014] [Indexed: 11/27/2022]
Affiliation(s)
- I. Langlois
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe Québec J2S 2M2 Canada
| | - A. Planché
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe Québec J2S 2M2 Canada
| | - S. R. Boysen
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire; Université de Montréal; Saint-Hyacinthe Québec J2S 2M2 Canada
- Department of Veterinary Clinical and Diagnostic Sciences; Faculty of Veterinary Medicine University of Calgary; Calgary Alberta T2N 4N1 Canada
| | - S. Abeysekara
- College of Pharmacy & Nutrition; University of Saskatchewan; Saskatoon Saskatchewan S7N 5C9 Canada
| | - G. A. Zello
- College of Pharmacy & Nutrition; University of Saskatchewan; Saskatoon Saskatchewan S7N 5C9 Canada
| |
Collapse
|
49
|
Lorenz I, Gentile A. d-Lactic Acidosis in Neonatal Ruminants. Vet Clin North Am Food Anim Pract 2014; 30:317-31, v. [DOI: 10.1016/j.cvfa.2014.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
50
|
Abstract
D-Lactic acidosis has been well documented in ruminants. In humans, D-lactic acidosis is very rare, but D-lactic acidosis may be more common than generally believed and should be looked for in a case of metabolic acidosis in which the cause of acidosis is not apparent. The clinical presentation of D-lactic acidosis is characterized by episodes of encephalopathy and metabolic acidosis. The entity should be considered as a diagnosis in a patient who presents with metabolic acidosis accompanied by high anion gap, normal lactate level, negative Acetest, history of short bowel syndrome or malabsorption, and characteristic neurologic manifestations. Low carbohydrate diet, bicarbonate treatment, rehydration, and oral antibiotics would be helpful in controlling symptoms.
Collapse
Affiliation(s)
- Kyung Pyo Kang
- Department of Internal Medicine, and Research Institute of Clinical Medicine, Chonbuk National University Medical School, Chonbuk, Korea
| | - Sik Lee
- Department of Internal Medicine, and Research Institute of Clinical Medicine, Chonbuk National University Medical School, Chonbuk, Korea
| | - Sung Kyew Kang
- Department of Internal Medicine, and Research Institute of Clinical Medicine, Chonbuk National University Medical School, Chonbuk, Korea
| |
Collapse
|