1
|
Shikata S, Kikkawa K, Fujimuro M, Sekine Y. Dual-specific phosphatase DUSP21 is a novel negative feedback regulator for STAT3. Biochem Biophys Res Commun 2025; 752:151488. [PMID: 39961235 DOI: 10.1016/j.bbrc.2025.151488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Dual-specificity phosphatases (DUSPs) catalyze the dephosphorylation of tyrosine and serine/threonine residues in target proteins. Atypical DUSPs (aDUSPs) lack substrate-binding motifs, suggesting their potential to target a diverse array of substrates. This study demonstrated that DUSP21, an aDUSP, is induced by leukemia inhibitory factor (LIF) in HeLa cells and acts as a negative regulator of LIF-induced signal transducer and activator of transcription 3 (STAT3) activation. Overexpressed DUSP21 co-localized and interacted with STAT3 in HeLa cells. Recombinant DUSP21 directly dephosphorylated STAT3 in vitro. Additionally, DUSP21 overexpression modulated STAT3-dependent growth of Ba/F3-G133 cells. These findings indicate that LIF-induced DUSP21 exerts an inhibitory effect on the LIF/STAT3 signaling pathway, thereby functioning as a suppressor of STAT3-mediated transcriptional activity.
Collapse
Affiliation(s)
- Shota Shikata
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan
| | - Kazuna Kikkawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan
| | - Yuichi Sekine
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan.
| |
Collapse
|
2
|
Marshall KL, Stadtmauer DJ, Maziarz J, Wagner GP, Lesch BJ. Evolutionary innovations in germline biology of placental mammals identified by transcriptomics of first-wave spermatogenesis in opossum. Dev Cell 2025; 60:646-664.e8. [PMID: 39536760 PMCID: PMC11859772 DOI: 10.1016/j.devcel.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mammalian spermatogenesis is a highly stereotyped and conserved developmental process that is essential for fitness. At the same time, gene expression in spermatogenic cells is rapidly evolving. This combination of features has been suggested to drive rapid fixation of new gene expression patterns. Using a high-resolution dataset comprising bulk and single-cell data from juvenile and adult testes of the opossum Monodelphis domestica, a model marsupial, we define the developmental timing of the spermatogenic first wave in opossum and delineate conserved and divergent gene expression programs across the placental-marsupial split by comparison to equivalent data from mouse, a model placental mammal. Epigenomic data confirmed divergent regulation at the level of transcription, and comparison to data from four additional amniote species identified hundreds of genes with evidence of rapid fixation of expression. This gene set encompasses known and previously undescribed regulators of spermatogenic development.
Collapse
Affiliation(s)
- Kira L Marshall
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bluma J Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
3
|
Zhou L, Liu H, Liu S, Yang X, Dong Y, Pan Y, Xiao Z, Zheng B, Sun Y, Huang P, Zhang X, Hu J, Sun R, Feng S, Zhu Y, Liu M, Gui M, Wu J. Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility. Cell 2023; 186:2897-2910.e19. [PMID: 37295417 DOI: 10.1016/j.cell.2023.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.
Collapse
Affiliation(s)
- Lunni Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Haobin Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yue Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yun Pan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhuang Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Beihong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Pengyu Huang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xixi Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China
| | - Jin Hu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Rui Sun
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Shan Feng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
4
|
Chou HC, Cheng CM, Yang CH, Lin TY, Liu YW, Tan TH, Chen YR. DUSP3 regulates phosphorylation-mediated degradation of occludin and is required for maintaining epithelial tight junction. J Biomed Sci 2022; 29:40. [PMID: 35705979 PMCID: PMC9199239 DOI: 10.1186/s12929-022-00826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background Tight junctions (TJ) are multi-protein complexes that hold epithelial cells together and form structural and functional barriers for maintaining proper biological activities. Dual specificity phosphatase 3 (DUSP3), a suppressor of multiple protein tyrosine (Tyr) kinases, is decreased in lung cancer tissues. Here we demonstrated the role of DUSP3 in regulation of epithelial TJ. Methods Barrier functions of TJ were examined in wild-type or DUSP3-deficient lung epithelial cells. Animal and clinical data were analyzed for the association between DUSP3 deficiency and lung cancer progression. Proximity ligation assay, immunoblotting, and phosphatase assay were performed to study the effect of DUSP3 on the TJ protein occludin (OCLN). Mutations of Tyr residues on OCLN showed the role of Tyr phosphorylation in regulating OCLN. Results Compared to those of the DUSP3-expressing cells, we found the expression and distribution of ZO-1, a TJ-anchoring molecule, were abnormal in DUSP3-deficient cells. OCLN had an increased phosphorylation level in DUSP3-deficient cells. We identified that OCLN is a direct substrate of DUSP3. DUSP3 regulated OCLN ubiquitination and degradation through decreasing OCLN tyrosine phosphorylation directly or through suppressing focal adhesion kinase, the OCLN kinase. Conclusion Our study revealed that DUSP3 is an important TJ regulatory protein and its decrease may be involved in progression of epithelial cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00826-x.
Collapse
Affiliation(s)
- Hsiao-Chin Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Chun-Mei Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Chi-Hwa Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Tzu-Yin Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Rong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan.
| |
Collapse
|
5
|
Eslamieh M, Williford A, Betrán E. Few Nuclear-Encoded Mitochondrial Gene Duplicates Contribute to Male Germline-Specific Functions in Humans. Genome Biol Evol 2017; 9:2782-2790. [PMID: 28985295 PMCID: PMC5737092 DOI: 10.1093/gbe/evx176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/27/2022] Open
Abstract
Most of the genes encoding proteins that function in the mitochondria are located in the nucleus and are called nuclear-encoded mitochondrial genes, or N-mt genes. In Drosophila melanogaster , about 23% of N-mt genes fall into gene families, and all duplicates with tissue-biased expression (76%) are testis biased. These genes are enriched for energy-related functions and tend to be older than other duplicated genes in the genome. These patterns reveal strong selection for the retention of new genes for male germline mitochondrial functions. The two main forces that are likely to drive changes in mitochondrial functions are maternal inheritance of mitochondria and male-male competition for fertilization. Both are common among animals, suggesting similar N-mt gene duplication patterns in different species. To test this, we analyzed N-mt genes in the human genome. We find that about 18% of human N-mt genes fall into gene families, but unlike in Drosophila , only 28% of the N-mt duplicates have tissue-biased expression and only 36% of these have testis-biased expression. In addition, human testis-biased duplicated genes are younger than other duplicated genes in the genome and have diverse functions. These contrasting patterns between species might reflect either differences in selective pressures for germline energy-related or other mitochondrial functions during spermatogenesis and fertilization, or differences in the response to similar pressures.
Collapse
Affiliation(s)
| | | | - Esther Betrán
- Department of Biology, University of Texas at Arlington
| |
Collapse
|
6
|
Bhore N, Wang BJ, Chen YW, Liao YF. Critical Roles of Dual-Specificity Phosphatases in Neuronal Proteostasis and Neurological Diseases. Int J Mol Sci 2017; 18:ijms18091963. [PMID: 28902166 PMCID: PMC5618612 DOI: 10.3390/ijms18091963] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
Abstract
Protein homeostasis or proteostasis is a fundamental cellular property that encompasses the dynamic balancing of processes in the proteostasis network (PN). Such processes include protein synthesis, folding, and degradation in both non-stressed and stressful conditions. The role of the PN in neurodegenerative disease is well-documented, where it is known to respond to changes in protein folding states or toxic gain-of-function protein aggregation. Dual-specificity phosphatases have recently emerged as important participants in maintaining balance within the PN, acting through modulation of cellular signaling pathways that are involved in neurodegeneration. In this review, we will summarize recent findings describing the roles of dual-specificity phosphatases in neurodegeneration and offer perspectives on future therapeutic directions.
Collapse
Affiliation(s)
- Noopur Bhore
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Bo-Jeng Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yun-Wen Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yung-Feng Liao
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
7
|
Deficiency in VHR/DUSP3, a suppressor of focal adhesion kinase, reveals its role in regulating cell adhesion and migration. Oncogene 2017; 36:6509-6517. [DOI: 10.1038/onc.2017.255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
|
8
|
Deng Q, Li KY, Chen H, Dai JH, Zhai YY, Wang Q, Li N, Wang YP, Han ZG. RNA interference against cancer/testis genes identifies dual specificity phosphatase 21 as a potential therapeutic target in human hepatocellular carcinoma. Hepatology 2014; 59:518-30. [PMID: 23929653 DOI: 10.1002/hep.26665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/29/2013] [Indexed: 01/03/2023]
Abstract
UNLABELLED Cancer/testis (CT) antigens have been considered therapeutic targets for treating cancers. However, a central question is whether their expression contributes to tumorigenesis or if they are functionally irrelevant by-products derived from the process of cellular transformation. In any case, these CT antigens are essential for cancer cell survival and may serve as potential therapeutic targets. Recently, the cell-based RNA interference (RNAi) screen has proven to be a powerful approach for identifying potential therapeutic targets. In this study we sought to identify new CT antigens as potential therapeutic targets for human hepatocellular carcinoma (HCC), and 179 potential CT genes on the X chromosome were screened through a bioinformatics analysis of gene expression profiles. Then an RNAi screen against these potential CT genes identified nine that were required for sustaining the survival of Focus and PLC/PRF/5 cells. Among the nine genes, the physiologically testis-restricted dual specificity phosphatase 21 (DUSP21) encoding a dual specificity phosphatase was up-regulated in 39 (33%) of 118 human HCC specimens. Ectopic DUSP21 had no obvious impact on proliferation and colony formation in HCC cells. However, DUSP21 silencing significantly suppressed cell proliferation, colony formation, and in vivo tumorigenicity in HCC cells. The administration of adenovirus-mediated RNAi and an atelocollagen/siRNA mixture against endogenous DUSP21 significantly suppressed xenograft HCC tumors in mice. Further investigations showed that DUSP21 knockdown led to arrest of the cell cycle in G1 phase, cell senescence, and expression changes of some factors with functions in the cell cycle and/or senescence. Furthermore, the antiproliferative role of DUSP21 knockdown is through activation of p38 mitogen-activated protein kinase in HCC. CONCLUSION DUSP21 plays an important role in sustaining HCC cell proliferation and may thus act as a potential therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Qing Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education) of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang JY, Yeh CL, Chou HC, Yang CH, Fu YN, Chen YT, Cheng HW, Huang CYF, Liu HP, Huang SF, Chen YR. Vaccinia H1-related phosphatase is a phosphatase of ErbB receptors and is down-regulated in non-small cell lung cancer. J Biol Chem 2011; 286:10177-84. [PMID: 21262974 DOI: 10.1074/jbc.m110.163295] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccinia H1-related phosphatase (VHR) is classified as a dual specificity phosphatase. Unlike typical dual specificity phosphatases, VHR lacks the MAPK-binding domain and shows poor activity against MAPKs. We found that EGF receptor (EGFR) was a direct substrate of VHR and that overexpression of VHR down-regulated EGFR phosphorylation, particularly at Tyr-992 residue. Expression of VHR inhibited the activation of phospholipase Cγ and protein kinase C, both downstream effectors of Tyr-992 phosphorylation of EGFR. Decreasing VHR expression by RNA interference caused higher EGFR phosphorylation at Tyr-992. In addition to EGFR, VHR also directly dephosphorylated ErbB2. Consistent with these results, suppression of VHR augmented the foci formation ability of H1299 non-small cell lung cancer (NSCLC) cells, whereas overexpression of VHR suppressed cell growth in both two- and three-dimensional cultures. Expression of VHR also suppressed tumor formation in a mouse xenograft model. Furthermore, VHR expression was significantly lower in NSCLC tissues in comparison to that in normal lung tissues. Collectively, this study shows that down-regulation of VHR expression enhances the signaling of ErbB receptors and may be involved in NSCLC pathogenesis.
Collapse
Affiliation(s)
- Jiz-Yuh Wang
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan 35053
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li JP, Fu YN, Chen YR, Tan TH. JNK pathway-associated phosphatase dephosphorylates focal adhesion kinase and suppresses cell migration. J Biol Chem 2009; 285:5472-8. [PMID: 20018849 DOI: 10.1074/jbc.m109.060186] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
JNK pathway-associated phosphatase (JKAP, also named DUSP22) is expressed in various tissues, indicating that JKAP may have an important biological function. We showed that JKAP localized in the actin filament-enriched region. Expression of JKAP reduced cell migration, whereas a JKAP mutant lacking catalytic activity promoted cell motility. JKAP efficiently removed tyrosine phosphorylation of several proteins. We have identified focal adhesion kinase (FAK) as a substrate of JKAP. Overexpression of JKAP, but not JKAP mutant lacking catalytic activity, decreased FAK phosphorylation at tyrosines 397, 576, and 577 in H1299 cells. Consistent with these results, decreasing JKAP expression by RNA interference promoted cell migration and Src-induced FAK phosphorylation. Taken together, this study identified a new role for JKAP in the modulation of FAK phosphorylation and cell motility.
Collapse
Affiliation(s)
- Ju-Pi Li
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | | | | | | |
Collapse
|
11
|
Setaria cervi dual specific phosphatase: characterization and its effect on eosinophil degranulation. Parasitology 2009; 136:895-904. [PMID: 19523248 DOI: 10.1017/s0031182009006271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Setaria cervi, a bovine filarial parasite contains significant acid phosphatase (AcP) activity in its various life stages. Two forms of AcP were separated from somatic extract of adult female parasite using cation exchange, gel filtration and concavalin affinity chromatography. One form having a molecular mass of 79 kDa was characterized as dual specific protein tyrosine phosphatase (ScDSP) based on substrate specificity and inhibition studies. With various substrates tested, it showed significant activity in the order of phospho-L-tyrosine>pNPP>ADP>phospho-L-serine. Inhibition by orthovanadate, fluoride, molybdate, and zinc ions further confirms protein tyrosine phosphatase nature of the enzyme. Km and Vmax determined with various substrates were found to be 16.66 mM, 25.0 microM/ml/min with pNPP; 20.0 mM, 40.0 microM/ml/min with phospho-L-tyrosine and 27.0 mM, 25.0 microM/ml/min with phospho-L-serine. KI with pNPP and sodium orthovanadate (IC50 33.0 microM) was calculated to be 50.0 mM. Inhibition with pHMB, silver nitrate, DEPC and EDAC suggested the presence of cysteine, histidine and carboxylate residues at its active site. Cross-reactivity with W. bancrofti-infected sera was demonstrated by Western blotting. ScDSP showed elevated levels of IgE in chronic filarial sera using ELISA. Under in vitro conditions, ScDSP resulted in increased effector function of human eosinophils when stimulated by IgG, which showed a further decrease with increasing enzyme concentration. Results presented here suggest that S. cervi DSP should be further studied to determine its role in pathogenesis and the persistence of filarial parasite.
Collapse
|
12
|
Abstract
DUSPs (dual-specificity phosphatases) are a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. DUSPs have been implicated as major modulators of critical signalling pathways that are dysregulated in various diseases. DUSPs can be divided into six subgroups on the basis of sequence similarity that include slingshots, PRLs (phosphatases of regenerating liver), Cdc14 phosphatases (Cdc is cell division cycle), PTENs (phosphatase and tensin homologues deleted on chromosome 10), myotubularins, MKPs (mitogen-activated protein kinase phosphatases) and atypical DUSPs. Of these subgroups, a great deal of research has focused on the characterization of the MKPs. As their name suggests, MKPs dephosphorylate MAPK (mitogen-activated protein kinase) proteins ERK (extracellular-signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38 with specificity distinct from that of individual MKP proteins. Atypical DUSPs are mostly of low-molecular-mass and lack the N-terminal CH2 (Cdc25 homology 2) domain common to MKPs. The discovery of most atypical DUSPs has occurred in the last 6 years, which has initiated a large amount of interest in their role and regulation. In the past, atypical DUSPs have generally been grouped together with the MKPs and characterized for their role in MAPK signalling cascades. Indeed, some have been shown to dephosphorylate MAPKs. The current literature hints at the potential of the atypical DUSPs as important signalling regulators, but is crowded with conflicting reports. The present review provides an overview of the DUSP family before focusing on atypical DUSPs, emerging as a group of proteins with vastly diverse substrate specificity and function.
Collapse
|
13
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
14
|
Rardin MJ, Wiley SE, Murphy AN, Pagliarini DJ, Dixon JE. Dual specificity phosphatases 18 and 21 target to opposing sides of the mitochondrial inner membrane. J Biol Chem 2008; 283:15440-50. [PMID: 18385140 PMCID: PMC2397459 DOI: 10.1074/jbc.m709547200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although large-scale approaches have identified numerous mitochondrial phosphoproteins, little is known about the mitochondrial kinases and phosphatases that regulate these phosphoproteins. Here, we identify two members of the atypical dual specificity phosphatases (DSP), DSP18 and DSP21, that are localized in mitochondria. Although DSP18 is widely expressed in several mammalian tissues, DSP21 is selectively expressed in the testes. We demonstrate that DSP18 and DSP21 are targeted to mitochondria by cryptic internal localization signals. Subfractionation of mitochondria demonstrated that DSP18 is located in the intermembrane space as a peripheral membrane protein of the inner membrane. In contrast, subfractionation of rat testis mitochondria revealed DSP21 is localized to the matrix as a peripheral membrane protein of the inner membrane. Moreover, we demonstrate that a previously reported substrate for DSP18, the stress-activated protein kinase, does not localize to mitochondria in several different tissues, making it an unlikely substrate for DSP18. Finally, we show that induction of apoptosis by treatment with staurosporine causes translocation of DSP18 from the intermembrane space into the cytosol similar to other apoptogenic factors such as cytochrome c. This work rigorously demonstrates the unique location of two highly similar DSPs on opposing sides of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Matthew J Rardin
- Departments of Pharmacology, Cellular and Molecular Medicine, and Chemistry and Biochemistry, Biomedical Sciences Graduate Program, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0721, USA
| | | | | | | | | |
Collapse
|
15
|
Romá-Mateo C, Ríos P, Tabernero L, Attwood TK, Pulido R. A novel phosphatase family, structurally related to dual-specificity phosphatases, that displays unique amino acid sequence and substrate specificity. J Mol Biol 2007; 374:899-909. [PMID: 17976645 DOI: 10.1016/j.jmb.2007.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/28/2007] [Accepted: 10/02/2007] [Indexed: 01/30/2023]
Abstract
Members of the superfamily of protein tyrosine phosphatases (PTPs) share the presence of an evolutionarily conserved PTP catalytic domain. Among them, the dual-specificity phosphatases (DSPs) constitute a diverse group of enzymes in terms of substrate specificity, including nonprotein substrates. In recent years, an increasing number of novel DSPs, whose functions and biological substrates are not well defined, have been discovered in a variety of organisms. In this study, we define the structural and functional properties of evolutionarily related atypical DSPs from different phyla. Sets of conserved motifs were defined that (i) uniquely segregated mammalian atypical DSPs from closely related enzymes and (ii) exclusively characterised a novel family of atypical DSPs present in plants, fungi, and kinetoplastids [plant and fungi atypical (PFA)-DSPs]; despite having different sequence "fingerprints," the PTP tertiary structure of PFA-DSPs is conserved. Analysis of the catalytic properties of PFA-DSPs suggests the existence of a unique substrate specificity for these enzymes. Our findings predict characteristic functional motifs for the diverse members of the DSP families of PTPs and provide insights into the functional properties of DSPs of unknown function.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Centro de Investigación Príncipe Felipe, Avenida Autopista del Saler, 16-3, 46013 Valencia, Spain
| | | | | | | | | |
Collapse
|
16
|
Wang JY, Lin CH, Yang CH, Tan TH, Chen YR. Biochemical and biological characterization of a neuroendocrine-associated phosphatase. J Neurochem 2006; 98:89-101. [PMID: 16805799 DOI: 10.1111/j.1471-4159.2006.03852.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biochemical and biological properties of a novel neuroendocrine-associated phosphatase (NEAP) were characterized. NEAP had a sequence characteristic of a dual-specificity phosphatase (DSP), and was preferentially expressed in neuroendocrine cells/tissues as well as in skeletal muscle and heart. Expression of NEAP was up-regulated in nerve growth factor (NGF)-treated, differentiated PC12 cells. NEAP was cytosolic and did not apparently have effects against extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase activated by various stimuli. Although NEAP and MAPK phosphatase (MPK)-1 showed similar phosphatase activity towards p-nitro phenylphosphate (pNPP), in contrast to MKP-1, NEAP did not dephosphorylate JNK and p38-MAPK in vitro. Overexpression of NEAP, but not the C152S mutant, in PC12 cells suppressed NGF-induced phosphorylation of the p85 subunit of phosphatidylinositol 3-kinase (PI3K) and Akt activation. Overexpression of NEAP also suppressed neurite outgrowth induced by NGF and sensitized PC12 cells to cisplatin-induced apoptosis. Suppression of NEAP by RNA interference enhanced NGF-induced neurite outgrowth and Akt activation. Our results indicated that, unlike other DSPs, down-regulation of conventional MAPKs was not the major function of NEAP. Furthermore, NEAP might be involved in neuronal differentiation via regulation of the PI3K/Akt signaling.
Collapse
Affiliation(s)
- Jiz-Yuh Wang
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Alonso A, Narisawa S, Bogetz J, Tautz L, Hadzic R, Huynh H, Williams S, Gjörloff-Wingren A, Bremer MCD, Holsinger LJ, Millan JL, Mustelin T. VHY, a Novel Myristoylated Testis-restricted Dual Specificity Protein Phosphatase Related to VHX. J Biol Chem 2004; 279:32586-91. [PMID: 15138252 DOI: 10.1074/jbc.m403442200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human DUSP15 gene encodes an uncharacterized 235-amino acid member of the subfamily of small dual specificity protein phosphatases related to the Vaccinia virus VH1 phosphatase. Similar to VHR-related MKPX (VHX) (DUSP22), the predicted protein has an N-terminal myristoylation recognition sequence, and we show here that both are indeed modified by the attachment of a myristate to Gly-2. In recognition of this relatedness to VHX, we refer to the DUSP15-encoded protein as VH1-related member Y (VHY). We report that VHY is expressed at high levels in the testis and barely detectable levels in the brain, spinal cord, and thyroid. A VHY-specific antiserum detected a protein with an apparent molecular mass of 26 kDa, and histochemical analysis showed that VHY was readily detectable in pachytene spermatocytes (midstage of meiotic division I) and round spermatids and weakly in Leydig cells (somatic cells outside of the seminiferous tubules). When expressed in 293T or NIH-3T3 cells, VHY was concentrated at the plasma membrane with some staining of vesicular structures in the Golgi region. Mutation of the myristoylation site Gly-2 abrogated membrane location. Finally, we demonstrate that VHY is an active phosphatase in vitro. We conclude that VHY is a new member of a subgroup of myristoylated VH1-like small dual specificity phosphatases.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Binding Sites
- Blotting, Northern
- Blotting, Southern
- Cell Line
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Dual-Specificity Phosphatases
- Embryo, Mammalian/metabolism
- Fibroblasts/metabolism
- Glutathione Transferase/metabolism
- Glycine/chemistry
- Golgi Apparatus/metabolism
- Humans
- Immunoblotting
- Immunohistochemistry
- JNK Mitogen-Activated Protein Kinases
- MAP Kinase Kinase 4
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinase Phosphatases
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Myristic Acids/chemistry
- NIH 3T3 Cells
- Nitrophenols/chemistry
- Organophosphorus Compounds/chemistry
- Phosphoprotein Phosphatases/chemistry
- Phosphoric Monoester Hydrolases/metabolism
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/metabolism
- RNA, Messenger/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/metabolism
- Sequence Homology, Amino Acid
- Spermatids/metabolism
- Testis/metabolism
- Transfection
- Vaccinia virus/metabolism
Collapse
Affiliation(s)
- Andres Alonso
- Program of Signal Transduction, Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Alonso A, Burkhalter S, Sasin J, Tautz L, Bogetz J, Huynh H, Bremer MCD, Holsinger LJ, Godzik A, Mustelin T. The minimal essential core of a cysteine-based protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ. J Biol Chem 2004; 279:35768-74. [PMID: 15201283 DOI: 10.1074/jbc.m403412200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The smallest active protein-tyrosine phosphatase yet (only 16 kDa) is described here and given the name VHZ for VH1-like member Z because it belongs to the group of small Vaccinia virus VH1-related dual specific phosphatases exemplified by VHR, VHX, and VHY. Human VHZ is remarkably well conserved through evolution as it has species orthologs in frogs, fish, fly, and Archaea. The gene for VHZ, which we designate as DUSP25, is located on human chromosome 1q23.1 and consists of only two coding exons. VHZ is broadly expressed in tissues and cells, including resting blood lymphocytes, Jurkat T cells, HL-60, and RAMOS. In transfected cells, VHZ was located in the cytosol and in other cells also in the nucleoli. Endogenous VHZ showed a similar but more granular distribution. We show that VHZ is an active phosphatase and analyze its structure by computer modeling, which shows that in comparison with the 185-amino acid residue VHR, the 150-residue VHZ is a shortened version of VHR and contains the minimal set of secondary structure elements conserved in all known phosphatases from this class. The surface charge distribution of VHZ differs from that of VHR and is therefore unlikely to dephosphorylate mitogen-activated protein kinases. The remarkably high degree of conservation of VHZ through evolution may indicate a role in some ancient and fundamental physiological process.
Collapse
Affiliation(s)
- Andres Alonso
- Program of Signal Transduction, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|