1
|
Lone IM, Iraqi FA. Genetics of murine type 2 diabetes and comorbidities. Mamm Genome 2022; 33:421-436. [PMID: 35113203 DOI: 10.1007/s00335-022-09948-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
ABSTRAC Type 2 diabetes (T2D) is a polygenic and multifactorial complex disease, defined as chronic metabolic disorder. It's a major global health concern with an estimated 463 million adults aged 20-79 years with diabetes and projected to increase up to 700 million by 2045. T2D was reported to be one of the four leading causes of non-communicable disease (NCD) deaths in 2012. Environmental factors play a part in the development of polygenic forms of diabetes. Polygenic forms of diabetes often run-in families. Fortunately, T2D, which accounts for 90-95% of the entire four types of diabetes including, Type 1 diabetes (T1D), T2D, monogenic diabetes syndromes (MGDS), and Gestational diabetes mellitus, can be prevented or delayed through nutrition and lifestyle changes as well as through pharmacologic interventions. Typical symptom of the T2D is high blood glucose levels and comprehensive insulin resistance of the body, producing an impaired glucose tolerance. Impaired glucose tolerance of T2D is accompanied by extensive health complications, including cardiovascular diseases (CVD) that vary in morbidity and mortality among populations. The pathogenesis of T2D varies between populations and/or ethnic groupings and is known to be attributed extremely by genetic components and environmental factors. It is evident that genetic background plays a critical role in determining the host response toward certain environmental conditions, whether or not of developing T2D (susceptibility versus resistant). T2D is considered as a silent disease that can progress for years before its diagnosis. Once T2D is diagnosed, many metabolic malfunctions are observed whether as side effects or as independent comorbidity. Mouse models have been proven to be a powerful tool for mapping genetic factors that underline the susceptibility to T2D development as well its comorbidities. Here, we have conducted a comprehensive search throughout the published data covering the time span from early 1990s till the time of writing this review, for already reported quantitative trait locus (QTL) associated with murine T2D and comorbidities in different mouse models, which contain different genetic backgrounds. Our search has resulted in finding 54 QTLs associated with T2D in addition to 72 QTLs associated with comorbidities associated with the disease. We summarized the genomic locations of these mapped QTLs in graphical formats, so as to show the overlapping positions between of these mapped QTLs, which may suggest that some of these QTLs could be underlined by sharing gene/s. Finally, we reviewed and addressed published reports that show the success of translation of the identified mouse QTLs/genes associated with the disease in humans.
Collapse
Affiliation(s)
- Iqbal M Lone
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Fuad A Iraqi
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Proximate causes for diet-induced obesity in laboratory mice: a case study. Eur J Clin Nutr 2017; 71:306-317. [PMID: 28145422 DOI: 10.1038/ejcn.2016.243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES Detailed protocols and recommendations for the assessment of energy balance have been provided to address the problems associated with different body mass and body composition as apparent for mouse models in obesity research. Here, we applied these guidelines to investigate energy balance in two inbred mouse strains with contrasting susceptibilities for diet-induced obesity (DIO). Mice of the AKR/J strain are highly susceptible, whereas the SWR/J mice are almost completely resistant. The proximate mechanisms responsible for this striking phenotypic difference are only partially understood. SUBJECTS/METHODS Body mass and body composition, metabolizable energy, energy expenditure (EE), body temperature and spontaneous physical activity behavior were first assessed in a cohort of male AKR/J (N=29) and SWR/J (N=30) mice fed on a low-fat control diet (CD) to identify metabolic adaptations determining resistance to DIO. Thereafter, the immediate metabolic responses to high-fat diet (HFD) feeding for 3 days were investigated. Groups of weight-matched AKR/J (N=8) and SWR/J (N=8) mice were selected from the initial cohort for this intervention. RESULTS Strain differences in body mass, fat mass and lean mass were adjusted by body mass as this was the only covariate significantly correlated with metabolizable energy and EE. On the CD, EE and fat oxidation was higher in SWR/J than in AKR/J mice, whereas no difference was found for metabolizable energy. In response to HFD feeding, both strains increased metabolizable energy intake, but also increased EE, body temperature, and fat oxidation. The catabolic adaptations to HFD feeding opposed the development of positive energy balance. Increased EE was not due to increased spontaneous physical activity. A significant strain difference was found when balancing metabolizable energy and daily energy expenditure (DEE). CONCLUSIONS The guidelines were applicable with some limitations related to the adjustment of differences in body composition. Metabolic phenotyping revealed that metabolizable energy, DEE and metabolic fuel selection all contribute to the development of DIO. Therefore, assessing both sides of the energy balance equation is essential to identify the proximate mechanisms.
Collapse
|
3
|
Kebede MA, Attie AD. Insights into obesity and diabetes at the intersection of mouse and human genetics. Trends Endocrinol Metab 2014; 25:493-501. [PMID: 25034129 PMCID: PMC4177963 DOI: 10.1016/j.tem.2014.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 11/25/2022]
Abstract
Many of our insights into obesity and diabetes come from studies in mice carrying natural or induced mutations. In parallel, genome-wide association studies (GWAS) in humans have identified numerous genes that are causally associated with obesity and diabetes, but discovering the underlying mechanisms required in-depth studies in mice. We discuss the advantages of studying natural variation in mice and summarize several examples where the combination of human and mouse genetics opened windows into fundamental physiological pathways. A noteworthy example is the melanocortin-4 receptor (MC4R) and its role in energy balance. The pathway was delineated by discovering the gene responsible for the Agouti mutation in mice. With more targeted phenotyping, we predict that additional pathways relevant to human pathophysiology will be discovered.
Collapse
Affiliation(s)
- Melkam A Kebede
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
4
|
The genetic basis of obesity-associated type 2 diabetes (diabesity) in polygenic mouse models. Mamm Genome 2014; 25:401-12. [PMID: 24752583 PMCID: PMC4164836 DOI: 10.1007/s00335-014-9514-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/25/2014] [Indexed: 11/08/2022]
Abstract
Obesity-associated diabetes (“diabesity”) in mouse strains is characterized by severe insulin resistance, hyperglycaemia and progressive failure, and loss of beta cells. This condition is observed in inbred obese mouse strains such as the New Zealand Obese (NZO/HlLt and NZO/HlBomDife) or the TALLYHO/JngJ mouse. In lean strains such as C57BLKS/J, BTBR T+tf/J or DBA/2 J carrying diabetes susceptibility genes (“diabetes susceptible” background), it can be induced by introgression of the obesity-causing mutations Lep<ob> (ob) or Lepr<db> (db). Outcross populations of these models have been employed in the genome-wide search for mouse diabetes genes, and have led to positional cloning of the strong candidates Pctp, Tbc1d1, Zfp69, and Ifi202b (NZO-derived obesity) and Sorcs1,Lisch-like, Tomosyn-2, App, Tsc2, and Ube2l6 (obesity caused by the ob or db mutation). Some of these genes have been shown to play a role in the regulation of the human glucose or lipid metabolism. Thus, dissection of the genetic basis of obesity and diabetes in mouse models can identify regulatory mechanisms that are relevant for the human disease.
Collapse
|
5
|
Vogel H, Montag D, Kanzleiter T, Jonas W, Matzke D, Scherneck S, Chadt A, Töle J, Kluge R, Joost HG, Schürmann A. An interval of the obesity QTL Nob3.38 within a QTL hotspot on chromosome 1 modulates behavioral phenotypes. PLoS One 2013; 8:e53025. [PMID: 23308133 PMCID: PMC3537729 DOI: 10.1371/journal.pone.0053025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
A region on mouse distal chromosome 1 (Chr. 1) that is highly enriched in quantitative trait loci (QTLs) controlling neural and behavioral phenotypes overlaps with the peak region of a major obesity QTL (Nob3.38), which we identified in an intercross of New Zealand Obese (NZO) mice with C57BL/6J (B6). By positional cloning we recently identified a microdeletion within this locus causing the disruption of Ifi202b that protects from adiposity by suppressing expression of 11β-Hsd1. Here we show that the Nob3.38 segment also corresponds with the QTL rich region (Qrr1) on Chr. 1 and associates with increased voluntary running wheel activity, Rota-rod performance, decreased grip strength, and anxiety-related traits. The characterization of a subcongenic line carrying 14.2 Mbp of Nob3.38 with a polymorphic region of 4.4 Mbp indicates that the microdeletion and/or other polymorphisms in its proximity alter body weight, voluntary activity, and exploration. Since 27 out of 32 QTL were identified in crosses with B6, we hypothesized that the microdeletion and or adjacent SNPs are unique for B6 mice and responsible for some of the complex Qrr1-mediated effects. Indeed, a phylogenic study of 28 mouse strains revealed a NZO-like genotype for 22 and a B6-like genotype for NZW/LacJ and 4 other C57BL strains. Thus, we suggest that a Nob3.38 interval (173.0-177.4 Mbp) does not only modify adiposity but also neurobehavioral traits by a haplotype segregating with C57BL strains.
Collapse
Affiliation(s)
- Heike Vogel
- Departments of Pharmacology, Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Dirk Montag
- Research Group Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Timo Kanzleiter
- Departments of Pharmacology, Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Wenke Jonas
- Departments of Pharmacology, Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Daniela Matzke
- Departments of Pharmacology, Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Stephan Scherneck
- Departments of Pharmacology, Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Alexandra Chadt
- Departments of Pharmacology, Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jonas Töle
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Reinhart Kluge
- Departments of Pharmacology, Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Hans-Georg Joost
- Departments of Pharmacology, Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Annette Schürmann
- Departments of Pharmacology, Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- * E-mail:
| |
Collapse
|
6
|
|
7
|
Barbosa-da-Silva S, Fraulob-Aquino JC, Lopes JR, Mandarim-de-Lacerda CA, Aguila MB. Weight cycling enhances adipose tissue inflammatory responses in male mice. PLoS One 2012; 7:e39837. [PMID: 22848362 PMCID: PMC3405086 DOI: 10.1371/journal.pone.0039837] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/28/2012] [Indexed: 01/13/2023] Open
Abstract
Background Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC). Methods In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF) diet with standard chow (SC). Results The body mass (BM) grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months), more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. Conclusion In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.
Collapse
Affiliation(s)
- Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
8
|
Königsdorf CAI, Navarrete Santos A, Schmidt JS, Fischer S, Fischer B. Expression profile of fatty acid metabolism genes in preimplantation blastocysts of obese and non-obese mice. Obes Facts 2012; 5:575-86. [PMID: 22986646 DOI: 10.1159/000342583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/09/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies have disclosed a close relationship between maternal obesity, fetal metabolism and pre- and postnatal development. The lipid metabolism in preimplantation embryos is a possible target of metabolic programming. METHODS 31 genes of beta-oxidation and fatty acid and cholesterol uptake, synthesis and regulation were analyzed in day 3.5 blastocysts from NZO (obese) and C57Bl/6 (normal weight) mice by RT-PCR and semiquantitative PCR. RESULTS The most obvious difference between both strains was the lack of the RXR gamma transcript in NZO blastocysts. In adult NZO mice, RXR gamma is detectable in most tissues. In a semiquantitative analysis, a higher transcription rate of fatty acid transport protein 4 (p = 0.004) and a reduced transcript number of fatty acid synthase (p = 0.049) was found in NZO blastocysts. Cholesterol synthesis regulation was modified in NZO blastocysts, as indicated by the ratio of sterol regulatory element-binding protein (SREBP) 2 / insulin-induced gene 1 (Insig 1) (p = 0.001). CONCLUSION In mouse blastocysts enzymes and signal molecules of fatty acid and cholesterol metabolism resemble those expressed postnatally. Distinct differences in transcription rates of genes between blastocysts from obese and non-obese mothers indicate that preimplantation embryo development is an early target for metabolic programming.
Collapse
|
9
|
Kluge R, Scherneck S, Schürmann A, Joost HG. Pathophysiology and genetics of obesity and diabetes in the New Zealand obese mouse: a model of the human metabolic syndrome. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:59-73. [PMID: 22893401 DOI: 10.1007/978-1-62703-068-7_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The New Zealand Obese (NZO) mouse is one of the most thoroughly investigated polygenic models for the human metabolic syndrome and type 2 diabetes. It presents the main characteristics of the disease complex, including early-onset obesity, insulin resistance, dyslipidemia, and hypertension. As a consequence of this syndrome, a combination of lipotoxicity and glucotoxicity produces beta-cell failure and apoptosis resulting in hypoinsulinemia and diabetic hyperglycemia. With NZO as a breeding partner, several adipogenic and diabetogenic gene variants have been identified by hypothesis-free positional cloning (Tbc1d1, Zfp69) or by combining genetic screens and candidate gene approaches (Pctp, Abcg1, Nmur2, Lepr). This chapter summarizes the present knowledge of the NZO strain and describes its pathophysiology as well as the known underlying genetic defects.
Collapse
Affiliation(s)
- Reinhart Kluge
- Max-Rubner-Laboratory, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.
| | | | | | | |
Collapse
|
10
|
Schulz N, Himmelbauer H, Rath M, van Weeghel M, Houten S, Kulik W, Suhre K, Scherneck S, Vogel H, Kluge R, Wiedmer P, Joost HG, Schürmann A. Role of medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase in the regulation of body weight and thermogenesis. Endocrinology 2011; 152:4641-51. [PMID: 21990309 PMCID: PMC3359510 DOI: 10.1210/en.2011-1547] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dysregulation of fatty acid oxidation plays a pivotal role in the pathophysiology of obesity and insulin resistance. Medium- and short-chain-3-hydroxyacyl-coenzyme A (CoA) dehydrogenase (SCHAD) (gene name, hadh) catalyze the third reaction of the mitochondrial β-oxidation cascade, the oxidation of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA, for medium- and short-chain fatty acids. We identified hadh as a putative obesity gene by comparison of two genome-wide scans, a quantitative trait locus analysis previously performed in the polygenic obese New Zealand obese mouse and an earlier described small interfering RNA-mediated mutagenesis in Caenorhabditis elegans. In the present study, we show that mice lacking SCHAD (hadh(-/-)) displayed a lower body weight and a reduced fat mass in comparison with hadh(+/+) mice under high-fat diet conditions, presumably due to an impaired fuel efficiency, the loss of acylcarnitines via the urine, and increased body temperature. Food intake, total energy expenditure, and locomotor activity were not altered in knockout mice. Hadh(-/-) mice exhibited normal fat tolerance at 20 C. However, during cold exposure, knockout mice were unable to clear triglycerides from the plasma and to maintain their normal body temperature, indicating that SCHAD plays an important role in adaptive thermogenesis. Blood glucose concentrations in the fasted and postprandial state were significantly lower in hadh(-/-) mice, whereas insulin levels were elevated. Accordingly, insulin secretion in response to glucose and glucose plus palmitate was elevated in isolated islets of knockout mice. Therefore, our data indicate that SCHAD is involved in thermogenesis, in the maintenance of body weight, and in the regulation of nutrient-stimulated insulin secretion.
Collapse
Affiliation(s)
- Nadja Schulz
- Department of Experimental Diabetology and Pharmacology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Joost HG. The genetic basis of obesity and type 2 diabetes: lessons from the new zealand obese mouse, a polygenic model of the metabolic syndrome. Results Probl Cell Differ 2011; 52:1-11. [PMID: 20865367 DOI: 10.1007/978-3-642-14426-4_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The New Zealand obese (NZO) mouse is a polygenic model of severe obesity and type 2 diabetes-like hyperglycaemia. Outcross experiments with lean strains have led to the identification of numerous susceptibility loci (quantitative trait loci (QTL)) for adiposity and/or hyperglycaemia. Several major QTL were successfully introgressed into lean strains, and two responsible genes, the RabGAP Tbc1d1 and the transcription factor Zfp69, were so far identified by a conventional strategy of positional cloning. Tbc1d1 controls substrate utilization in muscle; SJL mice carry a loss-of-function variant that shifts substrate oxidation from glucose to fat and suppresses adiposity as well as development of diabetes. The zinc finger domain transcription factor Zfp69 appears to regulate triglyceride storage in adipose tissue. Its normal allele Zfp69 causes a redistribution of triglycerides from gonadal stores to liver, and consequently enhances diabetes when introgressed from SJL into NZO, whereas the loss-of-function variant present in NZO and C57BL/6J reduces the prevalence of diabetes. Data from human patients suggest that the orthologs of both genes may play a role in the pathogenesis of the human metabolic syndrome. In addition to Tbc1d1 and Zfp69, variants of Lepr, Pctp, Abcg1, and Nmur2 located in other QTL were identified as potential candidates by sequencing and functional studies. These results indicate that dissection of the genetic basis of obesity and diabetes in mouse models can identify novel regulatory mechanisms that are relevant for the human disease.
Collapse
Affiliation(s)
- Hans-Georg Joost
- German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
12
|
Kobayashi M, Ohno T, Hada N, Fujiyoshi M, Kuga M, Nishimura M, Murai A, Horio F. Genetic analysis of abdominal fat distribution in SM/J and A/J mice. J Lipid Res 2010; 51:3463-9. [PMID: 20802160 DOI: 10.1194/jlr.m009563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each abdominal fat depot, such as mesenteric or epididymal, differently contributes to the development of insulin resistance. The aim of this study was to identify the genetic regions that contribute to fat accumulation in epididymal/mesenteric fat and to examine whether or not the genetic regions that affect glucose metabolism and body fat distribution are coincident. We previously mapped a major quantitative trait locus (QTL) (T2dm2sa) for impaired glucose tolerance on chromosome 2 and revealed that SM.A-T2dm2sa congenic mice showed not only glucose tolerance but also fat accumulation. In the present study, to identify the loci/genes that control the accumulation of abdominal fat, we performed QTL analyses of epididymal/mesenteric fat weight by using (A/J x SM.A-T2dm2sa)F2 mice in which the effect of T2dm2sa was excluded. As a result, two highly significant QTLs for mesenteric fat, as well as three significant QTLs for epididymal/mesenteric fat, were mapped on the different chromosomal regions. This suggests that the fat accumulations in individual fat depots are controlled by distinct genomic regions. Our comparison of these QTLs for abdominal fat distribution with those for glucose metabolism revealed that the major genetic factors affecting body fat distribution do not coincide with genetic factors affecting glucose metabolism in (A/J x SM.A-T2dm2sa)F2.
Collapse
Affiliation(s)
- Misato Kobayashi
- Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vogel H, Nestler M, Rüschendorf F, Block MD, Tischer S, Kluge R, Schürmann A, Joost HG, Scherneck S. Characterization of Nob3, a major quantitative trait locus for obesity and hyperglycemia on mouse chromosome 1. Physiol Genomics 2009; 38:226-32. [PMID: 19470805 DOI: 10.1152/physiolgenomics.00011.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
New Zealand obese (NZO) mice present a metabolic syndrome of obesity, insulin resistance, and diabetes. To identify chromosomal segments associated with these traits, we intercrossed NZO mice with the lean and diabetes-resistant C57BL/6J (B6) strain. Obesity and hyperglycemia in the (NZO x B6)F2 intercross population were predominantly due to a broad quantitative trait locus (QTL) on chromosome 1 (Nob3; logarithm of the odds score 16.1, 16.0, 4.0 for body weight, body fat, and blood glucose, respectively), producing a difference between genotypes of 12.7 or 5.2 g of body weight and 12.0 or 4.0 g of body fat in females or males, respectively. In addition, significant QTL on chromosomes 3 and 13 and suggestive QTL on chromosomes 4, 6, 9, 12, 14, and 19 contributed to the obese phenotype. Distal chromosome 5 was significantly linked with plasma cholesterol (LOD score 10.7). Introgression of two segments of Nob3 into B6 confirmed the adipogenic effect of the QTL and suggested the presence of at least one causal gene. Haplotype mapping reduced the critical region of the distal part of the QTL to 31 Mbp containing the potential candidates Nr1i3, Apoa2, Atp1a2, Prox1, and Hsd11b1. We conclude that obesity and hyperglycemia of NZO is to a large part caused by variant genes located in Nob3 on chromosome 1. Since these exert robust effects on a B6 background, the QTL Nob3 is a prime target for identification of a novel diabesity gene.
Collapse
Affiliation(s)
- Heike Vogel
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Balwierz A, Polus A, Razny U, Wator L, Dyduch G, Tomaszewska R, Scherneck S, Joost H, Dembinska-Kiec A. Angiogenesis in the New Zealand obese mouse model fed with high fat diet. Lipids Health Dis 2009; 8:13. [PMID: 19344534 PMCID: PMC2674043 DOI: 10.1186/1476-511x-8-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 04/06/2009] [Indexed: 01/30/2023] Open
Abstract
Background Obesity and its complications lead to vascular injury, atherosclerosis, diabetes and pathological angiogenesis. One of the models to study the obesity and its entanglements is the New Zealand Obese mice model. Aim of this study was to check the effect of high fat diet on changes in biochemical parameters as well as on process of angiogenesis in NZO mice. Methods NZO mice were fed with standard (ST) or high fat (HF) diet for seven weeks. Body weight and serum biochemical parameters were monitored. The PECAM1 positive vessel-like structures immunostaining, as well as the gene expression of the matrigel penetrating cells by microarray (confirmed by real-time PCR method) were analyzed. Results Mice fed with HF diet developed obesity. Number of newly created vessels with lumen was correlated with hyperglycemia and animal weight gain. The number of PECAM1 positive cells in matrigel tended to increase during HF diet. Microarray results revealed changes in gene expression (activation of the oxidative stress and insulin resistance, inhibition of apoptosis and cell differentiation), however without markers of endothelial cell network maturation. Conclusion Observed changes in the NZO mice on HF diet argue for the hyperglycemia related activation of angiogenesis, leading to the formation of pathological, immature network.
Collapse
Affiliation(s)
- Adriana Balwierz
- Department of Clinical Biochemistry, Collegium Medicum, Jagiellonian University, Cracow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Asahina M, Haruyama W, Ichida Y, Sakamoto M, Sato M, Imaizumi K. Identification of SMEK2 as a candidate gene for regulation of responsiveness to dietary cholesterol in rats. J Lipid Res 2009; 50:41-6. [DOI: 10.1194/jlr.m800135-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Wator L, Razny U, Balwierz A, Polus A, Joost HG, Dyduch G, Tomaszewska R, Dembinska-Kiec A. Impaired leptin activity in New Zealand Obese mice: model of angiogenesis. GENES AND NUTRITION 2008; 3:177-80. [PMID: 19034555 DOI: 10.1007/s12263-008-0103-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/12/2008] [Indexed: 11/29/2022]
Abstract
Leptin is prompt to drive angiogenesis, effecting proper vascularisation. Tissue remodeling (including adipose organ) is associated with the angiogenic response. The aim of this study was to investigate the effect of hyperleptinemia on angiogenesis in subcutaneous (s.c.) in vivo matrigel model in mice on a high fat (HF) diet. HF promoted adipose tissue accumulation and biochemical changes resembling metabolic syndrome. However, the impact of this dietary treatment on angiogenesis, measured in s.c. matrigel model was not significant. Changes in leptin concentration were not accompanied by significant angiogenic response. This lack of leptin activity and impaired signal transduction at the molecular level suggests malfunction of the leptin receptor in NZO mice.
Collapse
Affiliation(s)
- Lukasz Wator
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Cracow, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nat Genet 2008; 40:1354-9. [DOI: 10.1038/ng.244] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 08/14/2008] [Indexed: 11/08/2022]
|
18
|
Müller TD, Chaudhary N, Pfluger PT, Tschöp M. The 1D1 of burning calories. Obes Facts 2008; 1:223-6. [PMID: 20054182 PMCID: PMC6515887 DOI: 10.1159/000164881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | | | | | - Matthias Tschöp
- *Prof. Dr. Matthias Tschöp, Department of Psychiatry, Obesity Research Center and Genome Research Institute, University of Cincinnati College of Medicine, 2180 E. Galbraith Road, Cincinnati, OH 45237, USA,
| |
Collapse
|
19
|
Nishihara E, Tsaih SW, Tsukahara C, Langley S, Sheehan S, DiPetrillo K, Kunita S, Yagami KI, Churchill GA, Paigen B, Sugiyama F. Quantitative trait loci associated with blood pressure of metabolic syndrome in the progeny of NZO/HILtJxC3H/HeJ intercrosses. Mamm Genome 2007; 18:573-83. [PMID: 17641813 DOI: 10.1007/s00335-007-9033-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
In a previous study in 15 inbred mouse strains, we found highest and lowest systolic blood pressures in NZO/HILtJ mice (metabolic syndrome) and C3H/HeJ mice (common lean strain), respectively. To identify the loci involved in hypertension in metabolic syndrome, we performed quantitative trait locus (QTL) analysis for blood pressure with direction of cross as a covariate in segregating F2 males derived from NZO/HILtJ and C3H/HeJ mice. We detected three suggestive main-effect QTLs affecting systolic and diastolic blood pressures (SBP and DBP). We analyzed the first principle component (PC1) generated from SBP and DBP to investigate blood pressure. In addition to all the suggestive QTLs (Chrs 1, 3, and 8) in SBP and DBP, one suggestive QTL on Chr 4 was found in PC1 in the main scan. Simultaneous search identified two significant epistatic locus pairs (Chrs 1 and 4, Chrs 4 and 8) for PC1. Multiple regression analysis revealed three blood pressure QTLs (Bpq10, 100 cM on Chr 1; Bpq11, 6 cM on Chr 4; Bpq12, 29 cM on Chr 8) accounting for 29.4% of blood pressure variance. These were epistatic interaction QTLs constructing a small network centered on Chr 4, suggesting the importance of genetic interaction for development of hypertension. The blood pressure QTLs on Chrs 1, 4, and 8 were detected repeatedly in multiple studies using common inbred nonobese mouse strains, implying substantial QTL independent of development of obesity and insulin resistance. These results enhance our understanding of complicated genetic factors of hypertension in metabolic diseases.
Collapse
Affiliation(s)
- Eri Nishihara
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mashimo T, Ogawa H, Cui ZH, Harada Y, Kawakami K, Masuda J, Yamori Y, Nabika T. Comprehensive QTL analysis of serum cholesterol levels before and after a high-cholesterol diet in SHRSP. Physiol Genomics 2007; 30:95-101. [PMID: 17356015 DOI: 10.1152/physiolgenomics.00211.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The stroke-prone spontaneously hypertensive rat (SHRSP) showed an exaggerated response to a high-fat, high-cholesterol (HFC) diet, and the resulting reactive hypercholesterolemia was suggested to exacerbate the atherogenic process in this rat. We thus performed a quantitative trait locus (QTL) analysis on the serum cholesterol level of SHRSP before and after the HFC diet, with the final goal being the identification of the genetic mechanisms of its reactive hypercholesterolemia. Three hundred fifty-eight F2 rats between SHRSP and Wistar-Kyoto rat were employed in the study. The serum cholesterol and apoprotein E were measured before and after 2 wk of feeding with the HFC diet. Multiple QTLs for the basal cholesterol level were identified on chromosomes 1 and 5, whereas those for the postdietary cholesterol level were on chromosomes 7, 15, and 16. The cholesterol QTLs before and after HFC diet did not overlap with one another, implying that the involved metabolic processes were considerably different between the two conditions. Supporting this, VLDL and LDL cholesterol were the major components of the postdietary serum cholesterol, whereas the basal cholesterol level consisted mainly of HDL cholesterol. A substantial difference of the QTLs between males and females was observed, especially after the HFC diet. The QTL on chromosome 15 had an inverse effect on the cholesterol level, suggesting that the congenic substitution of the SHRSP fragment with that of Wistar-Kyoto rats could induce a greater cholesterol level in SHRSP. This observation is significant in establishing a new model for atherosclerosis with hypertension in rats.
Collapse
Affiliation(s)
- Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Moritani M, Togawa K, Yaguchi H, Fujita Y, Yamaguchi Y, Inoue H, Kamatani N, Itakura M. Identification of diabetes susceptibility loci in db mice by combined quantitative trait loci analysis and haplotype mapping. Genomics 2006; 88:719-730. [PMID: 16919419 DOI: 10.1016/j.ygeno.2006.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 07/06/2006] [Accepted: 07/06/2006] [Indexed: 11/16/2022]
Abstract
To identify the disease-susceptibility genes of type 2 diabetes, we performed quantitative trait loci (QTL) analysis in F(2) populations generated from a BKS.Cg-m+/+Lepr(db) and C3H/HeJ intercross, taking advantage of genetically determined obesity and diabetes traits associated with the db gene. A genome-wide scan in the F(2) populations divided by sex and db genotypes identified 14 QTLs in total and 3 major QTLs on chromosome (Chr) 3 (LOD 5.78) for fat pad weight, Chr 15 (LOD 6.64) for body weight, and Chr 16 (LOD 8.15) for blood glucose concentrations. A linear-model-based genome scan using interactive covariates allowed us to consider sex- or sex-by db-specific effects of each locus. For the most significant QTL on Chr 16, the high-resolution haplotype comparison between BKS and C3H strains reduced the critical QTL interval from 20 to 4.6 Mb by excluding shared haplotype regions and identified 11 nonsynonymous single-nucleotide polymorphisms in six candidate genes.
Collapse
Affiliation(s)
- Maki Moritani
- Division of Genetic Information, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Katsuhiko Togawa
- Division of Genetic Information, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan; First Institute of New Drug Discovery, Otsuka Pharmaceutical, Inc., Tokushima 771-0192, Japan
| | - Hiroshi Yaguchi
- Division of Pharmacology, Drug Safety and Metabolism, Otsuka Pharmaceutical Factory, Inc., Naruto 772-8601, Japan
| | - Yuka Fujita
- Division of Genetic Information, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Yuka Yamaguchi
- Division of Genetic Information, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Hiroshi Inoue
- Division of Genetic Information, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Naoyuki Kamatani
- Division of Statistical Genetics, Department of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Mitsuo Itakura
- Division of Genetic Information, Institute for Genome Research, The University of Tokushima, Tokushima 770-8503, Japan.
| |
Collapse
|
22
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 706] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Togawa K, Moritani M, Yaguchi H, Itakura M. Multidimensional genome scans identify the combinations of genetic loci linked to diabetes-related phenotypes in mice. Hum Mol Genet 2005; 15:113-28. [PMID: 16321990 DOI: 10.1093/hmg/ddi433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Most quantitative trait loci (QTL) studies have focused on detecting the genetic effects of individual QTLs. This study thoroughly dissected the genetic components of type 2 diabetic mice, including a search for epistatic interactions and multi-locus additive effects that result in variation in diabetes-related phenotypes. F2 population was generated from BKS.Cg-Leprdb+/+m and DBA/2 intercross and separated into six subpopulations by sex and the db-dependent diabetes severity. Single-locus and pairwise genome scans first identified the QTLs in these F2 subpopulations, and next covariate-dependent scans confirmed their sex-, db- and sex-by-db-specific effects in the combined populations. Single-locus genome scans detected four QTLs (QBIS1, QBIS2, QBIS3 and QBIS4) that presented their genetic effects beyond sex, but most QTLs showed their effects specifically in limited conditions. This highly conditional feature of the QTLs was accentuated in the pairwise analysis. The pairwise genome scans uncovered a total of 27 significantly interacting or additively acting pairs of loci, showing a better fit to explain the total phenotypic variation of the traits. These significant pairs affected the traits under constantly varying combinations of loci in a time series or in both sexes. In addition, pairwise analysis indicated the appropriate genetic background in constructing congenic strains to obtain the maximum power in the replication of phenotypes. Our study showed high degree of complexity in the genetics of type 2 diabetes in mice, and it suggested that a comprehensive understanding of the multi-locus effects was essential to disentangle the complex genetics of diabetes and obesity in humans.
Collapse
Affiliation(s)
- Katsuhiko Togawa
- Division of Genetic Information, Institute for Genome Research, The University of Tokushima, Japan.
| | | | | | | |
Collapse
|
24
|
Ji H, Outterbridge LV, Friedman MI. Phenotype-based treatment of dietary obesity: differential effects of fenofibrate in obesity-prone and obesity-resistant rats. Metabolism 2005; 54:421-9. [PMID: 15798946 DOI: 10.1016/j.metabol.2004.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High-fat diets (HFDs) promote hyperphagia and adiposity in animals and human beings. To test the hypothesis that limitations on fat oxidation underlie this propensity for diet-induced obesity, rats were treated with fenofibrate, which enhances fat oxidation mainly in liver by inducing expression of enzymes and proliferation of organelles involved in fatty acid oxidation. Male Sprague-Dawley rats were fed a HFD (42% fat calorie) for 2 weeks. Rats ranked in the top and bottom thirds for weight gain during this feeding period were designated as obesity prone (OP) and obesity resistant (OR), respectively. Fenofibrate was added to the HFD (0.025% wt/wt) for half of the OP and OR rats. During the next 10 days, fenofibrate treatment significantly (P<.05) reduced food intake, weight gain, feed efficiency, and adiposity in OP rats to levels seen in control OR rats, but had no such effects in OR rats. Fenofibrate treatment increased whole-body fatty acid oxidation, and in liver, the expression of carnitine palmitoyl transferase I only in OP rats, but enhanced expression of acyl-CoA oxidase in both OP and OR rats. Restricting food intake of OP rats to levels seen in rats given fenofibrate similarly reduced weight gain but had little effect on weight of fat pads. Treatment with the daily dosage of fenofibrate given as a bolus did not produce a conditioned flavor aversion. These results suggest that enhancement of mitochondrial fatty acid oxidation in liver may be an effective phenotype-based treatment strategy for dietary obesity.
Collapse
Affiliation(s)
- Hong Ji
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
25
|
Abstract
Plasma high-density lipoprotein cholesterol (HDL-C) concentrations are genetically determined to a great extent, and quantitative trait locus (QTL) analysis has been used to identify chromosomal regions containing genes regulating HDL-C levels. We discuss new genes found to participate in HDL metabolism. We also summarize 37 mouse and 30 human QTLs for plasma HDL-C levels, finding that all but three of the mouse QTLs have been confirmed by a second cross or a homologous human QTL, that the mouse QTL map is almost saturated because 92% of recently reported QTLs are repeats of those already found, and that 28 of the 30 human QTLs are located in regions homologous to mouse QTLs. This high degree of concordance between mouse and human QTLs suggests that the underlying genes may be the same. Strategies to more rapidly identify genes underlying mouse and human QTLs for HDL-C include focusing on the mouse and using mouse–human homologies, combining crosses, and haplotyping to narrow the region. Sequence analysis and expression studies can distinguish candidate genes consistent across multiple mouse crosses, and testing the candidate genes in human association studies can provide additional evidence for the candidacy of a gene. Together these strategies can accelerate the pace of finding genes that regulate HDL.
Collapse
Affiliation(s)
- Xiaosong Wang
- Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, USA.
| | | |
Collapse
|
26
|
Wang X, Korstanje R, Higgins D, Paigen B. Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res 2004; 14:1767-72. [PMID: 15310659 PMCID: PMC515323 DOI: 10.1101/gr.2668204] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Identifying quantitative trait locus (QTL) genes is a challenging task. Herein, we report using a two-step process to identify Apoa2 as the gene underlying Hdlq5, a QTL for plasma high-density lipoprotein cholesterol (HDL) levels on mouse chromosome 1. First, we performed a sequence analysis of the Apoa2 coding region in 46 genetically diverse mouse strains and found five different APOA2 protein variants, which we named APOA2a to APOA2e. Second, we conducted a haplotype analysis of the strains in 21 crosses that have so far detected HDL QTLs; we found that Hdlq5 was detected only in the nine crosses where one parent had the APOA2b protein variant characterized by an Ala61-to-Val61 substitution. We then found that strains with the APOA2b variant had significantly higher (P < or = 0.002) plasma HDL levels than those with either the APOA2a or the APOA2c variant. These findings support Apoa2 as the underlying Hdlq5 gene and suggest the Apoa2 polymorphisms responsible for the Hdlq5 phenotype. Therefore, haplotype analysis in multiple crosses can be used to support a candidate QTL gene.
Collapse
Affiliation(s)
- Xiaosong Wang
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
| | | | | | | |
Collapse
|