1
|
Singh S, Shukla A, Sharma S. Overview of Natural Supplements for the Management of Diabetes and Obesity. Curr Diabetes Rev 2024; 20:e061123223235. [PMID: 37933216 DOI: 10.2174/0115733998262859231020071715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023]
Abstract
Bioactive compounds found in various natural sources, such as fruits, vegetables, and herbs, have been studied for their potential benefits in managing obesity and diabetes. These compounds include polyphenols, flavonoids, other antioxidants, fiber, and certain fatty acids. Studies have found that these compounds may improve insulin sensitivity, regulate blood sugar levels, and promote weight loss. However, the effects of these compounds can vary depending on the type and amount consumed, as well as individual factors, such as genetics and lifestyle. Nutraceutical substances have multifaceted therapeutic advantages, and they have been reported to have disease-prevention and health-promoting properties. Several clinically used nutraceuticals have been shown to target the pathogenesis of diabetes mellitus, obesity, and metabolic syndrome and their complications and modulate various clinical outcomes favorably. This review aims to highlight and comment on some of the most prominent natural components used as antidiabetics and in managing obesity.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Arpit Shukla
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Shiwangi Sharma
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| |
Collapse
|
2
|
Kozłowska J, Duda-Madej A, Baczyńska D. Antiproliferative Activity and Impact on Human Gut Microbiota of New O-Alkyl Derivatives of Naringenin and Their Oximes. Int J Mol Sci 2023; 24:9856. [PMCID: PMC10298275 DOI: 10.3390/ijms24129856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Naringenin is a 5,7,4′-trihydroxyflavanone naturally occurring mainly in citrus fruits, characterized by a wide spectrum of biological activity. Chemical modifications based on alkylation and oximation in most cases increase its bioactivity. The aim of our research was to evaluate the antiproliferative activity and influence on selected representatives of the human gut microbiota of new synthesized O-alkyl derivatives (A1–A10) and their oximes (B1–B10), which contain hexyl, heptyl, octyl, nonyl and undecyl chains attached to the C-7 or to both the C-7 and C-4′ positions in naringenin. To the best of our knowledge, compounds A3, A4, A6, A8–A10 and B3–B10 have not been described in the scientific literature previously. The anticancer activity was tested on human colon cancer cell line HT-29 and mouse embryo fibroblasts 3T3-L1 using the sulforhodamine B (SRB) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. We also determined the impacts of all compounds on the growth of Gram-positive and Gram-negative bacterial strains, such as Staphylococcus aureus, Enterococcus faecalis and Escherichia coli. The antimicrobial activity was expressed in terms of minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) values. For 7,4′-di-O-hexylnaringenin (A2), 7-O-undecylnaringenin (A9) and their oximes (B2, B9), which were safe for microbiota (MIC > 512 µg/mL) and almost all characterized by high cytotoxicity against the HT-29 cell line (A2: IC50 > 100 µg/mL; A9: IC50 = 17.85 ± 0.65 µg/mL; B2: IC50 = 49.76 ± 1.63 µg/mL; B9: IC50 = 11.42 ± 1.17 µg/mL), apoptosis assays were performed to elucidate their mechanisms of action. Based on our results, new compound B9 induced an apoptotic process via caspase 3/7 activation, which proved its potential as an anticancer agent.
Collapse
Affiliation(s)
- Joanna Kozłowska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland;
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| |
Collapse
|
3
|
Ansari P, Flatt PR, Harriott P, Abdel-Wahab YHA. Insulin secretory and antidiabetic actions of Heritiera fomes bark together with isolation of active phytomolecules. PLoS One 2022; 17:e0264632. [PMID: 35239729 PMCID: PMC8893667 DOI: 10.1371/journal.pone.0264632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
In folklore, Heritiera fomes (H. fomes) has been extensively used in treatment of various ailments such as diabetes, cardiac and hepatic disorders. The present study aimed to elucidate the antidiabetic actions of hot water extract of H. fomes (HWHF), including effects on insulin release from BRIN BD11 cells and isolated mouse islets as well as glucose homeostasis in high-fat-fed rats. Molecular mechanisms underlying anti-diabetic activity along with isolation of active compounds were also evaluated. Non-toxic concentrations of HWHF stimulated concentration-dependent insulin release from isolated mouse islets and clonal pancreatic β-cells. The stimulatory effect was potentiated by glucose and isobutyl methylxanthine (IBMX), persisted in presence of tolbutamide or a depolarizing concentration of KCl but was attenuated by established inhibitors of insulin release such as diazoxide, verapamil, and Ca2+ chelation. HWHF caused depolarization of the β-cell membrane and increased intracellular Ca2+. The extract also enhanced glucose uptake and insulin action in 3T3-L1 differentiated adipocytes cells and significantly inhibited in a dose-dependent manner starch digestion, protein glycation, DPP-IV enzyme activity, and glucose diffusion in vitro. Oral administration of HWHF (250 mg/5ml/kg b.w.) to high-fat fed rats significantly improved glucose tolerance and plasma insulin responses and it inhibited plasma DPP-IV activity. HWHF also decreased in vivo glucose absorption and intestinal disaccharidase activity while increasing gastrointestinal motility and unabsorbed sucrose transit. Compounds were isolated from HWHF with similar molecular weights to quercitrin (C21 H20 O11) ranging from 447.9 to 449.9 Da which stimulated the insulin release in vitro and improved both glucose tolerance and plasma insulin responses in mice. In conclusion, H. fomes and its water-soluble phytochemicals such as quercitrin may exert antidiabetic actions mediated through a variety of mechanisms which might be useful as dietary adjunct in the management of type 2 diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Dhaka, Bangladesh
| | - Peter R. Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Patrick Harriott
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Yasser H. A. Abdel-Wahab
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
4
|
Visvanathan R, Williamson G. Citrus polyphenols and risk of type 2 diabetes: Evidence from mechanistic studies. Crit Rev Food Sci Nutr 2021; 63:2178-2202. [PMID: 34496701 DOI: 10.1080/10408398.2021.1971945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Citrus fruits are a rich source of (poly)phenols, a group of dietary bioactive compounds that protect against developing type 2 diabetes. Our review critically evaluates how experimental in vitro and animal models have elucidated some of the underlying mechanisms on how citrus (poly)phenols affect the markers of type 2 diabetes. According to animal studies, the beneficial effects derived from consuming citrus compounds appear to be related to long-term effects, rather than acute. There are some notable effects from citrus (poly)phenol metabolites on post-absorptive processes, such as modulation of hepatic glucose metabolism and insulin sensitivity in target tissues, but with a more modest effect on digestion and sugar absorption within the gut. Experimental studies on cells and other systems in vitro have indicated some of the possible mechanisms involved, but ∼70% of the studies utilized unrealistically high concentrations and forms of the compounds, compromising physiological relevance. Future studies should discuss the relevance of concentration used in in vitro experiments, relative to the proposed site of action, and also examine the role of catabolites produced by the gut microbiota. Finally, it is important to examine the relationship between the gut microbiota and bioavailability on the action of citrus (poly)phenols.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, VIC, Australia
| |
Collapse
|
5
|
Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Méndez-Cruz AR, Nieto-Yañez O. Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits. Nutrients 2020; 13:E78. [PMID: 33383693 PMCID: PMC7823938 DOI: 10.3390/nu13010078] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
The use of alternative medicine products has increased tremendously in recent decades and it is estimated that approximately 80% of patients globally depend on them for some part of their primary health care. Propolis is a beekeeping product widely used in alternative medicine. It is a natural resinous product that bees collect from various plants and mix with beeswax and salivary enzymes and comprises a complex mixture of compounds. Various biomedical properties of propolis have been studied and reported in infectious and non-infectious diseases. However, the pharmacological activity and chemical composition of propolis is highly variable depending on its geographical origin, so it is important to describe and study the biomedical properties of propolis from different geographic regions. A number of chronic diseases, such as diabetes, obesity, and cancer, are the leading causes of global mortality, generating significant economic losses in many countries. In this review, we focus on compiling relevant information about propolis research related to diabetes, obesity, and cancer. The study of propolis could generate both new and accessible alternatives for the treatment of various diseases and will help to effectively evaluate the safety of its use.
Collapse
Affiliation(s)
- Nelly Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (N.R.-Y.); (C.R.R.-Y.)
| | - C. Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (N.R.-Y.); (C.R.R.-Y.)
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (G.P.-M.); (C.F.M.-C.)
| | - Claudia F. Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (G.P.-M.); (C.F.M.-C.)
| | - Adolfo R. Méndez-Cruz
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico;
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico
| |
Collapse
|
6
|
Nakashima M, Hisada M, Goda N, Tenno T, Kotake A, Inotsume Y, Kameoka I, Hiroaki H. Opposing Effect of Naringenin and Quercetin on the Junctional Compartment of MDCK II Cells to Modulate the Tight Junction. Nutrients 2020; 12:nu12113285. [PMID: 33120983 PMCID: PMC7693399 DOI: 10.3390/nu12113285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Maintaining tight junction (TJ) integrity is important for epithelial cell barriers. Previously, the enhancement of TJ integrity, induced by citrus-derived flavonoids, naringin (NRG) and hesperidin (HSD), was demonstrated, but the effects of their aglycones naringenin (NAR) and hesperetin (HST), and the mechanisms, have not been systematically investigated. Here we compared three series of flavonoids related to NAR, HST, quercetin (QUE) and their glycosides with the Madin–Darby canine kidney (MDCK) II cell monolayers. The effect of flavonoids on the protein expression level of claudin (CLD)-2 and its subcellular localization were investigated. NAR, NRG, and HSD increased the CLD-2 localization at the TJ compartment, and its protein expression level. QUE and HST showed TJ-mitigating activity. Narirutin (NRT), neohesperidin (NHD) and rutin (RUT) did not affect the TJ. In addition, NAR and QUE induced an increase or decrease of the transepithelial electrical resistance (TEER) values of the MDCK II monolayers. Two known signaling pathways, phosphatidyl-inositol-3 kinase (PI3K) and 5′-AMP-activated protein kinase (AMPK), were further compared with NAR. Two-dimensional polyacrylamide electrophoresis (2D PAGE) analysis of whole-cell proteins treated with NAR, AICA-riboside (AMPK activator) and LY294002 (PI3K inhibitor) showed in both a distinct pattern. This suggests the target of NAR’s CLD-2 or zonula occludens-1 (ZO-1) modulation was unique.
Collapse
Affiliation(s)
- Mio Nakashima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan; (M.N.); (M.H.); (N.G.); (T.T.)
- Department of Biological Sciences, Faculty of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Misaki Hisada
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan; (M.N.); (M.H.); (N.G.); (T.T.)
| | - Natsuko Goda
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan; (M.N.); (M.H.); (N.G.); (T.T.)
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan; (M.N.); (M.H.); (N.G.); (T.T.)
- BeCerllBar, LLC., Business Incubation Building, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ayaka Kotake
- Cosmetics Research Department, Nicca Chemical Co. Ltd., Fukui 910-8670, Japan; (A.K.); (Y.I.); (I.K.)
| | - Yuko Inotsume
- Cosmetics Research Department, Nicca Chemical Co. Ltd., Fukui 910-8670, Japan; (A.K.); (Y.I.); (I.K.)
| | - Ikuo Kameoka
- Cosmetics Research Department, Nicca Chemical Co. Ltd., Fukui 910-8670, Japan; (A.K.); (Y.I.); (I.K.)
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan; (M.N.); (M.H.); (N.G.); (T.T.)
- Department of Biological Sciences, Faculty of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8602, Japan
- BeCerllBar, LLC., Business Incubation Building, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Correspondence: ; Tel.: +81-52-789-4535
| |
Collapse
|
7
|
Naeini F, Namkhah Z, Ostadrahimi A, Tutunchi H, Hosseinzadeh-Attar MJ. A Comprehensive Systematic Review of the Effects of Naringenin, a Citrus-Derived Flavonoid, on Risk Factors for Nonalcoholic Fatty Liver Disease. Adv Nutr 2020; 12:413-428. [PMID: 32879962 PMCID: PMC8009752 DOI: 10.1093/advances/nmaa106] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of liver dysfunction worldwide. Recently, some natural compounds have attracted growing interest in the treatment of NAFLD. In this context, most attention has been paid to natural products derived from fruits, vegetables, and medicinal herbs. Naringenin, a natural flavanone, has been revealed to have pharmacological effects in the treatment of obesity and associated metabolic disorders such as NAFLD. The aim of this study was to examine the therapeutic effects of naringenin and its possible mechanisms of action in the management of NAFLD and related risk factors. The current systematic review was performed according to the guidelines of the 2015 PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) statements. We searched PubMed/Medline, Science Direct, Scopus, ProQuest, and Google Scholar databases up until February 2020. Of 1217 full-text articles assessed, 36 studies met the inclusion criteria. The evidence reviewed in the present study indicates that naringenin modulates several biological processes related to NAFLD including energy balance, lipid and glucose metabolism, inflammation, and oxidative stress by different mechanisms. Overall, the favorable effects of naringenin along with its more potency and efficacy, compared with other antioxidants, indicate that naringenin may be a promising therapeutic approach for the management of NAFLD and associated complications. However, due to the lack of clinical trials, future robust human randomized clinical trials that address the effects of naringenin on NAFLD and other liver-related diseases are crucial. Further careful human pharmacokinetic studies are also needed to establish dosage ranges, as well as addressing preliminary safety and tolerability of naringenin, before proceeding to larger-scale endpoint trials.
Collapse
Affiliation(s)
- Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Namkhah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
8
|
Permuted 2,4-thiazolidinedione (TZD) analogs as GLUT inhibitors and their in-vitro evaluation in leukemic cells. Eur J Pharm Sci 2020; 154:105512. [PMID: 32801003 DOI: 10.1016/j.ejps.2020.105512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2023]
Abstract
Cancer is a heterogeneous disease, and its treatment requires the identification of new ways to thwart tumor cells. Amongst such emerging targets are glucose transporters (GLUTs, SLC2 family), which are overexpressed by almost all types of cancer cells; their inhibition provides a strategy to disrupt tumor metabolism selectively, leading to antitumor effects. Here, novel thiazolidinedione (TZD) derivatives were designed, synthesized, characterized, and evaluated for their GLUT1, GLUT4, and GLUT5 inhibitory potential, followed by in-vitro cytotoxicity determination in leukemic cell lines. Compounds G5, G16, and G17 inhibited GLUT1, with IC50 values of 5.4 ± 1.3, 26.6 ± 1.8, and 12.6 ± 1.2 μM, respectively. G17 was specific for GLUT1, G16 inhibited GLUT4 (IC50 = 21.6 ± 4.5 μM) comparably but did not affect GLUT5. The most active compound, G5, inhibited all three GLUT types, with GLUT4 IC50 = 9.5 ± 2.8 μM, and GLUT5 IC50 = 34.5 ± 2.4 μM. Docking G5, G16, and G17 to the inward- and outward-facing structural models of GLUT1 predicted ligand binding affinities consistent with the kinetic inhibition data and implicated E380 and W388 of GLUT1 vs. their substitutions in GLUT5 (A388 and A396, respectively) in inhibitor preference for GLUT1. G5 inhibited the proliferation of leukemia CEM cells at low micromolar range (IC50 = 13.4 μM) while being safer for normal blood cells. Investigation of CEM cell cycle progression after treatment with G5 showed that cells accumulated in the G2/M phase. Flow cytometric apoptosis studies revealed that compound G5 induced both early and late-stage apoptosis in CEM cells.
Collapse
|
9
|
Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol Res 2020; 152:104629. [PMID: 31918019 DOI: 10.1016/j.phrs.2020.104629] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus type 2 (T2DM) is a metabolic disorder develops due to the overproduction of free radicals where oxidative stress could contribute it. Possible factors are defective insulin signals, glucose oxidation, and degradation of glycated proteins as well as alteration in glutathione metabolism which induced hyperglycemia. Previous studies revealed a link between T2DM with oxidative stress, inflammation and insulin resistance which are assumed to be regulated by numerous cellular networks such as NF-κB, PI3K/Akt, MAPK, GSK3 and PPARγ. Flavonoids are ubiquitously present in the nature and classified according to their chemical structures for example, flavonols, flavones, flavan-3-ols, anthocyanidins, flavanones, and isoflavones. Flavonoids indicate poor bioavailability which could be improved by employing various nano-delivery systems against the occurrences of T2DM. These bioactive compounds exert versatile anti-diabetic activities via modulating targeted cellular signaling networks, thereby, improving glucose metabolism, α -glycosidase, and glucose transport or aldose reductase by carbohydrate metabolic pathway in pancreatic β-cells, hepatocytes, adipocytes and skeletal myofibres. Moreover, anti-diabetic properties of flavonoids also encounter diabetic related complications. This review article has designed to shed light on the anti-diabetic potential of flavonoids, contribution of oxidative stress, evidence of efficacy in clinical, cellular and animal studies and nano-delivery approaches to enhance their therapeutic efficacy. This article might give some new insights for therapeutic intervention against T2DM in near future.
Collapse
|
10
|
Shah FLA, Ramzi AB, Baharum SN, Noor NM, Goh HH, Leow TC, Oslan SN, Sabri S. Recent advancement of engineering microbial hosts for the biotechnological production of flavonoids. Mol Biol Rep 2019; 46:6647-6659. [PMID: 31535322 DOI: 10.1007/s11033-019-05066-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/25/2019] [Indexed: 01/12/2023]
Abstract
Flavonoids are polyphenols that are important organic chemicals in plants. The health benefits of flavonoids that result in high commercial values make them attractive targets for large-scale production through bioengineering. Strategies such as engineering a flavonoid biosynthetic pathway in microbial hosts provide an alternative way to produce these beneficial compounds. Escherichia coli, Saccharomyces cerevisiae and Streptomyces sp. are among the expression systems used to produce recombinant products, as well as for the production of flavonoid compounds through various bioengineering approaches including clustered regularly interspaced short palindromic repeats (CRISPR)-based genome engineering and genetically encoded biosensors to detect flavonoid biosynthesis. In this study, we review the recent advances in engineering model microbial hosts as being the factory to produce targeted flavonoid compounds.
Collapse
Affiliation(s)
- Fatin Lyana Azman Shah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
| |
Collapse
|
11
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
12
|
Russo B, Picconi F, Malandrucco I, Frontoni S. Flavonoids and Insulin-Resistance: From Molecular Evidences to Clinical Trials. Int J Mol Sci 2019; 20:E2061. [PMID: 31027340 PMCID: PMC6539502 DOI: 10.3390/ijms20092061] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022] Open
Abstract
Insulin-resistance is one of the main factors responsible for the onset and progression of Metabolic Syndrome (MetS). Among all polyphenols, the effects of flavonoids and their main food sources on insulin sensitivity have been widely evaluated in molecular and clinical studies. The aim of this review is to analyse the data observed in vitro, in vivo and in clinical trials concerning the effects of flavonoids on insulin resistance and to determine the molecular mechanisms with which flavonoids interact with insulin signaling.
Collapse
Affiliation(s)
- Benedetta Russo
- Unit of Endocrinology, Diabetes and Metabolism, S.Giovanni Calibita, Fatebenefratelli Hospital, 00186 Rome, Italy.
| | - Fabiana Picconi
- Unit of Endocrinology, Diabetes and Metabolism, S.Giovanni Calibita, Fatebenefratelli Hospital, 00186 Rome, Italy.
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Ilaria Malandrucco
- Unit of Endocrinology, Diabetes and Metabolism, S.Giovanni Calibita, Fatebenefratelli Hospital, 00186 Rome, Italy.
| | - Simona Frontoni
- Unit of Endocrinology, Diabetes and Metabolism, S.Giovanni Calibita, Fatebenefratelli Hospital, 00186 Rome, Italy.
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
13
|
Zaidun NH, Thent ZC, Latiff AA. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sci 2018; 208:111-122. [DOI: 10.1016/j.lfs.2018.07.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
|
14
|
Patra AK, Amasheh S, Aschenbach JR. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds – A comprehensive review. Crit Rev Food Sci Nutr 2018; 59:3237-3266. [DOI: 10.1080/10408398.2018.1486284] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amlan Kumar Patra
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
- Institute of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Belgachia, Kolkata, India
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
| | - Jörg Rudolf Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
| |
Collapse
|
15
|
Zaim Ö, Doğanlar O, Zreigh MM, Doğanlar ZB, Özcan H. Synthesis, Cancer-Selective Antiproliferative and Apoptotic Effects of Some (±)-Naringenin Cycloaminoethyl Derivatives. Chem Biodivers 2018; 15:e1800016. [PMID: 29766645 DOI: 10.1002/cbdv.201800016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
Naringenin is a naturally occurring flavonoid and due to its broad spectrum of biological activities, including anticancer properties, has attracted scientific attention in recent years. To contribute to these studies, we synthesized some new (±)-naringenin cyclic aminoethyl derivatives, analyzed the cytotoxic and anti-proliferative properties of them via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and mitochondrial apoptosis signaling response and gene expressions belong to caspase-3 depended apoptosis as biomarkers in both healthy and cancer cell lines. Our results suggest that some of our naringenin derivatives are potential anticancer agents with a selective death potential and targeting properties for mitochondrial apoptosis signaling against at least human cervix and breast cancer.
Collapse
Affiliation(s)
- Ömer Zaim
- Department of Chemistry, Trakya University, 22030, Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Mohamed M Zreigh
- Department of Chemistry, Faculty of Science, Zawia University, P.O. Box 16168, Zawia, Libya
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Hafize Özcan
- Department of Chemistry, Trakya University, 22030, Edirne, Turkey
| |
Collapse
|
16
|
Yang G, Bibi S, Du M, Suzuki T, Zhu MJ. Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective. Crit Rev Food Sci Nutr 2017; 57:3830-3839. [PMID: 27008212 DOI: 10.1080/10408398.2016.1152230] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Impairment of the epithelial barrier function is closely linked to the pathogenesis of various gastrointestinal diseases, food allergies, type I diabetes, and other systematic diseases. Plant-derived polyphenols are natural secondary metabolites and exert various physiological benefits, including anti-inflammatory, anti-oxidative, anti-carcinogenic, and anti-aging effects. Recent studies also show the role of plant polyphenols in regulation of the intestinal barrier and prevention of intestinal inflammatory diseases. Here we summarize the regulatory pathways and mediators linking polyphenols to their beneficial effects on tight junction and gut epithelial barrier functions, and provide useful information about using polyphenols as nutraceuticals for intestinal diseases.
Collapse
Affiliation(s)
- Guan Yang
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Shima Bibi
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Min Du
- b Department of Animal Science , Washington State University , Pullman , Washington , USA
| | - Takuya Suzuki
- c Department of Biofunctional Science and Technology , Hiroshima University , Higashi-Hiroshima , Japan
| | - Mei-Jun Zhu
- a School of Food Science , Washington State University , Pullman , Washington , USA
| |
Collapse
|
17
|
Wu M, Liu D, Zeng R, Xian T, Lu Y, Zeng G, Sun Z, Huang B, Huang Q. Epigallocatechin-3-gallate inhibits adipogenesis through down-regulation of PPARγ and FAS expression mediated by PI3K-AKT signaling in 3T3-L1 cells. Eur J Pharmacol 2016; 795:134-142. [PMID: 27940057 DOI: 10.1016/j.ejphar.2016.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), a major component in green tea, functions as extensive bioactivities including anti-inflammation, anti-oxidation, and anti-cancer. However, little is known about its anti-adipogenesis and underlying mechanisms. The purport of this study sought to investigate effects of EGCG on 3T3-L1 preadipocyte differentiation and to explore its possible mechanisms. The 3T3-L1 cells were induced to differentiate under the condition of pro-adipogenic cocktail with or without indicated EGCG concentrations (10, 50, 100, 200µM) for 2, 4, 6 and 8 days, respectively. Also, another batch of 3T3-L1 cells was induced under the optimal EGCG concentration (100µM) with or without SC3036 (PI3K activator, 10µM) or SC79 (AKT activator, 0.5µM) for 8 days. Subsequently, the cell viability was examined by MTT assay and the cell morphology was visualized by Oil red O staining. Finally, the mRNA levels including peroxisome proliferator activated receptor γ (PPARγ) and fatty acid synthase (FAS) were detected by quantitative real time PCR, while the protein levels of PPARγ, FAS, phosphatidylinositol 3 kinase (PI3K), insulin receptor substrate1(IRS1), AKT, and p-AKT were measured by immunoblotting analysis. Our results showed that EGCG inhibited adipogenesis of 3T3-L1 preadipocyte in a concentration-dependent manner. Moreover, the inhibitory effects were reversed by SC3036 or SC79, suggesting that the inhibitory effects of EGCG are mediated by PI3K-AKT signaling to down-regulate PPARγ and FAS expression levels. The findings shed light on EGCG anti-adipogenic effects and its underlying mechanism and provide a novel preventive-therapeutic potential for obesity subjects as a compound from Chinese green tea.
Collapse
Affiliation(s)
- Mengqing Wu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Dan Liu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Rong Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Tao Xian
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Yi Lu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Zhangzetian Sun
- Jiangxi Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Bowei Huang
- Jiangxi Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China.
| |
Collapse
|
18
|
Kokavec A. Migraine: A disorder of metabolism? Med Hypotheses 2016; 97:117-130. [PMID: 27876120 DOI: 10.1016/j.mehy.2016.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The treatment and prevention of migraine within the last decade has become largely pharmacological. While there is little doubt that the advent of drugs (e.g. triptans) has helped many migraine sufferers to lead a normal life, there is still little knowledge with respect to the factors responsible for precipitating a migraine attack. Evidence from biochemical and behavioural studies from a number of disciplines is integrated to put forward the proposal that migraine is part of a cascade of events, which together act to protect the organism when confronted by a metabolic challenge.
Collapse
Affiliation(s)
- Anna Kokavec
- University of New England, School of Health, Armidale, NSW 2350, United States.
| |
Collapse
|
19
|
Nishina A, Ukiya M, Fukatsu M, Koketsu M, Ninomiya M, Sato D, Yamamoto J, Kobayashi-Hattori K, Okubo T, Tokuoka H, Kimura H. Effects of Various 5,7-Dihydroxyflavone Analogs on Adipogenesis in 3T3-L1 Cells. Biol Pharm Bull 2016; 38:1794-800. [PMID: 26521830 DOI: 10.1248/bpb.b15-00489] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We studied the effects of twelve 5,7-dihydroxyflavone analogs on adipogenesis in 3T3-L1 cells. Among the compounds, luteolin, diosmetin, and chrysoeriol partly inhibited adipogenesis by blocking the accumulation of triacylglycerol in the cells. Conversely, tricetin facilitated triacylglycerol accumulation in the cells. The induction of lipogenesis or lipolysis may depend on the number and bonding position of hydroxyl or methoxy groups on the B ring of 5,7-dihydroxyflavone. The mRNA expression levels of adipogenic and lipogenic genes were suppressed by luteolin treatment in the cells, while the mRNA levels of lipolytic genes were not affected. However, the expression levels of the adipogenic, lipogenic, and lipolytic genes, except for adipocyte protein 2 (aP2), were not affected by the addition of tricetin. Moreover, luteolin suppressed glucose transporter type 4 (GLUT4) gene and protein levels. These results indicate that luteolin decreased triacylglycerol levels in 3T3-L1 cells during adipogenesis through the suppression of adipogenic/lipogenic and GLUT4 genes and GLUT4 protein.
Collapse
|
20
|
Granchi C, Fortunato S, Minutolo F. Anticancer agents interacting with membrane glucose transporters. MEDCHEMCOMM 2016; 7:1716-1729. [PMID: 28042452 DOI: 10.1039/c6md00287k] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The altered metabolism observed in cancer cells generally consists in increased glucose uptake and glycolytic activity. This is associated with an overexpression of glucose transporter proteins (GLUTs), which facilitate glucose uptake across the plasma membrane and play a crucial role in the survival of cancer cells. Therefore GLUTs are considered as suitable targets for the treatment of cancer. Herein we review some of the most relevant GLUT inhibitors that have been recently developed as prospective anticancer agents.
Collapse
Affiliation(s)
- C Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - S Fortunato
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - F Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
21
|
Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int J Mol Sci 2016; 17:569. [PMID: 27092490 PMCID: PMC4849025 DOI: 10.3390/ijms17040569] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Obesity and diabetes are the most prevailing health concerns worldwide and their incidence is increasing at a high rate, resulting in enormous social costs. Obesity is a complex disease commonly accompanied by insulin resistance and increases in oxidative stress and inflammatory marker expression, leading to augmented fat mass in the body. Diabetes mellitus (DM) is a metabolic disorder characterized by the destruction of pancreatic β cells or diminished insulin secretion and action insulin. Obesity causes the development of metabolic disorders such as DM, hypertension, cardiovascular diseases, and inflammation-based pathologies. Flavonoids are the secondary metabolites of plants and have 15-carbon skeleton structures containing two phenyl rings and a heterocyclic ring. More than 5000 naturally occurring flavonoids have been reported from various plants and have been found to possess many beneficial effects with advantages over chemical treatments. A number of studies have demonstrated the potential health benefits of natural flavonoids in treating obesity and DM, and show increased bioavailability and action on multiple molecular targets. This review summarizes the current progress in our understanding of the anti-obesity and anti-diabetic potential of natural flavonoids and their molecular mechanisms for preventing and/or treating obesity and diabetes.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Yingfu Yin
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
22
|
Balu D, Ouyang J, Parakhia RA, Pitake S, Ochs RS. Ca 2+ effects on glucose transport and fatty acid oxidation in L6 skeletal muscle cell cultures. Biochem Biophys Rep 2016; 5:365-373. [PMID: 28955844 PMCID: PMC5600334 DOI: 10.1016/j.bbrep.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/17/2015] [Accepted: 01/11/2016] [Indexed: 12/03/2022] Open
Abstract
We examined the effect of Ca2+ on skeletal muscle glucose transport and fatty acid oxidation using L6 cell cultures. Ca2+ stimulation of glucose transport is controversial. We found that caffeine (a Ca2+ secretagogue) stimulation of glucose transport was only evident in a two-part incubation protocol ("post-incubation"). Caffeine was present in the first incubation, the media removed, and labeled glucose added for the second. Caffeine elicited a rise in Ca2+ in the first incubation that was dissipated by the second. This post-incubation procedure was insensitive to glucose concentrations in the first incubation. With a single, direct incubation system (all components present together) caffeine caused a slight inhibition of glucose transport. This was likely due to caffeine induced inhibition of phosphatidylinositol 3-kinase (PI3K), since nanomolar concentrations of wortmannin, a selective PI3K inhibitor, also inhibited glucose transport, and previous investigators have also found this action. We did find a Ca2+ stimulation (using either caffeine or ionomycin) of fatty acid oxidation. This was observed in the absence (but not the presence) of added glucose. We conclude that Ca2+ stimulates fatty acid oxidation at a mitochondrial site, secondary to malonyl CoA inhibition (represented by the presence of glucose in our experiments). In summary, the experiments resolve a controversy on Ca2+ stimulation of glucose transport by skeletal muscle, introduce an important experimental consideration for the measurement of glucose transport, and uncover a new site of action for Ca2+ stimulation of fatty acid oxidation.
Collapse
Affiliation(s)
- Darrick Balu
- Dept. Psychiatry, McLean Hospital, MRC I 114, 115 Mill St., Belmont, MA 02478, USA
| | - Jiangyong Ouyang
- Department of Pharmacology, New York University School of Medicine, 550 1st Ave, New York, NY 10016, USA
| | - Rahulkumar A. Parakhia
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07407, USA
| | - Saumitra Pitake
- Department of Pharmaceutical Sciences, School of Pharmacy, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Raymond S. Ochs
- Department of Pharmaceutical Sciences, School of Pharmacy, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
23
|
Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells. Arch Pharm Res 2015; 38:2042-8. [PMID: 26100136 DOI: 10.1007/s12272-015-0624-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Natural killer (NK) cells are capable of identifying and killing tumor cells as well as virus infected cells without pre-sensitization. NK cells express activating and inhibitory receptors, and can distinguish between normal and tumor cells. The present study was designed to demonstrate the importance of the expression level of NKG2D ligands on the Burkitt's lymphoma cell line, Raji, in enhancing NK cell cytolytic activity. Various flavonoids were used as stimulants to enhance the expression of NKG2D ligands. NK cell lysis activity against Raji was not changed by pre-treatment of Raji with luteolin, kaempferol, taxifolin and hesperetin. However, treatment of Raji with naringenin showed increased sensitivity to NK cell lysis than untreated control cells. The activity of naringenin was due to enhanced NKG2D ligand expression. These results provide evidence that narigenin's antitumor activity may be due to targeting of NKG2D ligand expression and suggests a possible immunotherapeutic role for cancer treatment.
Collapse
|
24
|
Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep 2014; 20:198-209. [PMID: 25494817 DOI: 10.1179/1351000214y.0000000117] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats. METHODS Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats. RESULTS The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal. CONCLUSION The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.
Collapse
|
25
|
Ahamad MS, Siddiqui S, Jafri A, Ahmad S, Afzal M, Arshad M. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One 2014; 9:e110003. [PMID: 25330158 PMCID: PMC4199682 DOI: 10.1371/journal.pone.0110003] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022] Open
Abstract
A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS) initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01) with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001) dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.
Collapse
Affiliation(s)
- Md Sultan Ahamad
- Department of Zoology, Shibli National (PG) College, Azamgarh, Uttar Pradesh, India
| | - Sahabjada Siddiqui
- Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Asif Jafri
- Department of Zoology, Shibli National (PG) College, Azamgarh, Uttar Pradesh, India
| | - Sheeba Ahmad
- Department of Zoology, D S College, Aligarh, Uttar Pradesh, India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Md Arshad
- Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
26
|
Hatkevich T, Ramos J, Santos-Sanchez I, Patel YM. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells. Exp Cell Res 2014; 327:331-9. [DOI: 10.1016/j.yexcr.2014.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
|
27
|
Pellegrini M, Bulzomi P, Galluzzo P, Lecis M, Leone S, Pallottini V, Marino M. Naringenin modulates skeletal muscle differentiation via estrogen receptor α and β signal pathway regulation. GENES AND NUTRITION 2014; 9:425. [PMID: 25156241 DOI: 10.1007/s12263-014-0425-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/29/2014] [Indexed: 01/13/2023]
Abstract
Several experiments sustain healthful benefits of the flavanone naringenin (Nar) against chronic diseases including its protective effects against estrogen-related cancers. These experiments encourage Nar use in replacing estrogen treatment in post-menopausal women avoiding the serious side effects ascribed to this hormone. However, at the present, scarce data are available on the impact of Nar on E2-regulated cell functions. This study was aimed at determining the impact of Nar on the estrogen receptor (ERα and β)-dependent signals important for 17β-estradiol (E2) effect in muscle cells (rat L6 myoblasts, mouse C2C12 myoblasts, and mouse skeletal muscle satellite cells). Dietary relevant concentration of Nar delays the appearance of skeletal muscle differentiation markers (i.e., GLUT4 translocation, myogenin, and both fetal and slow MHC isoforms) and impairs E2 effects specifically hampering ERα ability to activate AKT. Intriguingly, Nar effects are specific for E2-initiating signals because IGF-I-induced AKT activation, and myoblast differentiation markers were not affected by Nar treatment. Only 7 days after Nar stimulation, early myoblast differentiation markers (i.e., myogenin, and fetal MHC) start to be accumulated in myoblasts. On the other hand, Nar stimulation activates, via ERβ, the phosphorylation of p38/MAPK involved in reducing the reactive oxygen species formation in skeletal muscle cells. As a whole, data reported here strongly sustain that although Nar action mechanisms include the impairment of ERα signals which drive muscle cells to differentiation, the effects triggered by Nar in the presence of ERβ could balance this negative effect avoiding the toxic effects produced by oxidative stress .
Collapse
Affiliation(s)
- Marco Pellegrini
- Department of Sciences, Biomedical and Technology Science Section, University Roma Tre, Viale G. Marconi 446, 00146, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Hsu CY, Shih HY, Chia YC, Lee CH, Ashida H, Lai YK, Weng CF. Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol Nutr Food Res 2014; 58:1168-76. [DOI: 10.1002/mnfr.201300691] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Chia-Yu Hsu
- Institute of Biotechnology; National Dong-Hwa University; Hualien 97401 Taiwan
- Institute of Biotechnology & Department of Life Science; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Hung-Yuan Shih
- Institute of Biotechnology; National Dong-Hwa University; Hualien 97401 Taiwan
| | - Yi-Chen Chia
- Department of Food Science & Technology; Tajen University; Ping Tung Hsien Taiwan
| | - Chia-Hung Lee
- Institute of Biotechnology; National Dong-Hwa University; Hualien 97401 Taiwan
| | - Hitoshi Ashida
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Nada-ku Kobe 657-8501 Japan
| | - Yiu-Kay Lai
- Institute of Biotechnology & Department of Life Science; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Ching-Feng Weng
- Institute of Biotechnology; National Dong-Hwa University; Hualien 97401 Taiwan
| |
Collapse
|
29
|
Laura de la Garza A, Etxeberria U, Palacios-Ortega S, Haslberger AG, Aumueller E, Milagro FI, Martínez JA. Modulation of hyperglycemia and TNFα-mediated inflammation by helichrysum and grapefruit extracts in diabetic db/db mice. Food Funct 2014; 5:2120-8. [DOI: 10.1039/c4fo00154k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Type-2 diabetes is associated with a chronic low-grade systemic inflammation accompanied by an increased production of adipokines/cytokines in the obese adipose tissue, which may be overcome by flavonoid-rich extracts.
Collapse
Affiliation(s)
- Ana Laura de la Garza
- Department of Nutrition
- Food Science and Physiology
- University of Navarra
- 31008 Pamplona, Spain
| | - Usune Etxeberria
- Department of Nutrition
- Food Science and Physiology
- University of Navarra
- 31008 Pamplona, Spain
| | | | | | - Eva Aumueller
- Department of Nutritional Sciences
- University of Vienna
- Vienna, Austria
| | - Fermín I. Milagro
- Department of Nutrition
- Food Science and Physiology
- University of Navarra
- 31008 Pamplona, Spain
- Physiopathology of Obesity and Nutrition
| | - J. Alfredo Martínez
- Department of Nutrition
- Food Science and Physiology
- University of Navarra
- 31008 Pamplona, Spain
- Physiopathology of Obesity and Nutrition
| |
Collapse
|
30
|
Naringenin inhibits adipogenesis and reduces insulin sensitivity and adiponectin expression in adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:549750. [PMID: 23983791 PMCID: PMC3745873 DOI: 10.1155/2013/549750] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 01/28/2023]
Abstract
Adipose tissue development and function are widely studied to examine the relationship between obesity and the metabolic syndrome. It is well documented that the inability of adipose tissue to properly increase its lipid storage capacity during the obese state can lead to metabolic dysfunction. In a blind screen of 425 botanicals, we identified naringenin as an inhibitor of adipocyte differentiation. Naringenin is one of the most abundant citrus flavonoids, and recent studies have demonstrated antihyperlipidemic capabilities. These studies have largely focused on the effects of naringenin on the liver. Our biochemical studies clearly demonstrate that naringenin inhibits adipogenesis and impairs mature fat cell function. Naringenin specifically inhibited adipogenesis in a dose-dependent fashion as judged by examining lipid accumulation and induction of adipocyte marker protein expression. In mature 3T3-L1 adipocytes, naringenin reduced the ability of insulin to induce IRS-1 tyrosine phosphorylation and substantially inhibited insulin-stimulated glucose uptake in a dose-dependent manner and over a time frame of 1.5 to 24 hours. Exposure to naringenin also inhibited adiponectin protein expression in mature murine and human adipocytes. Our studies have revealed that naringenin may have a negative impact on adipocyte-related diseases by limiting differentiation of preadipocytes, by significantly inducing insulin resistance, and by decreasing adiponectin expression in mature fat cells.
Collapse
|
31
|
Doshi P, Adsule P, Banerjee K, Oulkar D. Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) byproducts. Journal of Food Science and Technology 2013; 52:181-90. [PMID: 25593367 DOI: 10.1007/s13197-013-0991-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/29/2012] [Accepted: 03/28/2013] [Indexed: 12/24/2022]
Abstract
Grape byproducts are a rich source of phenolics having immense medicinal properties, but usually wasted from juice/wine processing industries. The present study investigates the phenolic antioxidants and the insulinotropic effect of extracts prepared from seed, skin and stems of two red wine grape cultivars: Pusa Navarang and Merlot. Pusa Navarang cultivar has shown high amounts of total phenolics (95.8 mg/ml), flavonoids (30.5 mg/ml) and flavan-3-ols (21.8 mg/ml) in seed extract and total anthocyanin (4.9 mg/ml) in its skin extract as compared to Merlot cultivar. As determined using HPLC, higher amounts of catechin hydrate (14909 mg/l) and epicatechin (9299 mg/l) were observed in its seed extract, while quercetin hydrate (5849 mg/l) was abundant in its skin extract. Similarly, ferric reducing antioxidant power (FRAP) and ABTS(+). [2,2'-azinobis (3-ethylbenzothiazoline)-6-sulfonic acid] and DPPH. (1,1-diphenyl-2-picrylhy- drazyl) radicals scavenging, were higher in its seed extract, respectively being 134.8 mg/ml of Quercetin equivalent (QE), 18.7 mM of trolox equivalent (TE) and 33.5 mM of TE. Strong correlation was obtained between FRAP and total phenolics, flavonoids and flavan-3-ols contents with correlation coefficients (r(2)) of 0.915, 0.738 and 0.838 respectively. Interestingly, there was a 2-8 fold increase in insulin secretion by isolated mice pancreatic islets at 5.5 mM and 16.5 mM glucose concentration in presence of various extracts. Overall, the seed, skin and stem byproducts of both cultivars are rich sources of phenolics and antioxidants and represent a source of new insulin secretagogues.
Collapse
Affiliation(s)
- Pooja Doshi
- Division of Biochemistry, Department of Chemistry, University of Pune, Ganeshkhind Road, Pune, 411 007 Maharashtra India
| | - Pandurang Adsule
- National Research Centre for Grapes, Pune, 412 307 Maharashtra India
| | - Kaushik Banerjee
- National Research Centre for Grapes, Pune, 412 307 Maharashtra India
| | - Dasharath Oulkar
- National Research Centre for Grapes, Pune, 412 307 Maharashtra India
| |
Collapse
|
32
|
Positive and negative regulation of insulin action by genistein in the endothelium. J Nutr Biochem 2013; 24:222-30. [DOI: 10.1016/j.jnutbio.2012.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 11/17/2022]
|
33
|
Serrano JCE, Gonzalo-Benito H, Jové M, Fourcade S, Cassanyé A, Boada J, Delgado MA, Espinel AE, Pamplona R, Portero-Otín M. Dietary intake of green tea polyphenols regulates insulin sensitivity with an increase in AMP-activated protein kinase α content and changes in mitochondrial respiratory complexes. Mol Nutr Food Res 2012; 57:459-70. [PMID: 23281062 DOI: 10.1002/mnfr.201200513] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 01/14/2023]
Abstract
SCOPE The intake of food rich in polyphenols is related to a lower incidence in almost all chronic degenerative diseases. However, relatively little is known about the molecular mechanisms involved in its antioxidant properties. The aim of this study was to determine whether the mechanism of action of polyphenols could be related to a modulation in energy uptake and metabolism, and further induced mitochondrial changes. METHODS AND RESULTS For this purpose, male C57BL6 mice were fed during 3 months with a tea-based beverage rich in polyphenols. Insulin sensitivity, tissue oxidative damage biomarkers, as well as energy-related signaling pathways were determined to evaluate its mechanism of action. As a result, a tissue- and protein-specific subtle reduction in oxidative damage was observed. Skeletal muscle showed mitochondrial changes in respiratory complexes and an increase in AMP-activated protein kinase α levels, suggesting reduced energy availability. These changes were also associated with adipose tissue cellular metabolism. This was confirmed by a decline in the potential of energy uptake, evidenced by a diminished intestinal and systemic absorption of carbohydrates together with an inhibition of insulin sensitivity. CONCLUSIONS Our results suggest that the mechanisms of action of green tea polyphenols may be related to their ability to modulate energy uptake leading to mitochondrial adaptations possibly responsible for the changes in protein oxidative damage.
Collapse
Affiliation(s)
- José C E Serrano
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Lleida, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cazarolli LH, Kappel VD, Pereira DF, Moresco HH, Brighente IMC, Pizzolatti MG, Silva FRMB. Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola. Fitoterapia 2012; 83:1176-83. [DOI: 10.1016/j.fitote.2012.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
|
35
|
The dietary flavonoids naringenin and quercetin acutely impair glucose metabolism in rodents possibly via inhibition of hypothalamic insulin signalling. Br J Nutr 2012; 109:1040-51. [DOI: 10.1017/s0007114512003005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Secondary metabolites of herbs and spices are widely used as an alternative strategy in the therapy of various diseases. The polyphenols naringenin, quercetin and curcumin have been characterised as anti-diabetic agents. Conversely, in vitro, naringenin and quercetin are described to inhibit phosphoinositide-3-kinase (PI3K), an enzyme that is essential for the neuronal control of whole body glucose homoeostasis. Using both in vitro and in vivo experiments, we tested whether the inhibitory effect on PI3K occurs in neurons and if it might affect whole body glucose homoeostasis. Quercetin was found to inhibit basal and insulin-induced phosphorylation of Akt (Ser473), a downstream target of PI3K, in HT-22 cells, whereas naringenin and curcumin had no effect. In Djungarian hamsters (Phodopus sungorus) naringenin and quercetin (10 mg/kg administered orally) diminished insulin-induced phosphorylation of Akt (Ser473) in the arcuate nucleus, indicating a reduction in hypothalamic PI3K activity. In agreement with this finding, glucose tolerance in naringenin-treated hamsters (oral) and mice (oral and intracerebroventricular) was reduced compared with controls. Dietary quercetin also impaired glucose tolerance, whereas curcumin was ineffective. Circulating levels of insulin and insulin-like growth factor-binding protein were not affected by the polyphenols. Oral quercetin reduced the respiratory quotient, suggesting that glucose utilisation was impaired after treatment. These data demonstrate that low doses of naringenin and quercetin acutely and potently impair glucose homoeostasis. This effect may be mediated by inhibition of hypothalamic PI3K signalling. Whether chronic impairments in glucose homoeostasis occur after long-term application remains to be identified.
Collapse
|
36
|
Kim GS, Park HJ, Woo JH, Kim MK, Koh PO, Min W, Ko YG, Kim CH, Won CK, Cho JH. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells. Altern Ther Health Med 2012; 12:31. [PMID: 22471389 PMCID: PMC3350436 DOI: 10.1186/1472-6882-12-31] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/03/2012] [Indexed: 01/06/2023]
Abstract
Background Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium flavonoids (CAF) on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells. Methods During adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein expression of adipogenesis-related genes was assayed. We examined the effect of CAF on level of phosphorylated Akt in 3T3-L1 cells treated with CAF at various concentrations during adipocyte differentiation. Results The insulin-induced expression of C/EBPβ and PPARγ mRNA and protein were significantly down-regulated in a dose-dependent manner following CAF treatment. CAF also dramatically decreased the expression of C/EBPα, which is essential for the acquisition of insulin sensitivity by adipocytes. Moreover, the expression of the aP2 and FAS genes, which are involved in lipid metabolism, decreased dramatically upon treatment with CAF. Interestingly, CAF diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9), which may reduce glucose uptake in response to insulin and lipid accumulation. Furthermore, CAF not only inhibited triglyceride accumulation during adipogenesis but also contributed to the lipolysis of adipocytes. Conclusions In the present study, we demonstrate that CAF suppressed adipogenesis in 3T3-L1 adipocytes. Our results indicated that CAF down-regulates the expression of C/EBPβ and subsequently inhibits the activation of PPARγ and C/EBPα. The anti-adipogenic activity of CAF was mediated by the inhibition of Akt activation and GSK3β phosphorylation, which induced the down-regulation of lipid accumulation and lipid metabolizing genes, ultimately inhibiting adipocyte differentiation.
Collapse
|
37
|
Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech Ageing Dev 2011; 133:1-10. [PMID: 22155175 DOI: 10.1016/j.mad.2011.11.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/11/2011] [Accepted: 11/19/2011] [Indexed: 01/18/2023]
Abstract
Various studies have demonstrated longevity effects of flavonoids, a major sub-group of plant polyphenolic compounds, in Caenorhabditis elegans. To better understand their structure-activity relationship in vivo we have used a comparative approach by exposing C. elegans to the structurally related flavonoids myricetin, quercetin, kaempferol and naringenin, and assessed their impact on lifespan and on putative modes of action. The bioavailability of the tested flavonoids was demonstrated by high-performance liquid chromatography with diode-array detection (HPLC/DAD) and a 2-aminoethyl diphenyl borate-based in vivo approach. While all flavonols increased lifespan in wild-type, only myricetin elongated the mev-1(kn1) lifespan, suggesting that the flavonols antioxidant action alone is not sufficient for longevity. Structural prerequisites of high antioxidant action in vitro were also essential to reduce the reactive oxygen species (ROS) load in vivo in C. elegans and were tested in isolated mouse muscle mitochondria. Since the insulin/IGF-like signaling (IIS) cascade is a key regulator of lifespan, all compounds were tested for the ability to cause nuclear translocation of the FOXO transcription factor DAF-16 and changes in target gene expression. An increased DAF-16 translocation and sod-3 promoter activity were observed with all flavonoids but was independent of their ROS scavenging capability and their effects on lifespan.
Collapse
|
38
|
Zhang WY, Lee JJ, Kim IS, Kim Y, Park JS, Myung CS. 7-O-methylaromadendrin stimulates glucose uptake and improves insulin resistance in vitro. Biol Pharm Bull 2011; 33:1494-9. [PMID: 20823563 DOI: 10.1248/bpb.33.1494] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The stimulation of glucose uptake into peripheral tissues is an important mechanism for the removal of glucose in blood and for the management of diabetes mellitus (DM). Since recent results have demonstrated the beneficial effects of flavonoids in relation to DM, this study was designed to examine the effects of 7-O-methylaromadendrin (7-O-MA), a flavonoid isolated from Inula viscosa, on glucose uptake into liver and fat tissue, and investigate the molecular mechanisms involved. 7-O-MA at 10 microM significantly stimulated insulin-induced glucose uptake measured by 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) in both human hepatocellular liver carcinoma (HepG2) cells and differentiated 3T3-L1 adipocytes. Adipocyte-specific fatty acid binding protein (aP2) gene expression was increased by 7-O-MA in adipocytes, and both gene and protein level of peroxisome proliferator-activated receptor gamma2 (PPARgamma2) was also increased. Moreover, 7-O-MA stimulated the reactivation of insulin-mediated phosphorylation of phosphatidylinositol 3-kinase (PI3K)-linked protein kinase B (Akt/PKB) and adenosine 5'-monophosphate-activated protein kinase (AMPK) in high glucose-induced, insulin-resistant HepG2 cells, and this effect was blocked by either LY294002, a PI3K inhibitor, or compound C, an AMPK inhibitor. Therefore, these results suggest that 7-O-MA might stimulate glucose uptake via PPARgamma2 activation and improve insulin resistance via PI3K and AMPK-dependent pathways, and be a potential candidate for the management of type 2 DM.
Collapse
Affiliation(s)
- Wei Yun Zhang
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Promoting the effect of chemical constituents from the flowers of Poacynum hendersonii on adipogenesis in 3T3-L1 cells. J Nat Med 2011; 66:39-48. [DOI: 10.1007/s11418-011-0549-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
|
40
|
Structural requirements of flavonoids for the adipogenesis of 3T3-L1 cells. Bioorg Med Chem 2011; 19:2835-41. [PMID: 21493073 DOI: 10.1016/j.bmc.2011.03.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
To search for a new class of antidiabetic compounds, effects of 44 flavonoids on the adipogenesis of 3T3-L1 cells were examined. Among them, 3,4',7-trimethylkaempferol, tetramethylkaempferol, and pentamethylquercetin concentration-dependently enhanced the accumulation of triglyceride, a marker of adipogenesis. With regard to structural requirements of flavonoids for the activity, it was fond that: (1) most flavonoids having hydroxy groups lacked the effect; (2) flavonols with methoxy groups showed stronger effects particularly those with a methoxy group at the 3-position; and (3) a methoxy group of flavonols at the B ring was also important. 3,4',7-Trimethylkaempferol, tetramethylkaempferol, and pentamethylquercetin significantly increased the amount of adiponectin released into the medium and the uptake of 2-deoxyglucose into the cells. Furthermore, tetramethylkaempferol and pentamethylquercetin also increased mRNA levels of adiponectin, glucose transporter 4 (GLUT4), and fatty acid-binding protein (aP2). Both compounds also increased the mRNA levels of peroxisome proliferator-activated receptor (PPAR)γ2 and CCAAT/enhancer-binding protein (C/EBP)α, β, and/or δ, although, different from troglitazone, they did not activate PPARγ directly in a nuclear receptor cofactor assay.
Collapse
|
41
|
Claussnitzer M, Skurk T, Hauner H, Daniel H, Rist MJ. Effect of flavonoids on basal and insulin-stimulated 2-deoxyglucose uptake in adipocytes. Mol Nutr Food Res 2011; 55 Suppl 1:S26-34. [PMID: 21280205 DOI: 10.1002/mnfr.201000372] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/29/2010] [Accepted: 12/14/2010] [Indexed: 11/06/2022]
Abstract
SCOPE The adipose tissue is a major site of insulin action and contributes substantially to energy homeostasis. Insulin increases the extraction of glucose from circulation into adipose tissue by recruiting the glucose transporter GLUT4 to the plasma membrane. It has been proposed that dietary flavonoids may interfere with glucose transport processes. METHODS AND RESULTS We have used murine 3T3-L1 adipocytes and isolated mature human adipocytes to assess the interaction of selected flavonoids with glucose uptake, both in the basal state and after insulin stimulation. Kinetic characterization of 2-deoxyglucose uptake in the basal state revealed in both cell types an apparent K(m) of around 8 mM with no change in affinity but a significant increase in maximal influx in the presence of insulin. A screening of representative flavonoids of different structural classes revealed the flavanone naringenin and the isoflavone daidzein to affect glucose transport significantly with half-maximal inhibition at concentrations of around 60-80 μM for basal and 70-110 μM for insulin-stimulated glucose uptake in both 3T3-L1 adipocytes and mature human adipocytes. CONCLUSION Considering attainable plasma concentrations of flavonoids in vivo, we assume that even under physiological conditions naringenin and daidzein could impair glucose removal from plasma, which may pose a risk to patients with diabetes mellitus.
Collapse
Affiliation(s)
- Melina Claussnitzer
- Else-Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, Freising, Germany
| | | | | | | | | |
Collapse
|
42
|
Tinworth KD, Harris PA, Sillence MN, Noble GK. Potential treatments for insulin resistance in the horse: A comparative multi-species review. Vet J 2010; 186:282-91. [DOI: 10.1016/j.tvjl.2009.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 08/21/2009] [Accepted: 08/28/2009] [Indexed: 01/11/2023]
|
43
|
Zygmunt K, Faubert B, MacNeil J, Tsiani E. Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res Commun 2010; 398:178-83. [PMID: 20558145 DOI: 10.1016/j.bbrc.2010.06.048] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 11/25/2022]
Abstract
Naringenin, a flavonoid found in high concentrations in grapefruit, has been reported to have antioxidant, antiatherogenic, and anticancer effects. Effects on lipid and glucose metabolism have also been reported. Naringenin is structurally similar to the polyphenol resveratrol, that has been reported to activate the SIRT1 protein deacetylase and to have antidiabetic properties. In the present study we examined the direct effects of naringenin on skeletal muscle glucose uptake and investigated the mechanism involved. Naringenin stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner. Maximum stimulation was seen with 75 microM naringenin for 2 h (192.8+/-24%, p<0.01), a response comparable to maximum insulin response (190.1+/-13%, p<0.001). Similar to insulin, naringenin did not increase glucose uptake in myoblasts indicating that GLUT4 glucose transporters may be involved in the naringenin-stimulated glucose uptake. In addition, naringenin did not have a significant effect on basal or insulin-stimulated Akt phosphorylation while significantly increased AMPK phosphorylation/activation. Furthermore, silencing of AMPK, using siRNA approach, abolished the naringenin-stimulated glucose uptake. The SIRT1 inhibitors nicotinamide and EX527 did not have an effect on naringenin-stimulated AMPK phosphorylation and glucose uptake. Our data show that naringenin increases glucose uptake by skeletal muscle cells in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Katarzyna Zygmunt
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1
| | | | | | | |
Collapse
|
44
|
Ueda M, Furuyashiki T, Yamada K, Aoki Y, Sakane I, Fukuda I, Yoshida KI, Ashida H. Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes. Food Funct 2010; 1:167-73. [DOI: 10.1039/c0fo00105h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: A molecular docking analysis. J Mol Model 2009; 16:311-26. [DOI: 10.1007/s00894-009-0547-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/11/2009] [Indexed: 11/25/2022]
|
46
|
Morikawa K, Nonaka M, Mochizuki H, Handa K, Hanada H, Hirota K. Naringenin and hesperetin induce growth arrest, apoptosis, and cytoplasmic fat deposit in human preadipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11030-11037. [PMID: 18980325 DOI: 10.1021/jf801965n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Citrus flavonoids are reported to be promising bioactive compounds against hyperlipidemia and lipid biosynthesis. However, the mechanism of the lipid lowering effect by flavonoids remains unknown. The present study examines the effect of some flavanones on the adipocytic conversion of the human preadipocyte cell line, AML-I. Among four structure-related flavanones including naringenin, naringenin-7-rhamnoglucoside (naringin), hesperetin, and hesperetin-7-rhamnoglucoside (hesperidin), the aglycones such as naringenin and hesperetin exhibited the growth arrest of AML-I cells. When the cells were examined by Annexin V-FITC staining method, it was noticed that growth arrest was induced by apoptotic cell death. In the study of apoptosis-related protein in the naringenin-treated cells, anti-apoptotic proteins such as p-Akt, NF-kappaB, and Bcl-2 were decreased, and pro-apoptotic protein Bad was accumulated by Western blot analysis. Interestingly, exposure of AML-I cells to naringenin or hesperetin during short-term cultures increased cytoplasmic lipid droplets by Sudan Black B staining. Furthermore, expression of fatty acid synthase (FAS) and peroxisome proliferator activated receptor (PPAR)-gamma was enhanced in naringenin-treated cells. These data suggest that apoptosis by flavanones does not inhibit the adipocytic conversion of AML-I preadipocytes. The result also indicates that adipocyte may not be a direct target for the lipid-lowering activity of the flavanones.
Collapse
Affiliation(s)
- Keiko Morikawa
- Department of Nutrition, Division of Clinical Nutrition, Sagami Women's University, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Ortiz-Andrade RR, Sánchez-Salgado JC, Navarrete-Vázquez G, Webster SP, Binnie M, García-Jiménez S, León-Rivera I, Cigarroa-Vázquez P, Villalobos-Molina R, Estrada-Soto S. Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes Metab 2008; 10:1097-104. [PMID: 18355329 DOI: 10.1111/j.1463-1326.2008.00869.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM The present investigation was designed to determine the in vivo antidiabetic effect of naringenin (NG) in normoglycaemic and diabetic rat models through blood glucose (GLU) measurements following acute and subchronic time periods. Possible modes of action of NG were investigated and its acute toxicity determined. METHODS Normoglycaemic and non-insulin-dependent diabetes mellitus (NIDDM) rat models were treated for acute and subchronic (5 days) time periods with 50 mg/kg/day of NG. Blood biochemical profiles were determined after 5 days of the treatment in normoglycaemic and NIDDM rats using commercial kits for GLU, triglycerides (TG), total cholesterol (CHOL) and high-density lipoprotein (HDL). In order to elucidate its antidiabetic mode of action, NG was administered intragastrically and an oral glucose tolerance test performed using GLU and sucrose (2 g/kg) as substrates. The inhibitory effect of a single concentration of NG (10 microM) on 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity in vitro was determined. Finally, the preclinical safety and tolerability of NG was determined by toxicological evaluation in mice and rats using Organization for Economic Cooperation and Development (OECD) protocols. RESULTS Intragastrically administered NG (50 mg/kg) induced a significant decrease in plasma GLU in normoglycaemic and NIDDM rat models (p < 0.05) following acute and subchronic time periods. After 5 days of administration, NG produced significant diminished blood GLU and TG levels in streptozotocin-nicotinamide-induced diabetic rats. The administration of NG to normal rats significantly increased the levels of TG, CHOL and HDL (p < 0.05). NG (5 and 50 mg/kg) induced a total suppression in the increase of plasma GLU levels after administration of substrates (p < 0.01), but NG did not produce inhibition of alpha-glucosidase activity in vitro. However, NG (10 microM) was shown to inhibit 11beta-HSD1 activity by 39.49% in a cellular enzyme assay. Finally, NG showed a Medium Lethal Dose LD(50) > 5000 mg/kg and ranking at level five based on OECD protocols. CONCLUSION Our findings suggest that NG may exert its antidiabetic effect by extra-pancreatic action and by suppressing carbohydrate absorption from intestine, thereby reducing the postprandial increase in blood GLU levels.
Collapse
Affiliation(s)
- R R Ortiz-Andrade
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nomura M, Takahashi T, Nagata N, Tsutsumi K, Kobayashi S, Akiba T, Yokogawa K, Moritani S, Miyamoto KI. Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells. Biol Pharm Bull 2008; 31:1403-9. [PMID: 18591783 DOI: 10.1248/bpb.31.1403] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We assessed the effects of different classes of flavonoids on insulin-stimulated 2-deoxy-D-[1-(3)H]glucose uptake by mouse MC3T3-G2/PA6 cells differentiated into mature adipose cells. Among the flavonoids examined, the flavones, apigenin and luteolin, the flavonols, kaempferol, quercetin and fisetin, an isoflavone, genistein, a flavanonol, silybin, and the flavanols, (-)-epigallocatechin gallate (EGCG) and theaflavins, significantly inhibited insulin-stimulated glucose uptake. Key structural features of flavonoids for inhibition of insulin-stimulated glucose uptake are the B-ring 4'- or 3',4'-OH group and the C-ring C2-C3 double bond of the flavones and flavonols, the A-ring 5-OH of isoflavones, and the galloyl group of EGCG and theaflavins. Luteolin significantly inhibits insulin-stimulated phosphorylation of insulin receptor-beta subunit (IR-beta), and apigenin, kaempferol, quercetin and fisetin, also tended to inhibit the IR-beta phosphorylation. On the other hand, isoflavones, flavanols or flavanonols did not affect insulin-stimulated IR-beta phosphorylation. Apigenin, luteolin, kaempferol, quercetin and fisetin also appeared to inhibit insulin-stimulated activation of Akt, a pivotal downstream effector of phosphatidylinositol 3-kinase (PI3K), and suppressed insulin-dependent translocation of a glucose transporter, (GLUT)4, into the plasma membrane. Although genistein, silybin, EGCG and theaflavins had no effect on the insulin-stimulated activation of Akt, they blocked insulin-dependent GLUT4 translocation. These results provide novel insights into the modulation by flavonoids of insulin's actions, including glucose uptake in adipocytes.
Collapse
Affiliation(s)
- Masaaki Nomura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pinent M, Bladé C, Salvadó MJ, Blay M, Pujadas G, Fernández-Larrea J, Arola L, Ardévol A. Procyanidin effects on adipocyte-related pathologies. Crit Rev Food Sci Nutr 2008; 46:543-50. [PMID: 16954063 DOI: 10.1080/10408390500354537] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Procyanidins, a class of flavonoids, have clear and well-defined beneficial effects against several pathologies including cardiovascular heart disease. Now, studies in vivo are revealing the effects of procyanidins against obesity, where they prevent weight gain and adipose tissue mass increase, and against diabetes and insulin resistance, where they act as antihiperglycemic agents. Several mechanisms may be responsible for these effects. One of these, due to the key role of adipose tissue in the development of obesity and insulin resistance, is their effect on adipocytes. In this review we compile the studies that indicate a protective role for procyanidins in obesity and insulin resistance, focusing on their effects on the adipocyte, where procyanidins modify lipid synthesis, lipid degradation, glucose uptake, and adipose differentiation.
Collapse
Affiliation(s)
- Montse Pinent
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Muthusamy VS, Anand S, Sangeetha KN, Sujatha S, Arun B, Lakshmi BS. Tannins present in Cichorium intybus enhance glucose uptake and inhibit adipogenesis in 3T3-L1 adipocytes through PTP1B inhibition. Chem Biol Interact 2008; 174:69-78. [PMID: 18534569 DOI: 10.1016/j.cbi.2008.04.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/12/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
Insulin resistance is a fundamental aspect for the etiology of non-insulin dependent diabetes mellitus (NIDDM) and has links with a wide array of secondary disorders including weight gain and obesity. The present study analyzes the effect of Cichorium intybus methanolic (CME) extract on glucose transport and adipocyte differentiation in 3T3-L1 cells by studying the radiolabelled glucose uptake and lipid accumulation assays, respectively. By performing detannification (CME/DT), the role of tannins present in CME on both the activities was evaluated. CME and CME/DT exhibited significant glucose uptake in 3T3-L1 adipocytes with a dose-dependent response. Glucose uptake profile in the presence of PI3K and IRTK inhibitors (Wortmannin and Genistein) substantiates the mechanism used by both the extracts. CME inhibited the differentiation of 3T3-L1 preadipocytes but failed to show glucose uptake in inhibitor treated cells. The activity exhibited by CME/DT is exactly vice versa to CME. Furthermore, the findings from PTP1B inhibition assay, mRNA and protein expression analysis revealed the unique behavior of CME and CME/DT. The duality exhibited by C. intybus through adipogenesis inhibition and PPARgamma up regulation is of interest. Current observation concludes that the activities possessed by C. intybus are highly desirable for the treatment of NIDDM because it reduces blood glucose levels without inducing adipogenesis in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- V S Muthusamy
- Centre for Biotechnology, Tissue Culture and Drug Discovery Lab, Anna University, Chennai 600025, Tamilnadu, India.
| | | | | | | | | | | |
Collapse
|