1
|
Balhara A, Singh S. PBPK Analysis to Study the Impact of Genetic Polymorphism of NAT2 on Drug-Drug Interaction Potential of Isoniazid. Pharm Res 2021; 38:1485-1496. [PMID: 34518943 DOI: 10.1007/s11095-021-03095-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE Isoniazid (INH) is prescribed both for the prophylaxis as well as the treatment of tuberculosis. It is primarily metabolized through acetylation by a highly polymorphic enzyme, N-acetyl transferase 2 (NAT2), owing to which significant variable systemic drug levels have been reported among slow and rapid acetylators. Furthermore, many drugs, like phenytoin, diazepam, triazolam, etc., are known to show toxic manifestation when co-administered with INH and it happens prominently among slow acetylators. Additionally, it is revealed in in vitro inhibition studies that INH carries noteworthy potential to inhibit CYP2C19 and CYP3A4 enzymes. However, CYP inhibitory effect of INH gets masked by opposite enzyme-inducing effect of rifampicin, when used in combination. Thus, distinct objective of this study was to fill the knowledge gaps related to gene-drug-drug interactions (DDI) potential of INH when given alone for prophylactic purpose. METHODS Whole body-PBPK models of INH were developed and verified for both slow and fast acetylators. The same were then utilized to carry out prospective DDI studies with CYP2C19 and CYP3A4 substrates in both acetylator types. RESULTS The results highlighted likelihood of significant higher blood levels of CYP2C19 and CYP3A4 substrate drugs in subjects receiving INH pre-treatment. It was also re-established that interaction was more likely in slow acetylators, as compared to rapid acetylators. CONCLUSION The novel outcome of the present study is the indication that prescribers should give careful consideration while advising CYP2C19 and CYP3A4 substrate drugs to subjects who are on prophylaxis INH therapy, and are slow to metabolic acetylation.
Collapse
Affiliation(s)
- Ankit Balhara
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Punjab, 160062, India
| | - Saranjit Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Punjab, 160062, India.
| |
Collapse
|
2
|
Abrudan MB, Popa DS, Muntean DM, Gheldiu AM, Vlase L. Pharmacokinetic interactions study between carvedilol and some antidepressants in rat liver microsomes - a comparative study. Med Pharm Rep 2019; 92:158-164. [PMID: 31086844 PMCID: PMC6510361 DOI: 10.15386/mpr-1225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background and aims Cardiovascular diseases and depressive disorders are some of the most frequent diseases. The probability of concomitant prescription of antihypertensive and antidepressive medication is increasing. The aim of this study was to investigate the enzyme inhibition by bupropion, sertraline and fluvoxamine on the metabolism of carvedilol using rat pooled liver microsomes and to assess the importance of these interactions from the pharmacokinetic mechanism point of view. Methods Two substrate concentrations (0.5 and 1 μM) and four inhibitor concentrations (0, 0.1, 0.75 and 1.5 μM) were used for each tested inhibitor. Results The results of the in vitro experiments showed a significant decrease of the metabolic rate of carvedilol to 4′-hydroxyphenyl carvedilol, for all tested inhibitors, when the inhibitor was added to the incubation mixture containing the substrate. Moreover, an increase of the area under the concentration-time curve for carvedilol was observed after incubation with each tested inhibitor compared with the control state (no inhibitor). The most potent inhibitor was sertraline, followed by fluvoxamine and bupropion. Conclusion The co-administration of tested antidepressants led to a significant alteration of carvedilol’s metabolism in vitro. CYP2D6 inhibition is the main pharmacokinetic mechanism that can explain these drug-drug interactions, with possible clinical implications.
Collapse
Affiliation(s)
- Maria Bianca Abrudan
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniela Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ana Maria Gheldiu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Couto GK, Fernandes RO, Lacerda D, Campos-Carraro C, Türck P, Bianchi SE, Ferreira GD, Brum IS, Bassani VL, Belló-Klein A, Araujo ASR. Profile of pterostilbene-induced redox homeostasis modulation in cardiac myoblasts and heart tissue. J Biosci 2018. [DOI: 10.1007/s12038-018-9815-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Atypical Kinetics and Albumin Effect of Glucuronidation of 5-n-Butyl-4-{4-[2-(1H-tetrazole-5- yl)-1H-pyrrol-1-yl]phenylmethyl}-2,4-dihydro-2-(2,6- dichlorophenyl)-3H-1,2,4-triazol-3-one, a Novel Nonpeptide Angiotensin Type 1 Receptor Antagonist, in Liver Microsomes and UDP-Glucuronosyl-transferase. Molecules 2018; 23:molecules23030688. [PMID: 29562678 PMCID: PMC6017351 DOI: 10.3390/molecules23030688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/08/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Ib is a new nonpeptide AT1 receptor antagonist, which plays an active role in cardiovascular protection. Ib monoglucuronide has been identified as its main metabolite. A detailed study of Ib glucuronidation is important for predicting potential DDI. Besides, the elucidation of the “BSA effect” in Ib glucuronidation would make obtained kinetic parameters more predictive in IVIVE. “BSA effect” means that there is a significant change in in vitro kinetic parameters when generated from incubations performed in the presence of bovine serum albumin (BSA). Five UGTs (UGT1A3, UGT2B4, UGT2B7, UGT1A9 and UGT1A8) were identified that produced abundant Ib monoglucuronide, especially UGT1A3. We investigated Ib glucuronidation in liver microsomes from different species (rat, dog, human) and in five identified major human UGTs. Ib glucuronidation in liver microsomes and recombinant human UGTs all showed substrate inhibition kinetics. DLM showed the strongest affinity and activity, HLM showed the lowest affinity, and RLM showed the weakest activity. The addition of BSA did not alter the enzyme kinetics, but significantly altered enzyme kinetic parameters resulting in a reduction in Km value and an increase in CLint value. However, high concentrations of BSA could significantly attenuate this positive effect on enzyme affinity and activity, and the effect of BSA on the Vmax of Ib glucuronidation was opposite in different enzyme sources. In conclusion, this study demonstrated the substrate inhibition kinetics of Ib glucuronidation in the liver metabolism and the effect of BSA on its kinetic parameters, in order to provide more accurate in vitro data for in vivo prediction.
Collapse
|
5
|
Wang C, Tanataweethum N, Karnik S, Bhushan A. Novel Microfluidic Colon with an Extracellular Matrix Membrane. ACS Biomater Sci Eng 2018; 4:1377-1385. [DOI: 10.1021/acsbiomaterials.7b00883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chengyao Wang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Nida Tanataweethum
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Sonali Karnik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
6
|
Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res 2017; 40:1356-1379. [DOI: 10.1007/s12272-017-0976-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
|
7
|
Esposito S, Canevini MP, Principi N. Complications associated with antibiotic administration: neurological adverse events and interference with antiepileptic drugs. Int J Antimicrob Agents 2017; 50:1-8. [PMID: 28414069 DOI: 10.1016/j.ijantimicag.2017.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/28/2017] [Indexed: 11/19/2022]
Abstract
Antibiotic use is associated with toxic effects involving the peripheral and central nervous systems and it may interfere with antiepileptic drugs, causing significant variations in their serum levels and activity. Prompt identification of neurological complications during antibiotic therapy is important in order to make appropriate modifications to medication. Characteristics of the drug and the patient, including age and underlying diseases, may favour these complications. The main aim of this study was to review the neurological adverse events that may follow antibiotic administration, the mechanisms that cause them, and the possibility of prevention and treatment. Moreover, the interference of antibiotics with serum levels and the activity of antiepileptic drugs are discussed. The results demonstrate that antibiotic-associated adverse events involving the nervous system are relatively uncommon and are only rarely severe and irreversible, although neurotoxicity has been reported for several antibiotics. Moreover, for patients receiving antiepileptic drugs, monitoring of drug serum levels to avoid the risk of toxicity or inadequate therapy is mandatory during antibiotic treatment. Areas for future research include the effects of combined antibiotic therapies as well as multiple antiepileptic drugs in study populations with an adequate sample size, including neonates and infants, patients with pharmacoresistant epilepsy and elderly patients.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Università degli Studi di Perugia, Perugia, Italy.
| | - Maria Paola Canevini
- Child Neurology Unit-Epilepsy Center, San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Amano H, Kazamori D, Itoh K. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities. Biol Pharm Bull 2017; 39:1701-1707. [PMID: 27725449 DOI: 10.1248/bpb.b16-00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC50>1 mM) on the activities of five major isoforms of human CYP in vitro.
Collapse
Affiliation(s)
- Hirotaka Amano
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd
| | | | | |
Collapse
|
9
|
Significant inhibitory impact of dibenzyl trisulfide and extracts of Petiveria alliacea on the activities of major drug-metabolizing enzymes in vitro: An assessment of the potential for medicinal plant-drug interactions. Fitoterapia 2016; 111:138-46. [PMID: 27105957 DOI: 10.1016/j.fitote.2016.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/10/2023]
Abstract
Dibenzyl trisulfide (DTS) is the major active ingredient expressed in Petiveria alliacea L., a shrub widely used for a range of conditions, such as, arthritis, asthma and cancer. Given its use alone and concomitantly with prescription medicines, we undertook to investigate its impact on the activities of important drug metabolizing enzymes, the cytochromes P450 (CYP), a key family of enzymes involved in many adverse drug reactions. DTS and seven standardized extracts from the plant were assessed for their impact on the activities of CYPs 1A2, 2C19, 2C9, 2D6 and 3A4 on a fluorometric assay. DTS revealed significant impact against the activities of CYPs 1A2, 2C19 and 3A4 with IC50 values of 1.9, 4.0 and 3.2μM, respectively, which are equivalent to known standard inhibitors of these enzymes (furafylline, and tranylcypromine), and the most potent interaction with CYP1A2 displayed irreversible enzyme kinetics. The root extract, drawn with 96% ethanol (containing 2.4% DTS), displayed IC50 values of 5.6, 3.9 and 4.2μg/mL respectively, against the same isoforms, CYPs 1A2, 2C19 and 3A4. These investigations identify DTS as a valuable CYP inhibitor and P. alliacea as a candidate plant worthy of clinical trials to confirm the conclusions that extracts yielding high DTS may lead to clinically relevant drug interactions, whilst extracts yielding low levels of DTS, such as aqueous extracts, are unlikely to cause adverse herb-drug interactions.
Collapse
|
10
|
Hanley MJ, Masse G, Harmatz JS, Cancalon PF, Dolnikowski GG, Court MH, Greenblatt DJ. Effect of blueberry juice on clearance of buspirone and flurbiprofen in human volunteers. Br J Clin Pharmacol 2013; 75:1041-52. [PMID: 22943633 DOI: 10.1111/j.1365-2125.2012.04450.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/26/2012] [Indexed: 12/20/2022] Open
Abstract
AIM The present study evaluated the possibility of drug interactions involving blueberry juice (BBJ) and substrate drugs whose clearance is dependent on cytochromes P4503A (CYP3A) and P4502C9 (CYP2C9). METHODS A 50:50 mixture of lowbush and highbush BBJ was evaluated in vitro as an inhibitor of CYP3A activity (hydroxylation of triazolam and dealkylation of buspirone) and of CYP2C9 activity (flurbiprofen hydroxylation) using human liver microsomes. In clinical studies, clearance of oral buspirone and oral flurbiprofen was studied in healthy volunteers with and without co-treatment with BBJ. RESULTS BBJ inhibited CYP3A and CYP2C9 activity in vitro, with 50% inhibitory concentrations (IC50 ) of less than 2%, but without evidence of mechanism-based (irreversible) inhibition. Grapefruit juice (GFJ) also inhibited CYP3A activity, but inhibitory potency was increased by pre-incubation, consistent with mechanism-based inhibition. In clinical studies, GFJ significantly increased area under the plasma concentration-time curve (AUC) for the CYP3A substrate buspirone. The geometric mean ratio (GMR = AUC with GFJ divided by AUC with water) was 2.12. In contrast, the effect of BBJ (GMR = 1.39) was not significant. In the study of flurbiprofen (CYP2C9 substrate), the positive control inhibitor fluconazole significantly increased flurbiprofen AUC (GMR = 1.71), but BBJ had no significant effect (GMR = 1.03). CONCLUSION The increased buspirone AUC associated with BBJ is quantitatively small and could have occurred by chance. BBJ has no effect on flurbiprofen AUC. The studies provide no evidence for concern about clinically important pharmacokinetic drug interactions of BBJ with substrate drugs metabolized by CYP3A or CYP2C9.
Collapse
Affiliation(s)
- Michael J Hanley
- Sackler Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
El Mouelhi M, Worley DJ, Kuzmak B, Destefano AJ, Thompson GA. Influence of Azimilide on CYP2C19-Mediated Metabolism. J Clin Pharmacol 2013; 44:373-8. [PMID: 15051744 DOI: 10.1177/0091270004263469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to assess the influence of multiple-dose oral administration of azimilide dihydrochloride on CYP2C19-mediated metabolism. A two-period, randomized crossover study was conducted in 40 healthy male subjects who were phenotyped as extensive CYP2C19 metabolizers. Oral doses of placebo or 125 mg of azimilide dihydrochloride were administered every 12 hours for 3 days, followed by every 24 hours for 5 days; 20 mg omeprazole was coadministered on Day 8. Blood or plasma samples were obtained over 24 hours and analyzed for azimilide or omeprazole/5-hydroxyomeprazole using high-performance liquid chromatography with tandem mass spectrometry. Data were analyzed using "noncompartmental" analysis. Azimilide blood concentrations observed in this study were similar to those previously observed at steady state in patients. Based on AUC(m)/AUC(p) for omeprazole, azimilide does not significantly inhibit CYP2C19-mediated metabolism (90% confidence interval [CI] = 104%-111%). For 5-hydroxyomeprazole, no significant changes in pharmacokinetics were observed. For omeprazole, a statistically significant decrease ( approximately 12%) was observed for AUC. However, this change was small and is not expected to be clinically important since the CI was contained within those used to establish bioequivalence. These results indicate that azimilide does not inhibit CYP2C19-mediated metabolism. Since this isozyme had the lowest in vitro IC(50) values for the cytochrome P450s most commonly involved with the metabolism of drugs (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4), azimilide-related drug interactions mediated via these isozymes are not anticipated.
Collapse
|
12
|
Hanley MJ, Masse G, Harmatz JS, Court MH, Greenblatt DJ. Pomegranate juice and pomegranate extract do not impair oral clearance of flurbiprofen in human volunteers: divergence from in vitro results. Clin Pharmacol Ther 2012; 92:651-7. [PMID: 23047652 DOI: 10.1038/clpt.2012.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nutrient interactions with prescription drugs are a topic of ongoing basic and clinical research. Pomegranate juice and a 1-g capsule containing pomegranate extract were evaluated in vitro and in vivo as inhibitors of cytochrome P450 2C9 (CYP2C9), with flurbiprofen serving as the index substrate. Fluconazole was the positive control inhibitor. The in vitro 50% inhibitory concentration (IC(50)) values for pomegranate juice and extract were below 1% (vol/vol), with no evidence of mechanism-based (irreversible) inhibition. In clinical studies, flurbiprofen pharmacokinetics were unchanged by pomegranate juice or extract as compared to a low-polyphenol placebo control beverage. However, fluconazole significantly reduced the oral clearance of flurbiprofen. Despite inhibition of CYP2C9 in vitro, pomegranate juice and extract had no effect on CYP2C9 activity in human subjects, and can be consumed by patients taking CYP2C9 substrate drugs with negligible risk of a pharmacokinetic interaction.
Collapse
Affiliation(s)
- M J Hanley
- Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
13
|
Sevrioukova IF, Poulos TL. Understanding the mechanism of cytochrome P450 3A4: recent advances and remaining problems. Dalton Trans 2012; 42:3116-26. [PMID: 23018626 DOI: 10.1039/c2dt31833d] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytochromes P450 (CYPs) represent a diverse group of heme-thiolate proteins found in almost all organisms. CYPs share a common protein fold but differ in substrate selectivity and catalyze a wide variety of monooxygenation reactions via activation of molecular oxygen. Among 57 human P450s, the 3A4 isoform (CYP3A4) is the most abundant and the most important because it metabolizes the majority of administered drugs. A remarkable feature of CYP3A4 is its extreme promiscuity in substrate specificity and cooperative substrate binding, which often leads to undesirable drug-drug interactions and toxic side effects. Owing to its importance in drug development and therapy, CYP3A4 has been the most extensively studied mammalian P450. In this review we provide an overview on recent progress and remaining problems in the CYP3A4 research.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
14
|
Quintieri L, Palatini P, Moro S, Floreani M. Inhibition of cytochrome P450 2C8-mediated drug metabolism by the flavonoid diosmetin. Drug Metab Pharmacokinet 2012; 26:559-68. [PMID: 21791871 DOI: 10.2133/dmpk.dmpk-11-rg-048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aim of this study was to assess the effects of diosmetin and hesperetin, two flavonoids present in various medicinal products, on CYP2C8 activity of human liver microsomes using paclitaxel oxidation to 6α-hydroxy-paclitaxel as a probe reaction. Diosmetin and hesperetin inhibited 6α-hydroxy-paclitaxel production in a concentration-dependent manner, diosmetin being about 16-fold more potent than hesperetin (mean IC(50) values 4.25 ± 0.02 and 68.5 ± 3.3 µM for diosmetin and hesperetin, respectively). Due to the low inhibitory potency of hesperetin, we characterized the mechanism of diosmetin-induced inhibition only. This flavonoid proved to be a reversible, dead-end, full inhibitor of CYP2C8, its mean inhibition constant (K(i)) being 3.13 ± 0.11 µM. Kinetic analysis showed that diosmetin caused mixed-type inhibition, since it significantly decreased the V(max) (maximum velocity) and increased the K(m) value (substrate concentration yielding 50% of V(max)) of the reaction. The results of kinetic analyses were consistent with those of molecular docking simulation, which showed that the putative binding site of diosmetin coincided with the CYP2C8 substrate binding site. The demonstration that diosmetin inhibits CYP2C8 at concentrations similar to those observed after in vivo administration (in the low micromolar range) is of potential clinical relevance, since it may cause pharmacokinetic interactions with co-administered drugs metabolized by this CYP.
Collapse
Affiliation(s)
- Luigi Quintieri
- Department of Pharmacology and Anaesthesiology, University of Padova, Italy
| | | | | | | |
Collapse
|
15
|
Wattanachai N, Tassaneeyakul W, Rowland A, Elliot DJ, Bowalgaha K, Knights KM, Miners JO. Effect of albumin on human liver microsomal and recombinant CYP1A2 activities: impact on in vitro-in vivo extrapolation of drug clearance. Drug Metab Dispos 2012; 40:982-9. [PMID: 22331994 DOI: 10.1124/dmd.111.044057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Long-chain unsaturated fatty acids inhibit several cytochrome P450 and UDP-glucuronosyltransferase (UGT) enzymes involved in drug metabolism, including CYP2C8, CYP2C9, UGT1A9, UGT2B4, and UGT2B7. Bovine serum albumin (BSA) enhances these cytochrome P450 and UGT activities by sequestering fatty acids that are released from membranes, especially with human liver microsomes (HLM) as the enzyme source. Here, we report the effects of BSA on CYP1A2-catalyzed phenacetin (PHEN) O-deethylation and lidocaine (LID) N-deethylation using HLM and Escherichia coli-expressed recombinant human CYP1A2 (rCYP1A2) as the enzyme sources. BSA (2% w/v) reduced (p < 0.05) the K(m) values of the high-affinity components of human liver microsomal PHEN and LID deethylation by approximately 70%, without affecting V(max). The K(m) (or S(50)) values for PHEN and LID deethylation by rCYP1A2 were reduced to a similar extent. A fatty acid mixture, comprising 3 μM concentrations each of oleic acid and linoleic acid plus 1.5 μM arachidonic acid, doubled the K(m) value for PHEN O-deethylation by rCYP1A2. Inhibition was reversed by the addition of BSA. K(i) values for the individual fatty acids ranged from 4.7 to 16.7 μM. Single-point in vitro-in vivo extrapolation (IV-IVE) based on the human liver microsomal kinetic parameters obtained in the presence, but not absence, of BSA predicted in vivo hepatic clearances of PHEN O-deethylation and LID N-deethylation that were comparable to values reported in humans, although in vivo intrinsic clearances were underpredicted. Prediction of the in vivo clearances of the CYP1A2 substrates observed here represents an improvement on other experimental systems used for IV-IVE.
Collapse
Affiliation(s)
- Nitsupa Wattanachai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | |
Collapse
|
16
|
He X, Luo X, Liu Z, Hu G, Cheng Z. Identification of the human liver cytochrome P450 isoenzymes responsible for the 5-methylhydroxylation of the novel anti-fibrotic drug AKF-PD. Xenobiotica 2011; 41:844-50. [DOI: 10.3109/00498254.2011.589480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Kaneko A, Kato M, Endo C, Nakano K, Ishigai M, Takeda K. Prediction of clinical CYP3A4 induction using cryopreserved human hepatocytes. Xenobiotica 2010; 40:791-9. [DOI: 10.3109/00498254.2010.517277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Development and validation of a rapid and sensitive assay for simultaneous quantification of midazolam, 1'-hydroxymidazolam, and 4-hydroxymidazolam by liquid chromatography coupled to tandem mass-spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1629-33. [PMID: 20434409 DOI: 10.1016/j.jchromb.2010.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/20/2010] [Accepted: 04/03/2010] [Indexed: 02/04/2023]
Abstract
Midazolam is an ultra short acting benzodiazepine derivative and a specific probe for phenotyping cytochrome P450 (P450) 3A4/5 activity. A rapid, sensitive, and selective LC-MS/MS method was developed for simultaneous quantitation of midazolam and its metabolites (1'-hydroxymidazolam and 4-hydroxymidazolam). Deuterated (D5) analog of midazolam was utilized as an internal standard. Sample preparation either from human plasma (100 microL) or liver microsomal incubations involved a simple protein precipitation using acetonitrile (900 microL) with an average recovery of >90% for all compounds. The chromatographic separation was achieved using Zorbax-SB Phenyl, Rapid Resolution HT (2.1 mm x 100 mm, 3.5 microm) and a gradient elution with 10 mM ammonium acetate in 10% methanol (A) and acetonitrile (B). The flow rate was 0.25 mL/min and total run time was 5.5 min. Calibration curves were linear over the concentration range of 0.100-250 ng/mL. The lower limit of quantitation (LLOQ) was 0.1 ng/mL for all three analytes. The accuracy and precision, estimated at LLOQ and three concentration levels of quality control samples in six replicates, were within 85-115%. In conclusion, a robust, simple and highly sensitive analytical method was developed and validated for the analysis of midazolam and its metabolites. This method is suitable for characterizing the P450 3A4/5 activity in vitro or in human pharmacokinetic studies allowing administration of smaller doses of midazolam.
Collapse
|
19
|
von Moltke LL, Weemhoff JL, Bedir E, Khan IA, Harmatz JS, Goldman P, Greenblatt DJ. Inhibition of human cytochromes P450 by components of Ginkgo biloba. J Pharm Pharmacol 2010; 56:1039-44. [PMID: 15285849 DOI: 10.1211/0022357044021] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The extraction, isolation and characterization of 29 natural products contained in Ginkgo biloba have been described, which we have now tested for their in-vitro capacity to inhibit the five major human cytochrome P450 (CYP) isoforms in human liver microsomes. Weak or negligible inhibitory activity was found for the terpene trilactones (ginkgolides A, B, C and J, and bilobalide), and the flavonol glycosides. However 50% inhibitory activity (IC50) was found at concentrations less than 10 μg mL−1 for the flavonol aglycones (kaempferol, quercetin, apigenin, myricetin, tamarixetin) with CYP1A2 and CYP3A. Quercetin, the biflavone amentoflavone, sesamin, as well as (Z,Z)-4,4′-(1,4-pentadiene-1,5-diyl)diphenol and 3-nonadec-8-enyl-benzene-1,2-diol, were also inhibitors of CYP2C9. The IC50 of amentoflavone for CYP2C9 was 0.019 μg mL−1 (0.035 μm). Thus, the principal components of Ginkgo biloba preparations in clinical use (terpene trilactones and flavonol glycosides) do not significantly inhibit these human CYPs in-vitro. However, flavonol aglycones, the biflavonol amentoflavone and several other non-glycosidic constituents are significant in-vitro inhibitors of CYP. The clinical importance of these potential inhibitors will depend on their amounts in ginkgo preparations sold to the public, and the extent to which their bioavailability allows them to reach the CYP enzymes in-situ.
Collapse
Affiliation(s)
- Lisa L von Moltke
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gwak HS, Oh JH, Han HK. Effects of non-steroidal anti-inflammatory drugs on the pharmacokinetics and elimination of aciclovir in rats. J Pharm Pharmacol 2010; 57:393-8. [PMID: 15807996 DOI: 10.1211/0022357055533] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
This study aims to investigate the effect of commonly used non-steroidal anti-inflammatory drugs (NSAIDs) on the pharmacokinetics and the renal elimination of aciclovir in rats. Pharmacokinetic parameters were determined following an intravenous administration of aciclovir (5 mg kg−1) to rats in the presence and absence of ketoprofen or naproxen (25 mg kg−1). Compared with the control (given aciclovir alone), pre-treatment with ketoprofen or naproxen 30 min before aciclovir administration significantly altered the pharmacokinetics of aciclovir. Renal clearance of aciclovir was reduced by approximately two fold in the presence of ketoprofen or naproxen. Consequently, the systemic exposure (AUC) to aciclovir in the rats pre-treated with ketoprofen or naproxen was significantly (P < 0.05) higher than that from the control group given aciclovir alone. Furthermore, the mean terminal plasma half-life of aciclovir was enhanced by 4–5 fold by pre-treatment with ketoprofen or naproxen. These results suggest that NSAIDs, such as ketoprofen and naproxen, are effective in altering the pharmacokinetics of aciclovir by inhibiting the organic anion transporter-mediated tubular secretion of aciclovir. Therefore, concomitant use of ketoprofen or naproxen with aciclovir should require close monitoring for clinical consequence of potential drug interaction.
Collapse
Affiliation(s)
- Hye-Sun Gwak
- College of Pharmacy, Ewha Woman's University, Daehyun-dong, Seoul, Korea
| | | | | |
Collapse
|
21
|
Gorman GS, Coward L, Kerstner-Wood C, Freeman L, Hebert CD, Kapetanovic IM. In-vitro and in-vivo metabolic studies of the candidate chemopreventative pentamethylchromanol using liquid chromatography/tandem mass spectrometry. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.10.0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
This study focuses on the in-vitro metabolic profiles of pentamethyl-chromanol in human, rat, dog and non-human primates, and characterizes the associated metabolic kinetics and specific human isozymes responsible for metabolism. Additional investigations compare in-vitro data with in-vivo metabolic data from rats and dogs.
Methods
In-vitro metabolites were generated from commercially available microsomes, S9 fractions and cytochrome P450 isozymes. Reaction mixtures were analysed using liquid chromatography/tandem mass spectrometry for metabolite identification, stability, pheno-typing and kinetic profiles. Plasma samples were collected from 28-day toxicology studies in rats and dogs, and analysed using the same methodology as for the identification of in-vitro metabolites.
Key findings
Samples from in-vitro experiments produced a total of eight identified metabolites while five were observed in the in-vivo samples. Kinetic analysis of metabolites in human microsomes generated Michaelis constants (KM) ranging from 10.9 to 104.9 μM. Pentamethylchromanol metabolic stability varied by species and multiple isozymes were identified for the observed biotransformation pathways. Pentamethylchromanol is susceptible to multiple metabolic pathways and differential metabolic stability, which is species dependent.
Conclusions
In-vitro metabolism was not a strong predictor of in-vivo metabolism for the samples assays but showed glucuronidation and sulfation as common biotransformation pathways.
Collapse
Affiliation(s)
- Gregory S Gorman
- Toxicology and Bioanalytical Science Department, Southern Research Institute, Birmingham, AL, USA
| | - Lori Coward
- Toxicology and Bioanalytical Science Department, Southern Research Institute, Birmingham, AL, USA
| | - Corenna Kerstner-Wood
- Toxicology and Bioanalytical Science Department, Southern Research Institute, Birmingham, AL, USA
| | - Lea Freeman
- Toxicology and Bioanalytical Science Department, Southern Research Institute, Birmingham, AL, USA
| | - Charles D Hebert
- Toxicology and Bioanalytical Science Department, Southern Research Institute, Birmingham, AL, USA
| | - Izet M Kapetanovic
- Chemoprevention Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
22
|
Zhang X, Galinsky RE, Kimura RE, Quinney SK, Jones DR, Hall SD. Inhibition of CYP3A by erythromycin: in vitro-in vivo correlation in rats. Drug Metab Dispos 2010; 38:61-72. [PMID: 19797607 DOI: 10.1124/dmd.109.028290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The prediction of in vivo drug-drug interactions from in vitro enzyme inhibition parameters remains challenging, particularly when time-dependent inhibition occurs. This study was designed to examine the accuracy of in vitro-derived parameters for the prediction of inhibition of CYP3A by erythromycin (ERY). Chronically cannulated rats were used to estimate the reduction in in vivo and in vitro intrinsic clearance (CL(int)) of midazolam (MDZ) after single and multiple doses of ERY; in vitro recovery of CL(int) was determined at 1, 2, 3, and 4 days after discontinuation of ERY. Enzyme inhibition parameters (k(inact), K(I), and K(i)) of ERY were estimated in vitro by using untreated rat liver microsomes. In vivo enzyme kinetic analysis indicated that single and multiple doses of ERY (150 mg/kg i.v. infusion over 4 h) reduced MDZ CL(int) by reversible and irreversible mechanisms, respectively. CYP3A inactivation after multiple doses of ERY treatment reflected metabolic intermediate complex formation without a significant change in hepatic CYP3A2 mRNA. A physiologically based pharmacokinetic model of the interaction between ERY and MDZ predicted a 2.6-fold decrease in CYP3A activity after repeated ERY treatment using in vitro-estimated enzyme inhibition parameters and in vivo degradation half-life of the enzyme (20 + or - 6 h). The observed -fold decreases were 2.3-fold and 2.1-fold for the in vitro-estimated CYP3A activity and the in vivo CL(int), respectively. This study demonstrates that in vivo DDIs are predictable from in vitro data when the appropriate model and parameter estimates are available.
Collapse
Affiliation(s)
- Xin Zhang
- Departments of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Purdue University, West Lafayette, Indiana.
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Xu L, Chen Y, Pan Y, Skiles GL, Shou M. Prediction of human drug-drug interactions from time-dependent inactivation of CYP3A4 in primary hepatocytes using a population-based simulator. Drug Metab Dispos 2009; 37:2330-9. [PMID: 19773538 DOI: 10.1124/dmd.108.025494] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Time-dependent inactivation (TDI) of human cytochromes P450 3A4 (CYP3A4) is a major cause of clinical drug-drug interactions (DDIs). Human liver microsomes (HLM) are commonly used as an enzyme source for evaluating the inhibition of CYP3A4 by new chemical entities. The inhibition data can then be extrapolated to assess the risk of human DDIs. Using this approach, under- and overpredictions of in vivo DDIs have been observed. In the present study, human hepatocytes were used as an alternative to HLM. Hepatocytes incorporate the effects of other mechanisms of drug metabolism and disposition (i.e., phase II enzymes and transporters) that may modulate the effects of TDI on clinical DDIs. The in vitro potency (K(I) and k(inact)) of five known CYP3A4 TDI drugs (clarithromycin, diltiazem, erythromycin, verapamil, and troleandomycin) was determined in HLM (pooled, n = 20) and hepatocytes from two donors (D1 and D2), and the results were extrapolated to predict in vivo DDIs using a Simcyp population trial-based simulator. Compared with observed DDIs, the predictions derived from HLM appeared to be overestimated. The predictions based on TDI measured in hepatocytes were better correlated with the DDIs (n = 37) observed in vivo (R(2) = 0.601 for D1 and 0.740 for D2) than those from HLM (R(2) = 0.451). In addition, with the use of hepatocytes a greater proportion of the predictions were within a 2-fold range of the clinical DDIs compared with using HLM. These results suggest that DDI predictions from CYP3A4 TDI kinetics in hepatocytes could provide an alternative approach to balance HLM-based predictions that can sometimes substantially overestimate DDIs and possibly lead to erroneous conclusions about clinical risks.
Collapse
Affiliation(s)
- Lilly Xu
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, CA 91320-1799, USA
| | | | | | | | | |
Collapse
|
25
|
Kaneko A, Kato M, Sekiguchi N, Mitsui T, Takeda K, Aso Y. In vitromodel for the prediction of clinical CYP3A4 induction using HepaRG cells. Xenobiotica 2009; 39:803-10. [DOI: 10.3109/00498250903184018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Krämer S, Testa B. The Biochemistry of Drug Metabolism - An Introduction. Chem Biodivers 2009; 6:1477-660, table of contents. [DOI: 10.1002/cbdv.200900233] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Johnson TN, Kerbusch T, Jones B, Tucker GT, Rostami-Hodjegan A, Milligan PA. Assessing the efficiency of mixed effects modelling in quantifying metabolism based drug-drug interactions: usingin vitrodata as an aid to assess study power. Pharm Stat 2009; 8:186-202. [DOI: 10.1002/pst.373] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Ritonavir Greatly Impairs CYP3A Activity in HIV Infection With Chronic Viral Hepatitis. J Acquir Immune Defic Syndr 2008; 49:358-68. [DOI: 10.1097/qai.0b013e31818c7efe] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Bibi Z. Role of cytochrome P450 in drug interactions. Nutr Metab (Lond) 2008; 5:27. [PMID: 18928560 PMCID: PMC2584094 DOI: 10.1186/1743-7075-5-27] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 10/18/2008] [Indexed: 01/21/2023] Open
Abstract
Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP) enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events.
Collapse
Affiliation(s)
- Zakia Bibi
- Department of Chemistry, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
30
|
Kanazu T, Yamaguchi Y, Okamura N, Baba T, Koike M. Model for the drug–drug interaction responsible for CYP3A enzyme inhibition. II: establishment and evaluation of dexamethasone-pretreated female rats. Xenobiotica 2008; 34:403-13. [PMID: 15370957 DOI: 10.1080/00498250410001685746] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. Cytochrome P450 (CYP) 3A catalysis of testosterone 6beta-hydroxylation in female rat liver microsomes was significantly induced, then reached a plateau level after pretreatment with 80 mg kg(-1) day(-1) dexamethasone (DEX) for 3 days. 2. Midazolam was mainly metabolized by CYP3A in DEX-treated female rat liver microsomes from an immuno-inhibition study, and the apparent K(m) was 1.8 microM, similar to that in human microsomes. 3. Ketoconazole and erythromycin, typical CYP3A inhibitors, demonstrated extensive inhibition of midazolam metabolism in DEX-treated female rat liver microsomes, and the apparent K(i) values were 0.088 and 91.2 microM, respectively. The values were similar to those in humans, suggesting that DEX-treated female rat liver microsomes have properties similar to those of humans. 4. After oral administration of midazolam, the plasma midazolam concentration in DEX-treated female rats significantly decreased compared with control female rats. The area under the plasma concentration curve (AUC) and elimination half-life were one-11th and one-20th of those of control female rats, respectively. 5. Using DEX-treated female rats, the effect of CYP3A inhibitors on midazolam pharmacokinetics was evaluated. The AUC and maximum concentration in plasma (C(max)) increased when ketoconazole was co-administered with midazolam. 6. It was shown that the drug-drug interaction that occurs in vitro is also observed in vivo after oral administration of midazolam. In conclusion, the DEX-treated female rat could be a useful model for evaluating drug-drug interactions based on CYP3A enzyme inhibition.
Collapse
Affiliation(s)
- T Kanazu
- Developmental Research Laboratories, Shionogi & Co., LTD, Toyonaka, Osaka, Japan.
| | | | | | | | | |
Collapse
|
31
|
Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 2008; 82:667-715. [PMID: 18618097 DOI: 10.1007/s00204-008-0332-8] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023]
Abstract
Variability of drug metabolism, especially that of the most important phase I enzymes or cytochrome P450 (CYP) enzymes, is an important complicating factor in many areas of pharmacology and toxicology, in drug development, preclinical toxicity studies, clinical trials, drug therapy, environmental exposures and risk assessment. These frequently enormous consequences in mind, predictive and pre-emptying measures have been a top priority in both pharmacology and toxicology. This means the development of predictive in vitro approaches. The sound prediction is always based on the firm background of basic research on the phenomena of inhibition and induction and their underlying mechanisms; consequently the description of these aspects is the purpose of this review. We cover both inhibition and induction of CYP enzymes, always keeping in mind the basic mechanisms on which to build predictive and preventive in vitro approaches. Just because validation is an essential part of any in vitro-in vivo extrapolation scenario, we cover also necessary in vivo research and findings in order to provide a proper view to justify in vitro approaches and observations.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, PO Box 5000 (Aapistie 5 B), 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
32
|
Markowitz JS, von Moltke LL, Donovan JL. Predicting interactions between conventional medications and botanical products on the basis ofin vitroinvestigations. Mol Nutr Food Res 2008; 52:747-54. [DOI: 10.1002/mnfr.200700159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Gurley BJ, Swain A, Hubbard MA, Williams DK, Barone G, Hartsfield F, Tong Y, Carrier DJ, Cheboyina S, Battu SK. Clinical assessment of CYP2D6-mediated herb-drug interactions in humans: effects of milk thistle, black cohosh, goldenseal, kava kava, St. John's wort, and Echinacea. Mol Nutr Food Res 2008; 52:755-63. [PMID: 18214849 PMCID: PMC2562884 DOI: 10.1002/mnfr.200600300] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6), an important CYP isoform with regard to drug-drug interactions, accounts for the metabolism of approximately 30% of all medications. To date, few studies have assessed the effects of botanical supplementation on human CYP2D6 activity in vivo. Six botanical extracts were evaluated in three separate studies (two extracts per study), each incorporating 16 healthy volunteers (eight females). Subjects were randomized to receive a standardized botanical extract for 14 days on separate occasions. A 30-day washout period was interposed between each supplementation phase. In study 1, subjects received milk thistle (Silybum marianum) and black cohosh (Cimicifuga racemosa). In study 2, kava kava (Piper methysticum) and goldenseal (Hydrastis canadensis) extracts were administered, and in study 3 subjects received St. John's wort (Hypericum perforatum) and Echinacea (Echinacea purpurea). The CYP2D6 substrate, debrisoquine (5 mg), was administered before and at the end of supplementation. Pre- and post-supplementation phenotypic trait measurements were determined for CYP2D6 using 8-h debrisoquine urinary recovery ratios (DURR). Comparisons of pre- and post-supplementation DURR revealed significant inhibition (approximately 50%) of CYP2D6 activity for goldenseal, but not for the other extracts. Accordingly, adverse herb-drug interactions may result with concomitant ingestion of goldenseal supplements and drugs that are CYP2D6 substrates.
Collapse
Affiliation(s)
- Bill J Gurley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang JS, Newport DJ, Stowe ZN, Donovan JL, Pennell PB, DeVane CL. The emerging importance of transporter proteins in the psychopharmacological treatment of the pregnant patient. Drug Metab Rev 2007; 39:723-46. [PMID: 18058331 DOI: 10.1080/03602530701690390] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
P-glycoprotein, breast cancer resistance protein, and multidrug resistance proteins have physiological functions in placental tissue. Several antidepressants, antipsychotics, and anti-epileptic drugs have been found to be substrates of P-glycoprotein and other transporters. The extent that drugs pass through the placental barrier is likely influenced by drug transporters. The rational choice of psychoactive drugs to treat mental illness in women of child-bearing age should incorporate knowledge of both drug disposition as well as expected pharmacologic effects. This review summarizes the current data on drug transporters in the placental passage of medications, with a focus on medications used in clinical psychopharmacology.
Collapse
Affiliation(s)
- Jun-Sheng Wang
- Department of Psychiatry and Behavioral Sciences, and Laboratory of Drug Disposition and Pharmacogenetics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
35
|
Nakashima D, Takama H, Ogasawara Y, Kawakami T, Nishitoba T, Hoshi S, Uchida E, Tanaka H. Effect of cinacalcet hydrochloride, a new calcimimetic agent, on the pharmacokinetics of dextromethorphan: in vitro and clinical studies. J Clin Pharmacol 2007; 47:1311-9. [PMID: 17652181 DOI: 10.1177/0091270007304103] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cinacalcet hydrochloride (cinacalcet) is a positive allosteric modulator of the calcium-sensing receptor indicated for the treatment of secondary hyperparathyroidism in dialysis patients. In vitro study has demonstrated that cinacalcet is a potent inhibitor of cytochrome P450 (CYP) 2D6 with a K(i) value of 0.087 micromol/L, which is comparable to the well-known potent CYP2D6 inhibitor, quinidine (0.064 micromol/L). A clinical study was conducted to assess the inhibitory effect of cinacalcet on CYP2D6 substrates in healthy volunteers. Each subject received 50 mg of cinacalcet or a matched placebo orally once daily for 8 days with 30 mg of dextromethorphan coadministered on day 8. The mean AUC(0-infinity) and C(max) of dextromethorphan increased 11- and 7-fold, respectively, in extensive metabolizers when coadministered with cinacalcet versus placebo. Therefore, during concomitant treatment with cinacalcet, it may be necessary to consider making dose adjustments for drugs with a narrow therapeutic index that are mainly metabolized by CYP2D6.
Collapse
Affiliation(s)
- Daisuke Nakashima
- Product Development Department, Pharmaceutical Division, Kirin Brewery Company Ltd, 26-1 Jingumae 6-chome, Shibuya-ku, Tokyo, 150-8011, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gurley BJ, Swain A, Hubbard MA, Hartsfield F, Thaden J, Williams DK, Gentry WB, Tong Y. Supplementation With Goldenseal (Hydrastis canadensis), but not Kava Kava (Piper methysticum), Inhibits Human CYP3A Activity In Vivo. Clin Pharmacol Ther 2007; 83:61-9. [PMID: 17495878 DOI: 10.1038/sj.clpt.6100222] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of goldenseal (Hydrastis canadensis) and kava kava (Piper methysticum) supplementation on human CYP3A activity were evaluated using midazolam (MDZ) as a phenotypic probe. Sixteen healthy volunteers were randomly assigned to receive either goldenseal or kava kava for 14 days. Each supplementation phase was followed by a 30-day washout period. MDZ (8 mg, per os) was administered before and after each phase, and pharmacokinetic parameters were determined using standard non-compartmental methods. Comparisons of pre- and post-supplementation MDZ pharmacokinetic parameters revealed significant inhibition of CYP3A by goldenseal (AUC(0-infinity), 107.9+/-43.3 vs 175.3+/-74.8 ng x h/ml; Cl/F/kg, 1.26+/-0.59 vs 0.81+/-0.45 l/h/kg; T(1/2), 2.01+/-0.42 vs 3.15+/-1.12 h; Cmax, 50.6+/-26.9 vs 71.2+/-50.5 ng/ml). MDZ disposition was not affected by kava kava supplementation. These findings suggest that significant herb-drug interactions may result from the concomitant ingestion of goldenseal and CYP3A substrates.
Collapse
Affiliation(s)
- B J Gurley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rowland A, Gaganis P, Elliot DJ, Mackenzie PI, Knights KM, Miners JO. Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitro-in vivo extrapolation. J Pharmacol Exp Ther 2007; 321:137-47. [PMID: 17237258 DOI: 10.1124/jpet.106.118216] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies were performed to elucidate the mechanism responsible for the reduction in Km values of UDP-glucuronosyltransferase 2B7 (UGT2B7) substrates observed for incubations conducted in the presence of albumin. Addition of bovine serum albumin (BSA) and fatty acid-free human serum albumin (HSA-FAF), but not "crude" HSA, resulted in an approximate 90% reduction in the Km values for the glucuronidation of zidovudine (AZT) by human liver microsomes (HLM) and UGT2B7 and a 50 to 75% reduction in the S50 for 4-methylumbelliferone (4MU) glucuronidation by UGT2B7, without affecting Vmax. Oleic, linoleic, and arachidonic acids were shown to be the most abundant unsaturated long-chain fatty acids present in crude HSA and in the membranes of HLM and human embryonic kidney (HEK)293 cells, and it was demonstrated that these and other unsaturated long-chain fatty acids were UGT2B7 substrates. Glucuronides with Rf (retention factor) values corresponding to the glucuronides of linoleic and arachidonic acid were detected when HLM and HEK293 cell lysates were incubated with radiolabeled cofactor, and the intensity of the bands was modulated by the presence of crude HSA (increased) and BSA or HSA-FAF (decreased). Oleic, linoleic, and arachidonic acid inhibited AZT and 4MU glucuronidation by HLM and/or UGT2B7, due to an increase in Km/S50 without a change in Vmax. Addition of BSA and HSA-FAF reversed the inhibition. Likewise, coexpression of UGT2B7 and HSA in HEK293 cells reduced the Km/S50 values of these substrates. It is postulated that BSA and HSA-FAF sequester inhibitory fatty acids released during incubations, and the apparent high Km values observed for UGT2B7 substrates arise from the presence of these endogenous inhibitors.
Collapse
Affiliation(s)
- Andrew Rowland
- Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Sykes MJ, Sorich MJ, Miners JO. Molecular modeling approaches for the prediction of the nonspecific binding of drugs to hepatic microsomes. J Chem Inf Model 2007; 46:2661-73. [PMID: 17125206 DOI: 10.1021/ci600221h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular modeling approaches for the prediction of the nonspecific binding of drugs to hepatic microsomes were examined using a published database of 56 compounds. Models generated were evaluated using an independent test set of 13 compounds. A pharmacophore approach identified structural features of drugs associated with nonspecific binding. A side-chain amino group and complementary hydrophobic domain were the principal features noted. The use of shape overlays, based on the pharmacophore, in conjunction with a chemical force field in the program ROCS, yielded discrimination between molecules classified as strong binders (experimental fraction unbound in microsomes<0.50) and those with a lower degree of binding (experimental fraction unbound in microsomes>0.50). In the initial data set of 56 molecules, 18 were classified as strong binders (on the basis of the above criteria), and all of those were recovered in the top 22 molecular hits from ROCS. Additionally, computationally generated values of log P were shown to provide a reasonable estimate of the fraction unbound in microsomes, providing the compounds were in their basic form at physiological pH.
Collapse
Affiliation(s)
- Matthew J Sykes
- Department of Clinical Pharmacology, Flinders University and Flinders Medical Centre, Adelaide, Australia.
| | | | | |
Collapse
|
39
|
Gurley BJ, Swain A, Barone GW, Williams DK, Breen P, Yates CR, Stuart LB, Hubbard MA, Tong Y, Cheboyina S. Effect of goldenseal (Hydrastis canadensis) and kava kava (Piper methysticum) supplementation on digoxin pharmacokinetics in humans. Drug Metab Dispos 2007; 35:240-5. [PMID: 17079360 PMCID: PMC1868501 DOI: 10.1124/dmd.106.012708] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phytochemical-mediated modulation of P-glycoprotein (P-gp) and other drug transporters may give rise to many herb-drug interactions. Serial plasma concentration-time profiles of the P-gp substrate, digoxin, were used to determine whether supplementation with goldenseal or kava kava modified P-gp activity in vivo. Twenty healthy volunteers were randomly assigned to receive a standardized goldenseal (3210 mg daily) or kava kava (1227 mg daily) supplement for 14 days, followed by a 30-day washout period. Subjects were also randomized to receive rifampin (600 mg daily, 7 days) and clarithromycin (1000 mg daily, 7 days) as positive controls for P-gp induction and inhibition, respectively. Digoxin (Lanoxin, 0.5 mg) was administered p.o. before and at the end of each supplementation and control period. Serial digoxin plasma concentrations were obtained over 24 h and analyzed by chemiluminescent immunoassay. Comparisons of area under the curve (AUC)((0-3)), AUC((0-24)), C(max,) CL/F, and elimination half-life were used to assess the effects of goldenseal, kava kava, rifampin, and clarithromycin on digoxin pharmacokinetics. Rifampin produced significant reductions (p < 0.01) in AUC((0-3)), AUC((0-24)), CL/F, t(1/2), and C(max), whereas clarithromycin increased these parameters significantly (p < 0.01). With the exception of goldenseal's effect on C(max) (14% increase), no statistically significant effects on digoxin pharmacokinetics were observed following supplementation with either goldenseal or kava kava. When compared with rifampin and clarithromycin, supplementation with these specific formulations of goldenseal or kava kava did not appear to affect digoxin pharmacokinetics, suggesting that these supplements are not potent modulators of P-gp in vivo.
Collapse
Affiliation(s)
- Bill J Gurley
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, College of Pharmacy, 4301 West Markham Street, Slot 522-3, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jia Z, Misra HP. Exposure to mixtures of endosulfan and zineb induces apoptotic and necrotic cell death in SH-SY5Y neuroblastoma cells,in vitro. J Appl Toxicol 2007; 27:434-46. [PMID: 17309119 DOI: 10.1002/jat.1218] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A number of epidemiological studies have demonstrated a strong association between the incidence of Parkinson's disease and pesticide exposure. Earlier it was demonstrated that exposure to the pesticides endosulfan and zineb, alone and in combination, caused neurodegeneration in vivo. It was hypothesized that these pesticides cause neurotoxicity, in part, by enhancing apoptotic cell death. SH-SY5Y human neuroblastoma cells, which retain a catecholaminergic phenotype, were exposed to endosulfan, zineb or a combination of these chemicals, in vitro. For mixture studies, concentrations of pesticides (100 microM each) were chosen based on LC(25) (lethal concentration) that would result in minimum cell death. Exposure to a mixture of pesticides exhibited significantly (P < or = 0.05) higher toxicity than each one alone. Both pesticides were found to cause apoptotic cell death that was concentration (50-400 microM) dependent. A flow cytometric (7-aminoactinomycin D) assay was used to distinguish live, early apoptotic and late apoptotic/necrotic populations. Exposure to mixtures of the pesticides enhanced both early apoptosis and late apoptosis/necrosis compared with either chemical alone. Visual evaluation using a DNA ladder assay and a fluorescence Annexin V/PI assay confirmed the contribution of both apoptotic and necrotic processes. These findings suggest that the cytotoxicity of endosulfan and zineb, both individually and in mixtures, is associated with the occurrence of early and late apoptotic/necrotic processes in SH-SY5Y human neuroblastoma cells and support the contention that pesticide-induced neuronal cell death leading to neurodegenerative disease may, at least in part, be associated with early and late apoptosis of dopaminergic neurons.
Collapse
Affiliation(s)
- Zhenquan Jia
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
41
|
Haddad A, Davis M, Lagman R. The pharmacological importance of cytochrome CYP3A4 in the palliation of symptoms: review and recommendations for avoiding adverse drug interactions. Support Care Cancer 2006; 15:251-7. [PMID: 17139496 DOI: 10.1007/s00520-006-0127-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/05/2006] [Indexed: 11/27/2022]
Abstract
BACKGROUND Adverse drug interactions are major causes of morbidity, hospitalizations, and mortality. The greatest risk of drug interactions occurs through in the cytochrome system. CYP3A4, the most prevalent cytochrome, accounts for 30-50% of drugs metabolized through type I enzymes. MATERIALS AND METHODS Palliative patients received medications for symptoms and co-morbidities, many of which are substrate, inhibitors, or promoters of CYP3A4 activity and expression. A literature review on CYP3A4 was performed pertinent to palliative medicine. DISCUSSION In this state of the art review, we discuss the CYP3A4 genetics, and kinetics and common medications, which are substrates or inhibitor/promoters of CYP3A4. CONCLUSION We made some recommendations for drug choices to avoid clinically important drug interaction.
Collapse
Affiliation(s)
- Abdo Haddad
- Palliative Medicine Fellowship Faculty, The Harry R. Horvitz Center for Palliative Medicine, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
42
|
Thasler WE, Schlott T, Kalkuhl A, Plän T, Irrgang B, Jauch KW, Weiss TS. Human tissue for in vitro research as an alternative to animal experiments: a charitable "honest broker" model to fulfil ethical and legal regulations and to protect research participants. Altern Lab Anim 2006; 34:387-92. [PMID: 16945006 DOI: 10.1177/026119290603400411] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research with human tissue offers the possibility not only of improving preclinical pharmaceutical research and safety assessment, but also of the substitution of some animal experiments. Surgically removed human tissue is discarded after pathological evaluation. This tissue would be of enormous value for research, especially in the pharmaceutical branch, if it were readily available in an ethically and legally approved manner. But there are public concerns about the use of human tissue, especially for "commercial" purposes, such as in the pharmaceutical industry. The question is whether the ethical boundaries are sufficiently respected in the course of striving for industrial profit. To overcome this problem, a clear procedure for tissue donation, collection, supply and allocation must be established, which is guaranteed to be independent of special interests. The persisting problem seems to be the lack of an authority which asks for informed consent, coordinates tissue as well as blinded data collection, and supplies research facilities with tissue samples in a transparent manner. Therefore, a charitable, state-controlled foundation acting as an "honest broker" was initiated, to cover the ethical and legal aspects, as well as to protect the research participants in their use of human tissue as an alternative to animal experiments.
Collapse
Affiliation(s)
- Wolfgang E Thasler
- Department of Surgery, Klinikum Grosshadern, LM University of Munich, Marchioninistrasse 15, D-81377 München, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Uchaipichat V, Winner LK, Mackenzie PI, Elliot DJ, Williams JA, Miners JO. Quantitative prediction of in vivo inhibitory interactions involving glucuronidated drugs from in vitro data: the effect of fluconazole on zidovudine glucuronidation. Br J Clin Pharmacol 2006; 61:427-39. [PMID: 16542204 PMCID: PMC1885031 DOI: 10.1111/j.1365-2125.2006.02588.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS Using the fluconazole-zidovudine (AZT) interaction as a model, to determine whether inhibition of UDP-glucuronosyltransferase (UGT) catalysed drug metabolism in vivo could be predicted quantitatively from in vitro kinetic data generated in the presence and absence bovine serum albumin (BSA). METHODS Kinetic constants for AZT glucuronidation were generated using human liver microsomes (HLM) and recombinant UGT2B7, the principal enzyme responsible for AZT glucuronidation, as the enzyme sources with and without fluconazole. K(i) values were used to estimate the decrease in AZT clearance in vivo. RESULTS Addition of BSA (2%) to incubations decreased the K(m) values for AZT glucuronidation by 85-90% for the HLM (923 +/- 357 to 91 +/- 9 microm) and UGT2B7 (478-70 microm) catalysed reactions, with little effect on V(max). Fluconazole, which was shown to be a selective inhibitor of UGT2B7, competitively inhibited AZT glucuronidation by HLM and UGT2B7. Like the K(m), BSA caused an 87% reduction in the K(i) for fluconazole inhibition of AZT glucuronidation by HLM (1133 +/- 403 to 145 +/- 36 microm) and UGT2B7 (529 to 73 microm). K(i) values determined for fluconazole using HLM and UGT2B7 in the presence (but not absence) of BSA predicted an interaction in vivo. The predicted magnitude of the interaction ranged from 41% to 217% of the reported AUC increase in patients, depending on the value of the in vivo fluconazole concentration employed in calculations. CONCLUSIONS K(i) values determined under certain experimental conditions may quantitatively predict inhibition of UGT catalysed drug glucuronidation in vivo.
Collapse
Affiliation(s)
| | | | | | | | - J Andrew Williams
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and DevelopmentAnn Arbor, MI, USA
| | - John O Miners
- Correspondence Professor John Miners, Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park SA 5042, Australia. Tel: + 61 8 8204 4131 Fax: + 61 8 8204 5114 E-mail:
| |
Collapse
|
44
|
Abstract
Some patients with difficult-to-treat epilepsy benefit from combination therapy with two or more antiepileptic drugs (AEDs). Additionally, virtually all epilepsy patients will receive, at some time in their lives, other medications for the management of associated conditions. In these situations, clinically important drug interactions may occur. Carbamazepine, phenytoin, phenobarbital and primidone induce many cytochrome P450 (CYP) and glucuronyl transferase (GT) enzymes, and can reduce drastically the serum concentration of associated drugs which are substrates of the same enzymes. Examples of agents whose serum levels are decreased markedly by enzyme-inducing AEDs, include lamotrigine, tiagabine, several steroidal drugs, cyclosporin A, oral anticoagulants and many cardiovascular, antineoplastic and psychotropic drugs. Valproic acid is not enzyme inducer, but it may cause clinically relevant drug interactions by inhibiting the metabolism of selected substrates, most notably phenobarbital and lamotrigine. Compared with older generation agents, most of the recently developed AEDs are less likely to induce or inhibit the activity of CYP or GT enzymes. However, they may be a target for metabolically mediated drug interactions, and oxcarbazepine, lamotrigine, felbamate and, at high dosages, topiramate may stimulate the metabolism of oral contraceptive steroids. Levetiracetam, gabapentin and pregabalin have not been reported to cause or be a target for clinically relevant pharmacokinetic drug interactions. Pharmacodynamic interactions involving AEDs have not been well characterized, but their understanding is important for a more rational approach to combination therapy. In particular, neurotoxic effects appear to be more likely with coprescription of AEDs sharing the same primary mechanism of action.
Collapse
Affiliation(s)
- Emilio Perucca
- Institute of Neurology IRCCS C. Mondino Foundation, Pavia, and Clinical Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
| |
Collapse
|
45
|
Takeda S, Kitajima Y, Ishii Y, Nishimura Y, Mackenzie PI, Oguri K, Yamada H. Inhibition of UDP-glucuronosyltransferase 2b7-catalyzed morphine glucuronidation by ketoconazole: dual mechanisms involving a novel noncompetitive mode. Drug Metab Dispos 2006; 34:1277-82. [PMID: 16679387 DOI: 10.1124/dmd.106.009738] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucuronidation of morphine in humans is predominantly catalyzed by UDP-glucuronosyltransferase 2B7 (UGT2B7). Since our recent research suggested that cytochrome P450s (P450s) interact with UGT2B7 to affect its function [Takeda S et al. (2005) Mol Pharmacol 67:665-672], P450 inhibitors are expected to modulate UGT2B7-catalyzed activity. To address this issue, we investigated the effects of P450 inhibitors (cimetidine, sulfaphenazole, erythromycin, nifedipine, and ketoconazole) on the UGT2B7-catalyzed formation of morphine-3-glucuronide (M-3-G) and morphine-6-glucuronide (M-6-G). Among the inhibitors tested, ketoconazole was the most potent inhibitor of both M-3-G and M-6-G formation by human liver microsomes. The others were less effective except that nifedipine exhibited an inhibitory effect on M-6-G formation comparable to that by ketoconazole. Neither addition of NADPH nor solubilization of liver microsomes affected the ability of ketoconazole to inhibit morphine glucuronidation. In addition, ketoconazole had an ability to inhibit morphine UGT activity of recombinant UGT2B7 freed from P450. Kinetic analysis suggested that the ketoconazole-produced inhibition of morphine glucuronidation involves a mixed-type mechanism. Codeine potentiated inhibition of morphine glucuronidation by ketoconazole. In contrast, addition of another substrate, testosterone, showed no or a minor effect on ketoconazole-produced inhibition of morphine UGT. These results suggest that 1) metabolism of ketoconazole by P450 is not required for inhibition of UGT2B7-catalyzed morphine glucuronidation; and 2) this drug exerts its inhibitory effect on morphine UGT by novel mechanisms involving competitive and noncompetitive inhibition.
Collapse
Affiliation(s)
- Shuso Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
DeVane CL. Antidepressant-drug interactions are potentially but rarely clinically significant. Neuropsychopharmacology 2006; 31:1594-604; discussion 1614-5. [PMID: 16847446 DOI: 10.1038/sj.npp.1301069] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The salient pharmacologic features of the selective serotonin reuptake inhibitors (SSRIs) discovered in the late 1980s included an in vitro ability to inhibit various cytochrome P450 enzymes (CYPs). Differences in potency among the SSRIs for CYP inhibition formed the basis of a marketing focus based largely on predictions of in vivo pharmacokinetic drug interactions from in vitro data, conclusions derived from case reports, and the extrapolation of the results of pharmacokinetic studies conducted in healthy volunteers to patients. Subsequently introduced antidepressants have undergone a similar post hoc scrutiny for potential drug-drug interactions. Concern for the untoward consequences of drug interactions led the FDA to publish guidance for the pharmaceutical industry in 1997 recommending that in vitro metabolic studies be conducted early in the drug development process to evaluate inhibitory properties toward the major CYPs. However, the prevalence of clinically significant enzyme inhibition interactions occurring during antidepressant treatment remains poorly defined despite millions of exposures. Although lack of evidence does not equate to evidence of absence, sparse epidemiological and post-marketing surveillance data do not substantiate a conclusion that widespread morbidity results from antidepressant-induced drug interactions. This commentary discusses points of uncertainty and controversy in the field of drug interactions, notes areas where inadequate data exist, and suggests explanations for a low prevalence of serious interactions. The conclusion is drawn that drug interactions from CYP inhibition caused by the newer antidepressants are potentially, but rarely, clinically significant.
Collapse
Affiliation(s)
- C Lindsay DeVane
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
47
|
Hesse LM, Sakai Y, Vishnuvardhan D, Li AP, von Moltke LL, Greenblatt DJ. Effect of bupropion on CYP2B6 and CYP3A4 catalytic activity, immunoreactive protein and mRNA levels in primary human hepatocytes: comparison with rifampicin. J Pharm Pharmacol 2006; 55:1229-39. [PMID: 14604466 DOI: 10.1211/0022357021657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Animals treated with multiple doses of bupropion have had increased bupropion clearance or increased liver weight, suggesting induction of drug-metabolizing activity. The possibility of cytochrome p450 (CYP) induction by bupropion (10 microM) was evaluated in-vitro by comparing catalytic activity, immunoreactive protein and CYP mRNA levels from human hepatocytes in primary culture versus cells treated with vehicle (0.5% methanol) and with rifampicin (rifampin) as a positive control. mRNA levels were analysed using a branched DNA luminescent assay. CYP2B6 activity, protein and mRNA levels were increased by 2.5, 1.5 and 2.1 fold, respectively, by 20 microM rifampicin. However, 10 microM bupropion minimally altered CYP2B6 (1.4, 1.1, 0.8 fold). Although CYP3A4 activity, protein, and mRNA levels were increased by 4.0, 2.3, and 14.0 fold, respectively, by 20 microM rifampicin, 10 microM bupropion minimally altered CYP3A4 (1.4, 1.0, 0.8 fold). Rifampicin (20 microM) increased CYP2E1 protein by 2.1 fold, while 10 microM bupropion minimally altered CYP2E1 protein (1.2 fold). Overall, results of this study suggest that multiple doses of bupropion are not likely to induce CYP2B6, 3A4 or 2E1 in-vivo in man.
Collapse
Affiliation(s)
- Leah M Hesse
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
48
|
Olgun S, Misra HP. Pesticides induced oxidative stress in thymocytes. Mol Cell Biochem 2006; 290:137-44. [PMID: 16718366 DOI: 10.1007/s11010-006-9178-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 03/02/2006] [Indexed: 11/25/2022]
Abstract
The role of oxidative stress in immune cell toxicity caused by the pesticides lindane, malathion and permethrin was investigated in thymic cells from C57BL/6 mice. Thymocytes treated with any of these pesticides (concentrations ranging between 50-150 microM) were found to generate both superoxide ((*)O(2) (-)) and H(2)O(2). The production of (*)O(2) (-) was detected with hydroethidine-ethidium bromide assay. H(2)O(2) production was monitored with a flow cytometric fluorescent (DCFH-DA) assay. All three pesticides stimulated (*)O(2) (-) release after 5 min exposure. Lindane and permethrin, but not malathion, continued to have significant (p < or = 0.05) effects on (*)O(2) (-) generation following 15 min of exposure. The lindane + malathion mixture was found to cause more-than-additive increase in (*)O(2) (-) production compared to individual pesticide treatments (at both 5 and 15 min). However, the effect of the lindane + permethrin mixture was not significantly different than individual components of this mixture. The effects of these pesticides on levels of antioxidant enzymes were also investigated, and only mixtures were found to have significant (p < or = 0.05) effects. Thus, lindane + malathion and lindane + permethrin mixtures increased total superoxide dismutase (SOD) specific activity, had no effect on catalase levels and inhibited GSH-peroxidase and GSH-reductase specific activities. Although the results of these studies do not explain the mechanism of action of these pesticides on the generation of (*)O(2) (-) and H(2)O(2), it is worthy of note that mixtures of these chemicals have oxidative responses greater than those of single chemicals.
Collapse
Affiliation(s)
- Selen Olgun
- Edward Via Virginia College of Osteopathic Medicine, Virginia Tech CRC, 2265 Kraft Drive, Blacksburg, VA 24060, USA
| | | |
Collapse
|
49
|
Culm-Merdek KE, von Moltke LL, Harmatz JS, Greenblatt DJ. Fluvoxamine impairs single-dose caffeine clearance without altering caffeine pharmacodynamics. Br J Clin Pharmacol 2006; 60:486-93. [PMID: 16236038 PMCID: PMC1884944 DOI: 10.1111/j.1365-2125.2005.02467.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Coadministration of fluvoxamine impairs the clearance of caffeine and prolongs its elimination half-life, which is attributable to inhibition of CYP1A2 by fluvoxamine. The clinical importance of this interaction is not established. AIM To evaluate the effects of fluvoxamine on the kinetics and dynamics of single doses of caffeine. METHODS Seven healthy subjects received single 250 mg doses of caffeine (or matching placebo) together with fluvoxamine (four doses of 100 mg over 2 days) or with matching placebo in a double-blind, four-way crossover study. For 24 h after caffeine or placebo administration, plasma caffeine and fluvoxamine concentrations were determined. Psychomotor performance, sedation, and electroencephalographic (EEG) "beta" frequency activity were also assessed. RESULTS Fluvoxamine significantly reduced apparent oral clearance of caffeine (105 vs. 9.1 mL min(-1), P < 0.01; mean difference: 95.7 mL min(-1), 95% CI: 54.9-135.6), and prolonged its elimination half-life (4.9 vs. 56 h, P < 0.01; mean difference: 51 h, 95% CI: 26-76). Caffeine produced CNS-stimulating effects compared with placebo. However, psychomotor performance, alertness, or EEG effects attributable to caffeine were not augmented by coadministration of fluvoxamine. CONCLUSIONS Fluvoxamine greatly impaired caffeine clearance, but without detectable changes in caffeine pharmacodynamics. However, this study does not rule out possible adverse effects due to extensive accumulation of caffeine with daily ingestion in fluvoxamine-treated individuals.
Collapse
Affiliation(s)
- Kerry E Culm-Merdek
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and Tufts-New England Medical Center, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
50
|
Brown HS, Ito K, Galetin A, Houston JB. Prediction of in vivo drug-drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br J Clin Pharmacol 2006; 60:508-18. [PMID: 16236041 PMCID: PMC1884945 DOI: 10.1111/j.1365-2125.2005.02483.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIMS Success of the quantitative prediction of drug-drug interactions via inhibition of CYP-mediated metabolism from the inhibitor concentration at the enzyme active site ([I]) and the in vitro inhibition constant (K(i)) is variable. The aim of this study was to examine the impact of the fraction of victim drug metabolized by a particular CYP (f(mCYP)) and the inhibitor absorption rate constant (k(a)) on prediction accuracy. METHODS Drug-drug interaction studies involving inhibition of CYP2C9, CYP2D6 and CYP3A4 (n = 115) were investigated. Data on f(mCYP) for the probe substrates of each enzyme and k(a) values for the inhibitors were incorporated into in vivo predictions, alone or in combination, using either the maximum hepatic input or the average systemic plasma concentration as a surrogate for [I]. The success of prediction (AUC ratio predicted within twofold of in vivo value) was compared using nominal values of f(mCYP) = 1 and k(a) = 0.1 min(-1). RESULTS The incorporation of f(mCYP) values into in vivo predictions using the hepatic input plasma concentration resulted in 84% of studies within twofold of in vivo value. The effect of k(a) values alone significantly reduced the number of over-predictions for CYP2D6 and CYP3A4; however, less precision was observed compared with the f(mCYP). The incorporation of both f(mCYP) and k(a) values resulted in 81% of studies within twofold of in vivo value. CONCLUSIONS The incorporation of substrate and inhibitor-related information, namely f(mCYP) and k(a), markedly improved prediction of 115 interaction studies with CYP2C9, CYP2D6 and CYP3A4 in comparison with [I]/K(i) ratio alone.
Collapse
Affiliation(s)
- Hayley S Brown
- School of Pharmacy & Pharmaceutical Sciences, University of Manchester, Manchester M13 9PL, UK
| | | | | | | |
Collapse
|