1
|
Amin MA, Zehravi M, Sweilam SH, Shatu MM, Durgawale TP, Qureshi MS, Durgapal S, Haque MA, Vodeti R, Panigrahy UP, Ahmad I, Khan SL, Emran TB. Neuroprotective potential of epigallocatechin gallate in Neurodegenerative Diseases: Insights into molecular mechanisms and clinical Relevance. Brain Res 2025; 1860:149693. [PMID: 40350140 DOI: 10.1016/j.brainres.2025.149693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis pose significant challenges due to their complex pathophysiology and lack of effective treatments. Green tea, rich in the epigallocatechin gallate (EGCG) polyphenolic component, has demonstrated potential as a neuroprotective agent with numerous medicinal applications. EGCG effectively reduces tau and Aβ aggregation in ND models, promotes autophagy, and targets key signaling pathways like Nrf2-ARE, NF-κB, and MAPK. This review explores the molecular processes that underlie EGCG's neuroprotective properties, including its ability to regulate mitochondrial dysfunction, oxidative stress, neuroinflammation, and protein misfolding. Clinical research indicates that EGCG may enhance cognitive and motor abilities, potentially inhibiting disease progression despite absorption and dose optimization limitations. The substance has been proven to slow the amyloidogenic process, prevent protein aggregation, decrease amyloid cytotoxicity, inhibit fibrillogenesis, and restructure fibrils for synergistic therapeutic effects. The review highlights the potential of EGCG as a natural, multi-targeted strategy for NDs but emphasizes the need for further clinical trials to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra 415539, India
| | - Mohammad Shamim Qureshi
- Department of Pharmacognosy & Phytochemistry, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, India
| | - Sumit Durgapal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun 248007, Uttarakhand, India
| | | | | | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| |
Collapse
|
2
|
Bi S, Jing Y, Cui X, Gong Y, Zhang J, Feng X, Shi Z, Zheng Q, Li D. A novel polysaccharide isolated from Coriolus versicolor polarizes M2 macrophages into an M1 phenotype and reversesits immunosuppressive effect on tumor microenvironment. Int J Biol Macromol 2024; 259:129352. [PMID: 38218293 DOI: 10.1016/j.ijbiomac.2024.129352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Converting M2 macrophages into an M1 phenotype in the tumor microenvironment, provides a new direction for tumor treatment. Here, we further report CVPW-1, a new polysaccharide of 1.03 × 106 Da that was isolated from Coriolus versicolor. Its monosaccharide was composed of mannose, glucose, and galactose at a ratio of 1.00:8.73:1.68. The backbone of CVPW-1 was composed of (1 → 3)-linked α-D-Glcp residues and (1 → 3,6)-linked α-D-Glcp residues that branched at O-6. The branch consisted of (1 → 6)-linked α-D-Glcp residues and (1 → 4)-linked α-D-Glap, and some branches were terminated with (1→)-linked β-D-Manp residues according to the results of HPLC, FT-IR, GC-MS, 1D and 2D NMR. Meanwhile, CVPW-1 could polarize M2 macrophages to M1 phenotypein vitro by binding to TLR4 and inducing the activation of Akt, JNK and NF-κB. This process involved reversing the functional inhibition of CD8+ T lymphocytes by inhibiting the expression of TREM2 in M2 macrophages. The in vivo experiments showed that oral administration of CVPW-1 could inhibit the growth of tumor in mice and polarize TAMs to M1 phenotype. Thus, the novel polysaccharide CVPW-1 from Coriolus versicolor might activate a variety of immune cells and then play an anti-tumor role. These results demonstrated that CVPW-1 could be developed as a potential immuno-oncology treatment reagent.
Collapse
Affiliation(s)
- Sixue Bi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, PR China
| | - Xuehui Cui
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yitong Gong
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Junli Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai 264100, Shandong, PR China
| | - Xiaofei Feng
- Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai 264100, Shandong, PR China
| | - Zhen Shi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China.
| |
Collapse
|
3
|
Gonciarz W, Piątczak E, Chmiela M. The influence of Salvia cadmica Boiss. extracts on the M1/M2 polarization of macrophages primed with Helicobacter pylori lipopolysaccharide in conjunction with NF-kappa B activation, production of cytokines, phagocytic activity and total DNA methylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116386. [PMID: 36921911 DOI: 10.1016/j.jep.2023.116386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The large number of secondary derivatives have been isolated from the genus Salvia with about 700 species, and used in the pharmacopoeia throughout the world. Various biological properties of Salvia formulations have been reported including as antioxidant, antimicrobial, hypotensive, anti-hyperglycemia, anti-hyperlipidemia, anti-cancer, and skin curative. Salvia cadmica Boiss. root and aerial part extracts enriched with polyphenols are bactericidal towards gastric pathogen Helicobacter pylori (Hp) and diminish deleterious effects induced by Hp lipopolysaccharide (LPS) towards gastric epithelial cells. AIM OF THIS STUDY To examine the influence of S. cadmica extracts on the M1/M2 polarization of macrophages primed with Hp LPS vs standard LPS Escherichia coli (Ec), and the macrophage cytokine as well as phagocytic activity, which are affected during Hp infection. MATERIAL AND METHODS Macrophages derived from THP-1 human monocytes primed with LPS Hp/Ec and/or S. cadmica extracts, were examined for the biomarkers of activation (surface, cytoplasmic or soluble), and phagocytic capacity. The bone marrow macrophages of Caviaporcellus were used to determine the engulfment of Hp. RESULTS Priming of THP-1 cells (24h) with LPS Hp/Ec resulted in polarization of M1 macrophages, activation of nuclear factor kappa B, secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1 beta, macrophage chemotactic protein (MCP)-1, immunoregulatory IL-10, and production of reactive oxygen species. These effects were diminished after restimulation of cells with S. cadmica extracts. THP-1 macrophages exposed to studied extracts showed an increased phagocytic capacity, in conjunction with elevated CD11b/CD11d expression and enhanced production of inducible nitric oxide synthase. They also increased Hp engulfment by bone marrow macrophages. These effects were not related to a global DNA methylation. CONCLUSIONS S. cadmica extracts possess an immunomodulating activity, which might be useful in control of H. pylori LPS driven activity of macrophages.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| | - Ewelina Piątczak
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego 1 St., 90-151, Lodz, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| |
Collapse
|
4
|
Li M, Zhang C, Xiao X, Zhu M, Quan W, Liu X, Zhang S, Liu Z. Theaflavins in Black Tea Mitigate Aging-Associated Cognitive Dysfunction via the Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2356-2369. [PMID: 36718846 DOI: 10.1021/acs.jafc.2c06679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aging-associated cognitive dysfunction has a great influence on the lifespan and healthspan of the elderly. Theaflavins (TFs), a mixture of ingredients formed from enzymatic oxidation of catechins during the manufacture of tea, have a positive contribution to the qualities and antiaging activities of black tea. However, the role of TFs in mitigating aging-induced cognitive dysfunction and the underlying mechanism remains largely unknown. Here, we find that TFs effectively improve behavioral impairment via the microbiota-gut-brain axis: TFs maintain gut homeostasis by improving antioxidant ability, strengthening the immune response, increasing the expression of tight junction proteins, restructuring the gut microbiota, and altering core microbiota metabolites, i.e., short-chain fatty acids and essential amino acids (SCFAs and AAs), and upregulating brain neurotrophic factors. Removing the gut microbiota with antibiotics partly abolishes the neuroprotective effects of TFs. Besides, correlation analysis indicates that the decrease in gut microbiota, such as Bacteroidetes and Lachnospiraceae, and the increase in microbiota metabolites' levels are positively correlated with behavioral improvements. Taken together, our findings reveal a potential role of TFs in mitigating aging-driven cognitive dysfunction via the microbiota-gut-brain axis. The intake of TFs can be translated into a novel dietary intervention approach against aging-induced cognitive decline.
Collapse
Affiliation(s)
- Maiquan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Can Zhang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xing Xiao
- Hunan Provincial People's Hospital, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xia Liu
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Zhang L, Li W, Hou Z, Wang Z, Zhang W, Liang X, Wu Z, Wang T, Liu X, Peng X, Yang X, Yang H, Geng D. Theaflavin-3,3'-Digallate Ameliorates Collagen-Induced Arthritis Through Regulation of Autophagy and Macrophage Polarization. J Inflamm Res 2023; 16:109-126. [PMID: 36647388 PMCID: PMC9840439 DOI: 10.2147/jir.s374802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023] Open
Abstract
Purpose Previous studies have presented that theaflavin-3,3'-digallate (TFDG), one of natural flavonoids, have protective effects on collagen-induced arthritis (CIA). Besides, it was reported that TFDG could affect inflammatory signaling pathways, like NF-κB, JNK, and so on, to ameliorate inflammation. However, the anti-inflammatory mechanisms mentioned above are common to natural flavonoid products including TFDG. Therefore, this study aimed to further investigate the other mechanisms of TFDG against CIA. Methods DBA/1 mice (8-10 weeks) were intravenously injected Freund's Adjuvant (100μL) at the base of tail and intraperitoneally injected PBS or different dosage of TFDG (1 mg/kg or 10 mg/kg). Then the paw and knee tissues were collected to assess the severity of joint destruction. In vitro experiments, bone marrow macrophages (BMMs) were exposed to TNF-α (10ng/mL) with or without different concentrations of TFDG (0.1μmol/L or 1.0μmol/L). Besides, the targets of TFDG were predicted with docking software and were verified through experiment. Results TFDG treatment could reduce M1 macrophage (pro-inflammatory) and inflammatory cytokines, such as IL-1, IL- 6 and TNF-α, both in vitro and in vivo. At the same time, the M2 macrophage (alternatively activated) polarization was promoted by TFDG. Animal experiments showed TFDG ameliorated joint destructions. For investigating the mechanisms, the targets of TFDG were predicted by bioinformatics tools. According to predictions, we hypothesized that TFDG could act with BCL-2 to weaken the interaction between BCL-2 and Beclin1. Beclin1 plays a central role in autophagy, and we found that the autophagy level of BMMs was recovered by TFDG. Besides, 3-MA, an autophagy inhibitor, could attenuate the therapeutic effect of TFDG. Conclusion TFDG protected against collagen-induced arthritis by attenuating the inflammation and promoting anti-inflammatory M2 macrophage polarization through controlling autophagy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Wenming Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Zhenyang Hou
- Department of Orthopaedics, Tengzhou City Center People’s Hospital, Tengzhou, People’s Republic of China
| | - Zhidong Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Wei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xiaolong Liang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Zerui Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Tianhao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xiaole Peng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, People’s Republic of China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China,Correspondence: Huilin Yang; Dechun Geng, Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China, Email ;
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China,Correspondence: Huilin Yang; Dechun Geng, Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China, Email ;
| |
Collapse
|
6
|
Weber F, Quach HQ, Reiersen M, Sarraj SY, Bakir DN, Jankowski VA, Nilsson PH, Tiainen H. Characterization of the foreign body response of titanium implants modified with polyphenolic coatings. J Biomed Mater Res A 2022; 110:1341-1355. [PMID: 35218127 PMCID: PMC9305744 DOI: 10.1002/jbm.a.37377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
Abstract
The foreign body response is dictating the outcome of wound healing around any implanted materials. Patients who suffer from chronic inflammatory diseases and impaired wound healing often face a higher risk for implant failure. Therefore, functional surfaces need to be developed to improve tissue integration. For this purpose, we evaluated the impact of surface coatings made of antioxidant polyphenolic molecules tannic acid (TA) and pyrogallol (PG) on the host response in human blood. Our results showed that although the polyphenolic surface modifications impact the initial blood protein adsorption compared to Ti, the complement and coagulation systems are triggered. Despite complement activation, monocytes and granulocytes remained inactivated, which was manifested in a low pro-inflammatory cytokine expression. Under oxidative stress, both coatings were able to reduce intracellular reactive oxygen species in human gingival fibroblasts (hGFs). However, no anti-inflammatory effects of polyphenolic coatings could be verified in hGFs stimulated with lipopolysaccharide and IL-1β. Although polyphenols reportedly inhibit the NF-κB signaling pathway, phosphorylation of NF-κB p65 was observed. In conclusion, our results indicated that TA and PG coatings improved the hemocompatibility of titanium surfaces and have the potential to reduce oxidative stress during wound healing.
Collapse
Affiliation(s)
- Florian Weber
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Huy Quang Quach
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathias Reiersen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Sadaf Yosef Sarraj
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Dyala Nidal Bakir
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Per H Nilsson
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Talapphet N, Palanisamy S, Li C, Ma N, Prabhu NM, You S. Polysaccharide extracted from Taraxacum platycarpum root exerts immunomodulatory activity via MAPK and NF-κB pathways in RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114519. [PMID: 34390795 DOI: 10.1016/j.jep.2021.114519] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taraxacum platycarpum Dahlst. (Korean dandelion) is a medicinal herb used in traditional medicine in Korea to treat various disease such as furuncles, mammitis, hepatitis, jaundice. Moreover, a decoction prepared from T. platycarpum leaves and stems is an effective treatment for cancer, glycosuria, liver disease, pleurodynia, and stomach problems. AIM OF THE STUDY The main objective of this work was to study the composition and structural properties of polysaccharides (TPP) from Taraxacum platycarpum Dahlst. root and investigate the immunostimulatory activity on RAW264.7 cells. MATERIALS AND METHODS TPP was extracted from T. platycarpum using hot water extraction, ethanol precipitation method and its fractionated using DEAE-Sepharose fast flow column. The composition, molecular weight, and structural characterization of TPP and its fractions were evaluated by various techniques. Further, the immunostimulatory activity of polysaccharides was tested on murine macrophage cell line RAW264.7 by various in vitro assays. The structure effect of TPP on RAW264.7 cells was studied by the removal of sulfate (desulfation) and protein (deproteinization) contents from TPP. RESULTS We obtained three fractions namely TPP-1, TPP-2, and TPP-3 which mainly consisted of carbohydrates (75.55, 52.71, and 48.41%), sulfate (8.42, 15.19, and 27.67%), uronic acid (1.27, 6.56, and 4.39%), and protein (8.15, 24.85, and 9.73%). The average molecular weight of the fractions was 56.7, 108.2, and 132.3 × 103 g/mol, respectively. The polysaccharides activate the RAW264.7 cell to produce a significant amount of NO and upregulate the various mRNA expression by the activation of MAPK and NF-κB pathways via TLR4, TLR2, and CR3 receptors. The structurally modified deproteinated derivative (DP-TPP-2) more effectively decreases the NO production which means the protein content of TPP-2 mainly contributes to the RAW264.7 cells activation. The structure of DP-TPP-2 primarily consists of 1 → 2)-Galp, 1 → 6)-Glup, 1 → 2) - Rhap, and 1 → 5) - Arap glycosidic linkages. CONCLUSIONS The present study demonstrated that the polysaccharide isolated from T. platycarpum shows admirable immunostimulatory by the activation of MAPK and NF-κB pathways through TLR4, TLR2, and CR3 receptors. The protein content of polysaccharides mainly contributes to the RAW264.7 cells activation. Our study results could be useful for developing a new immunostimulant agent.
Collapse
Affiliation(s)
- Natchanok Talapphet
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea
| | - ChangSheng Li
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Nan Ma
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea.
| |
Collapse
|
8
|
Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum - Friend or foe? J Inorg Biochem 2021; 224:111586. [PMID: 34425476 DOI: 10.1016/j.jinorgbio.2021.111586] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is one of the most abundant Gram-negative anaerobic bacteria, part of the gut, and oral commensal flora, generally found in human dental plaque. Its presence could be associated with various human diseases, including, e.g., periodontal, angina, lung and gynecological abscesses. This bacteria can enter the blood circulation as a result of periodontal infection. It was proven that F. nucleatum migrates from its primary site of colonization in the oral cavity to other parts of the body. It could cause numerous diseases, including cancers. On the other hand, it was shown that Fusobacterium produces significant amounts of butyric acid, which is a great source of energy for colonocytes (anti-inflammatory cells). Therefore, it is very interesting to get to know the two faces of F. nucleatum.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Karolina Jagiełło
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
9
|
Yin Z, Liang Z, Li C, Wang J, Ma C, Kang W. Immunomodulatory effects of polysaccharides from edible fungus: a review. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Wen Y, Bi S, Hu X, Yang J, Li C, Li H, Yu DB, Zhu J, Song L, Yu R. Structural characterization and immunomodulatory mechanisms of two novel glucans from Morchella importuna fruiting bodies. Int J Biol Macromol 2021; 183:145-157. [PMID: 33878360 DOI: 10.1016/j.ijbiomac.2021.04.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Two novel glucans named MIPB50-W and MIPB50-S-1 were obtained from edible Morchella importuna with molecular weights (Mw) of 939.2 kDa and 444.5 kDa, respectively. MIPB50-W has a backbone of α-(1 → 4)-d-glucan, which was substituted at O-6 position by α-d-Glcp-(1→. Moreover, MIPB50-S-1 has a backbone of α-(1 → 4)-d-glucan, which was substituted at O-6 position by α-d-Glcp-(1 → 6)-α-d-Glcp-(1→. This is the first report about glucan found in Morchella mushrooms. Furthermore, MIPB50-W and MIPB50-S-1 strengthened the phagocytosis function and the promoted secretion of interleukins (IL)-6/tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO), which induced the activation of Toll-like receptor 2 (TLR2), TLR4 as well as mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways. Interestingly, MIPB50-S-1 performed the better immunomodulatory activity than that of MIPB50-W in almost all tests. Therefore, MIPB50-W and MIPB50-S-1 are potential immune-enhancing components of functional foods.
Collapse
Affiliation(s)
- Yao Wen
- Biotechnological Institute of Chinese Materia Medica, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sixue Bi
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xianjing Hu
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianing Yang
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chunlei Li
- Biotechnological Institute of Chinese Materia Medica, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hang Li
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Dong Bo Yu
- Department of Cardiovascular Care, ThedaCare Regional Medical Center, Appleton, WI, USA
| | - Jianhua Zhu
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liyan Song
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
11
|
Chopra B, Dhingra AK. Natural products: A lead for drug discovery and development. Phytother Res 2021; 35:4660-4702. [PMID: 33847440 DOI: 10.1002/ptr.7099] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Natural products are used since ancient times in folklore for the treatment of various ailments. Plant-derived products have been recognized for many years as a source of therapeutic agents and structural diversity. A literature survey has been carried out to determine the utility of natural molecules and their modified analogs or derivatives as pharmacological active entities. This review presents a study on the importance of natural products in terms of drug discovery and development. It describes how the natural components can be utilized after small modifications in new perspectives. Various new modifications in structure offer a unique opportunity to establish a new molecular entity with better pharmacological potential. It was concluded that in this current era, new attempts are taken to utilize the compounds derived from natural sources as novel drug candidates, with a focus to find and discover new effective molecules that were referred to as "new entities of natural product drug discovery."
Collapse
Affiliation(s)
- Bhawna Chopra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Ashwani Kumar Dhingra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| |
Collapse
|
12
|
Kalekhan F, Kudva AK, Raghu SV, Rao S, Hegde SK, Simon P, Baliga MS. Traditionally Used Natural Products in Preventing Ionizing Radiation-Induced Dermatitis: First Review on the Clinical Studies. Anticancer Agents Med Chem 2021; 22:64-82. [PMID: 33820524 DOI: 10.2174/1871520621666210405093236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
In the treatment of cancer, the use of ionizing radiation is an important modality. However, on the downside, radiation, when used for curative purposes, causes acute dermatitis or radiodermatitis at the site of radiation in most individuals. From a clinical viewpoint, severe dermatitis causes a burning and itching sensation is very painful, and severely affects the quality of life of the individual undergoing treatment. In worse situations, acute radiation dermatitis can cause gaps or breaks in the planned treatment and this can adversely affect the treatment objective and outcome. BACKGROUND In various traditional and folk systems of medicine, plants and plant products have been used since time immemorial for treating various skin ailments. Further, many cosmeceutical creams formulated based on knowledge from ethnomedicinal use are marketed and used to treat various ailments. In the current review, an attempt is made at summarizing the beneficial effects of some plants and plant products in mitigating acute radiation dermatitis in humans undergoing curative radiotherapy. Additionally, the emphasis is also placed on the mechanism/s responsible for the beneficial effects. OBJECTIVE The objective of this review is to summarize the clinical observations on the prevention of radiodermatitis by plant products. In this review, the protective effects of Adlay (Coix lachryma-jobi L.) bran extract, Aloe vera, Calendula officinalis, Cucumis sativus, green tea constituent the epigallocatechin-3-gallate, honey, Achillea millefolium, Matricaria chamomilla, olive oil and some polyherbal creams are addressed by also addressing on the mechanism of action for the beneficial effects. METHODS Two authors' data mined for information in Google Scholar, PubMed, Embase and the Cochrane Library for publications in the field from 1901 up to July 2020. The focus was on acute radiation dermatitis, ionizing radiation, curative radiotherapy, human cancer. The articles were collected and analyzed. RESULTS For the first time, this review addresses the usefulness of natural products like adlay bran, Aloe vera, Calendula officinalis, Cucumis sativus, green tea constituent the epigallocatechin-3-gallate, honey, Achillea millefolium, Matricaria chamomilla, olive oil and some experimentally constituted and commercially available polyherbal creams as skincare agents against the deleterious effects of ionizing radiation on the skin. The protective effects are possibly due to the free radical scavenging, antioxidant, anti-inflammatory, wound healing and skin protective effects. CONCLUSION The authors suggest that these plants have been used since antiquity as medicinal agents and require in-depth investigation with both clinical and preclinical validated models of study. The results of these studies will be extremely useful to cancer patients requiring curative radiotherapy, the dermatology fraternity, agro-based and pharmaceutical sectors at large.
Collapse
Affiliation(s)
- Faizan Kalekhan
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Avinash K Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka. India
| | - Shamprasad V Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka. India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka. India
| | - Sanath K Hegde
- Radiation Oncology, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Paul Simon
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Manjeshwar S Baliga
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| |
Collapse
|
13
|
Ge G, Yang S, Hou Z, Gan M, Tao H, Zhang W, Li W, Wang Z, Hao Y, Gu Y, Geng D. Theaflavin-3,3'-Digallate Promotes the Formation of Osteoblasts Under Inflammatory Environment and Increases the Bone Mass of Ovariectomized Mice. Front Pharmacol 2021; 12:648969. [PMID: 33833684 PMCID: PMC8021853 DOI: 10.3389/fphar.2021.648969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/15/2021] [Indexed: 12/03/2022] Open
Abstract
Postmenopausal osteoporosis is a disease of bone mass reduction and structural changes due to estrogen deficiency, which can eventually lead to increased pain and fracture risk. Chronic inflammatory microenvironment leading to the decreased activation of osteoblasts and inhibition of bone formation is an important pathological factor that leads to osteoporosis. Theaflavin-3,3′-digallate (TFDG) is an extract of black tea, which has potential anti-inflammatory and antiviral effects. In our study, we found that TFDG significantly increased the bone mass of ovariectomized (OVX) mice by micro-CT analysis. Compared with OVX mice, TFDG reduced the release of proinflammatory cytokines and increased the expression of osteogenic markers in vivo. In vitro experiments demonstrated that TFDG could promote the formation of osteoblasts in inflammatory environment and enhance their mineralization ability. In this process, TFDG activated MAPK, Wnt/β-Catenin and BMP/Smad signaling pathways inhibited by TNF-α, and then promoted the transcription of osteogenic related factors including Runx2 and Osterix, promoting the differentiation and maturation of osteoblasts eventually. In general, our study confirmed that TFDG was able to promote osteoblast differentiation under inflammatory environment, enhance its mineralization ability, and ultimately increase bone mass in ovariectomized mice. These results suggested that TFDG might have the potential to be a more effective treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sen Yang
- Suzhou Ninth People's Hospital, Suzhou Ninth Hospital affiliated to Soochow University, Suzhou, China
| | - Zhenyang Hou
- Department of Orthopaedics, Teng Zhou Central People's Hospital, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
| | - Minfeng Gan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huaqiang Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenming Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zheng Wang
- Department of Orthopaedics, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Ye Gu
- Department of Orthopaedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Cheng HS, Goh BH, Phang SCW, Amanullah MM, Ton SH, Palanisamy UD, Abdul Kadir K, Tan JBL. Pleiotropic ameliorative effects of ellagitannin geraniin against metabolic syndrome induced by high-fat diet in rats. Nutrition 2020; 79-80:110973. [PMID: 32916379 DOI: 10.1016/j.nut.2020.110973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Metabolic syndrome (MetS), a multiplex risk factor for cardiovascular disease and type 2 diabetes, is increasingly prevalent worldwide. Ellagitannin geraniin, a polyphenol found in the rind of rambutan (Nephelium lappaceum), has demonstrated therapeutic effects against metabolism dysfunction. The aim of this study was to characterize the metabolic effects and possible mechanism of geraniin in rats with MetS induced by a high-fat diet (HFD). METHODS MetS was induced in Sprague Dawley rats on an HFD, followed by a daily oral gavage of geraniin (25 mg/kg) for 4 wk. The outcomes of geraniin-treated rats were compared with those of untreated rats on either a control diet or an HFD and with rats with MetS treated with metformin on a daily basis (200 mg/kg). RESULTS The supplementation of geraniin ameliorated multiple metabolic abnormalities caused by HFD, including hypertension, impaired glucose and lipid metabolism, ectopic fat deposition in the visceral fat and liver, and disturbed antioxidant mechanism and inflammatory response. The benefits conferred by geraniin were comparable to metformin. Transcriptomic analysis revealed a profound influence of geraniin on the hepatic expression profiles. The lipid and steroid metabolic processes that were aberrantly activated by HFD were suppressed by geraniin. Based on the differential transcriptomes, geraniin also exerted a significant modulatory effect on the expression of mitochondrial genes, potentially influencing the mitochondrial activity and leading to the observed beneficial effects. CONCLUSION Geraniin supplementation mitigated metabolic anomalies of MetS in rats, making it an attractive drug candidate for further investigation.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Science, Monash University Malaysia, Selangor, Malaysia; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Boon Hee Goh
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Sonia Chew Wen Phang
- School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | | | - So Ha Ton
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Uma Devi Palanisamy
- School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Khalid Abdul Kadir
- School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | | |
Collapse
|
15
|
Wan LQ, Tan Y, Jiang M, Hua Q. The prognostic impact of traditional Chinese medicine monomers on tumor-associated macrophages in non-small cell lung cancer. Chin J Nat Med 2020; 17:729-737. [PMID: 31703753 DOI: 10.1016/s1875-5364(19)30089-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) accounts for 80%-85% of all lung malignancies and good diagnosis and prognosis of NSCLC are critical to the increase of its survival rate. Tumor-associated macrophages (TAM) abundantly present in numerous cancer types, and the role of TAMs in tumor biology and their prognostic value in cancer become major topics of interest. After various stimulations in the tumor microenvironment, TAMs develop into a M1 (tumor-inhibitory) phenotype or M2 (tumor-promoting) phenotype. Recent studies show that traditional Chinese medicine (TCM) monomers have markedly inhibitory actions for NSCLC through M1/M2 modulation. Due to the TCM monomers mainly covered five categories, i.e. terpenoids, flavonoids, polysaccharides, natural polyphenols, and alkaloids. Thus, we will discuss the regulation of TCM monomers on TAM involve in these five parts in this review. In addition, the potential role of TAMs as therapeutic targets will be discussed.
Collapse
Affiliation(s)
- Liang-Qin Wan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Tan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Miao Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Qian Hua
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
16
|
Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment. Food Res Int 2020; 129:108842. [DOI: 10.1016/j.foodres.2019.108842] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
|
17
|
Zhang B, Wang J, Wei Q, Liu Y, Zhang H, Chen X, Xu K. Epigallocatechin-3-O-gallate modulates the diversity of gut microbiota in ovariectomized rats. Food Sci Nutr 2020; 8:1295-1302. [PMID: 32148835 PMCID: PMC7020287 DOI: 10.1002/fsn3.1419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 01/09/2023] Open
Abstract
Epigallocatechin-3-O-gallate (EGCG) exists as one of the major active components of green tea and has been studied extensively; however, the relationship between EGCG and the changes in the gut microflora of ovariectomized (OVX) rats as a model of menopause women have not yet been studied. Female Wistar rats were fed on a maintenance material diet and underwent either ovariectomy or SHAM surgery. The ovariectomized rats were divided into OVX group with the treatment of placebo or EGCG group which was treated with EGCG by oral gavage. After 8 weeks of treatment, anxiety-like behaviors were assessed using elevated plus maze test (EMP) and open field test (OFT). The serum estradiol concentration was assayed through ELISA. High-throughput V3-V4 16S rDNA sequencing was conducted to assess the microbial diversity in fecal samples collected from all rats. EGCG, at a concentration of 10 mg/kg, caused behavioral changes in rats similar to anxiety. In EPM, OVX rats spent less time in open arms than SHAM group rats and EGCG group rats (F = 16.043, p < .01). In OFT, the total travelled distance and the number of entries for EGCG group were higher compared with OVX group (F = 30.939, H = 13.107, respectively; p < .01). In addition, the distribution and composition of intestinal microflora in rats changed after ovariectomy. EGCG modulated the diversity of gut microbiota in OVX group at the phylum and the genus levels. Our results suggested that the composition of gut microbiota and anxiety in OVX rats were simultaneously affected by EGCG, and therefore, the two conditions might be strongly related, yet the deeper mechanistic links need further exploration.
Collapse
Affiliation(s)
- Beilin Zhang
- Department of PhysiologyCollege of Basic Medical SciencesJilin UniversityJilinChina
| | - Jinpeng Wang
- Department of Cardiologythe Second Hospital of Jilin UniversityJilinChina
| | - Qiyan Wei
- College of Chinese Medicinal MaterialsJilin Agricultural UniversityJilinChina
| | - Yi Liu
- Department of Nutrition and Food HygieneSchool of Public HealthJilin UniversityJilinChina
| | - Huiwen Zhang
- Department of Nutrition and Food HygieneSchool of Public HealthJilin UniversityJilinChina
| | - Xiaohui Chen
- Department of Cardiologythe Second Hospital of Jilin UniversityJilinChina
| | - Kun Xu
- Department of Nutrition and Food HygieneSchool of Public HealthJilin UniversityJilinChina
| |
Collapse
|
18
|
Harikrishnan H, Jantan I, Alagan A, Haque MA. Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: potential role in the prevention and treatment of inflammation and cancer. Inflammopharmacology 2019; 28:1-18. [PMID: 31792765 DOI: 10.1007/s10787-019-00671-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
The causal and functional connection between inflammation and cancer has become a subject of much research interest. Modulation of cell signaling pathways, such as those involving mitogen activated protein kinases (MAPKs), nuclear factor kappa β (NF-κB), phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt), and Wnt, and their outcomes play a fundamental role in inflammation and cancer. Activation of these cell signaling pathways can lead to various aspects of cancer-related inflammation. Hence, compounds able to modulate inflammation-related molecular targets are sought after in anticancer drug development programs. In recent years, plant extracts and their metabolites have been documented with potential in the prevention and treatment of cancer and inflammatory ailments. Plants possessing anticancer and anti-inflammatory properties due to their bioactive constituents have been reported to modulate the molecular and cellular pathways which are related to inflammation and cancer. In this review we focus on the flavonoids (astragalin, kaempferol, quercetin, rutin), lignans (phyllanthin, hypophyllanthin, and niranthin), tannins (corilagin, geraniin, ellagic acid, gallic acid), and triterpenes (lupeol, oleanolic acid, ursolic acid) of Phyllanthus amarus, which exert various anticancer and anti-inflammatory activities via perturbation of the NF-κB, MAPKs, PI3K/Akt, and Wnt signaling networks. Understanding the underlying mechanisms involved may help future research to develop drug candidates for prevention and new treatment for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hemavathy Harikrishnan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ibrahim Jantan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, 47500, Subang Jaya, Selangor, Malaysia. .,Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Akilandeshwari Alagan
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| |
Collapse
|
19
|
Li Y, Shi J, Sun X, Li Y, Duan Y, Yao H. Theaflavic acid from black tea protects PC12 cells against ROS-mediated mitochondrial apoptosis induced by OGD/R via activating Nrf2/ARE signaling pathway. J Nat Med 2019; 74:238-246. [PMID: 31227974 DOI: 10.1007/s11418-019-01333-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022]
Abstract
Cerebral ischemic stroke is a severe disease afflicting people worldwide. Phytochemicals play a pivotal role in the discovery of novel therapeutic approaches for the prevention of ischemic stroke. In our continual search for bioactive natural products for the treatment of ischemic stroke, we have evaluated the protective effects of theaflavic acid (TFA) from black tea using PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R), and investigated the possible mechanisms. The results showed that TFA can protect PC12 cells against OGD/R through increasing cell viability and decreasing intracellular lactate dehydrogenase (LDH) release. Further investigations found that TFA could inhibit the overproduction of intracellular reactive oxygen species (ROS), reduce malondialdehyde content, and elevate superoxide dismutase activity, which implied that TFA suppresses oxidative stress in PC12 cells induced by OGD/R. In addition, overload of intracellular calcium and collapse of the mitochondrial membrane potential were improved in the presence of TFA, and the activity of caspase-3 was significantly reduced by TFA. Western blot analysis showed that the expression of Bcl-2 was up-regulated while Bax was down-regulated. Therefore, it can be concluded that TFA can inhibit mitochondria-dependent apoptosis of PC12 cells induced by OGD/R. In addition, activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway was explored to elucidate the mechanism by which TFA inhibits ROS-mediated apoptosis in PC12 cells. The results revealed that TFA promoted the translocation of Nrf2 into nuclei, enhanced the transcriptional activity of ARE, and up-regulated expression of downstream HO-1, which indicates that the Nrf2/ARE signaling pathway is involved in the protection by TFA of PC12 cells injured by OGD/R.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jing Shi
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xinting Sun
- China Rehabilitation Center, Beijing Key Laboratory of Neural Injury and Rehabitilation, School of Rehabilitation Medicine, Capital Medical University, Beijing, 100077, China
| | - Yafeng Li
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Pharmacy, Fengxian People's Hospital, Xuzhou, 221700, Jiangsu, China
| | - Yinyin Duan
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huankai Yao
- School of Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
20
|
Liao Y, Yu Z, Liu X, Zeng L, Cheng S, Li J, Tang J, Yang Z. Effect of Major Tea Insect Attack on Formation of Quality-Related Nonvolatile Specialized Metabolites in Tea ( Camellia sinensis) Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6716-6724. [PMID: 31135151 DOI: 10.1021/acs.jafc.9b01854] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Insect attack is known to induce a high accumulation of volatile metabolites in tea ( Camellia sinensis). However, little information is available concerning the effect of insect attack on tea quality-related nonvolatile specialized metabolites. This study aimed to investigate the formation of characteristic nonvolatile specialized metabolites in tea leaves in response to attack by major tea insects, namely, tea green leafhoppers and tea geometrids, and determine the possible involvement of phytohormones in metabolite formation resulting from insect attack. Both tea green leafhopper and tea geometrid attacks increased the jasmonic acid and salicylic acid contents. The abscisic acid content was only increased under tea green leafhopper attack, perhaps due to special continuous piercing-sucking wounding. Tea green leafhopper attack induced the formation of theaflavins from catechins under the action of polyphenol oxidase, while tea geometrid attack increased the l-theanine content. Exogenous phytohormone treatments can affect the caffeine and catechin contents. These results will help to determine the influence of major tea pest insects on important tea quality-related metabolites and enhance understanding of the relationship of phytohormones and quality-related nonvolatile metabolite formation in tea exposed to tea pest insect attacks.
Collapse
Affiliation(s)
- Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723 , Tianhe District, Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No.19A Yuquan Road , Beijing 100049 , China
| | - Zhenming Yu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723 , Tianhe District, Guangzhou 510650 , China
| | - Xiaoyu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723 , Tianhe District, Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No.19A Yuquan Road , Beijing 100049 , China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723 , Tianhe District, Guangzhou 510650 , China
| | - Sihua Cheng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723 , Tianhe District, Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No.19A Yuquan Road , Beijing 100049 , China
| | - Jianlong Li
- Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization , Tea Research Institute , Dafeng Road 6 , Tianhe District, Guangzhou 510640 , China
| | - Jinchi Tang
- Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization , Tea Research Institute , Dafeng Road 6 , Tianhe District, Guangzhou 510640 , China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement , South China Botanical Garden, Chinese Academy of Sciences , Xingke Road 723 , Tianhe District, Guangzhou 510650 , China
- University of Chinese Academy of Sciences , No.19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
21
|
Fang J, Sureda A, Silva AS, Khan F, Xu S, Nabavi SM. Trends of tea in cardiovascular health and disease: A critical review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Cheng AW, Tan X, Sun JY, Gu CM, Liu C, Guo X. Catechin attenuates TNF-α induced inflammatory response via AMPK-SIRT1 pathway in 3T3-L1 adipocytes. PLoS One 2019; 14:e0217090. [PMID: 31100089 PMCID: PMC6524818 DOI: 10.1371/journal.pone.0217090] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic inflammation is a fundamental symptom of many diseases. Catechin possesses anti-oxidant and anti-inflammatory properties. However, the mechanism of catechin to prevent inflammation in 3T3-L1 adipocytes caused by TNF-α remains unknown. Therefore, the effects of catechin on the gene expression of cytokines and the activation of cell signals in TNF-α induced 3T3-L1 adipocytes were investigated. The effects of catechin on adipogenesis and cell viability were detected by Oil Red O staining and CCK-8 assay, respectively. The genes expression of cytokines was determined by real-time RT-PCR. The expression of NF-κB, AMPK, FOXO3a and SIRT1 on translation level was determined by western blotting analysis. The results demonstrated that catechin significantly enhanced adipogenesis and cell viability. catechin inhibited the gene expression of pro-inflammatory cytokines including IL-1α, IL-1β, IL-6, IL-12p35, and inflammatory enzymes including iNOS and COX-2, but enhanced the gene expression of anti-inflammatory cytokines including IL-4 and IL-10. Catechin also inhibited the activation of NF-κB, AMPK, FOXO3a and SIRT1, but increased the phosphorylation level of the above factors. All these results indicated that as a potential therapeutic strategy catechin has the ability of attenuating inflammatory response triggered by TNF-α through signaling cascades involved in inflammation and cytokines.
Collapse
Affiliation(s)
- An-Wei Cheng
- Institute of Agro-food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan, China
- * E-mail: (AWC); (JYS)
| | - Xin Tan
- Institute of Agro-food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jin-Yue Sun
- Institute of Agro-food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan, China
- * E-mail: (AWC); (JYS)
| | - Chun-Mei Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Chao Liu
- Institute of Agro-food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan, China
| | - Xu Guo
- Institute of Agro-food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan, China
| |
Collapse
|
23
|
Patnaik SS, Simionescu DT, Goergen CJ, Hoyt K, Sirsi S, Finol EA. Pentagalloyl Glucose and Its Functional Role in Vascular Health: Biomechanics and Drug-Delivery Characteristics. Ann Biomed Eng 2019; 47:39-59. [PMID: 30298373 PMCID: PMC6318003 DOI: 10.1007/s10439-018-02145-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Pentagalloyl glucose (PGG) is an elastin-stabilizing polyphenolic compound that has significant biomedical benefits, such as being a free radical sink, an anti-inflammatory agent, anti-diabetic agent, enzymatic resistant properties, etc. This review article focuses on the important benefits of PGG on vascular health, including its role in tissue mechanics, the different modes of pharmacological administration (e.g., oral, intravenous and endovascular route, intraperitoneal route, subcutaneous route, and nanoparticle based delivery and microbubble-based delivery), and its potential therapeutic role in vascular diseases such as abdominal aortic aneurysms (AAA). In particular, the use of PGG for AAA suppression and prevention has been demonstrated to be effective only in the calcium chloride rat AAA model. Therefore, in this critical review we address the challenges that lie ahead for the clinical translation of PGG as an AAA growth suppressor.
Collapse
Affiliation(s)
- Sourav S Patnaik
- Vascular Biomechanics and Biofluids Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0670, USA
| | - Dan T Simionescu
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shashank Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ender A Finol
- Vascular Biomechanics and Biofluids Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0670, USA.
| |
Collapse
|
24
|
Wu Y, Kuraji R, Taya Y, Ito H, Numabe Y. Effects of theaflavins on tissue inflammation and bone resorption on experimental periodontitis in rats. J Periodontal Res 2018; 53:1009-1019. [PMID: 30159985 PMCID: PMC6221153 DOI: 10.1111/jre.12600] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/29/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Theaflavins (TFs), the major polyphenol in black tea, have the ability to reduce inflammation and bone resorption. The aim of this study was to evaluate the effects of TFs on experimental periodontitis in rats. MATERIAL AND METHODS Thirty rats were divided into five groups: Control (glycerol application without ligation), Ligature (glycerol application with ligation), TF1 (1 mg/mL TF application with ligation), TF10 (10 mg/mL TF application with ligation), and TF100 (100 mg/mL TF application with ligation). To induce experimental periodontitis, ligatures were placed around maxillary first molars bilaterally. After ligature placement, 100 μL glycerol or TFs were topically applied to the rats daily, and rats were euthanized 7 days after ligature placement. Micro-computed tomography was used to measure bone resorption in the left side of the maxilla, and quantitative polymerase chain reaction was used to measure the expression of interleukin (IL)-6, growth-regulated gene product/cytokine-induced neutrophil chemoattractant (Gro/Cinc-1, rat equivalent of IL-8), matrix metalloproteinase-9 (Mmp-9), receptor activator of nuclear factor-kappa Β ligand (Rankl), osteoprotegerin (Opg), and the Rankl/Opg ratio in gingival tissue. With tissue from the right side of the maxilla, hematoxylin and eosin staining was used for histological analysis, immunohistochemical staining for leukocyte common antigen (CD45) was used to assess inflammation, and tartrate-resistant acid phosphatase (TRAP) staining was used to observe the number of osteoclasts. RESULTS The TF10 and TF100 groups, but not the TF1 group, had significant inhibition of alveolar bone loss, reduction in inflammatory cell infiltration in the periodontium, and significantly reduced numbers of CD45-positive cells and TRAP-positive osteoclasts compared with the Ligature group. Correspondingly, the TF10 and TF100 groups had significantly downregulated gene expression of IL-6, Gro/Cinc-1(IL-8), Mmp-9, and Rankl, but not of Opg. Consequently, Rankl/Opg expression was significantly increased in the Ligation group but was attenuated in the TF10 and TF100 groups. CONCLUSION The results of this study suggest that topical application of TFs may reduce inflammation and bone resorption in experimental periodontitis. Therefore, TFs have therapeutic potential in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Ya‐Hsin Wu
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| | - Ryutaro Kuraji
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
- Department of Life Science DentistryThe Nippon Dental UniversityTokyoJapan
| | - Yuji Taya
- Department of PathologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| | - Hiroshi Ito
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| | - Yukihiro Numabe
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| |
Collapse
|
25
|
Mendonca P, Taka E, Bauer D, Reams RR, Soliman KFA. The attenuating effects of 1,2,3,4,6 penta-O-galloyl-β-d-glucose on pro-inflammatory responses of LPS/IFNγ-activated BV-2 microglial cells through NFƙB and MAPK signaling pathways. J Neuroimmunol 2018; 324:43-53. [PMID: 30236786 DOI: 10.1016/j.jneuroim.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Overactivated microglial cells exhibit chronic inflammatory response and can lead to the continuous production of pro-inflammatory cytokines, perpetuating inflammation, and ultimately resulting in neuronal injury. 1,2,3,4,6-Penta-O-Galloyl-β-d-Glucose (PGG), which is a naturally occurring polyphenolic compound, has exhibited anti-inflammatory effect through the inhibition of many cytokines in different experimental models, but its effect on activated microglia cells was never described. In the present study, we investigated PGG effect in proteins involved in the NFƙB and MAPK signaling pathways, which play a central role in inflammation through their ability to induce transcription of pro-inflammatory genes. METHODS PCR arrays and RT-PCR with individual primers were used to determine the effect of PGG on mRNA expression of genes involved in NFƙB and MAPK signaling pathways. Western blots were performed to confirm PCR results. RESULTS The data obtained showed that PGG modulated the expression of 5 genes from the NFƙB (BIRC3, CHUK, IRAK1, NFƙB1, NOD1) and 2 genes from MAPK signaling pathway (CDK2 and MYC) when tested in RT-PCR assays. Western blots confirmed the PCR results at the protein level, showing that PGG attenuated the expression of total and phosphorylated proteins (CDK2, CHUK, IRAK1, and NFƙB1) involved in NFƙB and MAPK signaling. CONCLUSION These findings show that PGG could modulate the expression of genes and proteins involved in the production of pro-inflammatory cytokines in microglia cells.
Collapse
Affiliation(s)
- Patricia Mendonca
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - David Bauer
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Renee R Reams
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.
| |
Collapse
|
26
|
Pardau MD, Pereira ASP, Apostolides Z, Serem JC, Bester MJ. Antioxidant and anti-inflammatory properties of Ilex guayusa tea preparations: a comparison to Camellia sinensis teas. Food Funct 2018; 8:4601-4610. [PMID: 29134218 DOI: 10.1039/c7fo01067b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ilex guayusa tea preparations are now commercially available as Runa tea. Little is known regarding the antioxidant and anti-inflammatory bioactivities of this tea. The I. guayusa teas had a total polyphenolic content between 54.39 and 67.23 mg GAE per g dry mass and peroxyl radical scavenging capacities between 1773.41 and 2019 μmol TE per g dry mass, nearly half of that for the Camellia sinensis teas. The I. guayusa teas afforded 60-80% protection from oxidative stress in the Caco-2 cellular antioxidant assay, comparable to the C. sinensis teas. The anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells of I. guayusa teas was similarly comparable to the C. sinensis teas with nitric oxide production reduced by 10-30%. Major compounds identified by mass spectrometry were the phenolic mono- and dicaffeoylquinic acid derivatives. I. guayusa teas are a good source of dietary phenolic compounds with cellular antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Madelein D Pardau
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | | | | | | | | |
Collapse
|
27
|
Epigallocatechin-3-gallate alleviates bladder overactivity in a rat model with metabolic syndrome and ovarian hormone deficiency through mitochondria apoptosis pathways. Sci Rep 2018; 8:5358. [PMID: 29599473 PMCID: PMC5876359 DOI: 10.1038/s41598-018-23800-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) and ovarian hormone deficiency could affect bladder storage dysfunction. Epigallocatechin-3-gallate (EGCG), a polyphenolic compound in green tea, has been shown to protect against ovarian hormone deficiency induced overactive bladder (OAB). The present study investigated oxidative stress induced by MetS and bilateral ovariectomy (OVX), and elucidated the mechanism underlying the protective effect of EGCG (10 umol/kg/day) on bladder overactivity. Rats were fed with high fat high sugar (HFHS) diet to induce MetS and received ovariectomy surgery to deprive ovarian hormone. By dieting with HFHS for 6 months, rats developed MetS and OAB. MetS + OVX deteriorated bladder storage dysfunction more profound than MetS alone. MetS and MetS + OVX rats showed over-expression of inflammatory and fibrosis markers (1.7~3.8-fold of control). EGCG pretreatment alleviated storage dysfunction, and protected the bladders from MetS and OVX - induced interstitial fibrosis changes. Moreover, OVX exacerbated MetS related bladder apoptosis (2.3~4.5-fold of control; 1.8~2.6-fold of Mets group), enhances oxidative stress markers (3.6~4.3-fold of control; 1.8~2.2-fold of Mets group) and mitochondrial enzyme complexes subunits (1.8~3.7-fold of control; 1.5~3.4-fold of Mets group). EGCG pretreatment alleviated bladder apoptosis, attenuated oxidative stress, and reduced the mitochondrial and endoplasmic reticulum apoptotic signals. In conclusions, HFHS feeding and ovarian hormone deficiency enhances the generation of oxidative stress mediated through mitochondrial pathway. EGCG reduced the generation of oxidative stress and lessened bladder overactivity.
Collapse
|
28
|
Zhu W, Jia L, Chen G, Zhao H, Sun X, Meng X, Zhao X, Xing L, Yu J, Zheng M. Epigallocatechin-3-gallate ameliorates radiation-induced acute skin damage in breast cancer patients undergoing adjuvant radiotherapy. Oncotarget 2018; 7:48607-48613. [PMID: 27224910 PMCID: PMC5217042 DOI: 10.18632/oncotarget.9495] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/04/2016] [Indexed: 11/25/2022] Open
Abstract
There are few effective treatment options for radiation-induced dermatitis in breast cancer patients. We conducted a single-arm trial to tested the hypothesis that topical epigallocatechin-3-gallate (EGCG) is effective against radiation-induced dermatitis in breast cancer patients undergoing radiotherapy. Forty-nine patients participated in this study. The patients underwent mastectomy followed by adjuvant radiotherapy. Topical EGCG was applied daily, starting when grade I dermatitis appeared and ending two weeks after radiotherapy. The maximum dermatitis observed during the EGCG treatment was as follows: Grade 1 toxicity, 71.4% (35 patients); grade 2 toxicity, 28.6% (14 patients); there were no patients with grade 3 or 4 toxicity. The majority of the radiation-induced dermatitis was observed 1 week after the end of radiotherapy. EGCG reduced the pain in 85.7% of patients, burning-feeling in 89.8%, itching in 87.8%, pulling in 71.4%, and tenderness in 79.6%. These findings suggest topical EGCG may be an effective treatment for radiation-induced dermatitis and has acceptable toxicity.
Collapse
Affiliation(s)
- Wanqi Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Li Jia
- Department of Radiation Oncology, Jinan Fourth People's Hospital, Jinan, Shandong, China
| | - Guanxuan Chen
- Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| | - Hanxi Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaorong Sun
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xianguang Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, Shandong, China.,Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| | - Meizhu Zheng
- Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| |
Collapse
|
29
|
Bi S, Jing Y, Zhou Q, Hu X, Zhu J, Guo Z, Song L, Yu R. Structural elucidation and immunostimulatory activity of a new polysaccharide from Cordyceps militaris. Food Funct 2018; 9:279-293. [DOI: 10.1039/c7fo01147d] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical structure of new polysaccharide (CMPB90-1) obtained from Cordyceps militaris was elucidated, and its strengthening effects on immunostimulatory activities of lymphocytes and inducing effects on M1 polarization of macrophages were evaluated.
Collapse
Affiliation(s)
- Sixue Bi
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Yongshuai Jing
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Qinqin Zhou
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Xianjing Hu
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica
- Jinan University
- Guangzhou 510632
- China
| | - Zhongyi Guo
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Liyan Song
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Rongmin Yu
- Department of Pharmacology
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
30
|
Owczarek K, Hrabec E, Fichna J, Sosnowska D, Koziołkiewicz M, Szymański J, Lewandowska U. Inhibition of nuclear factor-kappaB, cyclooxygenase-2, and metalloproteinase-9 expression by flavanols from evening primrose (Oenothera paradoxa) in human colon cancer SW-480 cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
31
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
32
|
Theaflavins from black tea affect growth, development, and motility in Dictyostelium discoideum. Biochem Biophys Res Commun 2017; 491:449-454. [PMID: 28711497 DOI: 10.1016/j.bbrc.2017.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/29/2023]
Abstract
Theaflavins, flavonoids found in black tea, exhibit a variety of health-promoting activities, but the mechanisms by which they act are not clear. Here, we assess the effects of black tea extract and isolated theaflavins on Dictyostelium discoideum, a model organism exhibiting an unusual life cycle relying on conserved pathways involved in human disease. Dictyostelium has been used to characterize the activities of numerous bioactive small molecules, including catechins, from which theaflavins are produced during the preparation of black tea. We show that theaflavins block growth, development, and motility in Dictyostelium, results that suggest catechins and theaflavins exert similar activities in this organism.
Collapse
|
33
|
Phillips C. Lifestyle Modulators of Neuroplasticity: How Physical Activity, Mental Engagement, and Diet Promote Cognitive Health during Aging. Neural Plast 2017; 2017:3589271. [PMID: 28695017 PMCID: PMC5485368 DOI: 10.1155/2017/3589271] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/01/2017] [Accepted: 05/28/2017] [Indexed: 12/24/2022] Open
Abstract
The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains, changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational studies have shown that modifiable lifestyle factors-including physical activity, cognitive engagement, and diet-are a key strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians. Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging.
Collapse
|
34
|
Liu X, Li J, Peng X, Lv B, Wang P, Zhao X, Yu B. Geraniin Inhibits LPS-Induced THP-1 Macrophages Switching to M1 Phenotype via SOCS1/NF-κB Pathway. Inflammation 2017; 39:1421-33. [PMID: 27290719 DOI: 10.1007/s10753-016-0374-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
M1 macrophage polarization is proved to promote inflammation in atherosclerosis process. In this study, we evaluated the inhibitory effect of geraniin, a bioactive polyphenolic compound, on the LPS-induced switch of THP-1 macrophages to M1 phenotype, and we propose a molecular basis for its action. Flow cytometry analysis indicated that geraniin significantly inhibited LPS-induced M1 macrophage polarization. Geraniin downregulated the protein and the mRNA level of typical cytokines of M1 macrophage, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), indicating that geraniin can suppress typical mediators of M1 macrophage at the transcriptional level. Moreover, geraniin inhibited LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) production, as well as inducible nitric oxide synthase (iNOS) activity, in THP-1 macrophages. Furthermore, western blot analysis indicated that geraniin decreased both LPS-induced phosphorylation of NF-κB-p65 and NF-κB-p65 expression without affecting the level of IκB-α. This suggested that geraniin inhibited NF-κB, a transcription factor pivotal in the LPS-induced expression of pro-inflammatory genes and an important player in M1 macrophage polarization. Moreover, an electrophoretic mobility shift assay (EMSA) demonstrated that geraniin blocked the LPS-induced translocation of NF-κB to the nucleus. Moreover, we found that geraniin up-regulated the expression of SOCS1, an upstream regulator of NF-κB activation that can directly bind to NF-κB-p65 and downregulate it, thus inhibiting NF-κB activation. In conclusion, geraniin inhibits LPS-induced THP-1 macrophages switching to M1 phenotype through SOCS1/NF-κB pathway.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xiaohong Peng
- Heilongjiang Province Lumber Industry General Hospital, Harbin, 150040, China
| | - Bo Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Peng Wang
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoming Zhao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, 37232, USA.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
35
|
Morgan LA, Grundmann O. Preclinical and Potential Applications of Common Western Herbal Supplements as Complementary Treatment in Parkinson's Disease. J Diet Suppl 2017; 14:453-466. [DOI: 10.1080/19390211.2016.1263710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Luke A. Morgan
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Rocha BS, Nunes C, Laranjinha J. Tuning constitutive and pathological inflammation in the gut via the interaction of dietary nitrate and polyphenols with host microbiome. Int J Biochem Cell Biol 2016; 81:393-402. [PMID: 27989963 DOI: 10.1016/j.biocel.2016.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/22/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023]
Abstract
Chronic inflammation is currently recognized as a critical process in modern-era epidemics such as diabetes, obesity and neurodegeneration. However, little attention is paid to the constitutive inflammatory pathways that operate in the gut and that are mandatory for local welfare and the prevention of such multi-organic diseases. Hence, the digestive system, while posing as a barrier between the external environment and the host, is crucial for the balance between constitutive and pathological inflammatory events. Gut microbiome, a recently discovered organ, is now known to govern the interaction between exogenous agents and the host with ensued impact on local and systemic homeostasis. Whereas gut microbiota may be modulated by a myriad of factors, diet constitutes one of its major determinants. Thus, dietary compounds that influence microbial flora may thereby impact on inflammatory pathways. One such example is the redox environment in the gut lumen which is highly dependent on the local generation of nitric oxide along the nitrate-nitrite-nitric oxide pathway and that is further enhanced by simultaneous consumption of polyphenols. In this paper, different pathways encompassing the interaction of dietary nitrate and polyphenols with gut microbiota will be presented and discussed in connection with local and systemic inflammatory events. Furthermore, it will be discussed how these interactive cycles (nitrate-polyphenols-microbiome) may pose as novel strategies to tackle inflammatory diseases.
Collapse
Affiliation(s)
- Bárbara S Rocha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Nunes
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
37
|
Lagha AB, Grenier D. Tea polyphenols inhibit the activation of NF-κB and the secretion of cytokines and matrix metalloproteinases by macrophages stimulated with Fusobacterium nucleatum. Sci Rep 2016; 6:34520. [PMID: 27694921 PMCID: PMC5046134 DOI: 10.1038/srep34520] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
Fusobacterium nucleatum has been associated with both periodontal disease and inflammatory bowel disease. This Gram-negative bacterium possesses a high inflammatory potential that may contribute to the disease process. We hypothesized that green and black tea polyphenols attenuate the inflammatory response of monocytes/macrophages mediated by F. nucleatum. We first showed that the tea extracts, EGCG and theaflavins reduce the NF-κB activation induced by F. nucleatum in monocytes. Since NF-κB is a key regulator of genes coding for inflammatory mediators, we tested the effects of tea polyphenols on secretion of IL-1β, IL-6, TNF-α, and CXCL8 by macrophages. A pre-treatment of macrophages with the tea extracts, EGCG, or theaflavins prior to a stimulation with F. nucleatum significantly inhibited the secretion of all four cytokines and reduced the secretion of MMP-3 and MMP-9, two tissue destructive enzymes. TREM-1 expressed by macrophages is a cell-surface receptor involved in the propagation of the inflammatory response to bacterial challenges. Interestingly, tea polyphenols inhibited the secretion/shedding of soluble TREM-1 induced by a stimulation of macrophages with F. nucleatum. The anti-inflammatory properties of tea polyphenols identified in the present study suggested that they may be promising agents for the prevention and/or treatment of periodontal disease and inflammatory bowel disease.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
38
|
Zhang J, Cai S, Li J, Xiong L, Tian L, Liu J, Huang J, Liu Z. Neuroprotective Effects of Theaflavins Against Oxidative Stress-Induced Apoptosis in PC12 Cells. Neurochem Res 2016; 41:3364-3372. [PMID: 27686660 DOI: 10.1007/s11064-016-2069-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Abstract
Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H2O2. A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H2O2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H2O2 induced toxicity and increased cell viability by approximately 40 %. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H2O2-treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H2O2. These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Shuxian Cai
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Juan Li
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Ligui Xiong
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Lili Tian
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jianjun Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China. .,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China. .,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China.
| |
Collapse
|
39
|
Ben Lagha A, Grenier D. Black tea theaflavins attenuate Porphyromonas gingivalis virulence properties, modulate gingival keratinocyte tight junction integrity and exert anti-inflammatory activity. J Periodontal Res 2016; 52:458-470. [PMID: 27549582 DOI: 10.1111/jre.12411] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Over the last 10 years, bioactive plant food compounds have received considerable attention in regard to their beneficial effects against periodontal disease. In this study, we investigated the effects of black tea theaflavins (TFs) on the virulence properties of Porphyromonas gingivalis and gingival keratinocyte tight junction integrity. In addition, the effects of black tea TFs on the nuclear factor-κB (NF-κB) signaling pathway and proinflammatory cytokine/matrix metalloproteinase (MMP) secretion by monocytes/macrophages were assessed. MATERIAL AND METHODS Virulence factor gene expression in P. gingivalis was investigated by quantitative real-time PCR. A fluorescence assay was used to determine P. gingivalis adherence to, and invasion of, a gingival keratinocyte monolayer. Tight junction integrity of gingival keratinocytes was assessed by determination of transepithelial electrical resistance. Proinflammatory cytokine and MMP secretion by P. gingivalis-stimulated macrophages was quantified by ELISA. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to monitor NF-κB activation. Gelatin degradation was monitored using a fluorogenic assay. RESULTS Black tea TFs dose-dependently inhibited the expression of genes encoding the major virulence factors of P. gingivalis and attenuated its adherence to gingival keratinocytes. A treatment of gingival keratinocytes with black tea TFs significantly enhanced tight junction integrity and prevented P. gingivalis-mediated tight junction damage as well as bacterial invasion. Black tea TFs reduced the secretion of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, chemokine (C-X-C) ligand 8, MMP-3, MMP-8 and MMP-9 by P. gingivalis-stimulated macrophages and attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. Lastly, black tea TFs inhibited gelatin degradation by MMP-9. CONCLUSION This study provides clear evidence that black tea TFs represent promising multifunctional therapeutic agents for prevention and treatment of periodontal disease.
Collapse
Affiliation(s)
- A Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - D Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| |
Collapse
|
40
|
Yuandani, Jantan I, Ilangkovan M, Husain K, Chan KM. Inhibitory effects of compounds from Phyllanthus amarus on nitric oxide production, lymphocyte proliferation, and cytokine release from phagocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1935-45. [PMID: 27354767 PMCID: PMC4907639 DOI: 10.2147/dddt.s105651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Standardized extract of Phyllanthus amarus has previously been shown to have a strong inhibitory effect on phagocytic activity of human neutrophils. The current study was carried out to evaluate the effects of constituents of the extract of P. amarus on nitric oxide (NO) production as well as lymphocyte proliferation and cytokine release from phagocytes. Three compounds, ethyl 8-hydroxy-8-methyl-tridecanoate, 7β,19α dihydroxy-urs-12-ene, and 1,7,8-trihydroxy-2-naphtaldehyde, together with seven known compounds were isolated from the whole plant of P. amarus. The isolated compounds and reference standards, ie, gallic acid, ellagic acid, corilagin, and geraniin, which were quantitatively analyzed in the extracts, were evaluated for their effects on immune cells. Among the compounds tested, the lignans, especially phyltetralin and phyllanthin, showed strong inhibition on lymphocyte proliferation with half maximal inhibitory concentration (IC50) values of 1.07 μM and 1.82 μM, respectively. Ethyl 8-hydroxy-8-methyl-tridecanoate and 1,7,8-trihydroxy-2-naphtaldehyde exhibited strong inhibition on nitric oxide production with IC50 values of 0.91 μM and 1.07 μM, respectively. Of all the compounds, corilagin was the strongest inhibitor of tumor necrosis factor-α release with an IC50 value of 7.39 μM, whereas geraniin depicted the strongest inhibitory activity on interleukin-1β release with an IC50 value of 16.41 μM. The compounds constituting the extract of P. amarus were able to inhibit the innate immune response of phagocytes at different steps.
Collapse
Affiliation(s)
- Yuandani
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia; Falkultas Farmasi, Universitas Sumatera Utara, USU-Kampus, Medan, Indonesia
| | - Ibrahim Jantan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Menaga Ilangkovan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Kok Meng Chan
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Zhao H, Zhu W, Jia L, Sun X, Chen G, Zhao X, Li X, Meng X, Kong L, Xing L, Yu J. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br J Radiol 2015; 89:20150665. [PMID: 26607642 DOI: 10.1259/bjr.20150665] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the safety, tolerability and preliminary effectiveness of topical epigallocatechin-3-gallate (EGCG) for radiation dermatitis in patients with breast cancer receiving adjuvant radiotherapy. METHODS Patients with breast cancer who received radiotherapy to the chest wall after mastectomy were enrolled. EGCG solution was sprayed to the radiation field from the initiation of Grade 1 radiation dermatitis until 2 weeks after completion of radiotherapy. EGCG concentration escalated from 40 to 660 μmol l(-1) in 7 levels with 3-6 patients in each level. EGCG toxicity was graded using the NCI (National Cancer Institute Common Terminology Criteria for Adverse Events) v. 3.0. Any adverse event >Grade 1 attributed to EGCG was considered dose-limiting toxicity. The maximum tolerated dose was defined as the dose level that induced dose-limiting toxicity in more than one-third of patients at a given cohort. Radiation dermatitis was recorded weekly by the Radiation Therapy Oncology Group scoring and patient-reported symptoms. RESULTS From March 2012 to August 2013, 24 patients were enrolled. Acute skin redness was observed in 1 patient and considered to be associated with the EGCG treatment at 140 μmol l(-1) level. Three more patients were enrolled at this level and did not experience toxicity to EGCG. The dose escalation stopped at 660 μmol l(-1). No other reported acute toxicity was associated with EGCG. Grade 2 radiation dermatitis was observed in eight patients during or after radiotherapy, but all decreased to Grade 1 after EGCG treatments. Patient-reported symptom scores were significantly decreased at 2 weeks after the end of radiotherapy in pain, burning, itching and tenderness, p < 0.05. CONCLUSION The topical administration of EGCG was well tolerated and the maximum tolerated dose was not found. EGCG may be effective in treating radiation dermatitis with preliminary investigation. ADVANCES IN KNOWLEDGE EGCG solution seemed to be feasible for treating radiation dermatitis in patients with breast cancer after mastectomy. It should be tested as a way to reduce radiation-induced normal tissue toxicity and complications in future years.
Collapse
Affiliation(s)
- Hanxi Zhao
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Wanqi Zhu
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Li Jia
- 2 Department of Radiation Oncology, Jinan Fourth People's Hospital, Jinan, Shandong
| | - Xiaorong Sun
- 3 Department of Radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong.,4 Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| | - Guanxuan Chen
- 4 Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| | - Xianguang Zhao
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Xiaolin Li
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Xiangjiao Meng
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Lingling Kong
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong
| | - Ligang Xing
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong.,4 Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| | - Jinming Yu
- 1 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong.,4 Shandong Key Laboratory of Radiation Oncology, Jinan, Shandong, China
| |
Collapse
|
42
|
Brazilein Suppresses Inflammation through Inactivation of IRAK4-NF-κB Pathway in LPS-Induced Raw264.7 Macrophage Cells. Int J Mol Sci 2015; 16:27589-98. [PMID: 26593910 PMCID: PMC4661906 DOI: 10.3390/ijms161126048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/31/2022] Open
Abstract
The medicinal herbal plant has been commonly used for prevention and intervention of disease and health promotions worldwide. Brazilein is a bioactive compound extracted from Caesalpinia sappan Linn. Several studies have showed that brazilein exhibited the immune suppressive effect and anti-oxidative function. However, the molecular targets of brazilein for inflammation prevention have remained elusive. Here, we investigated the mechanism underlying the inhibitory effect of brazilein on LPS-induced inflammatory response in Raw264.7 macrophage cells. We demonstrated that brazilein decreased the expression of IRAK4 protein led to the suppression of MAPK signaling and IKKβ, and subsequent inactivation of NF-κB and COX2 thus promoting the expression of the downstream target pro-inflammatory cytokines such as IL-1β, MCP-1, MIP-2, and IL-6 in LPS-induced Raw264.7 macrophage cells. Moreover, we observed that brazilein reduced the production of nitrite compared to the control in LPS-induced Raw264.7. Thus, we suggest that brazilein might be a useful bioactive compound for the prevention of IRAK-NF-κB pathway associated chronic diseases.
Collapse
|
43
|
Zamani M, Rohampour K, Zeraati M, Hosseinmardi N, Kazemian MM. Pre-training Catechin gavage prevents memory impairment induced by intracerebroventricular streptozotocin in rats. ACTA ACUST UNITED AC 2015; 20:225-9. [PMID: 26166589 PMCID: PMC4710338 DOI: 10.17712/nsj.2015.3.20140440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objective: To evaluate the effects of Catechin (CAT) on memory acquisition and retrieval in the animal model of sporadic alzheimer’s disease (sAD) induced by intracerebroventricular (icv) injection of streptozotocin (STZ) in passive avoidance memory test. Methods: Thirty adult rats were divided into 5 experimental groups (n=6). Animals were treated by icv saline/STZ (3 mg/kg) injection at day one and 3 after cannulation. The STZ+CAT group received 40 mg/kg CAT by daily gavages for 10 days, after icv STZ treatment and before training. The step-through latency (STL) and time spent in the dark compartment (TDC) were evaluated to examine the memory acquisition and retrieval. All tests were performed in Qom University of Medical Sciences, Qom, Iran, from April to December 2013. Results: The STZ treatment significantly decreased STL and increased the number of entries to the dark compartment on the training day. It also increased TDC, on day one and 7 after training. Pre-training gavage of CAT reversed the STL significantly (p=0.027). The CAT treatment also decreased the TDC in both early and late retrieval, in respect to STZ group. Conclusion: This data suggests that CAT as an antioxidant could improve both memory acquisition and retrieval in the animal model of sAD.
Collapse
Affiliation(s)
- Marzieh Zamani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | | | | | | |
Collapse
|
44
|
Kim BH, Choi MS, Lee HG, Lee SH, Noh KH, Kwon S, Jeong AJ, Lee H, Yi EH, Park JY, Lee J, Joo EY, Ye SK. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin. Mol Cells 2015; 38:982-90. [PMID: 26537189 PMCID: PMC4673413 DOI: 10.14348/molcells.2015.0169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/21/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023] Open
Abstract
Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Biomedical Science Project (BK21 PLUS), Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Mi Sun Choi
- Department of Herbal Biotechnology, Daegu Haany University, Gyeongsan 38610,
Korea
| | - Hyun Gyu Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Song-Hee Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Kum Hee Noh
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Sunho Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Ae Jin Jeong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Haeri Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Eun Hee Yi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jung Youl Park
- Industry-Academic Cooperation Foundation, Hanbat National University, Daejeon 305-719,
Korea
| | - Jintae Lee
- Department of Cosmeceutical Science, Daegu Haany University, Gyeongsan 38610,
Korea
| | - Eun Young Joo
- Department of Herbal Biotechnology, Daegu Haany University, Gyeongsan 38610,
Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Biomedical Science Project (BK21 PLUS), Seoul National University College of Medicine, Seoul 110-799,
Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
45
|
|
46
|
Screening Thai plants for DNA protection, anti-collagenase and suppression of MMP-3 expression properties. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Antioxidant, Antibacterial, Cytotoxic, and Anti-Inflammatory Potential of the Leaves of Solanum lycocarpum A. St. Hil. (Solanaceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:315987. [PMID: 26064159 PMCID: PMC4434183 DOI: 10.1155/2015/315987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 12/29/2022]
Abstract
Ethanol extract and fractions obtained from leaves of Solanum lycocarpum were examined in order to determine their phenolic composition, antioxidant, antibacterial, anti-inflammatory, and cytotoxic potential. High performance liquid chromatography coupled with DAD analysis indicated that the flavonoids apigenin and kaempferol were the main phenolic compounds present in dichloromethane and ethyl acetate fractions, respectively. The antioxidant activity was significantly more pronounced for dichloromethane, ethyl acetate, and hydroethanol fractions than that of the commercial antioxidant 2,6-di-tert-butyl-4-methylphenol. The hexane and dichloromethane fractions were more active against the tested bacteria. The hydroethanol fraction exhibited significant anti-inflammatory activity at the dose of 75 and 150 mg/kg in the later phase of inflammation. However, the antiedematogenic effect of the higher dose of the ethyl acetate fraction (150 mg/kg) was more pronounced. The ethyl acetate fraction also presented a less cytotoxic effect than the ethanol extract and other fractions. These activities found in S. lycocarpum leaves can be attributed, at least in part, to the presence of phenolic constituents such as flavonoids. This work provided the knowledge of phenolic composition in the extract and fractions and the antioxidant, antibacterial, anti-inflammatory, and cytotoxic activities of leaves of S. lycocarpum.
Collapse
|
48
|
Jang SE, Hyam SR, Jeong JJ, Han MJ, Kim DH. Penta-O-galloyl-β-D-glucose ameliorates inflammation by inhibiting MyD88/NF-κB and MyD88/MAPK signalling pathways. Br J Pharmacol 2014; 170:1078-91. [PMID: 23941302 DOI: 10.1111/bph.12333] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/06/2013] [Accepted: 08/11/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The gallnut of Rhus chinensis MILL and its main constituent penta-O-galloyl-β-D-glucose (PGG) inhibited NF-κB activation in LPS-stimulated peritoneal and colonic macrophages. Here we have investigated PGG mechanisms underlying anti-inflammatory effects of PGG in vitro and in vivo. EXPERIMENTAL APPROACH Male C57BL/6 mice (18-22 g, 6 weeks old) were used to prepare peritoneal and colonic macrophages and for the induction of colitis by intrarectal administration of 2,3,4-trinitrobenzene sulphonic acid (TNBS). A range of inflammatory markers and transcription factors were evaluated by elisa, immunoblotting, flow cytometry and confocal microscopy. KEY RESULTS Expression of Toll-like receptor (TLR)-4 or Lipopolysaccharide (LPS) binding to TLR-4 in LPS-stimulated peritoneal macrophages was not affected by PGG. However PGG inhibited binding of an anti-MyD88 antibody to peritoneal macrophages, but did not reduce binding of anti-IL-1 receptor-associated kinase (IRAK1) and IRAK4 antibodies to the macrophages with or without transfection with MyD88 siRNA. PGG potently reduced the activation of IRAK1, NF-κB, and MAPKs in LPS- or pepetidoglycan-stimulated peritoneal and colonic macrophages. PGG suppressed IL-1β, TNF-α and IL-6 in LPS-stimulated peritoneal macrophages, while increasing expression of the anti-inflammatorycytokine IL-10. Oral administration of PGG inhibited colon shortening and myeloperoxidase activity in mice with TNBS-induced colitis, along with reducing NF-κB activation and IL-1β, TNF-α, and IL-6 levels, whereas it increased IL-10. CONCLUSIONS AND IMPLICATIONS PGG reduced activation of NF-κB and MAPK signalling pathways by directly interacting with the MyD88 adaptor protein. PGG may ameliorate inflammatory diseases such as colitis.
Collapse
Affiliation(s)
- Se-Eun Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea; Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | | | | | | | | |
Collapse
|
49
|
Xiao F, Zhai Z, Jiang C, Liu X, Li H, Qu X, Ouyang Z, Fan Q, Tang T, Qin A, Gu D. Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model. Exp Cell Res 2014; 330:91-101. [PMID: 25016282 DOI: 10.1016/j.yexcr.2014.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 02/09/2023]
Abstract
Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Zanjing Zhai
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Chuan Jiang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Xuqiang Liu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Haowei Li
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Xinhua Qu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Zhengxiao Ouyang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Qiming Fan
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Tingting Tang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.
| | - Dongyun Gu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People׳s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education of PR China, PR China; School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
50
|
Pallauf K, Giller K, Huebbe P, Rimbach G. Nutrition and healthy ageing: calorie restriction or polyphenol-rich "MediterrAsian" diet? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:707421. [PMID: 24069505 PMCID: PMC3771427 DOI: 10.1155/2013/707421] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 12/17/2022]
Abstract
Diet plays an important role in mammalian health and the prevention of chronic diseases such as cardiovascular disease (CVD). Incidence of CVD is low in many parts of Asia (e.g., Japan) and the Mediterranean area (e.g., Italy, Spain, Greece, and Turkey). The Asian and the Mediterranean diets are rich in fruit and vegetables, thereby providing high amounts of plant bioactives including polyphenols, glucosinolates, and antioxidant vitamins. Furthermore, oily fish which is rich in omega-3 fatty acids is an important part of the Asian (e.g., Japanese) and also of the Mediterranean diets. There are specific plant bioactives which predominantly occur in the Mediterranean (e.g., resveratrol from red wine, hydroxytyrosol, and oleuropein from olive oil) and in the Asian diets (e.g., isoflavones from soybean and epigallocatechin gallate from green tea). Interestingly, when compared to calorie restriction which has been repeatedly shown to increase healthspan, these polyphenols activate similar molecular targets such as Sirt1. We suggest that a so-called "MediterrAsian" diet combining sirtuin-activating foods (= sirtfoods) of the Asian as well as Mediterranean diet may be a promising dietary strategy in preventing chronic diseases, thereby ensuring health and healthy ageing. Future (human) studies are needed which take the concept suggested here of the MediterrAsian diet into account.
Collapse
Affiliation(s)
- Kathrin Pallauf
- Institute of Human Nutrition and Food Science, Christian-Albrechts University of Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| | - Katrin Giller
- Institute of Human Nutrition and Food Science, Christian-Albrechts University of Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, Christian-Albrechts University of Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts University of Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| |
Collapse
|