1
|
Yoshida Y, Takahashi M, Taniguchi S, Numakura R, Komine K, Ishioka C. Tretinoin synergistically enhances the antitumor effect of combined BRAF, MEK, and EGFR inhibition in BRAF V600E colorectal cancer. Cancer Sci 2024; 115:3740-3754. [PMID: 39175203 PMCID: PMC11531965 DOI: 10.1111/cas.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024] Open
Abstract
Patients with BRAF-mutated colorectal cancer (BRAFV600E CRC) are currently treated with a combination of BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor. A fundamental problem in treating patients with BRAFV600E CRC is intrinsic and/or acquired resistance to this combination therapy. By screening 78 compounds, we identified tretinoin, a retinoid, as a compound that synergistically enhances the antiproliferative effect of a combination of BRAF inhibition and MEK inhibition with or without EGFR inhibition on BRAFV600E CRC cells. This synergistic effect was also exerted by other retinoids. Tretinoin, added to BRAF inhibitor and MEK inhibitor, upregulated PARP, BAK, and p-H2AX. When either RARα or RXRα was silenced, the increase in cleaved PARP expression by the addition of TRE to ENC/BIN or ENC/BIN/CET was canceled. Our results suggest that the mechanism of the synergistic antiproliferative effect involves modulation of the Bcl-2 family and the DNA damage response that affects apoptotic pathways, and this synergistic effect is induced by RARα- or RXRα-mediated apoptosis. Tretinoin also enhanced the antitumor effect of a combination of the BRAF inhibitor and anti-EGFR antibody with or without MEK inhibitor in a BRAFV600E CRC xenograft mouse model. Our data provide a rationale for developing retinoids as a new combination agent to overcome resistance to the combination therapy for patients with BRAFV600E CRC.
Collapse
Affiliation(s)
- Yuya Yoshida
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Masanobu Takahashi
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Department of Medical OncologyTohoku University HospitalSendaiMiyagiJapan
| | - Sakura Taniguchi
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Ryunosuke Numakura
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Keigo Komine
- Department of Medical OncologyTohoku University HospitalSendaiMiyagiJapan
| | - Chikashi Ishioka
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Department of Medical OncologyTohoku University HospitalSendaiMiyagiJapan
| |
Collapse
|
2
|
Tilsed CM, Morales MLO, Zemek RM, Gordon BA, Piggott MJ, Nowak AK, Fisher SA, Lake RA, Lesterhuis WJ. Tretinoin improves the anti-cancer response to cyclophosphamide, in a model-selective manner. BMC Cancer 2024; 24:203. [PMID: 38350880 PMCID: PMC10865642 DOI: 10.1186/s12885-024-11915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Chemotherapy is included in treatment regimens for many solid cancers, but when administered as a single agent it is rarely curative. The addition of immune checkpoint therapy to standard chemotherapy regimens has improved response rates and increased survival in some cancers. However, most patients do not respond to treatment and immune checkpoint therapy can cause severe side effects. Therefore, there is a need for alternative immunomodulatory drugs that enhance chemotherapy. METHODS We used gene expression data from cyclophosphamide (CY) responders and non-responders to identify existing clinically approved drugs that could phenocopy a chemosensitive tumor microenvironment (TME), and tested combination treatments in multiple murine cancer models. RESULTS The vitamin A derivative tretinoin was the top predicted upstream regulator of response to CY. Tretinoin pre-treatment induced an inflammatory, interferon-associated TME, with increased infiltration of CD8 + T cells, sensitizing the tumor to subsequent chemotherapy. However, while combination treatment significantly improved survival and cure rate in a CD4+ and CD8+ T cell dependent manner in AB1-HA murine mesothelioma, this effect was model-selective, and could not be replicated using other cell lines. CONCLUSIONS Despite the promising data in one model, the inability to validate the efficacy of combination treatment in multiple cancer models deprioritizes tretinoin/cyclophosphamide combination therapy for clinical translation.
Collapse
Affiliation(s)
- Caitlin M Tilsed
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | | | - Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, 6872, West Perth, WA, Australia
| | - Brianna A Gordon
- School of Molecular Sciences, University of Western Australia, 6009, Crawley, WA, Australia
| | - Matthew J Piggott
- School of Molecular Sciences, University of Western Australia, 6009, Crawley, WA, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, 6009, Nedlands, WA, Australia
| | - Scott A Fisher
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia.
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia.
- Institute for Respiratory Health, 6101, Perth, WA, Australia.
- Telethon Kids Institute, University of Western Australia, 6872, West Perth, WA, Australia.
| |
Collapse
|
3
|
Wong JJW, Lorenz S, Selbo PK. All-trans retinoic acid enhances the anti-tumour effects of fimaporfin-based photodynamic therapy. Biomed Pharmacother 2022; 155:113678. [PMID: 36108391 DOI: 10.1016/j.biopha.2022.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (ATRA; tretinoin) has anticancer potential. However, lack of clinical success has prevented its approval for solid tumours. Herein, we propose combining short-term low-dose ATRA with fimaporfin-based photodynamic therapy (ATRA+PDT) for the improved treatment of solid cancers. Compared to monotherapies, ATRA+PDT induced synergistic cytotoxic responses including promotion of apoptosis in colon and breast carcinoma cell lines. Neither enhanced activity of alkaline phosphatase (ALP) nor increased expression of CD133 was detected after ATRA treatment indicating that the improved therapeutic effect of ATRA+PDT is independent of the differentiation state of the cancer cells. In the human colorectal adenocarcinoma cell line HT-29, the effect of ATRA+PDT on gene expression was evaluated by RNA sequencing (RNA-seq). We identified 1129 differentially expressed genes (DEGs) after ATRA+PDT compared to PDT. Ingenuity Pathway Analysis (IPA) predicted the unfolded protein response (UPR), interferon (IFN) signaling and retinoic acid-mediated apoptosis signaling as strongly activated canonical pathways after ATRA+PDT compared to PDT. A validation of the RNA-sec data by RT-qPCR revealed that ATRA+PDT elevated mRNA expression of early growth response 1 (EGR1) and strongly the stress-induced activating transcription factor 3 (ATF3), of which was confirmed on the protein level. In addition, ATRA+PDT abolished mRNA expression of regenerating islet-derived protein 4 (REG4). During the first 20 days post-ATRA+PDT, we obtained significant anti-tumour responses in HT-29 xenografts, including complete responses in 2/5 mice. In conclusion, ATRA+PDT represent a novel combination therapy for solid tumours that should be further tested in immunocompetent preclinical models.
Collapse
Affiliation(s)
- Judith Jing Wen Wong
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, P.b. 4953 Nydalen, 0424 Oslo, Norway
| | - Susanne Lorenz
- Genomics Core Facility, Department of Core Facilities, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, P.b. 4953 Nydalen, 0424 Oslo, Norway
| | - Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, P.b. 4953 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
4
|
Abdelaal MR, Ibrahim E, Elnagar MR, Soror SH, Haffez H. Augmented Therapeutic Potential of EC-Synthetic Retinoids in Caco-2 Cancer Cells Using an In Vitro Approach. Int J Mol Sci 2022; 23:ijms23169442. [PMID: 36012706 PMCID: PMC9409216 DOI: 10.3390/ijms23169442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer therapies have produced promising clinical responses, but tumor cells rapidly develop resistance to these drugs. It has been previously shown that EC19 and EC23, two EC-synthetic retinoids, have single-agent preclinical anticancer activity in colorectal carcinoma. Here, isobologram analysis revealed that they have synergistic cytotoxicity with retinoic acid receptor (RAR) isoform-selective agonistic retinoids such as AC261066 (RARβ2-selective agonist) and CD437 (RARγ-selective agonist) in Caco-2 cells. This synergism was confirmed by calculating the combination index (lower than 1) and the dose reduction index (higher than 1). Flow cytometry of combinatorial IC50 (the concentration causing 50% cell death) confirmed the cell cycle arrest at the SubG0-G1 phase with potentiated apoptotic and necrotic effects. The reported synergistic anticancer activity can be attributed to their ability to reduce the expression of ATP-binding cassette (ABC) transporters including P-glycoprotein (P-gp1), breast cancer resistance protein (BCRP) and multi-drug resistance-associated protein-1 (MRP1) and Heat Shock Protein 70 (Hsp70). This adds up to the apoptosis-promoting activity of EC19 and EC23, as shown by the increased Caspase-3/7 activities and DNA fragmentation leading to DNA double-strand breaks. This study sheds the light on the possible use of EC-synthetic retinoids in the rescue of multi-drug resistance in colorectal cancer using Caco-2 as a model and suggests new promising combinations between different synthetic retinoids. The current in vitro results pave the way for future studies on these compounds as possible cures for colorectal carcinoma.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
- Correspondence: ; Tel.: +20-1094-970-173
| |
Collapse
|
5
|
O.B. Facey C, M. Boman B. Retinoids in Treatment of Colorectal Cancer. COLORECTAL CANCER 2021. [DOI: 10.5772/intechopen.93699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoids are vitamin A metabolites best known for their role in embryonic development. Indeed, retinoid acid (RA) signaling plays a key role in regulating the development of the embryo body-plan by controlling embryonic stem cells (SCs). Retinoids function through their ability to induce cellular differentiation. Mutations in RA signaling pathway genes occur in most human cancers. The classic example is the chromosomal translocation involving RA receptor alpha in acute promyelocytic leukemia (APL). Because all-trans retinoic acid (ATRA) is a highly effective and often curative treatment for APL patients, determining if retinoids are efficacious for other cancer types is imperative. We review the current research on retinoids in colorectal cancer (CRC) and provide bioinformatics analyses of RA signaling. Our results show that most RA pathway genes are overexpressed and often mutated in CRC. Moreover, aberrant expression of many RA signaling proteins predicts decreased CRC patient survival. We also review aldehyde dehydrogenase (ALDH) expression in CRC because ALDH is a key enzyme in RA signaling, which regulates colonic SCs. Further investigation of RA signaling mechanisms that regulate colon SCs and how dysregulation contributes to the SC overpopulation that drives CRC growth should provide insight into strategies for designing new SC-targeted therapies for CRC.
Collapse
|
6
|
Abdelaal MR, Soror SH, Elnagar MR, Haffez H. Revealing the Potential Application of EC-Synthetic Retinoid Analogues in Anticancer Therapy. Molecules 2021; 26:506. [PMID: 33477997 PMCID: PMC7835894 DOI: 10.3390/molecules26020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background and Aim: All-trans retinoic acid (ATRA) induces differentiation and inhibits growth of many cancer cells. However, resistance develops rapidly prompting the urgent need for new synthetic and potent derivatives. EC19 and EC23 are two synthetic retinoids with potent stem cell neuro-differentiation activity. Here, these compounds were screened for their in vitro antiproliferative and cytotoxic activity using an array of different cancer cell lines. (2) Methods: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, AV/PI (annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)), cell cycle analysis, immunocytochemistry, gene expression analysis, Western blotting, measurement of glutamate and total antioxidant concentrations were recruited. (3) Results: HepG2, Caco-2, and MCF-7 were the most sensitive cell lines; HepG2 (ATRA; 36.2, EC19; 42.2 and EC23; 0.74 µM), Caco-2 (ATRA; 58.0, EC19; 10.8 and EC23; 14.7 µM) and MCF-7 (ATRA; 99.0, EC19; 9.4 and EC23; 5.56 µM). Caco-2 cells were selected for further biochemical investigations. Isobologram analysis revealed the combined synergistic effects with 5-fluorouracil with substantial reduction in IC50. All retinoids induced apoptosis but EC19 had higher potency, with significant cell cycle arrest at subG0-G1, -S and G2/M phases, than ATRA and EC23. Moreover, EC19 reduced cellular metastasis in a transwell invasion assay due to overexpression of E-cadherin, retinoic acid-induced 2 (RAI2) and Werner (WRN) genes. (4) Conclusion: The present study suggests that EC-synthetic retinoids, particularly EC19, can be effective, alone or in combinations, for potential anticancer activity to colorectal cancer. Further in vivo studies are recommended to pave the way for clinical applications.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt;
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
7
|
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide. Although targeted therapy in combination with chemotherapy in CRC prolongs the overall survival of patients with metastatic disease, acquired resistance and relapse hinder their clinical benefits. Moreover, patients with some specific genetic profile are unlikely to benefit from targeted therapy, suggesting the need for safe and effective treatment strategies. Retinoids, comprising of natural and synthetic analogs, are a class of chemical compounds that regulate cellular proliferation, differentiation, and cell death. Retinoids have been used in the clinic for several leukemias and solid tumors, either as single agents or in combination therapy. Furthermore, retinoids have shown potent chemotherapeutic and chemopreventive properties in different cancer models, including CRC. In this review, we summarize the major preclinical findings in CRC in which natural and synthetic retinoids showed promising antitumor activities and stress on the proposed mechanisms of action. Understanding of the retinoids' antitumor mechanisms would provide insights to support and warrant their development in the management of CRC.
Collapse
|
8
|
Yao W, Wang L, Huang H, Li X, Wang P, Mi K, Cheng J, Liu H, Gu C, Huang L, Huang J. All-trans retinoic acid reduces cancer stem cell-like cell-mediated resistance to gefitinib in NSCLC adenocarcinoma cells. BMC Cancer 2020; 20:315. [PMID: 32293355 PMCID: PMC7161137 DOI: 10.1186/s12885-020-06818-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background The enrichment of cancer stem cell-like cells (CSCs) has been considered to be responsible for tumor progression after an initial response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) in patients with non-small cell lung adenocarcinoma (NSCLC/ADC). CSCs with ALDH1A1bright /CD44high expression contribute to the TKIs resistance in NSCLC/ADC cells. All-trans retinoic acid (ATRA) has been shown to be a potential targeted therapy against CSCs due to its ability to inhibit ALDH1A1 activity. We therefore investigated whether ATRA could circumvent the resistance to improve the response to gefitinib in NSCLC/ADC cells. Methods Treatment of NSCLC/ADC A549 and H1650 cells with gefitinib enriched the gefitinib surviving cells (GSCs). The expression of ALDH1A1 and CD44 and the IC50 values for gefitinib were determined by flow cytometry (FCM) and crystal violet assay in GSCs and ATRA-treated GSCs, respectively. Using DEAB as the positive control, direct inhibitory effect of ATRA on ALDH1A1 activity was determined by ALDEFLUOR assay, Results GSCs showed higher expression of ALDH1A1 and CD44 and IC50 values for gefitinib than their respective parental cells, suggesting that gefitinib can lead to propagation of CSC-enriched gefitinib-resistant cells. Treatment with ATRA was found to significantly reduce the increased expression of ALDH1A1 and CD44 and the IC50 values for gefitinib in A549GSC and H1650GSC cells, and ATRA could directly inhibit active ALDH1A1 as compared to DEAB. Conclusion Our findings suggest that combination treatment with ATRA prevents gefitinib-induced enrichment of ALDH1A1bright/CD44high CSCs and enhances gefitinib-induced growth inhibition of NSCLC/ADC cells.
Collapse
Affiliation(s)
- Wenxiu Yao
- Department of Medical oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China
| | - Liyang Wang
- Department of Medical oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China
| | - Huan Huang
- Department of Medical oncology, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, 530000, China
| | - Xin Li
- Department of Medical oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China
| | - Pinjia Wang
- Department of Medical oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, 610041, People's Republic of China
| | - Kun Mi
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Jia Cheng
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Huifen Liu
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Cuirong Gu
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Lingxiao Huang
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Jianming Huang
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Insititute, No.55, Section 4, South Renmin Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
9
|
Costantini L, Molinari R, Farinon B, Merendino N. Retinoic Acids in the Treatment of Most Lethal Solid Cancers. J Clin Med 2020; 9:E360. [PMID: 32012980 PMCID: PMC7073976 DOI: 10.3390/jcm9020360] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although the use of oral administration of pharmacological all-trans retinoic acid (ATRA) concentration in acute promyelocytic leukaemia (APL) patients was approved for over 20 years and used as standard therapy still to date, the same use in solid cancers is still controversial. In the present review the literature about the top five lethal solid cancers (lung, stomach, liver, breast, and colon cancer), as defined by The Global Cancer Observatory of World Health Organization, and retinoic acids (ATRA, 9-cis retinoic acid, and 13-cis retinoic acid, RA) was compared. The action of retinoic acids in inhibiting the cell proliferation was found in several cell pathways and compartments: from membrane and cytoplasmic signaling, to metabolic enzymes, to gene expression. However, in parallel in the most aggressive phenotypes several escape routes have evolved conferring retinoic acids-resistance. The comparison between different solid cancer types pointed out that for some cancer types several information are still lacking. Moreover, even though some pathways and escape routes are the same between the cancer types, sometimes they can differently respond to retinoic acid therapy, so that generalization cannot be made. Further studies on molecular pathways are needed to perform combinatorial trials that allow overcoming retinoic acids resistance.
Collapse
Affiliation(s)
- Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | | | | | | |
Collapse
|
10
|
High Expression of RAR β Is a Favorable Factor in Colorectal Cancer. DISEASE MARKERS 2019; 2019:7138754. [PMID: 30944670 PMCID: PMC6421793 DOI: 10.1155/2019/7138754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
RARβ plays a critical role in cancer progression and is associated with several types of human cancer. It remains unclear, however, whether it is linked to the clinicopathological parameters of colorectal cancer (CRC). We therefore determined the expression of RARβ protein in patients with primary CRC and examined its relationship with clinical outcomes. RARβ expression in 234 samples of CRC patients and matched benign noncancerous tumors was detected by immunohistochemistry. RARβ mRNA expression was confirmed using the TCGA and Oncomine databases. COX regression analysis and Kaplan–Meier survival analysis were performed to determine the relationship between RARβ expression and CRC prognosis. Our results show that high expression of RARβ correlated with better prognosis in CRC patients. RARβ expression in CRC specimens was clearly lower than in peritumoral specimens (30.8% vs 58.8%, p < 0.001) and significantly correlated with gender (χ2 = 3.926, p = 0.048), tumor differentiation (χ2 = 5.978, p = 0.014), and tumor stage (χ2 = 6.642, p = 0.036). Multivariate analyses further revealed that low RARβ expression (p = 0.001), distant metastasis (p = 0.001), tissue differentiation (p = 0.006), and tumor stage (p = 0.002) were associated with overall survival in CRC patients. In addition, Kaplan–Meier analysis indicated that increased RARβ expression in cytoplasm (p = 0.001) and early tumor TNM stage (p = 0.030) was associated with a more favorable outcome in patients with CRC. In conclusion, RARβ expression was strongly correlated with several clinicopathological factors of CRC and may represent a favorable prognostic marker in patients with CRC.
Collapse
|
11
|
Duffy DJ, Krstic A, Schwarzl T, Halasz M, Iljin K, Fey D, Haley B, Whilde J, Haapa-Paananen S, Fey V, Fischer M, Westermann F, Henrich KO, Bannert S, Higgins DG, Kolch W. Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget 2018; 7:60310-60331. [PMID: 27531891 PMCID: PMC5312386 DOI: 10.18632/oncotarget.11203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/26/2016] [Indexed: 12/30/2022] Open
Abstract
Wnt signalling is involved in the formation, metastasis and relapse of a wide array of cancers. However, there is ongoing debate as to whether activation or inhibition of the pathway holds the most promise as a therapeutic treatment for cancer, with conflicting evidence from a variety of tumour types. We show that Wnt/β-catenin signalling is a bi-directional vulnerability of neuroblastoma, malignant melanoma and colorectal cancer, with hyper-activation or repression of the pathway both representing a promising therapeutic strategy, even within the same cancer type. Hyper-activation directs cancer cells to undergo apoptosis, even in cells oncogenically driven by β-catenin. Wnt inhibition blocks proliferation of cancer cells and promotes neuroblastoma differentiation. Wnt and retinoic acid co-treatments synergise, representing a promising combination treatment for MYCN-amplified neuroblastoma. Additionally, we report novel cross-talks between MYCN and β-catenin signalling, which repress normal β-catenin mediated transcriptional regulation. A β-catenin target gene signature could predict patient outcome, as could the expression level of its DNA binding partners, the TCF/LEFs. This β-catenin signature provides a tool to identify neuroblastoma patients likely to benefit from Wnt-directed therapy. Taken together, we show that Wnt/β-catenin signalling is a bi-directional vulnerability of a number of cancer entities, and potentially a more broadly conserved feature of malignant cells.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Bridget Haley
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Jenny Whilde
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Vidal Fey
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matthias Fischer
- Department of Paediatric Haematology and Oncology and Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Frank Westermann
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai-Oliver Henrich
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Bannert
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
12
|
Bhattacharya N, Yuan R, Prestwood TR, Penny HL, DiMaio MA, Reticker-Flynn NE, Krois CR, Kenkel JA, Pham TD, Carmi Y, Tolentino L, Choi O, Hulett R, Wang J, Winer DA, Napoli JL, Engleman EG. Normalizing Microbiota-Induced Retinoic Acid Deficiency Stimulates Protective CD8(+) T Cell-Mediated Immunity in Colorectal Cancer. Immunity 2016; 45:641-655. [PMID: 27590114 PMCID: PMC5132405 DOI: 10.1016/j.immuni.2016.08.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 04/07/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022]
Abstract
Although all-trans-retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA. Inhibition of atRA signaling promoted tumorigenesis, whereas atRA supplementation reduced tumor burden. The benefit of atRA treatment was mediated by cytotoxic CD8(+) T cells, which were activated due to MHCI upregulation on tumor cells. Consistent with these findings, increased colonic expression of the atRA-catabolizing enzyme, CYP26A1, correlated with reduced frequencies of tumoral cytotoxic CD8(+) T cells and with worse disease prognosis in human CRC. These results reveal a mechanism by which microbiota drive colon carcinogenesis and highlight atRA metabolism as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Nupur Bhattacharya
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA.
| | - Robert Yuan
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA
| | - Tyler R Prestwood
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Hweixian Leong Penny
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA
| | - Michael A DiMaio
- Department of Pathology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Nathan E Reticker-Flynn
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA
| | - Charles R Krois
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Justin A Kenkel
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA
| | - Tho D Pham
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA
| | - Yaron Carmi
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA
| | - Lorna Tolentino
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA
| | - Okmi Choi
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA
| | - Reyna Hulett
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA
| | - Jinshan Wang
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A Winer
- Department of Pathology, University Health Network, and Departments of Laboratory Medicine and Pathobiology, and Immunology, University of Toronto, Toronto, ON M5G 2N2, Canada
| | - Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine (Blood Center), 3373 Hillview Avenue, Palo Alto, CA 94304, USA.
| |
Collapse
|
13
|
Matsumoto T, Mochizuki W, Nibe Y, Akiyama S, Matsumoto Y, Nozaki K, Fukuda M, Hayashi A, Mizutani T, Oshima S, Watanabe M, Nakamura T. Retinol Promotes In Vitro Growth of Proximal Colon Organoids through a Retinoic Acid-Independent Mechanism. PLoS One 2016; 11:e0162049. [PMID: 27564706 PMCID: PMC5001647 DOI: 10.1371/journal.pone.0162049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023] Open
Abstract
Retinol (ROL), the alcohol form of vitamin A, is known to control cell fate decision of various types of stem cells in the form of its active metabolite, retinoic acid (RA). However, little is known about whether ROL has regulatory effects on colonic stem cells. We examined in this study the effect of ROL on the growth of murine normal colonic cells cultured as organoids. As genes involved in RA synthesis from ROL were differentially expressed along the length of the colon, we tested the effect of ROL on proximal and distal colon organoids separately. We found that organoid forming efficiency and the expression level of Lgr5, a marker gene for colonic stem cells were significantly enhanced by ROL in the proximal colon organoids, but not in the distal ones. Interestingly, neither retinaldehyde (RAL), an intermediate product of the ROL-RA pathway, nor RA exhibited growth promoting effects on the proximal colon organoids, suggesting that ROL-dependent growth enhancement in organoids involves an RA-independent mechanism. This was confirmed by the observation that an inhibitor for RA-mediated gene transcription did not abrogate the effect of ROL on organoids. This novel role of ROL in stem cell maintenance in the proximal colon provides insights into the mechanism of region-specific regulation for colonic stem cell maintenance.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Wakana Mochizuki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Yoichi Nibe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Shintaro Akiyama
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Yuka Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Kengo Nozaki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Masayoshi Fukuda
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Ayumi Hayashi
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Tomohiro Mizutani
- Department of Advanced Therapeutics for GI Diseases, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| | - Tetsuya Nakamura
- Department of Advanced Therapeutics for GI Diseases, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113–8519, Japan
| |
Collapse
|
14
|
Aspen Cancer Conference Fellows. Toxicol Pathol 2016. [DOI: 10.1080/01926230490882358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Kato Y, Egusa C, Maeda T, Tsuboi R. Combination of retinoid and histone deacetylase inhibitor produced an anti-tumor effect in cutaneous T-cell lymphoma by restoring tumor suppressor gene, retinoic acid receptorβ2, via histone acetylation. J Dermatol Sci 2015; 81:17-25. [PMID: 26596218 DOI: 10.1016/j.jdermsci.2015.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/24/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Retinoids exert anti-proliferative, differentiative, and apoptosis-inducing effects through their receptors. Retinoic acid receptor (RAR) β2 behaves as a tumor suppressor gene, and its expression is suppressible by DNA methylation in many malignancies. OBJECTIVE We aimed to determine whether combining a retinoid, Am 80, with a histone deacetylase inhibitor, MS-275, could suppress tumor growth in a RARβ2-negative human cutaneous T cell lymphoma (CTCL) cell lines and freshly isolated primary CTCL cells, and to elucidate the epigenetic mechanism behind the phenomena. METHODS SeAx cells were implanted subcutaneously in NOD-SCID mice which were randomly divided into four groups and treated with either Am80, MS-275 by oral gavage (five days/week), or a combination of the two agents. Cell proliferation assay, methylation-specific PCR, flow cytometric analysis of cell cycle and apoptosis and chromatin immunoprecipitation assay were employed. RESULTS Quantitative PCR analysis revealed that RARβ2 gene expression was restored only by this combination rather than by either of the agents singly. Restored retinoid sensitivity was observed in combining retinoid with a histone deacetylase inhibitor significantly inhibited cell growth in vitro, suppressed subcutaneously transplanted tumor growth, and prolonged survival of tumor-bearing mice in vivo by more strongly inducing apoptosis and p21 expression in CTCL cells than either agent alone. In the combination treatment, the histone H4 acetylation level at lysine 12 and 16 in the promoter region increased after restoration of RARβ2 expression although the DNA methylation of RARβ2 remained unchanged. CONCLUSION This is the first report of histone acetylation as the primary event in the restoration of RARβ2. Inducible RARβ2 expression may serve as a reliable predictor for tumor response in patients undergoing 'epigenetic & differentiation' therapy.
Collapse
Affiliation(s)
- Yukihiko Kato
- Department of Dermatology, Tokyo Medical University, Tokyo Japan; Department of Dermatology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan.
| | - Chizu Egusa
- Department of Dermatology, Tokyo Medical University, Tokyo Japan
| | - Tatsuo Maeda
- Department of Dermatology, Tokyo Medical University, Tokyo Japan
| | - Ryoji Tsuboi
- Department of Dermatology, Tokyo Medical University, Tokyo Japan
| |
Collapse
|
16
|
Applegate CC, Lane MA. Role of retinoids in the prevention and treatment of colorectal cancer. World J Gastrointest Oncol 2015; 7:184-203. [PMID: 26483874 PMCID: PMC4606174 DOI: 10.4251/wjgo.v7.i10.184] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/10/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
Vitamin A and its derivatives, retinoids, have been widely studied for their use as cancer chemotherapeutic agents. With respect to colorectal cancer (CRC), several critical mutations dysregulate pathways implicated in progression and metastasis, resulting in aberrant Wnt/β-catenin signaling, gain-of-function mutations in K-ras and phosphatidylinositol-3-kinase/Akt, cyclooxygenase-2 over-expression, reduction of peroxisome proliferator-activated receptor γ activation, and loss of p53 function. Dysregulation leads to increased cellular proliferation and invasion and decreased cell-cell interaction and differentiation. Retinoids affect these pathways by various mechanisms, many involving retinoic acid receptors (RAR). RAR bind to all-trans-retinoic acid (ATRA) to induce the transcription of genes responsible for cellular differentiation. Although most research concerning the chemotherapeutic efficacy of retinoids focuses on the ability of ATRA to decrease cancer cell proliferation, increase differentiation, or promote apoptosis; as CRC progresses, RAR expression is often lost, rendering treatment of CRCs with ATRA ineffective. Our laboratory focuses on the ability of dietary vitamin A to decrease CRC cell proliferation and invasion via RAR-independent pathways. This review discusses our research and others concerning the ability of retinoids to ameliorate the defective signaling pathways listed above and decrease tumor cell proliferation and invasion through both RAR-dependent and RAR-independent mechanisms.
Collapse
|
17
|
Priyamvada S, Anbazhagan AN, Gujral T, Borthakur A, Saksena S, Gill RK, Alrefai WA, Dudeja PK. All-trans-retinoic Acid Increases SLC26A3 DRA (Down-regulated in Adenoma) Expression in Intestinal Epithelial Cells via HNF-1β. J Biol Chem 2015; 290:15066-77. [PMID: 25887398 PMCID: PMC4463450 DOI: 10.1074/jbc.m114.566356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/10/2015] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (ATRA) is an active vitamin A derivative known to modulate a number of physiological processes, including growth and development, differentiation, and gene transcription. The protective effect of ATRA in gut inflammation and diarrheal diseases has been documented. In this regard, down-regulated in adenoma (DRA, a key luminal membrane Cl(-) transporter involved in NaCl absorption) has been shown to be suppressed in intestinal inflammation. This suppression of DRA is associated with diarrheal phenotype. Therefore, current studies were undertaken to examine the effects of ATRA on DRA expression. DRA mRNA levels were significantly elevated (∼4-fold) in response to ATRA with induction starting as early as 8 h of incubation. Similarly, ATRA increased DRA protein expression by ∼50%. Furthermore, DRA promoter activity was significantly increased in response to ATRA indicating transcriptional activation. ATRA effects on DRA expression appeared to be mediated via the RAR-β receptor subtype, as ATRA remarkably induced RAR-β mRNA levels, whereas RAR-β knockdown substantially attenuated the ability of ATRA to increase DRA expression. Results obtained from agonist (CH-55) and antagonist (LE-135) studies further confirmed that ATRA exerts its effects through RAR-β. Furthermore, ATRA treatment resulted in a significant increase in HNF-1β mRNA levels. The ability of ATRA to induce DRA expression was inhibited in the presence of HNF-1β siRNA indicative of its involvement in ATRA-induced effects on DRA expression. In conclusion, ATRA may act as an antidiarrheal agent by increasing DRA expression via the RAR-β/HNF-1β-dependent pathway.
Collapse
Affiliation(s)
- Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Tarunmeet Gujral
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Alip Borthakur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612 From the Jesse Brown Veterans Affairs Medical Center
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612 From the Jesse Brown Veterans Affairs Medical Center,
| |
Collapse
|
18
|
Saraee F, Sagha M, Mohseni Kouchesfehani H, Abdanipour A, Maleki M, Nikougoftar M. Biological parameters influencing the human umbilical cord-derived mesenchymal stem cells' response to retinoic acid. Biofactors 2014; 40:624-635. [PMID: 25408532 DOI: 10.1002/biof.1192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/16/2014] [Accepted: 11/02/2014] [Indexed: 12/14/2022]
Abstract
Human umbilical cord-derived mesenchymal stem cells (HUCMSCs) are multipotent fetal stem cells that differentiate into various cell lineages. In recent years, they have gained attention for therapeutic applications but very little is known about their sensitivity to chemical agents such as widely used retinoic acid (RA). As a morphogen inducing differentiation of mesenchymal stem cells, RA has for a long time been known to be a potent teratogen promoting craniofacial and limb abnormality in vertebrate embryos. Here, using MTT assay and EB/AO staining as well as TUNEL assay we show that RA in a concentration-dependent manner induces apoptosis through upregulating Caspase expression and increasing Bax/Bcl2 ratio. Moreover, different biological parameters such as initial time seeding, cell density, passage number and duration of RA treatment play a major role in HUCMSCs cytotoxic response to this agent.
Collapse
Affiliation(s)
- Farnoosh Saraee
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Animal Sciences, School of Life Sciences, University of Kharazmi, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
19
|
Development of anticancer drugs based on the hallmarks of tumor cells. Tumour Biol 2014; 35:3981-95. [DOI: 10.1007/s13277-014-1649-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/12/2014] [Indexed: 12/19/2022] Open
|
20
|
Bengtsson AM, Jönsson G, Magnusson C, Salim T, Axelsson C, Sjölander A. The cysteinyl leukotriene 2 receptor contributes to all-trans retinoic acid-induced differentiation of colon cancer cells. BMC Cancer 2013; 13:336. [PMID: 23829413 PMCID: PMC3710469 DOI: 10.1186/1471-2407-13-336] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 06/24/2013] [Indexed: 12/20/2022] Open
Abstract
Background Cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory mediators that are increased in samples from patients with inflammatory bowel diseases (IBDs). Individuals with IBDs have enhanced susceptibility to colon carcinogenesis. In colorectal cancer, the balance between the pro-mitogenic cysteinyl leukotriene 1 receptor (CysLT1R) and the differentiation-promoting cysteinyl leukotriene 2 receptor (CysLT2R) is lost. Further, our previous data indicate that patients with high CysLT1R and low CysLT2R expression have a poor prognosis. In this study, we examined whether the balance between CysLT1R and CysLT2R could be restored by treatment with the cancer chemopreventive agent all-trans retinoic acid (ATRA). Methods To determine the effect of ATRA on CysLT2R promoter activation, mRNA level, and protein level, we performed luciferase gene reporter assays, real-time polymerase chain reactions, and Western blots in colon cancer cell lines under various conditions. Results ATRA treatment induces CysLT2R mRNA and protein expression without affecting CysLT1R levels. Experiments using siRNA and mutant cell lines indicate that the up-regulation is retinoic acid receptor (RAR) dependent. Interestingly, ATRA also up-regulates mRNA expression of leukotriene C4 synthase, the enzyme responsible for the production of the ligand for CysLT2R. Importantly, ATRA-induced differentiation of colorectal cancer cells as shown by increased expression of MUC-2 and production of alkaline phosphatase, both of which could be reduced by a CysLT2R-specific inhibitor. Conclusions This study identifies a novel mechanism of action for ATRA in colorectal cancer cell differentiation and demonstrates that retinoids can have anti-tumorigenic effects through their action on the cysteinyl leukotriene pathway.
Collapse
|
21
|
Benoit YD, Laursen KB, Witherspoon MS, Lipkin SM, Gudas LJ. Inhibition of PRC2 histone methyltransferase activity increases TRAIL-mediated apoptosis sensitivity in human colon cancer cells. J Cell Physiol 2013; 228:764-72. [PMID: 23001792 DOI: 10.1002/jcp.24224] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/04/2012] [Indexed: 12/30/2022]
Abstract
Colorectal cancer is ranked among the top leading causes of cancer death in industrialized populations. Polycomb group proteins, including Suz12 and Ezh2, are epigenetic regulatory proteins that act as transcriptional repressors of many differentiation-associated genes and are overexpressed in a large subset of colorectal cancers. Retinoic acid (RA) acts as a negative regulator of PcG actions in stem cells, but has shown limited therapeutic potential in some solid tumors, including colorectal cancer, in part because of retinoic acid receptor β silencing. Through treatment with RA, Suz12 shRNA knockdown, or Ezh2 pharmacological inhibition with 3-deazaneplanocin A (DZNep), we increased TRAIL-mediated apoptosis in human colorectal cancer cell lines. This increased apoptosis in human colon cancer cells after RA or DZNep treatment was associated with a ~2.5-fold increase in TNFRSF10B (DR5) transcript levels and a 42% reduction in the H3K27me3 epigenetic mark at the TNFRSF10B promoter after DZNep addition. Taken together, our findings indicate that pharmacological inhibition of Polycomb repressive complex 2 histone methyltransferase activity may constitute a new epigenetic therapeutic strategy to overcome RA non-responsiveness in a subset of colorectal tumors by increasing TRAIL-mediated apoptosis sensitivity.
Collapse
Affiliation(s)
- Yannick D Benoit
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
22
|
Revealing a natural marine product as a novel agonist for retinoic acid receptors with a unique binding mode and inhibitory effects on cancer cells. Biochem J 2012; 446:79-87. [DOI: 10.1042/bj20120726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retinoids display anti-tumour activity on various cancer cells and therefore have been used as important therapeutic agents. However, adverse side effects and RA (retinoic acid) resistance limit further development and clinical application of retinoid-based therapeutic agents. We report in the present paper the identification of a natural marine product that activates RARs (RA receptors) with a chemical structure distinct from retinoids by high-throughput compound library screening. Luffariellolide was uncovered as a novel RAR agonist by inducing co-activator binding to these receptors in vitro, further inhibiting cell growth and regulating RAR target genes in various cancer cells. Structural and molecular studies unravelled a unique binding mode of this natural ligand to RARs with an unexpected covalent modification on the RAR. Functional characterization further revealed that luffariellolide displays chemotherapeutic potentials for overcoming RA resistance in colon cancer cells, suggesting that luffariellolide may represent a unique template for designing novel non-retinoid compounds with advantages over current RA drugs.
Collapse
|
23
|
No evidence for PML-RARa bcr1 fusion gene in colorectal cancer. Mol Biol Rep 2011; 39:5387-91. [PMID: 22167334 DOI: 10.1007/s11033-011-1337-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 12/03/2011] [Indexed: 01/01/2023]
Abstract
Colorectal cancer is the third most prevalent cancer and a leading cause of cancer death. Metastatic colorectal cancer patients are treated with anti-EGFR monoclonal antibodies in combination with chemotherapy; however, the efficiency is only 10-20% of such patients. An increasing amount of data has demonstrated that response to anti-EGFR therapies is confined to patients with KRAS and BRAF wild type tumors but still some of these patients are non responders to this treatment. The presence of oncogenic deregulation of different members of EGFR downstream signaling or crosstalk molecules could predict the lack of response in these patients. In this study, 40 wild type KRAS and BRAF colorectal tumors were analyzed to elucidate whether PML-RARa bcr1 fusion gene may play a role in colorectal carcinogenesis. Specifically we want to determine if this fusion could be responsible for the inability to respond to anti-EGFR monoclonal antibodies. Here, for the first time it is reported, that PML-RARa bcr1 fusion is not responsible for colorectal tumor development and also, this translocation is not predicting the lack of efficacy of anti-EGFR therapies in wild type KRAS and BRAF colorectal cancer patients. These results also suggest that PML-RARa is unlikely to be a promising target for adjuvant therapy in colorectal cancer patients.
Collapse
|
24
|
Perraud A, Nouaille M, Akil H, Petit D, Labrousse F, Jauberteau MO, Mathonnet M. Retinoid acid receptors in human colorectal cancer: An unexpected link with patient outcome. Exp Ther Med 2011; 2:491-497. [PMID: 22977530 DOI: 10.3892/etm.2011.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/09/2011] [Indexed: 11/05/2022] Open
Abstract
The status of the three retinoic acid receptors (RARs) α, β and γ in human colorectal cancer (CRC) has not as yet been examined. RARs are in part responsible for the actions of the retinoids (vitamin A and its derivatives), which are essential for human health and survival due to their extensive involvement in numerous cellular processes, in particular in epithelial morphology. The present study examined the expression of the three RARs in CRC using immunohistochemical analysis of paraffin-embedded tissue sections. RAR expression in tumor (T) and adjacent non-tumor (NT) specimens from stage I (n=6), stage II (n=34), stage III (n=26) and stage IV (n=14) CRC patients was compared with that in normal mucous membranes (n=10) from control individuals. The findings were correlated with tumor grade, treatment response (progression during treatment, remission, chemoresistance) and survival as clinicopathological parameters. RARα and γ expression was decreased with CRC stage in the T tissues (P=0.016 and P=0.052, respectively), suggesting that they may be used as predictive markers. RARβ expression in the NT tissues was associated with a more favorable prognosis (P=0.04). These results provide important information on the tumor microenvironment (the area adjacent to tumor cells).
Collapse
Affiliation(s)
- Aurélie Perraud
- EA 3842, Homéostasie Cellulaire et Pathologies, Faculté de Médecine et de Pharmacie and
| | | | | | | | | | | | | |
Collapse
|
25
|
Celecoxib increases retinoid sensitivity in human colon cancer cell lines. Cell Mol Biol Lett 2010; 15:440-50. [PMID: 20496179 PMCID: PMC6275995 DOI: 10.2478/s11658-010-0016-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 05/17/2010] [Indexed: 01/27/2023] Open
Abstract
Retinoid resistance has limited the clinical application of retinoids as differentiation-inducing and apoptosis-inducing drugs. This study was designed to investigate whether celecoxib, a selective COX-2 inhibitor, has effects on retinoid sensitivity in human colon cancer cell lines, and to determine the possible mechanism of said effects. Cell viability was measured using the MTT assay. Apoptosis was detected via Annexin-V/PI staining and the flow cytometry assay. PGE2 production was measured with the ELISA assay. The expression of RARβ was assayed via western blotting. The results showed that celecoxib enhanced the inhibitory effect of ATRA in both COX-2 high-expressing HT-29 and COX-2 low-expressing SW480 cell lines. Further study showed the ATRA and celecoxib combination induced greater apoptosis, but that the addition of PGE2 did not affect the enhanced growth-inhibitory and apoptosis-inducing effects of the combination. Moreover, NS398 (another selective COX-2 inhibitor) did not affect the inhibitory effects of ATRA in the two cell lines. Western blotting showed that the expression of RARβ in HT-29 cell lines was increased by celecoxib, but not by NS398, and that the addition of PGE2 did not affect the celecoxib-induced expression of the retinoic acid receptor beta. In conclusion, celecoxib increased the expression of RARβ and the level of cellular ATRA sensitivity through COX-2-independent mechanisms. This finding may provide a potential strategy for combination therapy.
Collapse
|
26
|
Investigation of anti-leukemia molecular mechanism of ITR-284, a carboxamide analog, in leukemia cells and its effects in WEHI-3 leukemia mice. Biochem Pharmacol 2010; 79:389-98. [DOI: 10.1016/j.bcp.2009.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/07/2009] [Accepted: 09/10/2009] [Indexed: 11/21/2022]
|
27
|
Intestinal adenoma formation and MYC activation are regulated by cooperation between MYB and Wnt signaling. Cell Death Differ 2009; 16:1530-8. [PMID: 19609274 DOI: 10.1038/cdd.2009.94] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aberrant Wnt signaling mediated by mutations affecting APC (adenomatous polyposis coli) or beta-catenin initiates the majority of human colorectal cancers (CRC) and drives tumorigenesis through the activation of specific genes such as MYC. We report here a novel association whereby another oncogenic transcription factor, MYB/c-Myb, is necessary for intestinal adenoma development directed by activated Wnt signaling. APC(Min/+) mice in which c-myb is haploinsufficient survive longer than wild-type APC(Min/+) animals due to a delay in adenoma formation. Intestinal adenomas from APC(Min/+) mice were assessed and found to have high levels of c-myc gene expression. We explored the relationship between activated Wnt signaling and MYB in regulating MYC and found activated beta-catenin in combination with MYB induces robust upregulation of MYC promoter activity, as well as endogenous MYC mRNA and protein expression, in human cells. This cooperation occurred through independent binding of MYB and beta-catenin to the MYC promoter. These data highlight a cooperative function for MYB in the context of activated Wnt signaling and provide a molecular basis for the expression of MYC in CRC.
Collapse
|
28
|
Delage B, Rullier A, Capdepont M, Rullier E, Cassand P. The effect of body weight on altered expression of nuclear receptors and cyclooxygenase-2 in human colorectal cancers. Nutr J 2007; 6:20. [PMID: 17767717 PMCID: PMC2018695 DOI: 10.1186/1475-2891-6-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 09/03/2007] [Indexed: 12/13/2022] Open
Abstract
Background Epidemiological studies on risk factors for colorectal cancer (CRC) have mainly focused on diet, and being overweight is now recognized to contribute significantly to CRC risk. Overweight and obesity are defined as an excess of adipose tissue mass and are associated with disorders in lipid metabolism. Peroxisome proliferator-activated receptors (PPARs) and retinoid-activated receptors (RARs and RXRs) are important modulators of lipid metabolism and cellular homeostasis. Alterations in expression and activity of these ligand-activated transcription factors might be involved in obesity-associated diseases, which include CRC. Cyclooxygenase-2 (COX-2) also plays a critical role in lipid metabolism and alterations in COX-2 expression have already been associated with unfavourable clinical outcomes in epithelial tumors. The objective of this study is to examine the hypothesis questioning the relationship between alterations in the expression of nuclear receptors and COX-2 and the weight status among male subjects with CRC. Method The mRNA expression of the different nuclear receptor subtypes and of COX-2 was measured in 20 resected samples of CRC and paired non-tumor tissues. The association between expression patterns and weight status defined as a body mass index (BMI) was statistically analyzed. Results No changes were observed in PPARγ mRNA expression while the expression of PPARδ, retinoid-activated receptors and COX-2 were significantly increased in cancer tissues compared to normal colon mucosa (P ≤ 0.001). The weight status appeared to be an independent factor, although we detected an increased level of COX-2 expression in the normal mucosa from overweight patients (BMI ≥ 25) compared to subjects with healthy BMI (P = 0.002). Conclusion Our findings show that alterations in the pattern of nuclear receptor expression observed in CRC do not appear to be correlated with patient weight status. However, the analysis of COX-2 expression in normal colon mucosa from subjects with a high BMI suggests that COX-2 deregulation might be driven by excess weight during the colon carcinogenesis process.
Collapse
Affiliation(s)
- Barbara Delage
- Laboratoire Alimentation et Cancerogenese Colique, Unite de Nutrition et Signalisation Cellulaire, Universite Bordeaux1, France
| | - Anne Rullier
- Departement de Pathologie, Hopital Pellegrin, Bordeaux, France
| | - Maylis Capdepont
- Departement de Chirurgie Digestive, Hopital Saint-André, Bordeaux, France
| | - Eric Rullier
- Departement de Chirurgie Digestive, Hopital Saint-André, Bordeaux, France
| | - Pierrette Cassand
- Laboratoire Alimentation et Cancerogenese Colique, Unite de Nutrition et Signalisation Cellulaire, Universite Bordeaux1, France
| |
Collapse
|
29
|
Park EY, Wilder ET, Lane MA. Retinol inhibits the invasion of retinoic acid-resistant colon cancer cells in vitro and decreases matrix metalloproteinase mRNA, protein, and activity levels. Nutr Cancer 2007; 57:66-77. [PMID: 17516864 DOI: 10.1080/01635580701268238] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinol inhibits the growth of all-trans-retinoic acid (ATRA)-resistant human colon cancer cell lines through a retinoic acid receptor (RAR)-independent mechanism. The objectives of the current study were to determine if retinol inhibited the invasion of ATRA-resistant colon cancer cells independent of RAR and the effects of retinol on matrix metalloproteinases (MMPs). Retinol inhibited the migration and invasion of two ATRA-resistant colon cancer cell lines, HCT-116 and SW620, in a dose-dependent manner. To determine if transcription, particularly RAR-mediated transcription, or translation of new genes was required for retinol to inhibit cell invasion, cells were treated with retinol and cycloheximide, actinomycin D, or an RAR pan-antagonist. Treatment of cells with retinol and cycloheximide, actinomycin D, or an RAR pan-antagonist did not block the ability of retinol to inhibit cell invasion. In addition, retinol decreased MMP-1 mRNA levels in both cell lines, MMP-2 mRNA levels in the SW620 cell line, and MMP-7 and -9 mRNA levels in the HCT-116 cell line. Retinol also decreased the activity of MMP-2 and -9 and MMP-9 protein levels while increasing tissue inhibitor of MMP-1 media levels. In conclusion, retinol reduces the metastatic potential of ATRA-resistant colon cancer cells via a novel RAR-independent mechanism that may involve decreased MMP mRNA levels and activity.
Collapse
Affiliation(s)
- Eun Young Park
- Department of Human Ecology, Institute of Cellular and Molecular Biology, The University of Texas at Austin 78712, USA
| | | | | |
Collapse
|
30
|
Dillard AC, Lane MA. Retinol decreases beta-catenin protein levels in retinoic acid-resistant colon cancer cell lines. Mol Carcinog 2007; 46:315-29. [PMID: 17219422 DOI: 10.1002/mc.20280] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The beta-catenin signaling pathway is dysregulated in most cases of colon cancer resulting in an accumulation of nuclear beta-catenin and increased transcription of genes involved in tumor progression. This study examines the effect of retinol on beta-catenin protein levels in three all-trans retinoic acid (ATRA)-resistant human colon cancer cell lines: HCT-116, WiDr, and SW620. Each cell line was treated with increasing concentrations of retinol for 24 or 48 h. Retinol reduced beta-catenin protein levels and increased ubiquitinated beta-catenin in all cell lines. Treatment with the proteasomal inhibitor MG132 blocked the retinol-induced decrease in beta-catenin indicating retinol decreases beta-catenin by increasing proteasomal degradation. Multiple pathways direct beta-catenin to the proteasome for degradation including a p53/Siah-1/adenomatous polyposis coli (APC), a Wnt/glycogen synthase kinase-3beta/APC, and a retinoid "X" receptor (RXR)-mediated pathway. Due to mutations in beta-catenin (HCT-116), APC (SW620), and p53 (WiDr), only the RXR-mediated pathway remains functional in each cell line. To determine if RXRs facilitate beta-catenin degradation, cells were treated with the RXR pan-antagonist, PA452, or transfected with RXRalpha small interfering RNA (siRNA). The RXR pan-antagonist and RXRalpha siRNA reduced the ability of retinol to decrease beta-catenin protein levels. Nuclear beta-catenin induces gene transcription via interaction with T cell factor/lymphoid enhancer factor (TCF/LEF) proteins. Retinol treatment decreased the transcription of a TOPFlash reporter construct and mRNA levels of the endogenous beta-catenin target genes, cyclin D1 and c-myc. These results indicate that retinol may reduce colon cancer cell growth by increasing the proteasomal degradation of beta-catenin via a mechanism potentially involving RXR.
Collapse
Affiliation(s)
- Alice C Dillard
- Department of Human Ecology, Division of Nutritional Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
31
|
Murray BK, Brown B, Scherer PM, Tomer DP, Garvin KR, Hughes BG, O'Neill KL. Induction of apoptosis in HT-29 human colon adenocarcinoma cells by 13-cis-retinoic acid and vitamin E succinate. Nutr Res 2006. [DOI: 10.1016/j.nutres.2006.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Park EY, Dillard A, Williams EA, Wilder ET, Pepper MR, Lane MA. Retinol inhibits the growth of all-trans-retinoic acid-sensitive and all-trans-retinoic acid-resistant colon cancer cells through a retinoic acid receptor-independent mechanism. Cancer Res 2005; 65:9923-33. [PMID: 16267017 DOI: 10.1158/0008-5472.can-05-1604] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Retinol (vitamin A) is thought to exert its effects through the actions of its metabolite, all-trans-retinoic acid (ATRA), on gene transcription mediated by retinoic acid receptors (RAR) and retinoic acid response elements (RARE). However, retinoic acid resistance limits the chemotherapeutic potential of ATRA. We examined the ability of retinol to inhibit the growth of ATRA-sensitive (HCT-15) and ATRA-resistant (HCT-116, SW620, and WiDR) human colon cancer cell lines. Retinol inhibited cell growth in a dose-responsive manner. Retinol was not metabolized to ATRA or any bioactive retinoid in two of the cell lines examined. HCT-116 and WiDR cells converted a small amount of retinol to ATRA; however, this amount of ATRA was unable to inhibit cell growth. To show that retinol was not inducing RARE-mediated transcription, each cell line was transfected with pRARE-chloramphenicol acetyltransferase (CAT) and treated with ATRA and retinol. Although treatment with ATRA increased CAT activity 5-fold in ATRA-sensitive cells, retinol treatment did not increase CAT activity in any cell line examined. To show that growth inhibition due to retinol was ATRA, RAR, and RARE independent, a pan-RAR antagonist was used to block RAR signaling. Retinol-induced growth inhibition was not alleviated by the RAR antagonist in any cell line, but the antagonist alleviated ATRA-induced growth inhibition of HCT-15 cells. Retinol did not induce apoptosis, differentiation or necrosis, but affected cell cycle progression. Our data show that retinol acts through a novel, RAR-independent mechanism to inhibit colon cancer cell growth.
Collapse
Affiliation(s)
- Eun Young Park
- Institute for Cell and Molecular Biology and Division of Nutritional Sciences, Department of Human Ecology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
33
|
Delage B, Bairras C, Buaud B, Pallet V, Cassand P. A high-fat diet generates alterations in nuclear receptor expression: prevention by vitamin A and links with cyclooxygenase-2 and beta-catenin. Int J Cancer 2005; 116:839-46. [PMID: 15856452 DOI: 10.1002/ijc.21108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epidemiologic studies suggest that intake of high energy from fat, inducing overweight, increases the risk of cancer development and promotes colon carcinogenesis. It is therefore important to understand which parameters are affected early on by a high-fat diet in order to devise and improve protective nutritional strategies. We investigated the effect of high energy/fat intake on colon mucosa of male Wistar rats induced by a single 1,2-dimethylhydrazine (DMH) injection. Aberrant crypt foci (ACF) were numbered and modifications in cyclooxygenase-2 (COX-2) and beta-catenin levels assessed. Peroxisome proliferator- and retinoic acid-activated receptors (PPAR and RAR, RXR) are key transcription factors regulating gene expression in response to nutrient-activated signals. A short-term study was designed to evaluate whether alterations in mRNA expression of nuclear receptors can be detected at the beginning of the weight gain phase induced by an appetizing hyperlipidic diet (HLD). HLD consumption induced early downregulation of PPARgamma (-33.1%) and RARbeta (-53.1%) mRNA expression concomitant with an increase in levels of COX-2 (+45.5%) and beta-catenin (+84.56%) and in the number of ACF (191.56 +/- 88.60 vs. 21.14 +/- 11.64, p < 0.05). These findings suggest that HLD increases ACF occurrence, possibly through alterations in the mRNA expression profile of nuclear receptors. Moreover, the use HLD rich in retinyl esters or supplemented with all-trans retinoic acid led to a reduction in the number of ACF. Vitamin A also prevented HLD-induced alterations and the increase in levels of COX-2 and beta-catenin. The present observations show a protective role for vitamin A against disturbances associated with HLD exposure in induced colon carcinogenesis.
Collapse
Affiliation(s)
- Barbara Delage
- Laboratory of Food and Colon Carcinogenesis, Unit of Nutrition and Cellular Signalling, University Bordeaux 1, Talence, France.
| | | | | | | | | |
Collapse
|
34
|
Rogers JV, Choi YW, Kiser RC, Babin MC, Casillas RP, Schlager JJ, Sabourin CLK. Microarray analysis of gene expression in murine skin exposed to sulfur mustard. J Biochem Mol Toxicol 2005; 18:289-99. [PMID: 15674843 DOI: 10.1002/jbt.20043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The chemical warfare agent sulfur mustard [bis-(2-chloroethyl)-sulfide; SM] produces a delayed inflammatory response followed by blister formation in skin of exposed individuals. Studies are underway evaluating the efficacy of pharmacological compounds to protect against SM skin injury. Microarray analysis provides the opportunity to identify multiple transcriptional biomarkers associated with SM exposure. This study examined SM-induced changes in gene expression in skin from mice cutaneously exposed to SM using cDNA microarrays. Ear skin from five mice, paired as SM-exposed right ear and dichloromethane vehicle-exposed left ear at six dose levels (0.005, 0.01, 0.02, 0.04, 0.08, and 0.16 mg; 6 mM to 195 mM range), was harvested at 24 h post-exposure. SM-induced gene expression was analyzed using cDNA microarrays that included 1,176 genes. Genes were selected on the basis of all mice (N=5) in the same dose group demonstrating a > or =2-fold increase or decrease in gene expression for the SM-exposed tissue compared to the dichloromethane vehicle control ear tissue at all six SM doses. When skin exposed to all six concentrations of SM was compared to controls, a total of 19 genes within apoptosis, transcription factors, cell cycle, inflammation, and oncogenes and tumor suppressors categories were found to be upregulated; no genes were observed to be downregulated. Differences in the number and category of genes that were up- or down-regulated in skin exposed to low (0.005-0.01 mg) and high (0.08-0.16 mg) doses of SM were also observed. The results of this study provide a further understanding of the molecular responses to cutaneous SM exposure, and enable the identification of potential diagnostic markers and therapeutic targets for treating SM injury.
Collapse
Affiliation(s)
- James V Rogers
- Battelle Memorial Institute, Medical Research and Evaluation Facility, Columbus, OH 43201, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Chanchevalap S, Nandan MO, Merlin D, Yang VW. All-trans retinoic acid inhibits proliferation of intestinal epithelial cells by inhibiting expression of the gene encoding Kruppel-like factor 5. FEBS Lett 2005; 578:99-105. [PMID: 15581624 PMCID: PMC1599793 DOI: 10.1016/j.febslet.2004.10.079] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 10/27/2004] [Accepted: 10/27/2004] [Indexed: 11/17/2022]
Abstract
Retinoids are known inhibitors of epithelial cell proliferation. Previous studies indicate that Kruppel-like factor 5 (KLF5) is a pro-proliferative transcription factor. Here, we examined the effect of all-trans retinoid acid (ATRA) on proliferation of the intestinal epithelial cell line, IEC6. Treatment of IEC6 cells with ATRA inhibited their proliferation due to G1 cell cycle arrest. This inhibition was correlated with a decrease in the levels of KLF5 mRNA and promoter activity. In contrast, constitutive expression of KLF5 in stably transfected IEC6 cells with a KLF5-expressing plasmid driven by a viral promoter abrogated the growth inhibitory effect of ATRA. Moreover, ATRA inhibited proliferation of several human colon cancer cell lines with high levels of KLF5 expression but not those with low levels of KLF5 expression. Our results indicate that KLF5 is a potential mediator for the inhibitory effect of ATRA on intestinal epithelial cell proliferation.
Collapse
Affiliation(s)
- Sengthong Chanchevalap
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, 201 Whitehead Research Building, 615 Michael Street, Atlanta, GA, USA
| | - Mandayam O. Nandan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, 201 Whitehead Research Building, 615 Michael Street, Atlanta, GA, USA
| | - Didier Merlin
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, 201 Whitehead Research Building, 615 Michael Street, Atlanta, GA, USA
| | - Vincent W. Yang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, 201 Whitehead Research Building, 615 Michael Street, Atlanta, GA, USA
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- *Corresponding author. Fax: +1 404 727 5767. E-mail address: (V.W. Yang)
| |
Collapse
|
36
|
Pettersson F, Couture MC, Hanna N, Miller WH. Enhanced retinoid-induced apoptosis of MDA-MB-231 breast cancer cells by PKC inhibitors involves activation of ERK. Oncogene 2004; 23:7053-66. [PMID: 15273718 DOI: 10.1038/sj.onc.1207956] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Retinoids are vitamin A derivatives, which cause growth inhibition, differentiation and/or apoptosis in various cell types, including some breast cancer cells. In general, estrogen receptor (ER)-positive cells are retinoic acid (RA) sensitive, whereas ER-negative cells are resistant. In this report, we show that ER-negative MDA-MB-231 cells are strongly growth inhibited by retinoids in combination with a PKC inhibitor. While neither RA nor GF109203X (GF) has a significant growth inhibitory effect in these cells, RA+GF potently suppress proliferation. We found that RA+GF induce apoptosis, as shown by an increase in fragmented DNA, Annexin-V-positive cells and caspase-3 activation. Apoptosis was also induced by GF in combination with two synthetic retinoids. Expression of phosphorylated as well as total PKC was decreased by GF and this was potentiated by RA. In addition, treatment with GF caused a strong and sustained activation of ERK1/2 and p38-MAPK, as well as a weaker activation of JNK. Importantly, inhibition of ERK but not p38 or JNK suppressed apoptosis induced by RA+GF, indicating that activation of ERK is specifically required. In support of this novel finding, the ability of other PKC inhibitors to cause apoptosis in combination with RA correlates with ability to cause sustained activation of ERK.
Collapse
Affiliation(s)
- Filippa Pettersson
- Lady Davis Institute for Medical Research, McGill University, 3755 Cote-Ste-Catherine Rd, Montreal, Quebec, Canada H3T 1E2
| | | | | | | |
Collapse
|
37
|
Rousseau C, Nichol JN, Pettersson F, Couture MC, Miller WH. ERβ Sensitizes Breast Cancer Cells to Retinoic Acid: Evidence of Transcriptional Crosstalk. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.523.2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The ability of retinoids to inhibit breast cancer cell growth correlates with estrogen receptor (ER) α status, as shown by the antiproliferative effects of retinoids in ERα-positive breast cancer cells and their use as chemopreventive agents in premenopausal women. The discovery of ERβ, also present in breast cancer cells, has added a new level of complexity to this malignancy. To determine the retinoid response in ERβ-expressing breast cancer cells, we used retroviral transduction of ERβ in ER-negative MDA-MB-231 cells. Western blot and immunofluorescence confirmed expression and nuclear localization of ERβ, whereas functionality was shown using an estrogen response element–containing reporter. A significant retinoic acid (RA)–mediated growth inhibition was observed in the transduced ERβ-positive cells as shown by proliferation assays. Addition of estradiol, tamoxifen, or ICI 182,780 had no effect on cell growth and did not alter RA sensitivity. We observed that retinoids altered ERβ-mediated transcriptional activity from an estrogen response element, which was confirmed by decreased expression of the pS2 gene, and from an activator protein response element. Conversely, the expression of ERβ altered RA receptor (RAR) β expression, resulting in greater induction of RARβ gene expression on RA treatment, without altered expression of RARα. Our data provide evidence of transcriptional crosstalk between ERβ and RAR in ERβ-positive breast cancer cells that are growth inhibited by RA.
Collapse
Affiliation(s)
- Caroline Rousseau
- Departments of Oncology and Medicine, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and McGill University, Montreal, Quebec, Canada
| | - Jessica N. Nichol
- Departments of Oncology and Medicine, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and McGill University, Montreal, Quebec, Canada
| | - Filippa Pettersson
- Departments of Oncology and Medicine, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and McGill University, Montreal, Quebec, Canada
| | - Marie-Claude Couture
- Departments of Oncology and Medicine, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and McGill University, Montreal, Quebec, Canada
| | - Wilson H. Miller
- Departments of Oncology and Medicine, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Takenouchi-Ohkubo N, Asano M, Chihaya H, Chung-Hsuing WU, Ishikasa K, Moro I. Retinoic acid enhances the gene expression of human polymeric immunoglobulin receptor (pIgR) by TNF-alpha. Clin Exp Immunol 2004; 135:448-54. [PMID: 15008977 PMCID: PMC1808977 DOI: 10.1111/j.1365-2249.2004.02398.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, the detailed mechanisms for the effects of vitamin A on the expression of polymeric immunoglobulin receptor (pIgR) were examined. Expression of the pIgR by tumour necrosis factor (TNF-alpha) was enhanced by the addition of all-trans retinoic acid (ATRA) or 9-cis retinoic acid (9CRA). This enhancement was mediated mainly by RARalpha, and regulated at the transcriptional level. Transcription factor nuclear factor-kappaB (NF-kappaB) binding and activation were not influenced by addition of ATRA. These data imply that RA, in combination with TNF-alpha, could up-regulate the expression of pIgR. In addition, we hypothesize that up-regulation of pIgR by RA is controlled through the RAR-dependent signalling pathway and that it plays a role in enhancement of mucosal immunity.
Collapse
Affiliation(s)
- N Takenouchi-Ohkubo
- Department of Pathology, Nihon University, School of Dentistry, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Ocker M, Herold C, Ganslmayer M, Hahn EG, Schuppan D. The synthetic retinoid adapalene inhibits proliferation and induces apoptosis in colorectal cancer cells in vitro. Int J Cancer 2003; 107:453-459. [PMID: 14506747 DOI: 10.1002/ijc.11410] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chemotherapy of advanced stages of colorectal carcinoma is unsatisfactory. Retinoids inhibit cell growth and induce apoptosis in a variety of human malignancies. We compared the effect of the synthetic retinoid adapalene (ADA) and 9-cis-retinoic acid (CRA) on carcinoma cell lines in vitro. Colon carcinoma cell lines CC-531, HT-29 and LOVO as well as human foreskin fibroblasts were exposed to different concentrations of ADA and CRA for 3-72 hr. Proliferation was assessed by BrdU incorporation and apoptosis by FACS analysis. Breakdown of DeltaPsi(m) was determined by JC-1 staining and activity of caspases 3 and 8, by a colorimetric assay. Quantitative Western blots were performed to detect changes in bax, bcl-2 and caspase-3. Both retinoic derivatives suppressed DNA synthesis and induced apoptosis in all tested cell lines time- and dose-dependently. While the natural retinoid CRA showed moderate antiproliferative and proapoptotic effects only at the highest concentration (10(-4) M), the synthetic retinoic ADA was significantly more effective, showing remarkable effects even at 10(-5) M. ADA and CRA disrupt DeltaPsi(m) and induce caspase-3 activity in responsive tumor cells. Quantitative Western blots showed a shift of the bax:bcl-2 ratio toward proapoptotic bax in ADA-treated cells. Our results clearly indicate the superiority of ADA compared to CRA. Therefore, we suggest that ADA may be far more suitable as an adjunctive therapeutic agent for treatment of colon cancer in vivo.
Collapse
Affiliation(s)
- Matthias Ocker
- Department of Internal Medicine I, University Erlangen-Nuernberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
40
|
Wei HB, Han XY, Fan W, Chen GH, Wang JF. Effect of retinoic acid on cell proliferation kinetics and retinoic acid receptor expression of colorectal mucosa. World J Gastroenterol 2003; 9:1725-8. [PMID: 12918108 PMCID: PMC4611531 DOI: 10.3748/wjg.v9.i8.1725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of retinoic acid (RA) on cell proliferation kinetics and retinoic acid receptor (RAR) expression of colorectal mucosa.
METHODS: One hundred sixty healthy male Wistar rats were randomly divided into 4 groups. Rats in groups I and II were subcutaneously injected with dimethylhydrazine (DMH) (20 mg/kg, once a week,) for 7 to 13 weeks, while groups III and IV were injected with normal saline. Rats in groups II and III were also treated with RA (50 mg/kg, every day, orally) from 7th to 15th week, thus group IV was used as a control. The rats were killed in different batches. The expressions of proliferating cell nuclear antigen (PCNA), nucleolar organizer region-associated protein (AgNOR) and RAR were detected.
RESULTS: The incidence of colorectal carcinoma was different between groups I (100%) and II (15%) (P < 0.01). The PCNA indices and mean AgNOR count in group II were significantly lower than those in group I (F = 5.418 and 4.243, P < 0.01). The PCNA indices and mean AgNOR count in groups I and II were significantly higher than those in the groups III and IV (in which carcinogen was not used) (F = 5.927 and 4.348, P < 0.01). There was a tendency in group I that the longer the induction with DMH the higher PCNA index and AgNOR count expressed (F = 7.634 and 6.826, P < 0.05). However, there was no such tendency in groups II, III and IV (F = 1.662 and 1.984, P > 0.05). The levels of RAR in normal and cancerous tissues in groups treated with RA were significantly higher than those in groups not treated with RA (F = 6.343 and 6.024, P < 0.05).
CONCLUSION: RA decreases the incidence of colorectal carcinoma induced by DMH. Colorectal cancer tissue is associated with abnormal expression of PCNA, AgNOR and RAR. RA inhibits the expression of PCNA and AgNOR, and increases RAR concentration in colorectal tissues.
Collapse
Affiliation(s)
- Hong-Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | | | | | | | | |
Collapse
|
41
|
Rousseau C, Pettersson F, Couture MC, Paquin A, Galipeau J, Mader S, Miller WH. The N-terminal of the estrogen receptor (ERalpha) mediates transcriptional cross-talk with the retinoic acid receptor in human breast cancer cells. J Steroid Biochem Mol Biol 2003; 86:1-14. [PMID: 12943740 DOI: 10.1016/s0960-0760(03)00255-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transcriptional cross-talk exists between the estrogen receptor (ERalpha) and retinoic acid receptor (RAR) pathways in human breast cancer cells. We have previously shown that re-expression of ERalpha in ER-negative cells stimulates the transcriptional and growth inhibitory effects of all-trans-retinoic acid (tRA) by a mechanism that is independent of the ER ligands estradiol and tamoxifen. In this study, we generated cell lines stably expressing ERalpha-deletion mutants to elucidate the mechanism whereby ERalpha modulates RAR transcriptional activity. Using RT-PCR and RNAse protection assays, we observed that expression of ERalpha suppresses basal expression of the RA-responsive gene RARbeta2, while allowing it to be strongly induced by tRA. Repression of basal RARbeta2 transcription was confirmed by transient expression of the reporter plasmid betaRE-tk-CAT, containing the RARbeta2 promoter. In the ERalpha-negative cells, on the other hand, transcription was only weakly induced by RA. We further determined that this effect of ERalpha on RARbeta induction required the N-terminal AF-1-containing region, including the DNA-binding domain, but was independent of the C-terminal ligand-binding domain. Consistent with these results, the ER agonist estradiol and the AF-2 antagonist 4-hydroxytamoxifen had no significant effect on betaRARE activity. Conversely, the full ER antagonist ICI 182,780, which blocks ERalpha AF-1 activity, was able to completely relieve repression of basal betaRARE activity. The effect of ERalpha is specific for RAR-mediated transcription and does not occur on promoters containing typical response elements for the Vitamin D or thyroid hormone receptors. Moreover, the cross-talk between ERalpha and RAR does not seem to be mediated by sequestration of a number of common co-regulators, suggesting a novel mechanism whereby the N-terminal region of ERalpha modulates the transcriptional activity of RAR.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/metabolism
- Estradiol/pharmacology
- Estrogen Receptor alpha
- Gene Expression Regulation, Neoplastic/physiology
- Genes, Reporter/genetics
- Humans
- Mice
- Plasmids/genetics
- Protein Structure, Tertiary
- Receptor Cross-Talk
- Receptors, Estrogen/agonists
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Deletion
- Tamoxifen/pharmacology
- Trans-Activators/biosynthesis
- Transcription, Genetic/physiology
- Tretinoin/chemistry
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Caroline Rousseau
- Departments of Oncology and Medicine, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital (McGill University), 3755 Cote Ste Catherine Road, Que., H3T 1E2, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Roninson IB, Dokmanovic M. Induction of senescence-associated growth inhibitors in the tumor-suppressive function of retinoids. J Cell Biochem 2003; 88:83-94. [PMID: 12461777 DOI: 10.1002/jcb.10320] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retinoids, physiological regulators of cell growth and differentiation, are used in the treatment or chemoprevention of several malignant diseases. This class of compounds can induce growth arrest or apoptosis in tumor cells. Permanent growth arrest of retinoid-treated cells is often assumed to result from retinoid-induced differentiation. Recent studies in breast carcinoma and neuroblastoma cells demonstrated that retinoids can stop tumor cell growth through the program of senescence rather than differentiation. Retinoid-induced tumor suppression is associated with the induction of multiple intracellular and secreted growth-inhibitory proteins. Most of these proteins were also found to be upregulated in senescent cells. The induction of senescence-associated growth inhibitors appears to be an indirect effect of retinoids. Elucidation of the mechanisms responsible for the induction of growth-inhibitory genes in retinoid-treated cells should help in developing agents that would mimic the antiproliferative effect of retinoids in retinoid-insensitive cancers.
Collapse
Affiliation(s)
- Igor B Roninson
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | |
Collapse
|
44
|
Lee MO, Kang HJ. Role of coactivators and corepressors in the induction of the RARbeta gene in human colon cancer cells. Biol Pharm Bull 2002; 25:1298-302. [PMID: 12392082 DOI: 10.1248/bpb.25.1298] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously reported that the retinoic acid (RA) insensitivity of RARbeta induction is a general feature of human colon cancer cells (Biochem. Pharmacol., 59: 485-496, 2000). In the present investigation, we analyzed potential transcriptional defects associated with the expression of the RARbeta gene in colon cancer cells. Transfection of reporter constructs containing the RARbeta gene promoter as well as truncated fragments of the promoter showed a significant induction of reporter activity by RA treatment in RA-sensitive HCT-15 cells, but not in RA-resistant DLD-1 cells. The results suggest that the transcriptional defect of RARbeta expression may not be due to the presence of a specific cis-element in the RARbeta promoter. Next we examined whether coactivators and core-pressors of nuclear receptors were involved in the RA sensitivity of colon cancer cells. Transfection of coactivators such as CREB binding protein (CBP) and p300 up-regulated the RA-responsive element present in the RARbeta promoter (betaRARE) in DLD-1 cells up to the level in HCT-15, while coexpression of the nuclear receptor corepressor (NCoR) suppressed the betaRARE activity in HCT-15 cells. The expression level of CBP protein was consistently higher in HCT-15, while that of NCoR and Sin3A was higher in DLD-1 cells. Treatment with the histone deacetvlase inhibitor trichostatin A (TSA) increased both basal and RA-induced betaRARE activity in DLD-1, indicating that histone deacetylase is involved in the regulation of RARbeta gene expression. Taken together, our results show that differential function of coactivators and corepressors may determine the level of RARbeta induction that may mediate retinoid action in colon cancer cells.
Collapse
Affiliation(s)
- Mi-Ock Lee
- Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, Korea.
| | | |
Collapse
|
45
|
Pettersson F, Dalgleish AG, Bissonnette RP, Colston KW. Retinoids cause apoptosis in pancreatic cancer cells via activation of RAR-gamma and altered expression of Bcl-2/Bax. Br J Cancer 2002; 87:555-61. [PMID: 12189556 PMCID: PMC2376147 DOI: 10.1038/sj.bjc.6600496] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2002] [Revised: 05/28/2002] [Accepted: 05/31/2002] [Indexed: 02/08/2023] Open
Abstract
All-trans-retinoic acid and 9-cis-retinoic acid have been reported to have inhibitory effects on pancreatic adenocarcinoma cells and we have shown that this is partly due to induction of apoptosis. In this study, the mechanisms whereby 9-cis-retinoic acid induces apoptosis in these cells were investigated. An involvement of the Bcl-2 family of proteins was shown, such that 9-cis-retinoic acid causes a decrease in the Bcl-2/Bax ratio. Overexpression of Bcl-2 also resulted in inhibition of apoptosis induced by 9-cis-retinoic acid. Furthermore, two broad-range caspase inhibitors blocked DNA fragmentation induced by 9-cis-retinoic acid, but had no effect on viability defined by mitochondrial activity. Using synthetic retinoids, which bind selectively to specific retinoic acid receptor subtypes, we further established that activation of retinoic acid receptor-gamma is essential for induction of apoptosis. Only pan-retinoic acid receptor and retinoic acid receptor-gamma selective agonists reduced viability and a cell line expressing very low levels of retinoic acid receptor-gamma is resistant to the effects of 9-cis-retinoic acid. A retinoic acid receptor-beta/gamma selective antagonist also suppressed the cytotoxic effects of 9-cis-retinoic acid in a dose-dependent manner. This study provides important insight into the mechanisms involved in suppression of pancreatic tumour cell growth by retinoids. Our results encourage further work evaluating the clinical use of receptor subtype selective retinoids in pancreatic carcinoma.
Collapse
Affiliation(s)
- F Pettersson
- Department of Oncology, Gastroenterology, Endocrinology and Metabolism, St George's Hospital Medical School, London SW17 ORE, UK
| | | | | | | |
Collapse
|
46
|
Wong NACS, Pignatelli M. Beta-catenin--a linchpin in colorectal carcinogenesis? THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:389-401. [PMID: 11839557 PMCID: PMC1850660 DOI: 10.1016/s0002-9440(10)64856-0] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An important role for beta-catenin pathways in colorectal carcinogenesis was first suggested by the protein's association with adenomatous polyposis coli (APC) protein, and by evidence of dysregulation of beta-catenin protein expression at all stages of the adenoma-carcinoma sequence. Recent studies have, however, shown that yet more components of colorectal carcinogenesis are linked to beta-catenin pathways. Pro-oncogenic factors that also release beta-catenin from the adherens complex and/or encourage translocation to the nucleus include ras, epidermal growth factor (EGF), c-erbB-2, PKC-betaII, MUC1, and PPAR-gamma, whereas anti-oncogenic factors that also inhibit nuclear beta-catenin signaling include transforming growth factor (TGF)-beta, retinoic acid, and vitamin D. Association of nuclear beta-catenin with the T cell factor (TCF)/lymphoid enhancer factor (LEF) family of transcription factors promotes the expression of several compounds that have important roles in the development and progression of colorectal carcinoma, namely: c-myc, cyclin D1, gastrin, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-7, urokinase-type plasminogen activator receptor (aPAR), CD44 proteins, and P-glycoprotein. Finally, genetic aberrations of several components of the beta-catenin pathways, eg, Frizzled (Frz), AXIN, and TCF-4, may potentially contribute to colorectal carcinogenesis. In discussing the above interactions, this review demonstrates that beta-catenin represents a key molecule in the development of colorectal carcinoma.
Collapse
|
47
|
Kim EJ, Kang YH, Schaffer BS, Bach LA, MacDonald RG, Park JHY. Inhibition of Caco-2 cell proliferation by all-trans retinoic acid: role of insulin-like growth factor binding protein-6. J Cell Physiol 2002; 190:92-100. [PMID: 11807815 DOI: 10.1002/jcp.10045] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study examined the effects of all-trans retinoic acid (tRA) on proliferation and expression of the IGF system in Caco-2 human colon adenocarcinoma cells. tRA inhibited Caco-2 cell proliferation in a dose-dependent manner, with a 40 +/- 2% decrease in cell number observed 48 h after the addition of 1 microM tRA. Ligand blot analysis of IGFBPs in conditioned media revealed that Caco-2 cells produced three IGFBPs of M(r): 34,000 (IGFBP-2), 24,000 (IGFBP-4), and 32,000 (IGFBP-6). The concentrations of IGFBP-2 and IGFBP-4 decreased by 48 +/- 6 and 70 +/- 13%, respectively, whereas that of IGFBP-6 increased by 698 +/- 20% with 1 microM tRA. tRA decreased mRNA levels of IGFBP-2 and IGFBP-4 by 20 +/- 3 and 50 +/- 8%, respectively, whereas tRA increased IGFBP-6 mRNA by 660 +/- 20%. tRA did not alter levels of IGF-II mRNA or peptide. To examine if endogenous IGFBP-6 inhibits cell proliferation, Caco-2 cells were transfected with an IGFBP-6 cDNA expression construct or pcDNA3 vector only and stable clones were selected. Clones overexpressing IGFBP-6 grew more slowly than vector controls and achieved final densities 30-55% lower than those of vector controls. Accumulation of IGFBP-6 mRNA and concentrations of IGFBP-6 peptide in conditioned media were increased by 200-250 and 220-250%, respectively, in the IGFBP-6 clones compared with controls. Increased expression of IGFBP-6, which has a high binding affinity for IGF-II, following tRA treatment suggests that the decreased proliferation caused by tRA may result, at least in part, from IGFBP-6-mediated disruption of the IGF-II autocrine loop in these colon cancer cells.
Collapse
Affiliation(s)
- Eun J Kim
- Division of Life Sciences, Institute of Environment & Life Science, Hallym University, Chunchon, 200-702, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Kang HJ, Song MR, Lee SK, Shin EC, Choi YH, Kim SJ, Lee JW, Lee MO. Retinoic acid and its receptors repress the expression and transactivation functions of Nur77: a possible mechanism for the inhibition of apoptosis by retinoic acid. Exp Cell Res 2000; 256:545-54. [PMID: 10772826 DOI: 10.1006/excr.2000.4832] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nur77 (NGFI-B) is an orphan nuclear receptor that has been implicated in activation-induced T-cell apoptosis. Retinoids, potent immune modulators, were shown to inhibit the activation-induced apoptosis of immature thymocytes and T-cell hybridomas. To illustrate the mechanism of the inhibition, we examined the effects of retinoic acid (RA) on the expression and transactivation functions of Nur77 in the human peripheral blood mononuclear cells and the human T-cell leukemia, Jurkat. All-trans-RA remarkably repressed the DNA binding and transcriptional induction of Nur77. Among the two potential trans-acting factors that activate Nur77 gene promoter, i.e., AP-1 and related serum response factor (RSRF), all-trans-RA repressed DNA binding and reporter gene activity of AP-1 but not that of RSRF, suggesting that the inhibition may be mediated through AP-1. We also demonstrated a posttranscriptional regulation of Nur77 function by retinoid receptors by showing that transactivation activity of Nur77 was significantly inhibited by cotransfection of RARalpha or RXRalpha. Nur77 bound RARalpha or RXRalpha in both yeast and mammalian two-hybrid tests, suggesting that direct protein-protein interaction between these receptors may mediate the inhibition. Taken all together, we demonstrated that RA repressed Nur77 function through multiple mechanisms that may provide the basis for RA inhibition on the apoptosis of activated T-lymphocytes.
Collapse
Affiliation(s)
- H J Kang
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | | | | | | | | | | | | | | |
Collapse
|