1
|
Feng W, Wang Y, Liu ZQ, Zhang X, Han R, Miao YZ, Qin ZH. Microglia activation contributes to quinolinic acid-induced neuronal excitotoxicity through TNF-α. Apoptosis 2018; 22:696-709. [PMID: 28315174 DOI: 10.1007/s10495-017-1363-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has been reported that activation of NF-κB is involved in excitotoxicity; however, it is not fully understood how NF-κB contributes to excitotoxicity. The aim of this study is to investigate if NF-κB contributes to quinolinic acid (QA)-mediated excitotoxicity through activation of microglia. In the cultured primary cortical neurons and microglia BV-2 cells, the effects of QA on cell survival, NF-κB expression and cytokines production were investigated. The effects of BV-2-conditioned medium (BCM) on primary cortical neurons were examined. The effects of pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, and minocycline (MC), an inhibitor of microglia activation, on QA-induced excitotoxicity were assessed. QA-induced NF-κB activation and TNF-α secretion, and the roles of TNF-α in excitotoxicity were studied. QA at the concentration below 1 mM had no apparent toxic effects on cultured primary neurons or BV-2 cells. However, addition of QA-primed BCM to primary neurons did aggravate QA-induced excitotoxicity. The exacerbation of QA-induced excitotoxicity by BCM was partially ameliorated by inhibiting NF-κB and microglia activation. QA induced activation of NF-κB and upregulation of TNF-α in BV-2 cells. Addition of recombinant TNF-α mimicked QA-induced excitotoxic effects on neurons, and neutralizing TNF-α with specific antibodies partially abolished exacerbation of QA-induced excitotoxicity by BCM. These studies suggested that QA activated microglia and upregulated TNF-α through NF-κB pathway in microglia. The microglia-mediated inflammatory pathway contributed, at least in part, to QA-induced excitotoxicity.
Collapse
Affiliation(s)
- Wei Feng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Zi-Qi Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Xuan Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - You-Zhu Miao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
BAO MEIHUA, LI JIANMING, ZHOU QILIANG, LI GUANGYI, ZENG JIE, ZHAO JUAN, ZHANG YIWEN. Effects of miR-590 on oxLDL-induced endothelial cell apoptosis: Roles of p53 and NF-κB. Mol Med Rep 2015; 13:867-73. [DOI: 10.3892/mmr.2015.4606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/21/2015] [Indexed: 11/06/2022] Open
|
3
|
Wang YR, Qin S, Han R, Wu JC, Liang ZQ, Qin ZH, Wang Y. Cathepsin L plays a role in quinolinic acid-induced NF-Κb activation and excitotoxicity in rat striatal neurons. PLoS One 2013; 8:e75702. [PMID: 24073275 PMCID: PMC3779166 DOI: 10.1371/journal.pone.0075702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 08/20/2013] [Indexed: 01/28/2023] Open
Abstract
The present study seeks to investigate the role of cathepsin L in glutamate receptor-induced transcription factor nuclear factor-kappa B (NF-κB) activation and excitotoxicity in rats striatal neurons. Stereotaxic administration of the N-methyl-d-aspartate (NMDA) receptor agonist Quinolinic acid (QA) into the unilateral striatum was used to produce the in vivo excitotoxic model. Co-administration of QA and the cathepsin L inhibitor Z-FF-FMK or 1-Naphthalenesulfonyl-IW-CHO (NaphthaCHO) was used to assess the contribution of cathepsin L to QA-induced striatal neuron death. Western blot analysis and cathepsin L activity assay were used to assess the changes in the levels of cathepsin L after QA treatment. Western blot analysis was used to assess the changes in the protein levels of inhibitor of NF-κB alpha isoform (IκB-α) and phospho-IκB alpha (p-IκBα) after QA treatment. Immunohistochemical analysis was used to detect the effects of Z-FF-FMK or NaphthaCHO on QA-induced NF-κB. Western blot analysis was used to detect the effects of Z-FF-FMK or NaphthaCHO on QA-induced IκB-α phosphorylation and degradation, changes in the levels of IKKα, p-IKKα, TP53, caspase-3, beclin1, p62, and LC3II/LC3I. The results show that QA-induced loss of striatal neurons were strongly inhibited by Z-FF-FMK or NaphthaCHO. QA-induced degradation of IκB-α, NF-κB nuclear translocation, up-regulation of NF-κB responsive gene TP53, and activation of caspase-3 was strongly inhibited by Z-FF-FMK or NaphthaCHO. QA-induced increases in beclin 1, LC3II/LC3I, and down-regulation of p62 were reduced by Z-FF-FMK or NaphthaCHO. These results suggest that cathepsin L is involved in glutamate receptor-induced NF-κB activation. Cathepsin L inhibitors have neuroprotective effects by inhibiting glutamate receptor-induced IκB-α degradation and NF-κB activation.
Collapse
Affiliation(s)
- Yan-Ru Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Shu Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Jun-Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Zhong-Qin Liang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
- E-mail:
| |
Collapse
|
4
|
Bao MH, Zhang YW, Zhou HH. Paeonol suppresses oxidized low-density lipoprotein induced endothelial cell apoptosis via activation of LOX-1/p38MAPK/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:543-551. [PMID: 23357312 DOI: 10.1016/j.jep.2013.01.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/15/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Paeonol is an active compound isolated from traditional Chinese medicine, and has been shown to have anti-atherosclerosis, anti-inflammatory, antioxidant effects. The present investigation was undertaken to determine the suppression effects of paeonol on oxidized low-density lipoprotein (ox-LDL) induced endothelial cell line HUVEC apoptosis and to uncover some of the underlying mechanisms of these effects. Cell viability and lactate dehydrogenase (LDH) were measured to evaluate the cell injuries. Apoptosis was evaluated by Hoechst 33342 staining and flow cytometry. Intracellular reactive oxygen species (ROS) generation was detected by 2',7'-dichlorofluorescein diacetate (DCFH-DA). Real-time PCR was used to confirm the expression of LOX-1 mRNA. Western blotting was used to evaluate the protein expression of LOX-1 and Bcl-2, as well as caspase-3 cleavage, p38-mitogen-activated protein kinase (p38MAPK) phosphorylation. NF-κB nuclear translocation was detected by Western blotting and immunofluorescence. Caspase-3 activity was measured using a colorimetric protease assay kit. The results showed that ox-LDL significantly decreased cell viability and increased the LDH release, as well as the apoptotic rate (P<0.01). Pre-treatment of paeonol resulted in remarkable increase of cell viability, decrease of LDH release and cell apoptosis in a concentration-dependent manner. Besides, ox-LDL caused the up-regulation of LOX-1, the down-regulation of Bcl-2, the phosphorylation of p38MAPK, the translocation of NF-κB and the activation of caspase-3. Paeonol pre-treatment reversed these effects introduced by ox-LDL. Moreover, paeonol also showed its inhibition effects on ox-LDL induced ROS overproduction. These results indicate the preventive effects of paeonol on ox-LDL induced endothelial cell apoptosis. The effects might, at least partly, be obtained via inhibition of LOX-1-ROS- p38MAPK-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | | | | |
Collapse
|
5
|
Biphasic activation of nuclear factor-kappa B in experimental models of subarachnoid hemorrhage in vivo and in vitro. Mediators Inflamm 2012; 2012:786242. [PMID: 23049172 PMCID: PMC3461645 DOI: 10.1155/2012/786242] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/21/2012] [Indexed: 12/19/2022] Open
Abstract
It has been proven that nuclear factor-kappa B (NF-κB) is activated as a well-known transcription factor after subarachnoid hemorrhage (SAH). However, the panoramic view of NF-κB activity after SAH remained obscure. Cultured neurons were signed into control group and six hemoglobin- (Hb-) incubated groups. One-hemorrhage rabbit SAH model was produced, and the rabbits were divided randomly into one control group and five SAH groups. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA) and immunohistochemistry. Real-time polymerase chain reaction (PCR) was performed to assess the downstream genes of NF-κB. NeuN immunofluorescence and lactate dehydrogenase (LDH) quantification were used to estimate the neuron injury. Double drastically elevated NF-κB activity peaks were detected in rabbit brains and cultured neurons. The downstream gene expressions showed an accordant phase peaks. NeuN-positive cells decreased significantly in day 3 and day 10 groups. LDH leakage exhibited a significant increase in Hb-incubated groups, but no significant difference was found between the Hb incubated groups. These results suggested that biphasic increasing of NF-κB activity was induced after SAH, and the early NF-κB activity peak indicated the injury role on neurons; however, the late peak might not be involved in the deteriorated effect on neurons.
Collapse
|
6
|
Graham RK, Ehrnhoefer DE, Hayden MR. Caspase-6 and neurodegeneration. Trends Neurosci 2011; 34:646-56. [DOI: 10.1016/j.tins.2011.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 01/10/2023]
|
7
|
Chang JR, Ghafouri M, Mukerjee R, Bagashev A, Chabrashvili T, Sawaya BE. Role of p53 in neurodegenerative diseases. NEURODEGENER DIS 2011; 9:68-80. [PMID: 22042001 DOI: 10.1159/000329999] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/09/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND p53 plays an important role in many areas of cellular physiology and biology, ranging from cellular development and differentiation to cell cycle arrest and apoptosis. Many of its functions are attributed to its role in assuring proper cellular division. However, since the establishment of its role in cell cycle arrest, damage repair, and apoptosis (thus also establishing its importance in cancer development), numerous reports have demonstrated additional functions of p53 in various cells. In particular, p53 appears to have important functions as it relates to neurodegeneration and synaptic plasticity. OBJECTIVE In this review, we will address p53 functions as it relates to various neurodegenerative diseases, mainly its implications in the development of HIV-associated neurocognitive disorders. CONCLUSION p53 plays a pivotal role in the development of neurodegenerative diseases through its interaction with cellular factors, viral factors, and/or small RNAs that have the ability to promote the development of these diseases. Hence, inhibition of p53 may present an ideal target to restore neuronal functions.
Collapse
Affiliation(s)
- J Robert Chang
- Molecular Studies of Neurodegenerative Diseases Laboratory, Department of Neurology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
8
|
Attenuation of proinflammatory cytokines and apoptotic process by verapamil and diltiazem against quinolinic acid induced Huntington like alterations in rats. Brain Res 2011; 1372:115-26. [DOI: 10.1016/j.brainres.2010.11.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 01/22/2023]
|
9
|
Pu F, Kaneko T, Enoki M, Irie K, Okamoto T, Sei Y, Egashira N, Oishi R, Mishima K, Kamimura H, Iwasaki K, Fujiwara M. Ameliorating effects of Kangen-karyu on neuronal damage in rats subjected to repeated cerebral ischemia. J Nat Med 2010; 64:167-74. [DOI: 10.1007/s11418-010-0392-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 01/07/2010] [Indexed: 01/10/2023]
|
10
|
Pizzi M, Sarnico I, Lanzillotta A, Battistin L, Spano P. Post-ischemic brain damage: NF-kappaB dimer heterogeneity as a molecular determinant of neuron vulnerability. FEBS J 2009; 276:27-35. [PMID: 19087197 DOI: 10.1111/j.1742-4658.2008.06767.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) has been proposed to serve a dual function as a regulator of neuron survival in pathological conditions associated with neurodegeneration. NF-kappaB is a transcription family of factors comprising five different proteins, namely p50, RelA/p65, c-Rel, RelB and p52, which can combine differently to form active dimers in response to external stimuli. Recent research shows that diverse NF-kappaB dimers lead to cell death or cell survival in neurons exposed to ischemic injury. While the p50/p65 dimer participates in the pathogenesis of post-ischemic injury by inducing pro-apoptotic gene expression, c-Rel-containing dimers increase neuron resistance to ischemia by inducing anti-apoptotic gene transcription. We present, in this report, the latest findings and consider the therapeutic potential of targeting different NF-kappaB dimers to limit ischemia-associated neurodegeneration.
Collapse
Affiliation(s)
- Marina Pizzi
- Division of Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, Italy.
| | | | | | | | | |
Collapse
|
11
|
Sarnico I, Lanzillotta A, Benarese M, Alghisi M, Baiguera C, Battistin L, Spano P, Pizzi M. NF-kappaB dimers in the regulation of neuronal survival. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:351-62. [PMID: 19607980 DOI: 10.1016/s0074-7742(09)85024-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a dimeric transcription factor composed of five members, p50, RelA/p65, c-Rel, RelB, and p52 that can diversely combine to form the active transcriptional dimer. NF-kappaB controls the expression of genes that regulate a broad range of biological processes in the central nervous system such as synaptic plasticity, neurogenesis, and differentiation. Although NF-kappaB is essential for neuron survival and its activation may protect neurons against oxidative-stresses or ischemia-induced neurodegeneration, NF-kappaB activation can contribute to inflammatory reactions and apoptotic cell death after brain injury and stroke. It was proposed that the death or survival of neurons might depend on the cell type and the timing of NF-kappaB activation. We here discuss recent evidence suggesting that within the same neuronal cell, activation of diverse NF-kappaB dimers drives opposite effects on neuronal survival. Unbalanced activation of NF-kappaB p50/RelA dimer over c-Rel-containing complexes contributes to cell death secondary to the ischemic insult. While p50/RelA acts as transcriptional inducer of Bcl-2 family proapoptotic Bim and Noxa genes, c-Rel dimers specifically promote transcription of antiapototic Bcl-xL gene. Changes in the nuclear content of c-Rel dimers strongly affect the threshold of neuron vulnerability to ischemic insult and agents, likewise leptin, activating a NF-kappaB/c-Rel-dependent transcription elicit neuroprotection in animal models of brain ischemia.
Collapse
Affiliation(s)
- Ilenia Sarnico
- Division of Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, Brescia 25123, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Strauss KI. Antiinflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain Behav Immun 2008; 22:285-98. [PMID: 17996418 PMCID: PMC2855502 DOI: 10.1016/j.bbi.2007.09.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/14/2007] [Accepted: 09/20/2007] [Indexed: 12/22/2022] Open
Abstract
Overexpression of COX2 appears to be both a marker and an effector of neural damage after a variety of acquired brain injuries, and in natural or pathological aging of the brain. COX2 inhibitors may be neuroprotective in the brain by reducing prostanoid and free radical synthesis, or by directing arachidonic acid down alternate metabolic pathways. The arachidonic acid shunting hypothesis proposes that COX2 inhibitors' neuroprotective effects may be mediated by increased formation of potentially beneficial eicosanoids. Under conditions where COX2 activity is inhibited, arachidonic acid accumulates or is converted to eicosanoids via lipoxygenases and cytochrome P450 (CYP) epoxygenases. Several P450 eicosanoids have been demonstrated to have beneficial effects in the brain and/or periphery. We suspect that arachidonic acid shunting may be as important to functional recovery after brain injuries as altered prostanoid formation per se. Thus, COX2 inhibition and arachidonic acid shunting have therapeutic implications beyond the suppression of prostaglandin synthesis and free radical formation.
Collapse
Affiliation(s)
- Kenneth I. Strauss
- Mayfield Neurotrauma Research Lab, Department of Neurosurgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML515, Cincinnati, OH 45267 ()
| |
Collapse
|
13
|
Zhao X, Ou Z, Grotta JC, Waxham N, Aronowski J. Peroxisome-proliferator-activated receptor-gamma (PPARgamma) activation protects neurons from NMDA excitotoxicity. Brain Res 2006; 1073-1074:460-9. [PMID: 16442504 DOI: 10.1016/j.brainres.2005.12.061] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 12/01/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
A growing body of evidence indicates that the transcription factor PPARgamma plays a beneficial role in various neurological diseases. The postulated principal mechanism underlying the beneficial effects of PPARgamma is due to its anti-inflammatory properties. However, PPARgamma exists in neurons where it may provide additional effects that regulate neuronal vulnerability. In the present study, we employed in vitro and in vivo models of excitotoxic neuronal injury to test hypothesis on the neuroprotective role of PPARgamma. The endogenous PPARgamma ligand, 15d-Delta(12,14)-Prostaglandin J2 (15d-PGJ2), and a selective thiazolidinedione PPARgamma agonist, ciglitazone, significantly reduced neuronal death in response to glutamate and NMDA-mediated, but not kainate-mediated toxicity. This neuroprotective effect of 15d-PGJ2 and ciglitazone was linked to increased PPARgamma DNA binding activity as it was fully reversed by the pretreatment of neurons with selective PPARgamma antagonists and anti-PPARgamma antibody. It was not due to the blockade of NMDA-receptor-mediated Ca++ entry. Our data demonstrate that PPARgamma activation may represent a potential target for treatment of numerous acute and chronic neurological diseases with pathologies that involve excitotoxic damage.
Collapse
Affiliation(s)
- Xiurong Zhao
- Stroke Program, Department of Neurology, University of Texas-Houston Medical School, 6431 Fannin, Rm. 7.044, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
14
|
Santamaría A, Vázquez-Román B, La Cruz VPD, González-Cortés C, Trejo-Solís MC, Galván-Arzate S, Jara-Prado A, Guevara-Fonseca J, Ali SF. Selenium reduces the proapoptotic signaling associated to NF-kappaB pathway and stimulates glutathione peroxidase activity during excitotoxic damage produced by quinolinate in rat corpus striatum. Synapse 2006; 58:258-66. [PMID: 16206188 DOI: 10.1002/syn.20206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Quinolinate (QUIN) neurotoxicity has been attributed to degenerative events in nerve tissue produced by sustained activation of N-methyl-D-aspartate receptor (NMDAr) and oxidative stress. We have recently described the protective effects that selenium (Se), an antioxidant, produces on different markers of QUIN-induced neurotoxicity (Santamaría et al., 2003, J Neurochem 86:479-488.). However, the mechanisms by which Se exerts its protective actions remain unclear. Since some of these events are thought to be related with inhibition of deadly molecular cascades through the activation of antioxidant selenoproteins, in this study we investigated the effects of Se on QUIN-induced cell damage elicited by the nuclear factor kappaB (NF-kappaB) pathway, as well as the time-course response of striatal glutathione peroxidase (GPx) activity. Se (sodium selenite, 0.625 mg/kg/day, i.p.) was administered to rats for 5 days, and 120 min after the last administration, animals received a single striatal injection of QUIN (240 nmol/mul). Twenty-four hours later, their striata were tested for the expression of IkappaB-alpha (the NF-kappaB cytosolic binding protein), the immunohistochemical expression of NF-kappaB (evidenced as nuclear expression of P65), caspase-3-like activation, and DNA fragmentation. Additional groups were killed at 2, 6, and 24 h for measurement of GPx activity. Se reduced the QUIN-induced decrease in IkappaB-alpha expression, evidencing a reduction in its cytosolic degradation. Se also prevented the QUIN-induced increase in P65-immunoreactive cells, suggesting a reduction of NF-kappaB nuclear translocation. Caspase-3-like activation and DNA fragmentation produced by QUIN were also inhibited by Se. Striatal GPx activity was stimulated by Se at 2 and 6 h, but not at 24 h postlesion. Altogether, these data suggest that the protective effects exerted by Se on QUIN-induced neurotoxicity are partially mediated by the inhibition of proapoptotic events underlying IkappaB-alpha degradation, NF-kappaB nuclear translocation, and caspase-3-like activation in the rat striatum, probably involving the early activation of GPx.
Collapse
Affiliation(s)
- Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA. México DF
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cao Y, Gu ZL, Lin F, Han R, Qin ZH. Caspase-1 inhibitor Ac-YVAD-CHO attenuates quinolinic acid-induced increases in p53 and apoptosis in rat striatum. Acta Pharmacol Sin 2005; 26:150-4. [PMID: 15663890 DOI: 10.1111/j.1745-7254.2005.00525.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To study the effects of the caspase-1 inhibitor Ac-YVAD-CHO on quinolinic acid (QA)-induced apoptosis. METHODS Rats were pre-treated with intrastriatal infusion of Ac-YVAD-CHO (2-8 microg) before intrastriatal injection of QA (60 nmol). Striatal total proteins, genomic DNA, and nuclear proteins were isolated. The effects of Ac-YVAD-CHO on QA-induced caspase-1 activity, internucleosomal DNA fragmentation, IkappaB-alpha degradation, NF-kappaB, and AP-1 activation, and increases in p53 protein levels were measured with enzyme assays, agarose gel electrophoresis, electrophoresis mobility shift assays, and Western blot analysis. RESULTS Pre-treatment with Ac-YVAD-CHO inhibited QA-induced internucleosomal DNA fragmentation. Ac-YVAD-CHO inhibited QA-induced increases in caspase-1 activity and p53 protein levels, but had no effect on QA-induced IkappaB-alpha degradation, NF-kappaB or AP-1 activation. CONCLUSION Caspase-1 is involved in QA-induced p53 upregulation but not IkappaB-alpha degradation. Inhibition of caspase-1 attenuates QA-induced apoptosis in rat striatum.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215007, China
| | | | | | | | | |
Collapse
|
16
|
Bantubungi K, Jacquard C, Greco A, Pintor A, Chtarto A, Tai K, Galas MC, Tenenbaum L, Déglon N, Popoli P, Minghetti L, Brouillet E, Brotchi J, Levivier M, Schiffmann SN, Blum D. Minocycline in phenotypic models of Huntington's disease. Neurobiol Dis 2005; 18:206-17. [PMID: 15649711 DOI: 10.1016/j.nbd.2004.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/23/2004] [Accepted: 09/30/2004] [Indexed: 12/21/2022] Open
Abstract
Minocycline has been shown to be neuroprotective in various models of neurodegenerative diseases. However, its potential in Huntington's disease (HD) models characterized by calpain-dependent degeneration and inflammation has not been investigated. Here, we have tested minocycline in phenotypic models of HD using 3-nitropropionic acid (3NP) intoxication and quinolinic acid (QA) injections. In the 3NP rat model, where the development of striatal lesions involves calpain, we found that minocycline was not protective, although it attenuated the development of inflammation induced after the onset of striatal degeneration. The lack of minocycline activity on calpain-dependent cell death was also confirmed in vitro using primary striatal cells. Conversely, we found that minocycline reduced lesions and inflammation induced by QA. In cultured cells, minocycline protected against mutated huntingtin and staurosporine, stimulations known to promote caspase-dependent cell death. Altogether, these data suggested that, in HD, minocycline may counteract the development of caspase-dependent neurodegeneration, inflammation, but not calpain-dependent neuronal death.
Collapse
|
17
|
Pu F, Mishima K, Irie K, Egashira N, Ishibashi D, Matsumoto Y, Ikeda T, Iwasaki K, Fujii H, Kosuna K, Fujiwara M. Differential Effects of Buckwheat and Kudingcha Extract on Neuronal Damage in Cultured Hippocampal Neurons and Spatial Memory Impairment Induced by Scopolamine in an Eight-Arm Radial Maze. ACTA ACUST UNITED AC 2005. [DOI: 10.1248/jhs.51.636] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fengling Pu
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Keiichi Irie
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Nobuaki Egashira
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Daisuke Ishibashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Yoshiaki Matsumoto
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Miyazaki Medical College, University of Miyazaki
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | | | | | - Michihiro Fujiwara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| |
Collapse
|
18
|
Magné N, Didelot C, Toillon RA, Van Houtte P, Peyron JF. [Biomodulation of transcriptional factor NF-kappa B by ionizing radiation]. Cancer Radiother 2004; 8:315-21. [PMID: 15561597 DOI: 10.1016/j.canrad.2004.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 08/31/2004] [Indexed: 01/04/2023]
Abstract
NF-kappaB (Nuclear Factor-kappaB) was described for the first time in 1986 as a nuclear protein binding to the kappa immunoglobulin-light chain enhancer. Since then, NF-kappaB has emerged as an ubiquitous factor involved in the regulation of numerous important processes as diverse as immune and inflammatory responses, apoptosis and cell proliferation. These last two properties explain the implication of NF-kappaB in the tumorigenic process as well as the promise of a targeted therapeutic intervention. This review focuses on the current knowledge on NF-kappaB regulation and discusses the therapeutic potential of targeting NF-kappaB in cancer in particular during radiotherapy.
Collapse
Affiliation(s)
- N Magné
- Département de radiothérapie, institut Jules-Bordet, 121, boulevard de Waterloo, 1000 Bruxelles, Belgique.
| | | | | | | | | |
Collapse
|
19
|
Marpegan L, Bekinschtein TA, Freudenthal R, Rubio MF, Ferreyra GA, Romano A, Golombek DA. Participation of transcription factors from the Rel/NF-kappa B family in the circadian system in hamsters. Neurosci Lett 2004; 358:9-12. [PMID: 15016422 DOI: 10.1016/j.neulet.2003.12.112] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 11/30/2003] [Accepted: 12/13/2003] [Indexed: 11/17/2022]
Abstract
We have studied the presence and activity of components of the nuclear factor-kappaB (NF-kappaB) transcription factor in the hamster circadian system analyzing wheel-running activity, protein expression and DNA binding activity by electrophoresis mobility shift assays (EMSA). Non-rhythmic specific immunoreactive bands corresponding to a NF-kappaB subunit (p65) were found in hamster suprachiasmatic nuclei (SCN) homogenates. The active form of NF-kappaB evidenced by EMSA was clear and specific in SCN nuclear extracts. The administration of the NF-kappaB inhibitor pyrrolidine-dithiocharbamate (PDTC) blocked the light-induced phase advance at circadian time 18 (vehicle+light pulse: 2.08+/-0.46 h, PDTC+light: 0.36+/-0.35 h). These results demonstrate the presence and activity of Rel/NF-kappaB family proteins in the hamster SCN and suggest that these proteins may be related to the entrainment and regulation of circadian rhythms.
Collapse
Affiliation(s)
- Luciano Marpegan
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 180, Bernal, B1876BXD Pcia. de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
20
|
Diguet E, Fernagut PO, Normand E, Centelles L, Mulle C, Tison F. Experimental basis for the putative role of GluR6/kainate glutamate receptor subunit in Huntington's disease natural history. Neurobiol Dis 2004; 15:667-75. [PMID: 15056475 DOI: 10.1016/j.nbd.2003.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 10/15/2003] [Accepted: 12/16/2003] [Indexed: 11/28/2022] Open
Abstract
Age of onset of Huntington's disease (HD) statistically correlates with the length of expanded CAG repeats in the IT15 gene. However, other factors such as polymorphism in the 3' untranslated region of the GluR6 kainate receptor gene subunit may contribute to variability in the age at onset. To investigate this issue, we studied the motor disorder and related striatal damage induced by 3-nitropropionic acid (3-NP) subacute administration in GluR6 knockout mice (GluR6(-/-)) as compared to wild-type mice. In two different age groups (6 months and 1 year), we observed that GluR6(-/-) mice did not display more motor impairment nor more striatal histopathological damage than GluR6(+/+) mice, although 1-year-old GluR6(-/-) mice displayed reduced activity parameters either at baseline or after 3-NP administration compared to GluR6(+/+). In both age groups, GluR6(-/-) mice died earlier and displayed earlier motor symptoms during 3-NP-induced metabolic compromise, suggesting that GluR6-containing kainate receptors may be implicated during neurodegeneration, such as in HD, rather than in the final outcome.
Collapse
Affiliation(s)
- Elsa Diguet
- Physiologie et Physiopathologie de la Signalisation Cellulaire, UMR-CNRS 5543, Université Victor Segalen-Bordeaux2, 33076 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
21
|
Schölzke MN, Potrovita I, Subramaniam S, Prinz S, Schwaninger M. Glutamate activates NF-kappaB through calpain in neurons. Eur J Neurosci 2004; 18:3305-10. [PMID: 14686903 DOI: 10.1111/j.1460-9568.2003.03079.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glutamate induces gene transcription in numerous physiological and pathological conditions. Among the glutamate-responsive transcription factors, NF-kappaB has been mainly implicated in neuronal survival and death. Recent data also suggest a role of NF-kappaB in neural development and memory formation. In non-neuronal cells, degradation of the inhibitor IkappaBalpha represents a key step in NF-kappaB activation. However, little is known of how glutamate activates NF-kappaB in neurons. To investigate the signalling cascade involved we used primary murine cerebellar granule cells. Glutamate induced a rapid reduction of IkappaBalpha levels and nuclear translocation of the NF-kappaB subunit p65. The glutamate-induced reduction of IkappaBalpha levels was blocked by the N-methyl-d-aspartate inhibitor MK801. Specific inhibitors of the proteasome, caspase 3, and the phosphoinositide 3-kinase had no effect on glutamate-induced IkappaBalpha degradation. However, inhibition of the glutamate-activated Ca2+-dependent protease calpain by calpeptin completely blocked IkappaBalpha degradation and reduced the nuclear translocation of p65. Calpeptin also partially blocked glutamate-induced cell death. Our data indicate that the Ca2+-dependent protease calpain is involved in the NF-kappaB activation in neurons in response to N-methyl-d-aspartate receptor occupancy by glutamate. NF-kappaB activation by calpain may mediate the long-term effects of glutamate on neuron survival or memory formation.
Collapse
Affiliation(s)
- Marion N Schölzke
- Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
22
|
Djebaïli M, De Bock F, Baille V, Bockaert J, Rondouin G. Implication of p53 and caspase-3 in kainic acid but not in N-methyl-D-aspartic acid-induced apoptosis in organotypic hippocampal mouse cultures. Neurosci Lett 2002; 327:1-4. [PMID: 12098486 DOI: 10.1016/s0304-3940(02)00137-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apoptotic death is known to be an active process requiring the activation of several apoptotic proteins. Depending on the tissue studied and the stimulus used, these processes are distinct. In this work, we studied if there is a putative implication of the p53 and the caspase-3 proteins in kainic acid (KA) and N-methyl-D-aspartic acid (NMDA)-induced apoptosis in organotypic cultures and if there is any relationship between their respective expressions. We found that KA and NMDA both induce apoptosis but only KA-induced apoptosis is p53- and caspase-3-dependent. This demonstrates that KA and NMDA induce apoptosis following different intracellular pathways.
Collapse
Affiliation(s)
- Myriam Djebaïli
- UPR CNRS 9023, CCIPE, Laboratoire de Médecine Expérimentale, Institut de Biologie, Boulevard Henri IV, 34094 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
23
|
Marco S, Canudas AM, Canals JM, Gavaldà N, Pérez-Navarro E, Alberch J. Excitatory amino acids differentially regulate the expression of GDNF, neurturin, and their receptors in the adult rat striatum. Exp Neurol 2002; 174:243-52. [PMID: 11922665 DOI: 10.1006/exnr.2001.7859] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) family ligands are important regulators of neuronal development and maintenance of the connectivity in the basal ganglia and show neuroprotective activities in several paradigms of brain injury. The mRNAs of two members of this family, GDNF and neurturin, and also their receptors have been detected in the basal ganglia. In the present work, we analyzed the time course changes in the expression of these neurotrophic factors and receptors in the adult rat striatum, induced by quinolinate or kainate excitotoxicity. Our results show that stimulation of NMDA or non-NMDA receptors induced different effects on the mRNA levels analyzed. Expression of GDNF and its preferred receptor, GDNF family receptor-alpha1 (GFRalpha1), was transiently up-regulated by quinolinate and kainate, but with differing intensity and temporal pattern. Immunohistochemical analysis showed that, although GDNF and GFRalpha1 were initially localized in neurons, excitotoxicity induced the expression of these proteins in astrocyte-like cells. Neurturin mRNA levels were only up-regulated after quinolinate injection, whereas quinolinate or kainate injection did not modify GFRalpha2 mRNA. The mRNA for the common receptor, c-Ret, was up-regulated by both agonists with similar temporal pattern but with differing intensity. Immunohistochemical analysis showed that c-Ret protein was located on neurons. These changes in mRNA levels and protein localization of GDNF family components could reflect an endogenous trophic response of striatal cells to different excitotoxic insults.
Collapse
Affiliation(s)
- Sònia Marco
- Departament de Biologia Cel small middle dotlular i Anatomia Patològica, Facultat de Medicina, IDIBAPS, Universitat de Barcelona, Casanova 143, Barcelona, E-08036, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Djebaïli M, Lerner-Natoli M, Montpied P, Baille V, Bockaert J, Rondouin G, Pascale M. Molecular events involved in neuronal death induced in the mouse hippocampus by in-vivo injection of kainic acid. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:190-8. [PMID: 11589996 DOI: 10.1016/s0169-328x(01)00197-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Apoptosis results from the activation of a programmed cellular cascade involving several mechanisms. In the present study, we have investigated the implication of three molecules of this cascade, p53, Bax and caspase-3, in neuronal death induced by kainic acid (KA) administration in mouse hippocampus. Using immunocytochemistry, western blot and quantification of enzyme activity, we observed in p53+/+ and p53-/- animals that KA induced neuronal death by both p53-dependent and independent pathways. Moreover, apoptosis (labeled by TUNEL) and the increase of bax and caspase-3 protein expression after the neurotoxic insult appeared to clearly depend on p53 expression.
Collapse
Affiliation(s)
- M Djebaïli
- CNRS UPR 9023, CCIPE, 34094 Montpellier 5, Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Poly(ADP-ribose) polymerase (PARP-1), a nuclear enzyme that facilitates DNA repair, may be instrumental in acute neuronal cell death in a variety of insults including, cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, and CNS trauma. Excitotoxicity is thought to underlie these and other toxic models of neuronal death. Different glutamate agonists may trigger different downstream pathways toward neurotoxicity. We examine the role of PARP-1 in NMDA- and non-NMDA-mediated excitotoxicity. NMDA and non-NMDA agonists were stereotactically delivered into the striatum of mice lacking PARP-1 and control mice in acute (48 hr) and chronic (3 week) toxicity paradigms. Mice lacking PARP-1 are highly resistant to the excitoxicity induced by NMDA but are as equally susceptible to AMPA excitotoxicity as wild-type mice. Restoring PARP-1 protein in mice lacking PARP-1 by viral transfection restored susceptibility to NMDA, supporting the requirement of PARP-1 in NMDA neurotoxicity. Furthermore, Western blot analyses demonstrate that PARP-1 is activated after NMDA delivery but not after AMPA administration. Consistent with the theory that nitric oxide (NO) and peroxynitrite are prominent in NMDA-induced neurotoxicity, PARP-1 was not activated in mice lacking the gene for neuronal NO synthase after NMDA administration. These results suggest a selective role of PARP-1 in glutamate excitoxicity, and strategies of inhibiting PARP-1 in NMDA-mediated neurotoxicity may offer substantial acute and chronic neuroprotection.
Collapse
|
26
|
Qin Z, Wang Y, Chasea TN. A caspase-3-like protease is involved in NF-kappaB activation induced by stimulation of N-methyl-D-aspartate receptors in rat striatum. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:111-22. [PMID: 11038244 DOI: 10.1016/s0169-328x(00)00147-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glutamate receptor stimulation reportedly activates NF-kappaB in vitro and in vivo, although underlying mechanisms remain to be elucidated. Here we evaluated the role of proteases in mediating N-methyl-D-aspartate (NMDA) receptor agonist-induced NF-kappaB activation and apoptosis in rat striatum. The intrastriatal infusion of quinolinic acid (QA, 60 nmol) had no effect on levels of NF-kappaB family proteins, including p65, p50, p52, c-Rel and Rel B. In contrast, QA decreased IkappaB-alpha protein levels by 60% (P<0. 05); other members of the IkappaB family, including IkappaB-beta, IkappaB-gamma, IkappaB-epsilon and Bcl-3, were not altered. The QA-stimulated degradation of IkappaB-alpha was completely blocked by the NMDA receptor antagonist MK-801. QA-induced IkappaB-alpha degradation and NF-kappaB activation were not affected by the proteasome inhibitor MG-132 (1-4 microg). On the other hand, the caspase-3 inhibitor Ac-DEVD.CHO (2-8 microgram) blocked QA-induced IkappaB-alpha degradation in a dose-dependent manner (P<0.05). Ac-DEVD.CHO (4 microgram) also substantially reduced QA-induced NF-kappaB activation (P<0.05), but had no effect on QA-induced AP-1 activation. Furthermore, Ac-DEVD.CHO, but not MG-132, dose-dependently attenuated QA-induced internucleosomal DNA fragmentation. These findings suggest that NF-kappaB activation by NMDA receptor stimulation involves IkappaB-alpha degradation by a caspase-3-like cysteine protease dependent mechanism. Caspase-3 thus appears to contribute to the excitotoxin-induced apoptosis in rat striatal neurons occurring at least partially as a consequence of NF-kappaB activation.
Collapse
Affiliation(s)
- Z Qin
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bldg 10, Rm 5C 103, 10 Center Dr. MSC 1406, 20892-1406, Bethesda, MD, USA
| | | | | |
Collapse
|