1
|
Anderson ME, Wind EJ, Robison LS. Exploring the neuroprotective role of physical activity in cerebral small vessel disease. Brain Res 2024; 1833:148884. [PMID: 38527712 PMCID: PMC12046637 DOI: 10.1016/j.brainres.2024.148884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Cerebral small vessel disease (cSVD) is a common neurological finding characterized by abnormalities of the small blood vessels in the brain. Previous research has established a strong connection between cSVD and stroke, as well as neurodegenerative disorders, notably Alzheimer's disease (AD) and other dementias. As the search for effective interventions continues, physical activity (PA) has emerged as a potential preventative and therapeutic avenue. This review synthesizes the human and animal literature on the influence of PA on cSVD, highlighting the importance of determining optimal exercise protocols, considering aspects such as intensity, duration, timing, and exercise type. Furthermore, the necessity of widening the age bracket in research samples is discussed, ensuring a holistic understanding of the interventions across varying pathological stages of the disease. The review also suggests the potential of exploring diverse biomarkers and risk profiles associated with clinically significant outcomes. Moreover, we review findings demonstrating the beneficial effects of PA in various rodent models of cSVD, which have uncovered numerous mechanisms of neuroprotection, including increases in neuroplasticity and integrity of the vasculature and white matter; decreases in inflammation, oxidative stress, and mitochondrial dysfunction; and alterations in amyloid processing and neurotransmitter signaling. In conclusion, this review highlights the potential of physical activity as a preventive strategy for addressing cSVD, offering insights into the need for refining exercise parameters, diversifying research populations, and exploring novel biomarkers, while shedding light on the intricate mechanisms through which exercise confers neuroprotection in both humans and animal models.
Collapse
Affiliation(s)
- Maria E Anderson
- Department of Psychology, Family, and Justice Studies, University of Saint Joseph, 1678 Asylum Ave, West Hartford, CT 06117, USA
| | - Eleanor J Wind
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA
| | - Lisa S Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
2
|
De Silva TM, Sobey CG. Cerebral Vascular Biology in Health and Disease. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Li Y, Yan H, Guo J, Han Y, Zhang C, Liu X, Du J, Tian XL. Down-regulated RGS5 by genetic variants impairs endothelial cell function and contributes to coronary artery disease. Cardiovasc Res 2021; 117:240-255. [PMID: 31605122 DOI: 10.1093/cvr/cvz268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Genetic contribution to coronary artery disease (CAD) remains largely unillustrated. Although transcriptomic profiles have identified dozens of genes that are differentially expressed in normal and atherosclerotic vessels, whether those genes are genetically associated with CAD remains to be determined. Here, we combined genetic association studies, transcriptome profiles and in vitro and in vivo functional experiments to identify novel susceptibility genes for CAD. METHODS AND RESULTS Through an integrative analysis of transcriptome profiles with genome-wide association studies for CAD, we obtained 18 candidate genes and selected one representative single nucleotide polymorphism (SNP) for each gene for multi-centred validations. We identified an intragenic SNP, rs1056515 in RGS5 gene (odds ratio = 1.17, 95% confidence interval =1.10-1.24, P = 3.72 × 10-8) associated with CAD at genome-wide significance. Rare genetic variants in linkage disequilibrium with rs1056515 were identified in CAD patients leading to a decreased expression of RGS5. The decreased expression was also observed in atherosclerotic vessels and endothelial cells treated by various cardiovascular risk factors. Through siRNA knockdown and adenoviral overexpression, we further showed that RGS5 regulated endothelial inflammation, vascular remodelling, as well as canonical NF-κB signalling activation. Moreover, CXCL12, a specific downstream target of the non-canonical NF-κB pathway, was strongly affected by RGS5. However, the p100 processing, a well-documented marker for non-canonical NF-κB pathway activation, was not altered, suggesting an existence of a novel mechanism by which RGS5 regulates CXCL12. CONCLUSIONS We identified RGS5 as a novel susceptibility gene for CAD and showed that the decreased expression of RGS5 impaired endothelial cell function and functionally contributed to atherosclerosis through a variety of molecular mechanisms. How RGS5 regulates the expression of CXCL12 needs further studies.
Collapse
Affiliation(s)
- Yang Li
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Han Yan
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Jian Guo
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Yingchun Han
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Cuifang Zhang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
| | - Xiuying Liu
- Center for Molecular Systems Biology, Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Du
- Vascular Biology Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, No. 5 Yiheyuan Road, Beijing, China
- Department of Human Population Genetics, A217 Life Science Building, Human Aging Research Institute and School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang City, Jiangxi Province 330031, China
| |
Collapse
|
4
|
Regulator of G-protein signaling 5 protein protects against anxiety- and depression-like behavior. Behav Pharmacol 2020; 30:712-721. [PMID: 31625976 DOI: 10.1097/fbp.0000000000000506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Anxiety and depression are a major health burden. Angiotensin II, via activation of angiotensin II type 1 receptor (AT1R)-mediated brain oxidative stress and inflammation may contribute to these emotional abnormalities. In this study, we investigated the role of a regulator of G-protein signaling 5 (RGS5) protein, which regulates AT1R activity, in angiotensin II-induced brain oxidative stress, inflammation and anxiety-, and depression-like behavior. We hypothesized that deletion of the RGS5 protein would worsen angiotensin II-induced anxiety- and depression-like behavior, cerebral vascular oxidative stress, and brain inflammation. Adult male wild-type and RGS5-deficient mice were implanted with osmotic minipumps delivering either vehicle (saline) or angiotensin II (1 mg/kg/d) for three weeks. Subsequently, mice were tested for locomotor activity, anxiety-like behavior (using the elevated plus maze), and depression-like behavior (using the tail suspension test). After behavioral testing, brain tissue was collected to assess oxidative stress and inflammatory proteins. RGS5 deletion resulted in anxiety-like but not depression-like behavior when compared to wild-type mice. Combined deletion of RGS5 and angiotensin II treatment did not further worsen anxiety-like behavior observed in RGS5-deficient mice. In contrast, depression-like behavior was worsened in RGS5-deficient mice treated with angiotensin II. Interestingly, RGS5 deficiency and angiotensin II treatment had no effect on cerebral vascular oxidative stress, or on expression of the inflammatory marker vascular cell adhesion molecule-1 in the brain. RGS5 deficiency was also associated with decreased blood pressure and an enhanced pressor response to angiotensin II. These data suggest that RGS5 protects against anxiety-like behavior and against angiotensin II-induced depression-like behavior.
Collapse
|
5
|
Hsu LC, Hsu LS, Lee TH. RGS5 rs4657251 polymorphism is associated with small vessel occlusion stroke in Taiwan Han Chinese. J Chin Med Assoc 2020; 83:251-254. [PMID: 32080025 DOI: 10.1097/jcma.0000000000000250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The regulator of G-protein signaling protein 5 (RGS5) has been demonstrated to play a role in regulating blood pressure and cardiovascular function. Studies have shown that RGS5 polymorphisms exhibit susceptibility to hypertension. However, no study has yet been performed among stroke patients. METHODS To evaluate whether RGS5 rs4657251 is a susceptibility gene for stroke, we performed a case-control association study involving 714 large-artery atherosclerosis (LAA) patients, 383 small vessel occlusion (SVO) patients, 401 hypertensive intracranial hemorrhages (HICH), and 626 controls. The RGS5 rs4657251 polymorphism was analyzed through polymerase chain reaction. RESULTS The TC genotype was significantly higher in the SVO group compared with that in the control group (odds ratio [OR] = 1.34, 95% confidence interval [CI] = 1.02-1.76, p = 0.035). In addition, the dominant phenotype (TC + CC vs TT) was also significantly different between the SVO and the control groups (OR = 1.31, 95% CI = 1.01-1.70, p = 0.046). However, no association was found between RGS5 rs4657251 and LAA an HICH. After adjustment with gender, diabetes, smoking, cholesterol and low-density lipoprotein levels, RGS5 rs4657251 polymorphism remained an independent risk factor for SVO (OR = 1.49; 95% CI = 1.12-1.98) but not for LAA or HICH. CONCLUSION Our findings, obtained among Taiwan Han Chinese subjects, provide the first evidence that RGS5 rs4657251 polymorphism is an independent risk factor for SVO.
Collapse
Affiliation(s)
- Li-Chi Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang-Ming University school of Medicine, Taipei, Taiwan, ROC
| | - Li-Sung Hsu
- Institutes of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Neurology and Stroke Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| |
Collapse
|
6
|
Liu S, Jiang X, Lu H, Xing M, Qiao Y, Zhang C, Zhang W. HuR (Human Antigen R) Regulates the Contraction of Vascular Smooth Muscle and Maintains Blood Pressure. Arterioscler Thromb Vasc Biol 2020; 40:943-957. [PMID: 32075416 DOI: 10.1161/atvbaha.119.313897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE HuR (human antigen R)-an RNA-binding protein-is involved in regulating mRNA stability by binding adenylate-uridylate-rich elements. This study explores the role of HuR in the regulation of smooth muscle contraction and blood pressure. Approach and Results: Vascular HuRSMKO (smooth muscle-specific HuR knockout) mice were generated by crossbreeding HuRflox/flox mice with α-SMA (α-smooth muscle actin)-Cre mice. As compared with CTR (control) mice, HuRSMKO mice showed hypertension and cardiac hypertrophy. HuR levels were decreased in aortas from hypertensive patients and SHRs (spontaneously hypertensive rats), and overexpression of HuR could lower the blood pressure of SHRs. Contractile response to vasoconstrictors was increased in mesenteric artery segments isolated from HuRSMKO mice. The functional abnormalities in HuRSMKO mice were attributed to decreased mRNA and protein levels of RGS (regulator of G-protein signaling) protein(s) RGS2, RGS4, and RGS5, which resulted in increased intracellular calcium increase. Consistently, the degree of intracellular calcium ion increase in HuR-deficient smooth muscle cells was reduced by overexpression of RGS2, RGS4, or RGS5. Finally, administration of RGS2 and RGS5 reversed the elevated blood pressure in HuRSMKO mice. CONCLUSIONS Our findings indicate that HuR regulates vascular smooth muscle contraction and maintains blood pressure by modulating RGS expression.
Collapse
Affiliation(s)
- Shanshan Liu
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Xiuxin Jiang
- Department of General Surgery (X.J.), Qilu Hospital of Shandong University, Jinan, China
| | - Hanlin Lu
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Mengdan Xing
- Department of Cognitive Neuroscience, The Key Laboratory of MOE for Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China (M.X., Y.Q.)
| | - Yanning Qiao
- Department of Cognitive Neuroscience, The Key Laboratory of MOE for Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China (M.X., Y.Q.)
| | - Cheng Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- From the Department of Cardiology, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (S.L., H.L., C.Z., W.Z.), Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Human cytomegalovirus promoting endothelial cell proliferation by targeting regulator of G-protein signaling 5 hypermethylation and downregulation. Sci Rep 2020; 10:2252. [PMID: 32041970 PMCID: PMC7010708 DOI: 10.1038/s41598-020-58680-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/15/2020] [Indexed: 01/21/2023] Open
Abstract
Interactions between human cytomegalovirus (HCMV) infection and environmental factors can increase susceptibility to essential hypertension (EH). Although endothelial dysfunction is the initial factor of EH, the epigenetic mechanisms through which HCMV infection induces endothelial cell dysfunction are poorly understood. Here, we evaluated whether HCMV regulated endothelial cell function and assessed the underlying mechanisms. Microarray analysis in human umbilical vein endothelial cells (HUVECs) treated with HCMV AD169 strain in the presence of hyperglycemia and hyperlipidemia revealed differential expression of genes involved in hypertension. Further analyses validated that the regulator of G-protein signaling 5 (RGS5) gene was downregulated in infected HUVECs and showed that HCMV infection promoted HUVEC proliferation, whereas hyperglycemia and hyperlipidemia inhibited HUVEC proliferation. Additionally, treatment with decitabine (DAC) and RGS5 reversed the effects of HCMV infection on HUVEC proliferation, but not triggered by hyperglycemia and hyperlipidemia. In summary, upregulation of RGS5 may be a promising treatment for preventing HCMV-induced hypertension.
Collapse
|
8
|
Hartanti MD, Hummitzsch K, Irving-Rodgers HF, Bonner WM, Copping KJ, Anderson RA, McMillen IC, Perry VEA, Rodgers RJ. Morphometric and gene expression analyses of stromal expansion during development of the bovine fetal ovary. Reprod Fertil Dev 2019; 31:482-495. [PMID: 30501845 DOI: 10.1071/rd18218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
During ovarian development stroma from the mesonephros penetrates and expands into the ovarian primordium and thus appears to be involved, at least physically, in the formation of ovigerous cords, follicles and surface epithelium. Cortical stromal development during gestation in bovine fetal ovaries (n=27) was characterised by immunohistochemistry and by mRNA analyses. Stroma was identified by immunostaining of stromal matrix collagen type I and proliferating cells were identified by Ki67 expression. The cortical and medullar volume expanded across gestation, with the rate of cortical expansion slowing over time. During gestation, the proportion of stroma in the cortex and total volume in the cortex significantly increased (P<0.05). The proliferation index and numerical density of proliferating cells in the stroma significantly decreased (P<0.05), whereas the numerical density of cells in the stroma did not change (P>0.05). The expression levels of 12 genes out of 18 examined, including osteoglycin (OGN) and lumican (LUM), were significantly increased later in development (P<0.05) and the expression of many genes was positively correlated with other genes and with gestational age. Thus, the rate of cortical stromal expansion peaked in early gestation due to cell proliferation, whilst late in development expression of extracellular matrix genes increased.
Collapse
Affiliation(s)
- M D Hartanti
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - K Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - H F Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - W M Bonner
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - K J Copping
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - R A Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - I C McMillen
- The Chancellery, University of Newcastle, Callaghan, NSW 2308, Australia
| | - V E A Perry
- School of Veterinary and Medical Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - R J Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
9
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 PMCID: PMC5989036 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
10
|
Ding HS, Huang Y, Chen Z, Tang YH, Wang DD, Fan D, Huang CX. Regulator of G-protein signalling 5 deficiency impairs ventricular remodelling after myocardial infarction by promoting NF-κB and MAPK signalling in mice. Biochem Biophys Res Commun 2018; 499:143-149. [PMID: 29534968 DOI: 10.1016/j.bbrc.2018.03.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 02/02/2023]
Abstract
Regulator of G-protein signalling 5 (RGS5) is, highly expressed in different cell types of the adult human heart, and it is a negative regulator of G protein-mediated signalling that inactivates Gα(q) and Gα(i) and thereby inhibits many signalling pathways. However, the critical role of RGS5 in the pathology of myocardial infarction (MI) remains unexplored. Here, an in vitro MI model, induced by the permanent ligation of the left anterior descending coronary artery, was used with the isolated hearts of wild type (WT) and RGS5-knockout (KO) mice. Our results showed that the loss of RGS5 decreased the post-MI survival rate and left ventricular (LV) function and increased the infarct size. Additionally, the RGS5 knockout mice exhibited greater inflammation, apoptosis, and ventricular remodelling compared with WT-MI mice. Mechanistically, RGS5 loss activated the pathological response mainly by affecting the NF-κB and MAPK signalling pathways. Therefore, our data strongly indicate that RGS5 is a novel modulator of pathological progression after MI that functions NF-κB and MAPK signalling.
Collapse
Affiliation(s)
- Hua-Sheng Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Zhen Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Dan-Dan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Institute of Cardiovascular Diseases, Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
11
|
Nelson PT, Katsumata Y, Nho K, Artiushin SC, Jicha GA, Wang WX, Abner EL, Saykin AJ, Kukull WA, Fardo DW. Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. Acta Neuropathol 2016; 132:841-858. [PMID: 27815632 DOI: 10.1007/s00401-016-1641-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
We report evidence of a novel pathogenetic mechanism in which thyroid hormone dysregulation contributes to dementia in elderly persons. Two single nucleotide polymorphisms (SNPs) on chromosome 12p12 were the initial foci of our study: rs704180 and rs73069071. These SNPs were identified by separate research groups as risk alleles for non-Alzheimer's neurodegeneration. We found that the rs73069071 risk genotype was associated with hippocampal sclerosis (HS) pathology among people with the rs704180 risk genotype (National Alzheimer's Coordinating Center/Alzheimer's Disease Genetic Consortium data; n = 2113, including 241 autopsy-confirmed HS cases). Furthermore, both rs704180 and rs73069071 risk genotypes were associated with widespread brain atrophy visualized by MRI (Alzheimer's Disease Neuroimaging Initiative data; n = 1239). In human brain samples from the Braineac database, both rs704180 and rs73069071 risk genotypes were associated with variation in expression of ABCC9, a gene which encodes a metabolic sensor protein in astrocytes. The rs73069071 risk genotype was also associated with altered expression of a nearby astrocyte-expressed gene, SLCO1C1. Analyses of human brain gene expression databases indicated that the chromosome 12p12 locus may regulate particular astrocyte-expressed genes induced by the active form of thyroid hormone, triiodothyronine (T3). This is informative biologically, because the SLCO1C1 protein transports thyroid hormone into astrocytes from blood. Guided by the genomic data, we tested the hypothesis that altered thyroid hormone levels could be detected in cerebrospinal fluid (CSF) obtained from persons with HS pathology. Total T3 levels in CSF were elevated in HS cases (p < 0.04 in two separately analyzed groups), but not in Alzheimer's disease cases, relative to controls. No change was detected in the serum levels of thyroid hormone (T3 or T4) in a subsample of HS cases prior to death. We conclude that brain thyroid hormone perturbation is a potential pathogenetic factor in HS that may also provide the basis for a novel CSF-based clinical biomarker.
Collapse
|
12
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
13
|
|
14
|
Nelson PT, Jicha GA, Wang WX, Ighodaro E, Artiushin S, Nichols CG, Fardo DW. ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev 2015; 24:111-25. [PMID: 26226329 PMCID: PMC4661124 DOI: 10.1016/j.arr.2015.07.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023]
Abstract
The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium ("KATP") channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The KATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a "druggable target", relevant perhaps to both HS-Aging and Alzheimer's disease. We conclude that more work is required to better understand the roles of ABCC9/SUR2 in the human brain during health and disease conditions.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Pathology, Lexington, KY 40536, USA.
| | - Gregory A Jicha
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Neurology, Lexington, KY, 40536, USA
| | - Wang-Xia Wang
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Eseosa Ighodaro
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Sergey Artiushin
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David W Fardo
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; Department of Biostatistics, Lexington, KY, 40536, USA
| |
Collapse
|
15
|
Cheng WL, Wang PX, Wang T, Zhang Y, Du C, Li H, Ji Y. Regulator of G-protein signalling 5 protects against atherosclerosis in apolipoprotein E-deficient mice. Br J Pharmacol 2015; 172:5676-89. [PMID: 25363362 DOI: 10.1111/bph.12991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is a chronic inflammatory disease, in which 'vulnerable plaques' have been recognized as the underlying risk factor for coronary disease. Regulator of G-protein signalling (RGS) 5 controls endothelial cell function and inflammation. In this study, we explored the effect of RGS5 on atherosclerosis and the potential underlying mechanisms. EXPERIMENTAL APPROACH RGS5(-/-) apolipoprotein E (ApoE)(-/-) and ApoE(-/-) littermates were fed a high-fat diet for 28 weeks. Total aorta surface and lipid accumulation were measured by Oil Red O staining and haematoxylin-eosin staining was used to analyse the morphology of atherosclerotic lesions. Inflammatory cell infiltration and general inflammatory mediators were examined by immunofluorescence staining. Apoptotic endothelial cells and macrophages were assayed with TUNEL. Expression of RGS5 and adhesion molecules, and ERK1/2 phosphorylation were evaluated by co-staining with CD31. Expression of mRNA and protein were determined by quantitative real-time PCR and Western blotting respectively. KEY RESULTS Atherosclerotic phenotypes were significantly accelerated in RGS5(-/-) ApoE(-/-) mice, as indicated by increased inflammatory mediator expression and apoptosis of endothelial cells and macrophages. RGS5 deficiency enhanced instability of vulnerable plaques by increasing infiltration of macrophages in parallel with the accumulation of lipids, and decreased smooth muscle cell and collagen content. Mechanistically, increased activation of NF-κB and MAPK/ERK 1/2 could be responsible for the accelerated development of atherosclerosis in RGS5-deficient mice. CONCLUSIONS AND IMPLICATIONS RGS5 deletion accelerated development of atherosclerosis and decreased the stability of atherosclerotic plaques partly through activating NF-κB and the MEK-ERK1/2 signalling pathways.
Collapse
Affiliation(s)
- Wen-Lin Cheng
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Key Laboratory of Human Functional Genomics, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, China
| | - Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Tao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Cheng Du
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Key Laboratory of Human Functional Genomics, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Ganss R. Keeping the Balance Right. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:93-121. [DOI: 10.1016/bs.pmbts.2015.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Kirsch T, Kaufeld J, Korstanje R, Hentschel DM, Staggs L, Bollig F, Beese M, Schroder P, Boehme L, Haller H, Schiffer M. Knockdown of the hypertension-associated gene NOSTRIN alters glomerular barrier function in zebrafish (Danio rerio). Hypertension 2013; 62:726-30. [PMID: 23959558 DOI: 10.1161/hypertensionaha.113.01882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypertension is one of the major risk factors for chronic kidney disease. Using quantitative trait loci analysis, we identified the gene of the F-BAR protein NOSTRIN in the center of an overlapping region in rat and human quantitative trait loci that are associated with hypertension. Immunohistochemical analysis revealed a predominantly podocytic expression pattern of NOSTRIN in human and mouse glomeruli. Further, NOSTRIN colocalizes with cell-cell contact-associated proteins β-catenin and zonula occludens-1 and interacts with the slit-membrane-associated adaptor protein CD2AP. In zebrafish larvae, knockdown of nostrin alters the glomerular filtration barrier function, inducing proteinuria and leading to ultrastructural morphological changes on the endothelial and epithelial side and of the glomerular basement membrane of the glomerular capillary loop. We conclude that NOSTRIN expression is an important factor for the integrity of the glomerular filtration barrier. Disease-related alteration of NOSTRIN expression may not only affect the vascular endothelium and, therefore, contribute to endothelial cell dysfunction but might also contribute to the development of podocyte disease and proteinuria.
Collapse
Affiliation(s)
- Torsten Kirsch
- Division of Nephrology, Center for Internal Medicine, Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany. or
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Holobotovskyy V, Manzur M, Tare M, Burchell J, Bolitho E, Viola H, Hool LC, Arnolda LF, McKitrick DJ, Ganss R. Regulator of G-protein signaling 5 controls blood pressure homeostasis and vessel wall remodeling. Circ Res 2013; 112:781-91. [PMID: 23303165 DOI: 10.1161/circresaha.111.300142] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Regulator of G-protein signaling 5 (RGS5) modulates G-protein-coupled receptor signaling and is prominently expressed in arterial smooth muscle cells. Our group first reported that RGS5 is important in vascular remodeling during tumor angiogenesis. We hypothesized that RGS5 may play an important role in vessel wall remodeling and blood pressure regulation. OBJECTIVE To demonstrate that RGS5 has a unique and nonredundant role in the pathogenesis of hypertension and to identify crucial RGS5-regulated signaling pathways. METHODS AND RESULTS We observed that arterial RGS5 expression is downregulated with chronically elevated blood pressure after angiotensin II infusion. Using a knockout mouse model, radiotelemetry, and pharmacological inhibition, we subsequently showed that loss of RGS5 results in profound hypertension. RGS5 signaling is linked to the renin-angiotensin system and directly controls vascular resistance, vessel contractility, and remodeling. RGS5 deficiency aggravates pathophysiological features of hypertension, such as medial hypertrophy and fibrosis. Moreover, we demonstrate that protein kinase C, mitogen-activated protein kinase/extracellular signal-regulated kinase, and Rho kinase signaling pathways are major effectors of RGS5-mediated hypertension. CONCLUSIONS Loss of RGS5 results in hypertension. Loss of RGS5 signaling also correlates with hyper-responsiveness to vasoconstrictors and vascular stiffening. This establishes a significant, distinct, and causal role of RGS5 in vascular homeostasis. RGS5 modulates signaling through the angiotensin II receptor 1 and major Gαq-coupled downstream pathways, including Rho kinase. So far, activation of RhoA/Rho kinase has not been associated with RGS molecules. Thus, RGS5 is a crucial regulator of blood pressure homeostasis with significant clinical implications for vascular pathologies, such as hypertension.
Collapse
Affiliation(s)
- Vasyl Holobotovskyy
- Western Australian Institute for Medical Research, Rear, 50 Murray St, Perth, WA 6010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The transcriptome of cerebral ischemia. Brain Res Bull 2012; 88:313-9. [PMID: 22381515 DOI: 10.1016/j.brainresbull.2012.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/20/2011] [Accepted: 02/13/2012] [Indexed: 01/26/2023]
Abstract
The molecular causality and response to stroke is complex. Yet, much of the literature examining the molecular response to stroke has focused on targeted pathways that have been well-characterized. Consequently, our understanding of stroke pathophysiology has made little progress by way of clinical therapeutics since tissue plasminogen activator was approved for treatment nearly a decade ago. The lack of clinical translation is in part due to neuron-focused studies, preclinical models of cerebral ischemia and the paradoxical nature of neuro-inflammation. With the evolution of the Stroke Therapy Academic Industry Roundtable criteria streamlining research efforts and broad availability of genomic technologies, the ability to decipher the molecular fingerprint of ischemic stroke is on the horizon. This review highlights preclinical microarray findings of the ischemic brain, discusses the transcriptome of cerebral preconditioning and emphasizes the importance of further characterizing the role of the neurovascular unit and peripheral white blood cells in mediating stroke damage and repair within the penumbra.
Collapse
|
20
|
Xiao B, Zhang Y, Niu WQ, Gao PJ, Zhu DL. Haplotype-based association of regulator of G-protein signaling 5 gene polymorphisms with essential hypertension and metabolic parameters in Chinese. Clin Chem Lab Med 2010; 47:1483-8. [PMID: 19863299 DOI: 10.1515/cclm.2009.344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND A recent genome-wide linkage study mapped blood pressure (BP)-related loci on human chromosome 1q and identified the regulator of G-protein signaling 5 (RGS5) as a candidate for regulation of BP. Thus, we assessed the relationship between RGS5 genetic polymorphisms and essential hypertension (EH) in Chinese. METHODS A total of 906 patients with EH and 894 age- and gender-matched normotensive (NT) controls were enrolled. Sixteen single nucleotide polymorphisms (SNPs) in RGS5 were genotyped. RESULTS There were no significant differences in the overall distributions of the genotypic and allelic frequencies for each SNPs between the two groups. However, in haplotype analysis, significant differences for the overall distributions were noted for four haplotypes constructed by five SNPs (rs12041294C/T, rs10917690A/G, rs10917695T/C, rs10917696T/C and rs2662774G/A), viz. H(2) (C-A-C-T-A) (p=0.038), H(5) (C-G-T-T-G) (p=0.001), H(6) (T-G-C-T-A) (p=0.021) and H(12) (T-A-T-T-G) (p=0.023). Serum concentrations of high- and low-density lipoprotein cholesterol showed significant associations with haplotypes revealed by a global test (p=0.0001 and 0.0309). CONCLUSIONS Multiple SNPs in combination in RGS5 may confer risk for hypertension. Our results also lend support for the effect of RGS5 SNPs on lipid metabolism. Further studies are warranted to find the causal SNPs in RGS5 for EH.
Collapse
Affiliation(s)
- Bing Xiao
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | | | | | | | | |
Collapse
|
21
|
Banks WA. Mouse models of neurological disorders: a view from the blood-brain barrier. Biochim Biophys Acta Mol Basis Dis 2009; 1802:881-8. [PMID: 19879356 DOI: 10.1016/j.bbadis.2009.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 12/16/2022]
Abstract
The number of disease models that involve an aspect of blood-brain barrier (BBB) dysregulation have increased tremendously. The main factors contributing to this expansion have been an increased number of diseases in which the BBB is known to be involved, an increase in the known functions of the BBB, and an increase in the number of models and tools with which those diverse functions can be studied. In many cases, the BBB may be a target of disease; current thinking would include hypertensive encephalopathy and perhaps stroke in this category. Another category are those diseases in which special attributes of the BBB may predispose to disease; for example, the ability of a pathogen to cross the BBB often depends on the pathogen's ability to invoke transcytotic pathways in the brain endothelial or choroid plexus cell. Of special interest are those diseases in which the BBB may be the primary seat of disease or play a major role in the onset or progression of the disease. An increasing number of diseases are so categorized in which BBB dysfunction or dysregulation plays a major role; this review highlights such roles for the BBB including those proposed for Alzheimer's disease and obesity.
Collapse
Affiliation(s)
- William A Banks
- GRECC, Veterans Affairs Medical Center-St. Louis and Saint Louis University School of Medicine, Division of Geriatrics, Department of Internal Medicine, 915 N. Grand Blvd, St. Louis, MO 63106, USA.
| |
Collapse
|
22
|
Abstract
Regulators of G protein signaling (RGS) proteins are important modulators of G protein-coupled receptors and, therefore, critical for cardiovascular functions. One family member, RGS5, has recently been identified as a key regulator of vascular remodeling and pericyte maturation in tumors. Here, we discuss a potential role for RGS5 and its relatives, RGS2 and 4, within the cardiovascular system. Insights into RGS5 signaling are likely to be highly significant for vascular pathologies such as hypertension, atherosclerosis, and angiogenesis.
Collapse
Affiliation(s)
- Mitali Manzur
- Western Australian Institute for Medical Research, The University of Western Australia Centre for Medical Research, Perth, Western Australia 6000, Australia
| | | |
Collapse
|
23
|
Jin Y, An X, Ye Z, Cully B, Wu J, Li J. RGS5, a hypoxia-inducible apoptotic stimulator in endothelial cells. J Biol Chem 2009; 284:23436-43. [PMID: 19564336 DOI: 10.1074/jbc.m109.032664] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells rapidly respond to changes in oxygen homeostasis by regulating gene expression. Regulator of G protein signaling 5 (RGS5) is a negative regulator of G protein-mediated signaling that is strongly expressed in vessels during angiogenesis; however, the role of RGS5 in hypoxia has not been fully understood. Under hypoxic conditions, we found that the expression of RGS5, but not other RGS, was induced in human umbilical vein endothelial cells (HUVEC). RGS5 mRNA was increased when HUVEC were incubated with chemicals that stabilized hypoxia-inducible factor-1alpha (HIF-1alpha), whereas hypoxia-stimulated RGS5 promoter activity was absent in HIF-1beta(-/-) cells. Vascular endothelial growth factor (VEGF), which is regulated by HIF-1, did not appear to be involved in hypoxia-induced RGS5 expression; however, VEGF-mediated activation of p38 but not ERK1/2 was increased by RGS5. Overexpression of RGS5 in HUVEC exhibited a reduced growth rate without affecting the cell proliferation. Annexin V assay revealed that RGS5 induced apoptosis with significantly increased activation of caspase-3 and the Bax/Bcl-2 ratio. Small interfering RNA-specific for RGS5, caspase-3 inhibitor, and p38 inhibitor resulted in an attenuation of RGS5-stimulated apoptosis. Matrigel assay proved that RGS5 significantly impaired the angiogenic effect of VEGF and stimulated apoptosis in vivo. We concluded that RGS5 is a novel HIF-1-dependent, hypoxia-induced gene that is involved in the induction of endothelial apoptosis. Moreover, RGS5 antagonizes the angiogenic effect of VEGF by increasing the activation of p38 signaling, suggesting that RGS5 could be an important target for apoptotic therapy.
Collapse
Affiliation(s)
- Yi Jin
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
24
|
RGS proteins: identifying new GAPs in the understanding of blood pressure regulation and cardiovascular function. Clin Sci (Lond) 2009; 116:391-9. [PMID: 19175357 DOI: 10.1042/cs20080272] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the mechanisms that underlie BP (blood pressure) variation in humans and animal models may provide important clues for reducing the burden of uncontrolled hypertension in industrialized societies. High BP is often associated with increased signalling via G-protein-coupled receptors. Three members of the RGS (regulator of G-protein signalling) superfamily RGS2, RGS4 and RGS5 have been implicated in the attenuation of G-protein signalling pathways in vascular and cardiac myocytes, as well as cells of the kidney and autonomic nervous system. In the present review, we discuss the current state of knowledge regarding their differential expression and function in cardiovascular tissues, and the likelihood that one or more of these alleles are candidate hypertension genes. Together, findings from the studies described herein suggest that development of methods to modulate the expression and function of RGS proteins may be a possible strategy for the treatment and prevention of hypertension and cardiovascular disease.
Collapse
|
25
|
Maeda M, Furuichi Y, Noto T, Matsuoka N, Mutoh S, Yoneda Y. Tacrolimus (FK506) suppresses rt-PA-induced hemorrhagic transformation in a rat thrombotic ischemia stroke model. Brain Res 2009; 1254:99-108. [DOI: 10.1016/j.brainres.2008.11.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/18/2008] [Accepted: 11/18/2008] [Indexed: 11/28/2022]
|
26
|
Hendriks-Balk MC, Peters SLM, Michel MC, Alewijnse AE. Regulation of G protein-coupled receptor signalling: focus on the cardiovascular system and regulator of G protein signalling proteins. Eur J Pharmacol 2008; 585:278-91. [PMID: 18410914 DOI: 10.1016/j.ejphar.2008.02.088] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/18/2008] [Accepted: 02/06/2008] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in many biological processes. Therefore, GPCR function is tightly controlled both at receptor level and at the level of signalling components. Well-known mechanisms by which GPCR function can be regulated comprise desensitization/resensitization processes and GPCR up- and downregulation. GPCR function can also be regulated by several proteins that directly interact with the receptor and thereby modulate receptor activity. An additional mechanism by which receptor signalling is regulated involves an emerging class of proteins, the so-called regulators of G protein signalling (RGS). In this review we will describe some of these control mechanisms in more detail with some specific examples in the cardiovascular system. In addition, we will provide an overview on RGS proteins and the involvement of RGS proteins in cardiovascular function.
Collapse
Affiliation(s)
- Mariëlle C Hendriks-Balk
- Department Pharmacology and Pharmacotherapy, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
27
|
Grayson TH, Ohms SJ, Brackenbury TD, Meaney KR, Peng K, Pittelkow YE, Wilson SR, Sandow SL, Hill CE. Vascular microarray profiling in two models of hypertension identifies caveolin-1, Rgs2 and Rgs5 as antihypertensive targets. BMC Genomics 2007; 8:404. [PMID: 17986358 PMCID: PMC2219888 DOI: 10.1186/1471-2164-8-404] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 11/07/2007] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hypertension is a complex disease with many contributory genetic and environmental factors. We aimed to identify common targets for therapy by gene expression profiling of a resistance artery taken from animals representing two different models of hypertension. We studied gene expression and morphology of a saphenous artery branch in normotensive WKY rats, spontaneously hypertensive rats (SHR) and adrenocorticotropic hormone (ACTH)-induced hypertensive rats. RESULTS Differential remodeling of arteries occurred in SHR and ACTH-treated rats, involving changes in both smooth muscle and endothelium. Increased expression of smooth muscle cell growth promoters and decreased expression of growth suppressors confirmed smooth muscle cell proliferation in SHR but not in ACTH. Differential gene expression between arteries from the two hypertensive models extended to the renin-angiotensin system, MAP kinase pathways, mitochondrial activity, lipid metabolism, extracellular matrix and calcium handling. In contrast, arteries from both hypertensive models exhibited significant increases in caveolin-1 expression and decreases in the regulators of G-protein signalling, Rgs2 and Rgs5. Increased protein expression of caveolin-1 and increased incidence of caveolae was found in both smooth muscle and endothelial cells of arteries from both hypertensive models. CONCLUSION We conclude that the majority of differences in gene expression found in the saphenous artery taken from rats with two different forms of hypertension reflect distinctive morphological and physiological alterations. However, changes in common to caveolin-1 expression and G protein signalling, through attenuation of Rgs2 and Rgs5, may contribute to hypertension through augmentation of vasoconstrictor pathways and provide potential targets for common drug development.
Collapse
Affiliation(s)
- T Hilton Grayson
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Deussing JM, Kühne C, Pütz B, Panhuysen M, Breu J, Stenzel-Poore MP, Holsboer F, Wurst W. Expression profiling identifies the CRH/CRH-R1 system as a modulator of neurovascular gene activity. J Cereb Blood Flow Metab 2007; 27:1476-95. [PMID: 17293846 DOI: 10.1038/sj.jcbfm.9600451] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Corticotropin-releasing hormone receptor type 1 (CRH-R1)-deficient mice display reduced anxiety-like behavior, a chronic corticosterone deficit, and an impaired neuroendocrine stress response caused by disruption of the hypothalamic-pituitary-adrenocortical (HPA) axis. The molecular substrates and pathways of CRH/CRH-R1-dependent signaling mechanisms underlying the behavioral phenotype as well as the consequences of lifelong glucocorticoid deficit remain largely obscure. To dissect involved neuronal circuitries, we performed comparative expression profiling of brains of CRH-R1 mutant and wild-type mice using our custom made MPIP (Max Planck Institute of Psychiatry) 17k cDNA microarray. Microarray analysis yielded 107 genes showing altered expression levels when comparing CRH-R1 knockout mice with wild-type littermates. A significant proportion of differentially expressed genes was related to control of HPA and hypothalamic-pituitary-thyroid (HPT) axes reflecting not only the disturbance of the HPA axis in CRH-R1 mutant mice but also the interplay of both neuroendocrine systems. The spatial analysis of regulated genes revealed a prevalence for genes expressed in the cerebral microvasculature. This phenotype was confirmed by the successful cross-validation of regulated genes in CRH overexpressing mice. Analysis of the cerebral vasculature of CRH-R1 mutant and CRH overexpressing mice revealed alterations of functional rather than structural properties. A direct role of the CRH/CRH-R1 system was supported by demonstrating Crhr1 expression in the adult murine cerebral vasculature. In conclusion, these data suggest a novel, previously unknown role of the CRH/CRH-R1 system in modulating neurovascular gene expression and function.
Collapse
|
29
|
Furuya M, Nishiyama M, Kasuya Y, Kimura S, Ishikura H. Pathophysiology of tumor neovascularization. Vasc Health Risk Manag 2007; 1:277-90. [PMID: 17315600 PMCID: PMC1993966 DOI: 10.2147/vhrm.2005.1.4.277] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neovascularization is essential to the process of development and differentiation of tissues in the vertebrate embryo, and is also involved in a wide variety of physiological and pathological conditions in adults, including wound repair, metabolic diseases, inflammation, cardiovascular disorders, and tumor progression. Thanks to cumulative studies on vasculature, new therapeutic approaches have been opened for us to some life-threatening diseases by controlling angiogenesis in the affected organs. In cancer therapy, for example, modulation of factors responsible for tumor angiogenesis may be beneficial in inhibiting of tumor progression. Several antiangiogenic approaches are currently under preclinical trial. However, the mechanisms of neovascularization in tumors are complicated and each tumor shows unique features in its vasculature, depending on tissue specificity, angiogenic micromilieu, grades and stages, host immunity, and so on. For better understanding and effective therapeutic approaches, it is important to clarify both the general mechanism of angiogenic events and the disease-specific mechanism of neovascularization. This review discusses the general features of angiogenesis under physiological and pathological conditions, mainly in tumor progression. In addition, recent topics such as contribution of the endothelial progenitor cells, tumor vasculogenic mimicry, markers for tumor-derived endothelial cells and pericytes, and angiogenic/angiostatic chemokines are summarized.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Angiogenic Proteins/metabolism
- Animals
- Cell Differentiation
- Cell Lineage
- Chemokines/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Extracellular Matrix/metabolism
- Fibroblast Growth Factors/metabolism
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Neoplasms/blood supply
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Pericytes/metabolism
- Pericytes/pathology
- RGS Proteins/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Stem Cells/pathology
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Mitsuko Furuya
- Department of Molecular Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan.
| | | | | | | | | |
Collapse
|
30
|
Chang YPC, Liu X, Kim JDO, Ikeda MA, Layton MR, Weder AB, Cooper RS, Kardia SLR, Rao DC, Hunt SC, Luke A, Boerwinkle E, Chakravarti A. Multiple genes for essential-hypertension susceptibility on chromosome 1q. Am J Hum Genet 2007; 80:253-64. [PMID: 17236131 PMCID: PMC1785356 DOI: 10.1086/510918] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/16/2006] [Indexed: 11/03/2022] Open
Abstract
Essential hypertension, defined as elevated levels of blood pressure (BP) without any obvious cause, is a major risk factor for coronary heart disease, stroke, and renal disease. BP levels and susceptibility to development of essential hypertension are partially determined by genetic factors that are poorly understood. Similar to other efforts to understand complex, non-Mendelian phenotypes, genetic dissection of hypertension-related traits employs genomewide linkage analyses of families and association studies of patient cohorts, to uncover rare and common disease alleles, respectively. Family-based mapping studies of elevated BP cover the large intermediate ground for identification of genes with common variants of significant effect. Our genomewide linkage and candidate-gene-based association studies demonstrate that a replicated linkage peak for BP regulation on human chromosome 1q, homologous to mouse and rat quantitative trait loci for BP, contains at least three genes associated with BP levels in multiple samples: ATP1B1, RGS5, and SELE. Individual variants in these three genes account for 2-5-mm Hg differences in mean systolic BP levels, and the cumulative effect reaches 8-10 mm Hg. Because the associated alleles in these genes are relatively common (frequency >5%), these three genes are important contributors to elevated BP in the population at large.
Collapse
Affiliation(s)
- Yen-Pei Christy Chang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Slevin M, Kumar P, Gaffney J, Kumar S, Krupinski J. Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential. Clin Sci (Lond) 2007; 111:171-83. [PMID: 16901264 DOI: 10.1042/cs20060049] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent developments in our understanding of the pathophysiological events that follow acute ischaemic stroke suggest an important role for angiogenesis which, through new blood vessel formation, results in improved collateral circulation and may impact on the medium-to-long term recovery of patients. Future treatment regimens may focus on optimization of this process in the ischaemic boundary zones or 'penumbra' region adjacent to the infarct, where partially affected neurons exposed to intermediate perfusion levels have the capability of survival if perfusion is maintained or normalized. In this review, we present evidence that angiogenesis is a key feature of ischaemic stroke recovery and neuronal post-stroke re-organization, examine the signalling mechanisms through which it occurs, and describe the therapeutic potential of treatments aimed at stimulating revascularization and neuroprotection after stroke.
Collapse
Affiliation(s)
- Mark Slevin
- Department of Biology, Chemistry and Health Science, Manchester Metropolitan University, Manchester M1 5GD, U.K.
| | | | | | | | | |
Collapse
|
32
|
Calabria AR, Shusta EV. Blood-brain barrier genomics and proteomics: elucidating phenotype, identifying disease targets and enabling brain drug delivery. Drug Discov Today 2007; 11:792-9. [PMID: 16935746 DOI: 10.1016/j.drudis.2006.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 06/15/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
The blood-brain barrier (BBB) regulates the passage of material between the bloodstream and the brain. Recent genomic and proteomic studies of the BBB have identified some of the unique molecular characteristics of this vascular bed, and have reinforced the concept that the BBB is heavily involved in brain function. Genomic and proteomic techniques have also been used to analyze the molecular events underlying diseases that have BBB involvement, such as multiple sclerosis, Alzheimer's disease, stroke and HIV-1 infection. It is expected that a better understanding of the complex mechanisms that link the BBB to neurological disease will ultimately lead to the development of innovative treatments.
Collapse
Affiliation(s)
- Anthony R Calabria
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | | |
Collapse
|
33
|
Neitzel KL, Hepler JR. Cellular mechanisms that determine selective RGS protein regulation of G protein-coupled receptor signaling. Semin Cell Dev Biol 2006; 17:383-9. [PMID: 16647283 DOI: 10.1016/j.semcdb.2006.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Regulators of G protein signaling (RGS proteins) bind directly to activated Galpha subunits to inhibit their signaling. However, recent findings show that RGS proteins selectively regulate signaling by certain G protein-coupled receptors (GPCRs) in cells, irrespective of the coupled G protein. New studies support an emerging model that suggests RGS proteins utilize both direct and indirect mechanisms to form stable functional pairs with preferred GPCRs to selectively modulate the signaling functions of those receptors and linked G proteins. Here, we discuss these findings and their implications for established models of GPCR signaling.
Collapse
Affiliation(s)
- Karen L Neitzel
- Department of Pharmacology, Emory University School of Medicine, G205 Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | |
Collapse
|
34
|
Wang Z, Farmer K, Hill GE, Edwards SV. A cDNA macroarray approach to parasite-induced gene expression changes in a songbird host: genetic response of house finches to experimental infection by Mycoplasma gallisepticum. Mol Ecol 2005; 15:1263-73. [PMID: 16626453 DOI: 10.1111/j.1365-294x.2005.02753.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 1994, the bacterial parasite Mycoplasma gallisepticum expanded its host range and swept through populations of a novel host--eastern US populations of the house finch (Carpodacus mexicanus). This epizootic caused a dramatic decline in finch population numbers, has been shown to have caused strong selection on house finch morphology, and presumably caused evolutionary change at the molecular level as finches evolved enhanced resistance. As a first step toward identifying finch genes that respond to infection by Mycoplasma and which may have experienced natural selection by this parasite, we used suppression subtractive hybridization (SSH) and cDNA macroarray approaches to identify differentially expressed genes regulated by the Mycoplasma parasite. Two subtractive cDNA libraries consisting of 16,512 clones were developed from spleen using an experimentally uninfected bird as the 'tester' and an infected bird as 'driver', and vice versa. Two hundred and twenty cDNA clones corresponding 34 genes with known vertebrate homologues and a large number of novel transcripts were found to be qualitatively up- or down-regulated genes by high-density filter hybridization. These gene expression changes were further confirmed by a high throughout reverse Northern blot approach and in specific cases by targeted Northern analysis. blast searches show that heat shock protein (HSP) 90, MHC II-associated invariant chain (CD74), T-cell immunoglobulin mucin 1 (TIM1), as well as numerous novel expressed genes not found in the databases were up- or down-regulated by the host in response to this parasite. Our results and macroarray resources provide a foundation for molecular co-evolutionary studies of the Mycoplasma parasite and its recently colonized avian host.
Collapse
Affiliation(s)
- Zhenshan Wang
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
35
|
Hague C, Bernstein LS, Ramineni S, Chen Z, Minneman KP, Hepler JR. Selective inhibition of alpha1A-adrenergic receptor signaling by RGS2 association with the receptor third intracellular loop. J Biol Chem 2005; 280:27289-95. [PMID: 15917235 DOI: 10.1074/jbc.m502365200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulators of G-protein signaling (RGS) proteins act directly on Galpha subunits to increase the rate of GTP hydrolysis and to terminate signaling. However, the mechanisms involved in determining their specificities of action in cells remain unclear. Recent evidence has raised the possibility that RGS proteins may interact directly with G-protein-coupled receptors to modulate their activity. By using biochemical, fluorescent imaging, and functional approaches, we found that RGS2 binds directly and selectively to the third intracellular loop of the alpha1A-adrenergic receptor (AR) in vitro, and is recruited by the unstimulated alpha1A-AR to the plasma membrane in cells to inhibit receptor and Gq/11 signaling. This interaction was specific, because RGS2 did not interact with the highly homologous alpha1B- or alpha1D-ARs, and the closely related RGS16 did not interact with any alpha1-ARs. The N terminus of RGS2 was required for association with alpha1A-ARs and inhibition of signaling, and amino acids Lys219, Ser220, and Arg238 within the alpha1A-AR i3 loop were found to be essential for this interaction. These findings demonstrate that certain RGS proteins can directly interact with preferred G-protein-coupled receptors to modulate their signaling with a high degree of specificity.
Collapse
Affiliation(s)
- Chris Hague
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The blood-brain barrier (BBB) is an impermeable cellular interface that physically separates the blood from the interstices of the brain. The endothelial cells lining the brain blood vessels form the principle barrier, and their unique phenotype is a consequence of dynamic interactions with several perivascular cell types present in the brain parenchyma. In addition, BBB dysfunction has been observed in the large majority of neurological diseases, but the causes of aberrant vascular behavior are generally unknown. Because of its barrier phenotype, drug delivery to the brain has also proven to be a very difficult task. Global genomics and proteomics analyses are currently being used to examine BBB function in healthy and diseased brain to better characterize this dynamic interface. It is becoming increasingly evident that these approaches have the potential to clarify the unique attributes of a healthy BBB, to identify therapeutic targets in diseased brain, and to identify novel conduits for noninvasive delivery of drugs against these targets. This review will discuss the application of genomics and proteomics to blood-brain barrier research and will offer views on the prospects of such approaches.
Collapse
Affiliation(s)
- Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
37
|
Berger M, Bergers G, Arnold B, Hämmerling GJ, Ganss R. Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood 2004; 105:1094-101. [PMID: 15459006 DOI: 10.1182/blood-2004-06-2315] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified regulator of G-protein signaling-5 (RGS-5) as an angiogenic pericyte marker at sites of physiologic and pathologic angiogenesis. In a mouse model of pancreatic islet cell carcinogenesis, RGS-5 is specifically induced in the vasculature of premalignant lesions during the "angiogenic switch" and further elevated in tumor vessels. Similarly, RGS-5 is overexpressed in highly angiogenic astrocytomas but not in hypoxia-inducible factor-1alpha (HIF-1alpha)-deficient tumors, which grow along preexisting brain capillaries without inducing neovessels. Elevated levels of RGS-5 in pericytes are also observed during wound healing and ovulation indicating a strong correlation between RGS-5 expression and active vessel remodeling beyond tumor angiogenesis. Moreover, antitumor therapy, which reverses tumor vasculature to an almost normal morphology, results in down-regulation of RGS-5 transcription. Taken together, these data demonstrate for the first time a factor that is specific for "activated" pericytes. This further supports the notion that pericytes, like endothelial cells, undergo molecular changes during neovascularization that makes them a novel target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Mario Berger
- Department of Molecular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
38
|
Li J, Adams LD, Wang X, Pabon L, Schwartz SM, Sane DC, Geary RL. Regulator of G protein signaling 5 marks peripheral arterial smooth muscle cells and is downregulated in atherosclerotic plaque. J Vasc Surg 2004; 40:519-28. [PMID: 15337883 DOI: 10.1016/j.jvs.2004.06.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Regulator of G protein signaling 5 (RGS5), an inhibitor of Galpha(q) and Galpha(i) activation, was recently identified among genes highly expressed in smooth muscle cells (SMCs) of aorta but not vena cava. This finding prompted the hypothesis that RGS5 provides long-term G protein inhibition specific to normal arterial SMC populations and that loss of expression may in turn contribute to arterial disease. METHODS To test this hypothesis we characterized RGS5 gene expression throughout the vasculature of nonhuman primates to determine whether RGS5 was restricted to arteries in other vascular beds and whether expression was altered in arterial disease. RESULTS In situ hybridization localized RGS5 message to medial SMCs of peripheral arteries, including carotid, iliac, mammary, and renal arteries, but not accompanying veins. SMCs of many small arteries and arterioles also expressed RGS5, including glomerular afferent arterioles critical to blood pressure regulation. Differential expression persisted in culture, inasmuch as RGS5 message was significantly higher in SMCs derived from arteries than from veins at real-time polymerase chain reaction. It was remarkable that the only major arterial bed lacking RGS5 was the coronary circulation. In atherosclerotic peripheral arteries RGS5 was expressed in medial SMCs, but was sharply downregulated in plaque SMCs. CONCLUSION These data identify RGS5 as a new member of a short list of genes uniquely expressed in peripheral arteries but not coronary arteries. Persistence of an arterial pattern of RGS5 expression in culture and lack of expression in coronary arteries support a unique SMC phenotype fixed by distinct lineage or differentiation pathways. The association between loss of expression and arterial wall disease has prompted the new hypothesis that prolonged inhibition by RGS5 of vasoactive or trophic G protein signaling is critical to normal peripheral artery function.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Yakubov E, Gottlieb M, Gil S, Dinerman P, Fuchs P, Yavin E. Overexpression of genes in the CA1 hippocampus region of adult rat following episodes of global ischemia. ACTA ACUST UNITED AC 2004; 127:10-26. [PMID: 15306117 DOI: 10.1016/j.molbrainres.2004.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2004] [Indexed: 12/29/2022]
Abstract
Ischemic stress is associated with marked changes in gene expression in the hippocampus--albeit little information exists on the activation of nonabundant genes. We have examined the expression of several known genes and identified novel ones in the adult rat hippocampus after a mild, transient, hypovolemic and hypotensive, global ischemic stress. An initial differential screening using a prototype array to assess gene expression after stress followed by a suppression subtractive hybridization protocol and cDNA microarray revealed 124 nonoverlapped transcripts predominantly expressed in the CA1 rat hippocampus region in response to ischemic stress. About 78% of these genes were not detected with nonsubtracted probes. Reverse transcription polymerase chain reaction (RT-PCR) and in situ hybridization on these 124 transcripts confirmed the differential expression of at least 83. Most robustly expressed were gene sequences NFI-B, ATP1B1, RHOGAP, PLA2G4A, BAX, CASP3, P53, MAO-A, FRA1, HSP70.2, and NR4A1 (NUR77), as well as sequence tags of unknown function. New stress-related genes of similar functional motifs were identified, reemphasizing the importance of functional grouping in the analysis of multiple gene expression profiles. These data indicate that ischemia elicits expression of an array of functional gene clusters that may be used as an index for stress severity and a template for target therapy design.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression/physiology
- Gene Expression Profiling
- Gene Expression Regulation
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Hippocampus/anatomy & histology
- Hippocampus/metabolism
- In Situ Hybridization/methods
- Ischemic Attack, Transient/genetics
- Ischemic Attack, Transient/metabolism
- Male
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Oligonucleotide Array Sequence Analysis/methods
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- E Yakubov
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
40
|
Baekkevold ES, Roussigné M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F, Brandtzaeg P, Erard M, Haraldsen G, Girard JP. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:69-79. [PMID: 12819012 PMCID: PMC1868188 DOI: 10.1016/s0002-9440(10)63631-0] [Citation(s) in RCA: 363] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lymphocyte homing to secondary lymphoid tissue and lesions of chronic inflammation is directed by multi-step interactions between the circulating cells and the specialized endothelium of high endothelial venules (HEVs). In this study, we used the PCR-based method of suppression subtractive hybridization (SSH) to identify novel HEV genes by comparing freshly purified HEV endothelial cells (HEVECs) with nasal polyp-derived microvascular endothelial cells (PMECs). By this approach, we cloned the first nuclear factor preferentially expressed in HEVECs, designated nuclear factor from HEVs (NF-HEV). Virtual Northern and Western blot analyses showed strong expression of NF-HEV in HEVECs, compared to human umbilical vein endothelial cells (HUVECs) and PMECs. In situ hybridization and immunohistochemistry revealed that NF-HEV mRNA and protein are expressed at high levels and rather selectively by HEVECs in human tonsils, Peyers's patches, and lymph nodes. The NF-HEV protein was found to contain a bipartite nuclear localization signal, and was targeted to the nucleus when ectopically expressed in HUVECs and HeLa cells. Furthermore, endogenous NF-HEV was found in situ to be confined to the nucleus of tonsillar HEVECs. Finally, threading and molecular modeling studies suggested that the amino-terminal part of NF-HEV (aa 1-60) corresponds to a novel homeodomain-like Helix-Turn-Helix (HTH) DNA-binding domain. Similarly to the atypical homeodomain transcription factor Prox-1, which plays a critical role in the induction of the lymphatic endothelium phenotype, NF-HEV may be one of the key nuclear factors that controls the specialized HEV phenotype.
Collapse
Affiliation(s)
- Espen S Baekkevold
- Laboratory for Immunohistochemistry and Immunopathology, University of Oslo, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bondjers C, Kalén M, Hellström M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:721-9. [PMID: 12598306 PMCID: PMC1868109 DOI: 10.1016/s0002-9440(10)63868-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
All blood capillaries consist of endothelial tubes surrounded by mural cells referred to as pericytes. The origin, recruitment, and function of the pericytes is poorly understood, but the importance of these cells is underscored by the severe cardiovascular defects in mice genetically devoid of factors regulating pericyte recruitment to embryonic vessels, and by the association between pericyte loss and microangiopathy in diabetes mellitus. A general problem in the study of pericytes is the shortage of markers for these cells. To identify new markers for pericytes, we have taken advantage of the platelet-derived growth factor (PDGF)-B knockout mouse model, in which developing blood vessels in the central nervous system are almost completely devoid of pericytes. Using cDNA microarrays, we analyzed the gene expression in PDGF-B null embryos in comparison with corresponding wild-type embryos and searched for down-regulated genes. The most down-regulated gene present on our microarray was RGS5, a member of the RGS family of GTPase-activating proteins for G proteins. In situ hybridization identified RGS5 expression in brain pericytes, and in pericytes and vascular smooth muscle cells in certain other, but not all, locations. Absence of RGS5 expression in PDGF-B and PDGFR beta-null embryos correlated with pericyte loss in these mice. Residual RGS5 expression in rare pericytes suggested that RGS5 is a pericyte marker expressed independently of PDGF-B/R beta signaling. With RGS5 as a proof-of-principle, our data demonstrate the usefulness of microarray analysis of mouse models for abnormal pericyte development in the identification of new pericyte-specific markers.
Collapse
MESH Headings
- Animals
- Becaplermin
- Biomarkers
- DNA Fingerprinting
- Embryo, Mammalian
- Female
- GTP-Binding Proteins/genetics
- Gene Expression Regulation, Developmental
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Oligonucleotide Array Sequence Analysis
- Pericytes/cytology
- Platelet-Derived Growth Factor/deficiency
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/physiology
- Pregnancy
- Proto-Oncogene Proteins c-sis
- RGS Proteins/analysis
- RGS Proteins/genetics
- Receptor, Platelet-Derived Growth Factor beta/deficiency
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Cecilia Bondjers
- Department of Medical Biochemistry, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wieland T, Mittmann C. Regulators of G-protein signalling: multifunctional proteins with impact on signalling in the cardiovascular system. Pharmacol Ther 2003; 97:95-115. [PMID: 12559385 DOI: 10.1016/s0163-7258(02)00326-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regulator of G-protein signalling (RGS) proteins form a superfamily of at least 25 proteins, which are highly diverse in structure, expression patterns, and function. They share a 120 amino acid homology domain (RGS domain), which exhibits GTPase accelerating activity for alpha-subunits of heterotrimeric G-proteins, and thus, are negative regulators of G-protein-mediated signalling. Based on the organisation of the Rgs genes, structural similarities, and differences in functions, they can be divided into at least six subfamilies of RGS proteins and three more families of RGS-like proteins. Many of these proteins regulate signalling processes within cells, not only via interaction with G-protein alpha-subunits, but are G-protein-regulated effectors, Gbetagamma scavenger, or scaffolding proteins in signal transduction complexes as well. The expression of at least 16 different RGS proteins in the mammalian or human myocardium have been described. A subgroup of at least eight was detected in a single atrial myocyte. The exact functions of these proteins remain mostly elusive, but RGS proteins such as RGS4 are involved in the regulation of G(i)-protein betagamma-subunit-gated K(+) channels. An up-regulation of RGS4 expression has been consistently found in human heart failure and some animal models. Evidence is increasing that the enhanced RGS4 expression counter-regulates the G(q/11)-induced signalling caused by hypertrophic stimuli. In the vascular system, RGS5 seems to be an important signalling regulator. It is expressed in vascular endothelial cells, but not in cultured smooth muscle cells. Its down-regulation, both in a model of capillary morphogenesis and in an animal model of stroke, render it a candidate gene, which may be involved in the regulation of capillary growth, angiogenesis, and in the pathophysiology of stroke.
Collapse
Affiliation(s)
- Thomas Wieland
- Institut für Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Maybachstrasse 14-16, D-68169 Mannheim, Germany.
| | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW There is rapidly growing appreciation that stroke morbidity and the risk of an ischaemic stroke becoming haemorrhagic can be influenced by new information about prophylaxis, rapid diagnosis and treatment. RECENT FINDINGS Strokes are strongly associated with hypertension mainly because hypertension is strongly associated with atheromatous deposits blocking or narrowing brain arteries, predisposing to local clot formation. Atheroma and its ischaemic consequences may damage cerebral arterioles and the brain tissue they supply. Cerebral infarcts are more common than spontaneous cerebral haemorrhages. High blood pressure itself cannot directly rupture cerebral blood vessels because their small size protects them and intracerebral haemorrhage usually follows previous ischaemic vascular damage. It is obvious that lowering blood pressure would reduce the risk and extent of bleeding into the brain once a break in an arteriolar wall has occurred, but it is not clear why lowering blood pressure should protect against cerebral infarction. One might expect that slowing down the rate of cerebral blood flow would give more time for local clots to form. It seems most likely that induced hypotension protects against ischaemic strokes by preventing pressure- or ischaemia-induced arteriolar spasm and by advantageous vasodilation of some of the more ischaemic territories. Added protection can be provided by coenzyme-A reductase inhibitors (statins), but probably not by antioxidants. SUMMARY Lowering blood pressure strongly protects against ischaemic and haemorrhagic stroke. Recent work shows that more accurate and faster diagnosis of stroke pathology is urgently needed, so that appropriate treatment (e.g. with tissue plasminogen activators) can be started before local bleeding has occurred.
Collapse
Affiliation(s)
- C John Dickinson
- Wolfson Institute of Preventive Medicine, Queen Mary, University of London, UK.
| |
Collapse
|
44
|
Abstract
The tissue-specific gene expression at the brain microvasculature, which forms the blood-brain barrier (BBB) can be elucidated with a brain vascular genomics program, which starts with the isolation of gene products derived from purified brain microvessels. Genes commonly expressed in peripheral organs are subtracted with the suppression subtractive hybridization method using driver cDNA produced from a pool of rat liver/kidney-derived poly A+RNA. From a screen of 480 clones in the subtracted tester cDNA library, 156 clones were sequenced. The clones fell into 3 groups: known genes (51%), rat expressed sequence tags (31%), and novel rat genes not found in databases (18%). The known genes could be categorized into families of common function including vascular remodeling, signal transduction, transcription factors, biologic transport, vascular amyloid, hemostasis, myelin, lipids, secretion, cytoskeleton, and junctional complexes. Brain vascular genomics, or BBB genomics, allows for an accelerated discovery of the gene families that are differentially expressed at the microvasculature in brain.
Collapse
Affiliation(s)
- Jian Yi Li
- Department of Medicine, UCLA School of Medicine, Los Angeles, California 90024, USA.
| | | | | |
Collapse
|
45
|
Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 2002; 38:323-37. [PMID: 12529927 DOI: 10.1016/s1537-1891(02)00200-8] [Citation(s) in RCA: 804] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The blood-brain barrier is essential for the maintenance and regulation of the neural microenvironment. The main characteristic features of blood-brain barrier endothelial cells are an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier. 2. Endothelial blood-brain barrier tight junctions differ from epithelial tight junctions, not only by distinct morphological and molecular properties, but also by the fact that endothelial tight junctions are more sensitive to microenvironmental than epithelial factors. 3. Many ubiquitous molecular tight junction components have been identified and characterized including claudins, occludin, ZO-1, ZO-2, ZO-3, cingulin and 7H6. Signaling pathways involved in tight junction regulation include G-proteins, serine-, threonine- and tyrosine-kinases, extra and intracellular calcium levels, cAMP levels, proteases and cytokines. Common to most of these pathways is the modulation of cytoskeletal elements and the connection of tight junction transmembrane molecules to the cytoskeleton. Additionally, crosstalk between components of the tight junction- and the cadherin-catenin system of the adherens junction suggests a close functional interdependence of the two cell-cell contact systems. 4. Important new molecular aspects of tight junction regulation were recently elucidated. This review provides an integration of these new results.
Collapse
Affiliation(s)
- Hartwig Wolburg
- Institute of Pathology, University of Tübingen, Liebermeisterstr. 8, D-72076 Tübingen, Germany.
| | | |
Collapse
|
46
|
Neubig RR, Siderovski DP. Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discov 2002; 1:187-97. [PMID: 12120503 DOI: 10.1038/nrd747] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors (GPCRs) are major targets for drug discovery. The regulator of G-protein signalling (RGS)-protein family has important roles in GPCR signal transduction. RGS proteins contain a conserved RGS-box, which is often accompanied by other signalling regulatory elements. RGS proteins accelerate the deactivation of G proteins to reduce GPCR signalling; however, some also have an effector function and transmit signals. Combining GPCR agonists with RGS inhibitors should potentiate responses, and could markedly increase the agonist's regional specificity. The diversity of RGS proteins with highly localized and dynamically regulated distributions in brain makes them attractive targets for pharmacotherapy of central nervous system disorders.
Collapse
Affiliation(s)
- Richard R Neubig
- Departments of Pharmacology and Internal Medicine (Hypertension Division), University of Michigan, Ann Arbor, Massachusetts 48109-0632, USA.
| | | |
Collapse
|