1
|
Zochodne DW. Growth factors and molecular-driven plasticity in neurological systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:569-598. [PMID: 37620091 DOI: 10.1016/b978-0-323-98817-9.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
It has been almost 70 years since the discovery of nerve growth factor (NGF), a period of a dramatic evolution in our understanding of dynamic growth, regeneration, and rewiring of the nervous system. In 1953, the extraordinary finding that a protein found in mouse submandibular glands generated a halo of outgrowing axons has now redefined our concept of the nervous system connectome. Central and peripheral neurons and their axons or dendrites are no longer considered fixed or static "wiring." Exploiting this molecular-driven plasticity as a therapeutic approach has arrived in the clinic with a slate of new trials and ideas. Neural growth factors (GFs), soluble proteins that alter the behavior of neurons, have expanded in numbers and our understanding of the complexity of their signaling and interactions with other proteins has intensified. However, beyond these "extrinsic" determinants of neuron growth and function are the downstream pathways that impact neurons, ripe for translational development and potentially more important than individual growth factors that may trigger them. Persistent and ongoing nuances in clinical trial design in some of the most intractable and irreversible neurological conditions give hope for connecting new biological ideas with clinical benefits. This review is a targeted update on neural GFs, their signals, and new therapeutic ideas, selected from an expansive literature.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Nandakumar M, Moin ASM, Ramanjaneya M, Qaissi AA, Sathyapalan T, Atkin SL, Butler AE. Severe iatrogenic hypoglycaemia modulates the fibroblast growth factor protein response. Diabetes Obes Metab 2022; 24:1483-1497. [PMID: 35415885 DOI: 10.1111/dom.14716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION There is evidence that fibroblast growth factor (FGF) levels may be implicated in hypoglycaemia, with FGF19 being a potential contributor to insulin-independent pathways driving postprandial hypoglycaemia following bariatric surgery and basic FGF (FGF2) being elevated following mild hypoglycaemia occurring after the glucose tolerance test. However, their response following severe iatrogenic hypoglycaemia is unknown and therefore this pilot exploratory study was undertaken. METHODS A case-control study of aged-matched type 2 diabetes (T2D; n = 23) and control (n = 23) subjects who underwent a hyperinsulinaemic clamp, initially to euglycaemia in T2D (5 mmol/L; 90 mg/dl), and then to hypoglycaemia (<2 mmol/L; <36 mg/dl) with subsequent follow-up time course to 24 h. FGF and FGF receptor proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. RESULTS At baseline, FGF12 (p = .006) was higher and FGF20 (p = .004) was lower in T2D versus controls. At hypoglycaemia, FGF7 was lower in T2D. Post-hypoglycaemic levels of FGF18, FGF19, FGF20 and FGF23 were lower while FGF12 and FGF16 were higher in T2D versus control at different time points. No differences between T2D and controls were seen for FGF1, FGF2, FGF4, FGF6, FGF8, FGF9, FGF10, FGF21 or any of the FGF receptors. At 24 h post-hypoglycaemia, FGF20 (p = .01) differed between controls and T2D, while the levels for the other proteins measured returned to baseline. None of the FGF proteins altered from baseline to euglycaemia when clamped in T2D subjects. FGF23 negatively correlated with fasting blood glucose, but no FGFs correlated with body mass index in T2D. CONCLUSION Severe transient hypoglycaemia modulated FGF7, 16, 19, 20 and 23 (known to be associated with diabetes), together with FGF18 and 12, not previously reported to be associated with diabetes but that may be important in the pathophysiology of hypoglycaemia; FGF20 remained low at 24 h. Taken together, these data suggest that recurrent hypoglycaemia may contribute to the development of complications through changes in FGF proteins.
Collapse
Affiliation(s)
- Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Al Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| |
Collapse
|
3
|
Liu Y, Deng J, Liu Y, Li W, Nie X. FGF, Mechanism of Action, Role in Parkinson's Disease, and Therapeutics. Front Pharmacol 2021; 12:675725. [PMID: 34234672 PMCID: PMC8255968 DOI: 10.3389/fphar.2021.675725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with severe disability and adverse effects on life quality. In PD, motor dysfunction can occur, such as quiescence, muscle stiffness, and postural instability. PD is also associated with autonomic nervous dysfunction, sleep disorders, psychiatric symptoms, and other non-motor symptoms. Degeneration of dopaminergic neurons in the substantia nigra compact (SNPC), Lewy body, and neuroinflammation are the main pathological features of PD. The death or dysfunction of dopaminergic neurons in the dense part of the substantia nigra leads to dopamine deficiency in the basal ganglia and motor dysfunction. The formation of the Lewy body is associated with the misfolding of α-synuclein, which becomes insoluble and abnormally aggregated. Astrocytes and microglia mainly cause neuroinflammation, and the activation of a variety of pro-inflammatory transcription factors and regulatory proteins leads to the degeneration of dopaminergic neurons. At present, PD is mainly treated with drugs that increase dopamine concentration or directly stimulate dopamine receptors. Fibroblast growth factor (FGF) is a family of cellular signaling proteins strongly associated with neurodegenerative diseases such as PD. FGF and its receptor (FGFR) play an essential role in the development and maintenance of the nervous system as well as in neuroinflammation and have been shown to improve the survival rate of dopaminergic neurons. This paper summarized the mechanism of FGF and its receptors in the pathological process of PD and related signaling pathways, involving the development and protection of dopaminergic neurons in SNPC, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. It provides a reference for developing drugs to slow down or prevent the potential of PD.
Collapse
Affiliation(s)
- Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Hensel N, Raker V, Förthmann B, Detering NT, Kubinski S, Buch A, Katzilieris-Petras G, Spanier J, Gudi V, Wagenknecht S, Kopfnagel V, Werfel TA, Stangel M, Beineke A, Kalinke U, Paludan SR, Sodeik B, Claus P. HSV-1 triggers paracrine fibroblast growth factor response from cortical brain cells via immediate-early protein ICP0. J Neuroinflammation 2019; 16:248. [PMID: 31791351 PMCID: PMC6889453 DOI: 10.1186/s12974-019-1647-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex virus-1 (HSV-1) infections of the central nervous system (CNS) can result in HSV-1 encephalitis (HSE) which is characterized by severe brain damage and long-term disabilities. Different cell types including neurons and astrocytes become infected in the course of an HSE which leads to an activation of glial cells. Activated glial cells change their neurotrophic factor profile and modulate inflammation and repair. The superfamily of fibroblast growth factors (FGFs) is one of the largest family of neurotrophic factors comprising 22 ligands. FGFs induce pro-survival signaling in neurons and an anti-inflammatory answer in glial cells thereby providing a coordinated tissue response which favors repair over inflammation. Here, we hypothesize that FGF expression is altered in HSV-1-infected CNS cells. METHOD We employed primary murine cortical cultures comprising a mixed cell population of astrocytes, neurons, microglia, and oligodendrocytes. Astrocyte reactivity was morphometrically monitored by an automated image analysis algorithm as well as by analyses of A1/A2 marker expression. Altered FGF expression was detected by quantitative real-time PCR and its paracrine FGF activity. In addition, HSV-1 mutants were employed to characterize viral factors important for FGF responses of infected host cells. RESULTS Astrocytes in HSV-1-infected cortical cultures were transiently activated and became hypertrophic and expressed both A1- and A2-markers. Consistently, a number of FGFs were transiently upregulated inducing paracrine neurotrophic signaling in neighboring cells. Most prominently, FGF-4, FGF-8, FGF-9, and FGF-15 became upregulated in a switch-on like mechanism. This effect was specific for CNS cells and for a fully functional HSV-1. Moreover, the viral protein ICP0 critically mediated the FGF switch-on mechanism. CONCLUSIONS HSV-1 uses the viral protein ICP0 for the induction of FGF-expression in CNS cells. Thus, we propose that HSV-1 triggers FGF activity in the CNS for a modulation of tissue response upon infection.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Verena Raker
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Benjamin Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Nora Tula Detering
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Sabrina Kubinski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Anna Buch
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | | | - Julia Spanier
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sylvia Wagenknecht
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| | - Verena Kopfnagel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| | - Thomas Andreas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| | - Martin Stangel
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andreas Beineke
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ulrich Kalinke
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Søren Riis Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beate Sodeik
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
5
|
Goldshmit Y, Tang JKKY, Siegel AL, Nguyen PD, Kaslin J, Currie PD, Jusuf PR. Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish. Neural Dev 2018; 13:24. [PMID: 30447699 PMCID: PMC6240426 DOI: 10.1186/s13064-018-0122-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Despite conserved developmental processes and organization of the vertebrate central nervous system, only some vertebrates including zebrafish can efficiently regenerate neural damage including after spinal cord injury. The mammalian spinal cord shows very limited regeneration and neurogenesis, resulting in permanent life-long functional impairment. Therefore, there is an urgent need to identify the cellular and molecular mechanisms that can drive efficient vertebrate neurogenesis following injury. A key pathway implicated in zebrafish neurogenesis is fibroblast growth factor signaling. Methods In the present study we investigated the roles of distinct fibroblast growth factor members and their receptors in facilitating different aspects of neural development and regeneration at different timepoints following spinal cord injury. After spinal cord injury in adults and during larval development, loss and/or gain of Fgf signaling was combined with immunohistochemistry, in situ hybridization and transgenes marking motor neuron populations in in vivo zebrafish and in vitro mammalian PC12 cell culture models. Results Fgf3 drives neurogenesis of Islet1 expressing motor neuron subtypes and mediate axonogenesis in cMet expressing motor neuron subtypes. We also demonstrate that the role of Fgf members are not necessarily simple recapitulating development. During development Fgf2, Fgf3 and Fgf8 mediate neurogenesis of Islet1 expressing neurons and neuronal sprouting of both, Islet1 and cMet expressing motor neurons. Strikingly in mammalian PC12 cells, all three Fgfs increased cell proliferation, however, only Fgf2 and to some extent Fgf8, but not Fgf3 facilitated neurite outgrowth. Conclusions This study demonstrates differential Fgf member roles during neural development and adult regeneration, including in driving neural proliferation and neurite outgrowth of distinct spinal cord neuron populations, suggesting that factors including Fgf type, age of the organism, timing of expression, requirements for different neuronal populations could be tailored to best drive all of the required regenerative processes.
Collapse
Affiliation(s)
- Yona Goldshmit
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia.,Steyer School of Health Professions, Sackler School of Medicine, Tel-Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - Jean Kitty K Y Tang
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ashley L Siegel
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Phong D Nguyen
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Patricia R Jusuf
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia. .,School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
6
|
Estienne A, Price CA. The fibroblast growth factor 8 family in the female reproductive tract. Reproduction 2018; 155:R53-R62. [DOI: 10.1530/rep-17-0542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
Several growth factor families have been shown to be involved in the function of the female reproductive tract. One subfamily of the fibroblast growth factor (FGF) superfamily, namely the FGF8 subfamily (including FGF17 and FGF18), has become important as Fgf8 has been described as an oocyte-derived factor essential for glycolysis in mouse cumulus cells and aberrant expression ofFGF18has been described in ovarian and endometrial cancers. In this review, we describe the pattern of expression of these factors in normal ovaries and uteri in rodents, ruminants and humans, as well as the expression of their receptors and intracellular negative feedback regulators. Expression of these molecules in gynaecological cancers is also reviewed. The role of FGF8 and FGF18 in ovarian and uterine function is described, and potential differences between rodents and ruminants have been highlighted especially with respect to FGF18 signalling within the ovarian follicle. Finally, we identify major questions about the reproductive biology of FGFs that remain to be answered, including (1) the physiological concentrations within the ovary and uterus, (2) which cell types within the endometrial stroma and theca layer express FGFs and (3) which receptors are activated by FGF8 subfamily members in reproductive tissues.
Collapse
|
7
|
Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, Valmier J, Copeland NG, Jenkins NA, Richard S, Marmigère F. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. eLife 2016; 5. [PMID: 26857994 PMCID: PMC4760953 DOI: 10.7554/elife.11627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5+ endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation. DOI:http://dx.doi.org/10.7554/eLife.11627.001 Nerve cells called sympathetic neurons can control the activity of almost all of our organs without any conscious thought on our part. For example, these nerve cells are responsible for accelerating the heart rate during exercise. In a developing embryo, there are initially more of these neurons than are needed, and only those that develop correctly and form a connection with a target cell will survive. This is because the target cells provide the growing neurons with vital molecules called neurotrophins, which are trafficked back along the nerve fiber and into the main body of the nerve cell to ensure its survival. However, it is largely unknown which proteins or genes are also involved in this developmental process. Now, Bouilloux, Thireau et al. show that if a gene called Meis1 is inactivated in mice, the sympathetic neurons start to develop and grow nerve fibers, but then fail to establish connections with their target cells and finally die. The Meis1 gene encodes a transcription factor, which is a protein that regulates gene activity. Therefore, Bouilloux, Thireau et al. looked for the genes that are regulated by this transcription factor in sympathetic neurons. This search uncovered several genes that are involved in the packaging and trafficking of molecules within cells. Other experiments then revealed that the trafficking of molecules back along the nerve fiber was altered in mutant neurons in which the Meis1 gene had been inactivated. Furthermore, Meis1 mutant mice had problems with their heart rate, especially during exercise, and an increased risk of dying from a sudden cardiac arrest. These findings reveal a transcription factor that helps to establish a connection between a neuron and its target, and that activates a pattern of gene expression that works alongside the neurotrophin-based signals. Since all neurons undergo similar processes during development, future work could ask if comparable patterns of gene expression exist in other types of neurons, and if problems with such processes contribute to some neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.11627.002
Collapse
Affiliation(s)
- Fabrice Bouilloux
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Jérôme Thireau
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Charlotte Farah
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Sarah Karam
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Yves Dauvilliers
- Sleep Unit, Department of Neurology, Gui-de-Chauliac hospital, Montpellier, France
| | - Jean Valmier
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Neal G Copeland
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, United States
| | - Nancy A Jenkins
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, United States
| | - Sylvain Richard
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Frédéric Marmigère
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| |
Collapse
|
8
|
Lim MS, Lee SY, Park CH. FGF8 is Essential for Functionality of Induced Neural Precursor Cell-derived Dopaminergic Neurons. Int J Stem Cells 2015; 8:228-34. [PMID: 26634071 PMCID: PMC4651287 DOI: 10.15283/ijsc.2015.8.2.228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Induced neural precursor cells (iNPCs) are one source of transplantable dopaminergic neurons used in cell therapy for Parkinson's disease. In the present study, we demonstrate that iNPCs can be generated by transducing Brn2, Ascl1, Myt1L and Bcl-xL in a culture supplemented with several mitogens and subsequently can be differentiated to dopaminergic neurons (DA). However, studies have shown that iDA and/or iNPC-derived DA neurons using various conversion protocols have low efficiency. Here, we show that early exposure of FGF8 to fibroblasts efficiently improves differentiation of DA neurons. So our study demonstrates that FGF8 is a critical factor for generation of iNPC-derived DA neurons.
Collapse
Affiliation(s)
- Mi-Sun Lim
- Graduate School of Biomedical Science and Engineering, College of Medicine, Hanyang University, Seoul, Korea ; Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seoul, Korea
| | - Soo Young Lee
- Department of Microbiology, College of Medicine, Hanyang University, Seoul, Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, College of Medicine, Hanyang University, Seoul, Korea ; Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seoul, Korea ; Department of Microbiology, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
9
|
Chen N, Ma J, Zhao Y, Wu M, Yang H, Gong W, Chao J, Li X. Expression of functional recombinant human fibroblast growth factor 8b and its protective effects on MPP⁺-lesioned PC12 cells. Appl Microbiol Biotechnol 2015; 100:625-35. [PMID: 26411459 DOI: 10.1007/s00253-015-7004-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/01/2015] [Accepted: 09/10/2015] [Indexed: 12/29/2022]
Abstract
Human fibroblast growth factor 8b (FGF8b) was expressed based on a baculovirus expression vector system (BEVS) and identified as having a protective effect on Parkinson's disease. Immunoblotting demonstrated that rhFGF8b proteins were recognized by a human anti-FGF8b antibody. The multiplicity of infection and timing of harvest had a significant effect on protein yield and protein quality. Our results indicated that the rhFGF8b was first detectable at 36 h postinfection and reached a maximum at 60 h. A multiplicity of infection (MOI) of 8 pfu/mL was suitable for harvest. The target protein was purified by heparin-affinity chromatography. In vitro methylthiazol tetrazolium (MTT) assays demonstrated that the purified rhFGF8b could significantly stimulate proliferation of NIH3T3 cells. Furthermore, to elucidate the effect of rhFGF8b on Parkinson's disease, we used FGF8b pretreatment on a cell model of Parkinson's disease. The results indicated that rhFGF8b prevented necrosis and apoptosis of 1-METHYL-4-phenyl pyridine (MPP(+)) treated PC12 cells. Moreover, the effect of FGF8b on messenger RNA (mRNA) levels of apoptosis and ERS genes was investigated to clarify the molecular mechanisms of FGF8b. The results suggest that FGF8b exerts neuroprotective effects by alleviating endoplasmic reticulum (ER) stress during PD. These results suggest that FGF8b may be a promising candidate therapeutic drug for neurodegenerative diseases related to ER stress.
Collapse
Affiliation(s)
- Nazi Chen
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jishen Ma
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yang Zhao
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Meiyu Wu
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huanhuan Yang
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weiyue Gong
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiang Chao
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Kang K, Lee SW, Han JE, Choi JW, Song MR. The complex morphology of reactive astrocytes controlled by fibroblast growth factor signaling. Glia 2014; 62:1328-44. [PMID: 24796693 DOI: 10.1002/glia.22684] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/19/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
Astrocytes are the most abundant cell-type of the human brain and play a variety of roles in brain homeostasis and synaptic maturation, under normal conditions. However, astrocytes undergo dramatic pathological changes in response to brain injury, such as reactive gliosis and glial scar formation. Although abnormal hypertrophy and massive proliferation of astrocytes are obvious, the molecular identity and cues that dictate the structural changes in reactive astrocytes remain unclear. This study proposes that fibroblast growth factor (FGF) signaling is responsible for making astrocyte morphology more complex and hypertrophic in response to an inflammatory stimulus such as lipopolysaccharide. Primary astrocytes isolated from perinatal brains developed more branches in the presence of FGF8 or lesser branches in the presence of FGF2. Introduction of the constitutively active form of the FGF receptor 3 (caFGFR3) into the brain increases the structural complexity, with greater glial fibrillary acidic protein level in astrocytes, while overexpression of a dominant-negative form of FGFR3 (dnFGFR3) reduces it. Treatment of FGF8 facilitated the wound-healing process of primary astrocytes in vitro by changing their morphology, indicating that the FGF signal may control the responsiveness of astrocytes in injury conditions. Finally, the blockade of FGF signaling by introducing dnFGFR3 at the site of reactive gliosis reduces astrocyte branch formation and minimizes hypertrophic responses during reactive gliosis. Taken together, these results indicate that FGF8-FGFR3 signaling controls structural changes in astrocytes during reactive gliosis, under pathogenic conditions.
Collapse
Affiliation(s)
- Kyungjoon Kang
- School of Life Sciences, Bioimaging Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | | | | | | | | |
Collapse
|
11
|
Fuchs J, Stettler O, Alvarez-Fischer D, Prochiantz A, Moya KL, Joshi RL. Engrailed signaling in axon guidance and neuron survival. Eur J Neurosci 2012; 35:1837-45. [PMID: 22708594 DOI: 10.1111/j.1460-9568.2012.08139.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several homeoproteins can function in a direct cell non-autonomous fashion to control various biological processes. In the developing nervous system, this mode of signaling has been well documented for Engrailed in the guidance of retinal ganglion cell axons and retino-tectal patterning. Engrailed is also a key factor for mesencephalic dopaminergic (mDA) neurons, not only during development but also in the adult. Haplodeficiency for Engrailed1 leads to progressive adult-onset loss of mDA neurons and several phenotypic alterations reminiscent of Parkinson's disease (PD). Thanks to its transduction properties, Engrailed has been shown to confer neuroprotection in several experimental models of PD. Study of the mechanisms underlying these two Engrailed-mediated effects has revealed a key role of the translation regulation by Engrailed and uncovered an unsuspected link between a homeoprotein and mitochondrial activity. These studies highlight the crucial role of cellular energetic metabolism in neuron development, survival and neurodegeneration, and may help to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Julia Fuchs
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS unité mixte de recherche 7241/INSERM U1050, Development and Neuropharmacology, 11 place Marcelin Berthelot, Paris F-75005, France
| | | | | | | | | | | |
Collapse
|
12
|
Lo C, Flinn LJ, Bandmann O. Heterozygous mutations in the FGF8, SHH and nodal/transforming growth factor beta pathways do not confer increased dopaminergic neuron vulnerability--a zebrafish study. Neurosci Lett 2012; 532:55-8. [PMID: 23123778 DOI: 10.1016/j.neulet.2012.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 8 (FGF8), sonic hedgehog (SHH) and nodal signalling pathways play key roles in both development and survival of dopaminergic neurons. Both heterozygous mutations in autosomal recessively inherited Parkinson's disease (PD) genes such as parkin or PINK1 and exposure to exogenous toxins are thought to contribute to the pathogenesis of PD. The aim of our study was to investigate whether heterozygote mutations in fgf8, shh or oep lead to a reduced number of ascending dopaminergic neurons in zebrafish (Danio rerio) or confer increased susceptibility to the PD neurotoxin 1-methyl-4-phenyl-pyridinium (MPP⁺). At 3 days post fertilization, heterozygous mutations in fgf8, shh or oep did not affect the number of ascending dopaminergic neurons, nor did heterozygous mutations in fgf8, shh or oep result in increased susceptibility to MPP⁺. Further work is needed to determine whether haploinsufficiency in other neurodevelopmental genes might confer increased susceptibility to PD-related pathomechanisms.
Collapse
Affiliation(s)
- Christine Lo
- Centre for Developmental and Biomedical Genetics-CDBG, Sheffield, UK
| | | | | |
Collapse
|
13
|
Vantaggiato C, Bondioni S, Airoldi G, Bozzato A, Borsani G, Rugarli EI, Bresolin N, Clementi E, Bassi MT. Senataxin modulates neurite growth through fibroblast growth factor 8 signalling. Brain 2011; 134:1808-28. [PMID: 21576111 DOI: 10.1093/brain/awr084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Senataxin is encoded by the SETX gene and is mainly involved in two different neurodegenerative diseases, the dominant juvenile form of amyotrophic lateral sclerosis type 4 and a recessive form of ataxia with oculomotor apraxia type 2. Based on protein homology, senataxin is predicted to be a putative DNA/RNA helicase, while senataxin interactors from patients' lymphoblast cell lines suggest a possible involvement of the protein in different aspects of RNA metabolism. Except for an increased sensitivity to oxidative DNA damaging agents shown by some ataxia with neuropathy patients' cell lines, no data are available about possible functional consequences of dominant SETX mutations and no studies address the function of senataxin in neurons. To start elucidating the physiological role of senataxin in neurons and how disease-causing mutations in this protein lead to neurodegeneration, we analysed the effect of senataxin on neuronal differentiation in primary hippocampal neurons and retinoic acid-treated P19 cells by modulating the expression levels of wild-type senataxin and three different dominant mutant forms of the protein. Wild-type senataxin overexpression was required and sufficient to trigger neuritogenesis and protect cells from apoptosis during differentiation. These actions were reversed by silencing of senataxin. In contrast, overexpression of the dominant mutant forms did not affect the regular differentiation process in primary hippocampal neurons. Analysis of the cellular pathways leading to neuritogenesis and cytoprotection revealed a role of senataxin in modulating the expression levels and signalling activity of fibroblast growth factor 8. Silencing of senataxin reduced, while overexpression enhanced, fibroblast growth factor 8 expression levels and the phosphorylation of related target kinases and effector proteins. The effects of senataxin overexpression were prevented when fibroblast growth factor 8 signalling was inhibited, while exogenous fibroblast growth factor 8 reversed the effects of senataxin silencing. Overall, these results reveal a key role of senataxin in neuronal differentiation through the fibroblast growth factor 8 signalling and provide initial molecular bases to explain the neurodegeneration associated with loss-of-function mutations in senataxin found in recessive ataxia. The lack of effect on neuritogenesis observed with the overexpression of the dominant mutant forms of senataxin apparently excludes a dominant negative effect of these mutants while favouring haploinsufficiency as the pathogenic mechanism implicated in the amyotrophic lateral sclerosis 4-related degenerative condition. Alternatively, a different protein function, other than the one involved in neuritogenesis, may be implicated in these dominant degenerative processes.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- E. Medea Scientific Institute, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842 Bosisio Parini, Lecco, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration. Dev Biol 2011; 355:263-74. [PMID: 21539833 DOI: 10.1016/j.ydbio.2011.04.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/28/2011] [Accepted: 04/18/2011] [Indexed: 11/22/2022]
Abstract
Urodele amphibians can regenerate amputated limbs. It has been considered that differentiated dermal tissues generate multipotent and undifferentiated cells called blastema cells during limb regeneration. In early phases of limb regeneration, blastema cells are induced by nerves and the apical epithelial cap (AEC). We had previously investigated the role of neurotrophic factors in blastema or blastema-like formation consisting of Prrx-1 positive cells. A new system suitable for investigating early phases of limb regeneration, called the accessory limb model (ALM), was recently developed. In this study, we performed a comparative transcriptome analysis between a blastema and wound using ALM. Matrix metalloproteinase (MMP) and fibroblast growth factor (FGF) signaling components were observed to be predominantly expressed in ALM blastema cells. Furthermore, we found that MMP activity induced a blastema marker gene, Prrx-1, in vitro, and FGF signaling pathways worked in coordination to maintain Prrx-1 expression and ALM blastema formation. Furthermore, we demonstrated that these two activities were sufficient to induce an ALM blastema in the absence of a nerve in vivo.
Collapse
|
15
|
Vaccarino FM, Grigorenko EL, Smith KM, Stevens HE. Regulation of cerebral cortical size and neuron number by fibroblast growth factors: implications for autism. J Autism Dev Disord 2009; 39:511-20. [PMID: 18850329 PMCID: PMC2847619 DOI: 10.1007/s10803-008-0653-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 09/18/2008] [Indexed: 12/31/2022]
Abstract
Increased brain size is common in children with autism spectrum disorders. Here we propose that an increased number of cortical excitatory neurons may underlie the increased brain volume, minicolumn pathology and excessive network excitability, leading to sensory hyper-reactivity and seizures, which are often found in autism. We suggest that Fibroblast Growth Factors (FGF), a family of genes that regulate cortical size and connectivity, may be responsible for these developmental alterations. Studies in animal models suggest that mutations in FGF genes lead to altered cortical volume, excitatory cortical neuron number, minicolumn pathology, hyperactivity and social deficits. Thus, many risk factors may converge upon FGF-regulated pathogenetic pathways, which alter excitatory/inhibitory balance and cortical modular architecture, and predispose to autism spectrum disorders.
Collapse
Affiliation(s)
- Flora M Vaccarino
- Child Study Center, Yale University School of Medicine, 230 South Frontage Rd, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
16
|
Lammi J, Aarnisalo P. FGF-8 stimulates the expression of NR4A orphan nuclear receptors in osteoblasts. Mol Cell Endocrinol 2008; 295:87-93. [PMID: 18809462 DOI: 10.1016/j.mce.2008.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/31/2008] [Accepted: 08/25/2008] [Indexed: 11/26/2022]
Abstract
Nurr1, NGFI-B, and Nor1 form the NR4A subfamily of orphan nuclear receptors. The NR4A receptors are immediate early genes that can be rapidly induced in response to a variety of stimuli in many cell types, for example, in osteoblasts. Nurr1 regulates the differentiation of osteoblasts and the expression of several osteoblastic genes. Fibroblast growth factor 8b (FGF-8b) regulates osteoblastic differentiation. We show here that treatment of preosteoblastic MC3T3-E1 cells or mouse bone marrow mesenchymal cells with FGF-8b induces the expression of NR4A receptors rapidly and in a dose-dependent manner. This induction involves mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase (PI-3K), and protein kinase C (PKC) pathways. FGF-8b stimulates the proliferation of MC3T3-E1 cells. This effect is enhanced by overexpression of Nurr1 and NGFI-B whereas it is abolished by a dominant negative Nurr1 variant. In conclusion, FGF-8b induces the expression of NR4A orphan nuclear receptors that are involved in mediating the growth promoting effect of FGF-8b in osteoblasts.
Collapse
Affiliation(s)
- Johanna Lammi
- Institute of Biomedicine/Physiology, Biomedicum Helsinki, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
17
|
Haines BP, Wheldon LM, Summerbell D, Heath JK, Rigby PWJ. Regulated expression of FLRT genes implies a functional role in the regulation of FGF signalling during mouse development. Dev Biol 2006; 297:14-25. [PMID: 16872596 DOI: 10.1016/j.ydbio.2006.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 12/21/2022]
Abstract
Within the mammalian genome, there are many multimember gene families that encode membrane proteins with extracellular leucine rich repeats which are thought to act as cell adhesion or signalling molecules. We previously showed that the members of the NLRR gene family are expressed in a developmentally restricted manner in the mouse with NLRR-1 being expressed in the developing myotome. The FLRT gene family shows a similar genomic layout and predicted protein secondary structure to the NLRRs so we analysed expression of the three FLRT genes during mouse development. FLRTs are glycosylated membrane proteins expressed at the cell surface which localise in a homophilic manner to cell-cell contacts expressing the focal adhesion marker vinculin. Each member of the FLRT family has a distinct, highly regulated expression pattern, as was seen for the NLRR family. FLRT3 has a provocative expression pattern during somite development being expressed in regions of the somite where muscle precursor cells migrate from the dermomyotome and move into the myotome, and later in myotomal precursors destined to migrate towards their final destination, for example, those that form the ventral body wall. FLRT3 is also expressed at the midbrain/hindbrain boundary and in the apical ectodermal ridge, regions where FGF signalling is known to be important, suggesting that the role for FLRT3 in FGF signalling identified in Xenopus is conserved in mammals. FLRT1 is expressed at brain compartmental boundaries and FLRT2 is expressed in a subset of the sclerotome, adjacent to the region that forms the syndetome, suggesting that interaction with FGF signalling may be a general property of FLRT proteins. We confirmed this by showing that all FLRTs can interact with FGFR1 and FLRTs can be induced by the activation of FGF signalling by FGF-2. We conclude that FLRT proteins act as regulators of FGF signalling, being induced by the signal and then able to interact with the signalling receptor, in many tissues during mouse embryogenesis. This process may, in part, be dependent on homophilic intercellular interactions between FLRT molecules.
Collapse
Affiliation(s)
- Bryan P Haines
- Section of Gene Function and Regulation, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | |
Collapse
|
18
|
Fortin D, Rom E, Sun H, Yayon A, Bansal R. Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J Neurosci 2005; 25:7470-9. [PMID: 16093398 PMCID: PMC6725305 DOI: 10.1523/jneurosci.2120-05.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/26/2005] [Indexed: 01/03/2023] Open
Abstract
Fibroblast growth factors (FGFs) have been implicated in numerous cellular processes, including proliferation, migration, differentiation, and survival. Whereas FGF-2, the prototypic ligand in a family of 22 members, activates all four tyrosine kinase FGF receptors (FGFR1-FGFR4), other members demonstrate a higher degree of selectivity. Oligodendrocytes (OLs), the myelin-producing cells of the CNS, are highly influenced by FGF-2 at all stages of their development. However, how other FGFs and their cognate receptors orchestrate the development of OLs is essentially undefined. Using a combination of specific FGF ligands and receptor blocking antibodies, we now show that FGF-8 and FGF-17 target OL progenitors, inhibiting their terminal differentiation via the activation of FGFR3, whereas FGF-9 specifically targets differentiated OLs, triggering increases in process growth via FGFR2 signaling; FGF-18 targets both OL progenitors and OLs via activation of both FGFR2 and FGFR3. These events are highly correlated with changes in FGF receptor expression from FGFR3 to FGFR2 as OL progenitors differentiate into mature OLs. In addition, we demonstrate that, although activation of FGFR1 by FGF-2 leads to proliferation of OL progenitors, it produces deleterious effects on differentiated OLs (i.e., aberrant reentry into cell cycle and down-regulation of myelin proteins with a loss of myelin membrane). These data suggest that ligand availability, coupled with changes in FGF receptor expression, yield a changing repertoire of ligand-receptor signaling complexes that contribute critically to the regulation of both normal OL development and potential OL/myelin pathogenesis.
Collapse
Affiliation(s)
- Dale Fortin
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
19
|
Roussa E, Krieglstein K. Induction and specification of midbrain dopaminergic cells: focus on SHH, FGF8, and TGF-? Cell Tissue Res 2004; 318:23-33. [PMID: 15322912 DOI: 10.1007/s00441-004-0916-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 05/10/2004] [Indexed: 12/21/2022]
Abstract
Cell-fate decisions along the dorsoventral and anterior-posterior axis of the neural tube are dictated by factors from signaling and organizing centers. According to the prevailing notion, the formation of mesencephalic dopaminergic neurons is directed by diffusable signals from the notochord, floor plate, and isthmic organizer. Sonic hedgehog (Shh), secreted by the notochord and floor plate, and fibroblast growth factor (FGF) 8, secreted by the isthmus, are thought to be key molecules involved in the development of midbrain dopaminergic neurons. During the last decade, the introduction of elegant explant culture systems and the generation of transgenic and mutant mice have greatly contributed to a better understanding of the molecular signals that direct the induction and specification of midbrain dopaminergic neurons. In this context, experimental evidence has challenged the dominant roles of Shh and FGF8 in dopaminergic neuron development. Additional molecules have been identified as being required for the generation of mesencephalic dopaminergic neurons, particularly members of the transforming growth factor beta superfamily.
Collapse
Affiliation(s)
- Eleni Roussa
- Department for Neuroanatomy, Center of Anatomy, Georg-August-University Göttingen, 37075 Göttingen, Germany.
| | | |
Collapse
|
20
|
Roussa E, Farkas LM, Krieglstein K. TGF-beta promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF-8. Neurobiol Dis 2004; 16:300-10. [PMID: 15193287 DOI: 10.1016/j.nbd.2004.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 03/03/2004] [Accepted: 03/05/2004] [Indexed: 10/26/2022] Open
Abstract
Impaired neuronal survival is a key event in the development of degenerative diseases, such as Parkinson's disease (PD). Here we show that transforming growth factor beta (TGF-beta) acts directly on rat E14 midbrain dopaminergic neurons in vitro, its survival-promoting effect being not mediated by BDNF, NT-3, or GDNF. Treatment with TGF-beta, sonic hedgehog (Shh), or fibroblast growth factor-8 (FGF8) significantly increased number of tyrosine hydroxylase (TH)-immunoreactive neurons after 7 days, whereas application of these factors added together further increased number of TH-positive neurons, compared to single-factor treatments. Neutralization of endogenous TGF-beta, Shh, or FGF8 significantly reduced number of dopaminergic neurons. TGF-beta treatment decreased number of apoptotic cells, having no effect on cell proliferation. Neutralization of TGF-beta in vivo during chick E6-10 resulted in reduced number of midbrain dopaminergic neurons. The results suggest that TGF-beta is required for survival of mesencephalic dopaminergic neurons acting in cooperation with Shh and FGF8.
Collapse
Affiliation(s)
- Eleni Roussa
- Department for Neuroanatomy, Center of Anatomy, Georg-August-University Göttingen, 37075 Goettingen, Germany.
| | | | | |
Collapse
|
21
|
Gates MA, Coupe VM, Torres EM, Fricker-Gates RA, Dunnett SB. Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. Eur J Neurosci 2004; 19:831-44. [PMID: 15009130 DOI: 10.1111/j.1460-9568.2004.03213.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying cellular and molecular mechanisms that direct the formation of circuits during development is thought to be the key to reconstructing circuitry lost in adulthood to neurodegenerative disorders or common traumatic injuries. Here we have tested whether brain regions situated in and around the developing nigro-striatal pathway have particular chemoattractive or chemorepulsive effects on mesencephalic dopamine axons, and whether these effects are temporally restricted. Mesencephalic explants from embryonic day (E)12 rats were either cultured alone or with coexplants from the embryonic, postnatal or adult medial forebrain bundle region (MFB), striatum, cortex, brain stem or thalamus. Statistical analysis of axon growth responses revealed a potent chemoattraction to the early embryonic MFB (i.e. E12-15) that diminished (temporally) in concert with the emergence of chemoattraction to the striatum in the late embryonic period (i.e. E19+). Repulsive responses by dopaminergic axons were obvious in cocultures with embryonic brain stem and cortex, however, there was no effect by the thalamus. Such results suggest that the nigro-striatal circuit is formed via spatially and temporally distributed chemoattractive and chemorepulsive elements that: (i) orientate the circuit in a rostral direction (via brain stem repulsion); (ii) initiate outgrowth (via MFB attraction); (iii) prevent growth beyond the target region (via cortical repulsion); and (iv) facilitate target innervation (via striatal chemoattraction). Subsequent studies will focus on identifying genes responsible for these events so that their products may be exploited to increase the integration of neuronal transplants to the mature brain, or provide a means to (re)establish the nigro-striatal circuit in vivo.
Collapse
Affiliation(s)
- Monte A Gates
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3US, UK.
| | | | | | | | | |
Collapse
|
22
|
Roscioli T, Taylor PJ, Bohlken A, Donald JA, Masel J, Glass IA, Buckley MF. The 10q24-linked split hand/split foot syndrome (SHFM3): Narrowing of the critical region and confirmation of the clinical phenotype. ACTA ACUST UNITED AC 2003; 124A:136-41. [PMID: 14699611 DOI: 10.1002/ajmg.a.20348] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this communication we describe the clinical and molecular genetic findings in a family with a variable ectrodactyly linked to SHFM3. This is only the second detailed report of the clinical features of the SHFM3 linked syndrome in a large pedigree. Within this family the expressivity of the condition ranges from the classical ectrodactyly deformity to partial absence of the thumb and agenesis of the distal tip of the index finger. There is discordant limb severity, with the feet more severely affected than the hands. Two individuals have a nail dysplasia indicating the presence of a minor ectodermal component. A cleft palate was present in one individual. Radiological features of family members include short metacarpals with rounded proximal heads, agenesis of the radial ray, epiphysial coning, and an unusual supernumerary ossicle opposed to the distal phalanx of the left thumb. Genetic mapping studies in this family exclude p63 involvement and demonstrate that ectrodactyly in this pedigree is linked to the SHFM3 region on chromosome 10q24. A meiotic recombination event enabled exclusion of a maximum of 1.9 Mb of DNA from the previously known critical region thereby narrowing the critical interval to between D10S1265 and D10S222, with the minimal critical region being between D10S1240 and D10S1267. Further investigations are in progress to identify the gene within the SHFM3 critical region responsible for ectrodactyly.
Collapse
Affiliation(s)
- Tony Roscioli
- Queensland Clinical Genetics Service, Herston, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|