1
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. Ascending Vagal Sensory and Central Noradrenergic Pathways Modulate Retrieval of Passive Avoidance Memory in Male Rats. J Neurosci Res 2024; 102:e25390. [PMID: 39373381 DOI: 10.1002/jnr.25390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. These new findings support the view that gut vagal afferents and the cNTSNA-to-vlBNST circuit play a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Inge Estefania Guerrero
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
2
|
Su Y, Xu J, Zhu Z, Chin J, Xu L, Yu H, Nudell V, Dash B, Moya EA, Ye L, Nimmerjahn A, Sun X. Brainstem Dbh + neurons control allergen-induced airway hyperreactivity. Nature 2024; 631:601-609. [PMID: 38987587 PMCID: PMC11254774 DOI: 10.1038/s41586-024-07608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/24/2024] [Indexed: 07/12/2024]
Abstract
Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.
Collapse
Affiliation(s)
- Yujuan Su
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jinhao Xu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ziai Zhu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jisun Chin
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Le Xu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Haoze Yu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victoria Nudell
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, USA
| | - Barsha Dash
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Esteban A Moya
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, CA, USA
| | - Li Ye
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. An ascending vagal sensory-central noradrenergic pathway modulates retrieval of passive avoidance memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588717. [PMID: 38645069 PMCID: PMC11030408 DOI: 10.1101/2024.04.09.588717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. Results To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. Conclusions These new findings support the view that a gut vagal afferent-to-cNTSNA-to-vlBNST circuit plays a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University
| | | | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University
| |
Collapse
|
4
|
Su Y, Xu J, Zhu Z, Chin J, Xu L, Yu H, Nudell V, Dash B, Moya EA, Ye L, Nimmerjahn A, Sun X. Brainstem Dbh+ Neurons Control Chronic Allergen-Induced Airway Hyperreactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.04.527145. [PMID: 36778350 PMCID: PMC9915738 DOI: 10.1101/2023.02.04.527145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic exposure of the lung to irritants such as allergen is a primary cause of asthma characterized by exaggerated airway constriction, also called hyperreactivity, which can be life-threatening. Aside from immune cells, vagal sensory neurons are important for airway hyperreactivity 1-4 . However, the identity and signature of the downstream nodes of this adaptive circuit remains poorly understood. Here we show that a single population of Dbh + neurons in the nucleus of the solitary tract (nTS) of the brainstem, and downstream neurons in the nucleus ambiguous (NA), are both necessary and sufficient for chronic allergen-induced airway hyperreactivity. We found that repeated exposures of mice to inhaled allergen activates nTS neurons in a mast cell-, interleukin 4 (IL-4)-and vagal nerve-dependent manner. Single-nucleus RNA-seq of the nTS at baseline and following allergen challenges reveals that a Dbh + population is preferentially activated. Ablation or chemogenetic inactivation of Dbh + nTS neurons blunted, while chemogenetic activation promoted hyperreactivity. Viral tracing indicates that Dbh + nTS neurons, capable of producing norepinephrine, project to the NA, and NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that then directly drive airway constriction. Focusing on transmitters, delivery of norepinephrine antagonists to the NA blunted allergen-induced hyperreactivity. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. The knowledge opens the possibility of targeted neural modulation as an approach to control refractory allergen-induced airway constriction.
Collapse
|
5
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
6
|
Zlatkovic J, Dalmau Gasull A, Hägg D, Font-Gironès F, Bellman J, Meister B, Palsdottir V, Ruud J, Ohlsson C, Dickson SL, Anesten F, Jansson JO. Reduction of body weight by increased loading is associated with activation of norepinephrine neurones in the medial nucleus of the solitary tract. J Neuroendocrinol 2023; 35:e13352. [PMID: 37885347 DOI: 10.1111/jne.13352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
We previously provided evidence supporting the existence of a novel leptin-independent body weight homeostat ("the gravitostat") that senses body weight and then initiates a homeostatic feed-back regulation of body weight. We, herein, hypothesize that this feed-back regulation involves a CNS mechanism. To identify populations of neurones of importance for the putative feed-back signal induced by increased loading, high-fat diet-fed rats or mice were implanted intraperitoneally or subcutaneously with capsules weighing ∼15% (Load) or ∼2.5% (Control) of body weight. At 3-5 days after implantation, neuronal activation was assessed in different parts of the brain/brainstem by immunohistochemical detection of FosB. Implantation of weighted capsules, both subcutaneous and intraperitoneal, induced FosB in specific neurones in the medial nucleus of the solitary tract (mNTS), known to integrate information about the metabolic status of the body. These neurones also expressed tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DbH), a pattern typical of norepinephrine neurones. In functional studies, we specifically ablated norepinephrine neurones in mNTS, which attenuated the feed-back regulation of increased load on body weight and food intake. In conclusion, increased load appears to reduce body weight and food intake via activation of norepinephrine neurones in the mNTS.
Collapse
Affiliation(s)
- Jovana Zlatkovic
- Departement of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Daniel Hägg
- Departement of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Ferran Font-Gironès
- Departement of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jakob Bellman
- Departement of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Björn Meister
- Institute of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Johan Ruud
- Departement of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Departement of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Anesten
- Departement of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - John-Olov Jansson
- Departement of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Saporin as a Commercial Reagent: Its Uses and Unexpected Impacts in the Biological Sciences—Tools from the Plant Kingdom. Toxins (Basel) 2022; 14:toxins14030184. [PMID: 35324681 PMCID: PMC8952126 DOI: 10.3390/toxins14030184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023] Open
Abstract
Saporin is a ribosome-inactivating protein that can cause inhibition of protein synthesis and causes cell death when delivered inside a cell. Development of commercial Saporin results in a technology termed ‘molecular surgery’, with Saporin as the scalpel. Its low toxicity (it has no efficient method of cell entry) and sturdy structure make Saporin a safe and simple molecule for many purposes. The most popular applications use experimental molecules that deliver Saporin via an add-on targeting molecule. These add-ons come in several forms: peptides, protein ligands, antibodies, even DNA fragments that mimic cell-binding ligands. Cells that do not express the targeted cell surface marker will not be affected. This review will highlight some newer efforts and discuss significant and unexpected impacts on science that molecular surgery has yielded over the last almost four decades. There are remarkable changes in fields such as the Neurosciences with models for Alzheimer’s Disease and epilepsy, and game-changing effects in the study of pain and itch. Many other uses are also discussed to record the wide-reaching impact of Saporin in research and drug development.
Collapse
|
8
|
Noradrenergic innervations of the medial prefrontal cortex mediate empathy for pain in rats via the α1 and β receptors. Behav Brain Res 2022; 426:113828. [DOI: 10.1016/j.bbr.2022.113828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
|
9
|
Marques SM, Naves LM, Silva TDME, Cavalcante KVN, Alves JM, Ferreira-Neto ML, de Castro CH, Freiria-Oliveira AH, Fajemiroye JO, Gomes RM, Colombari E, Xavier CH, Pedrino GR. Medullary Noradrenergic Neurons Mediate Hemodynamic Responses to Osmotic and Volume Challenges. Front Physiol 2021; 12:649535. [PMID: 33967822 PMCID: PMC8103169 DOI: 10.3389/fphys.2021.649535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Despite being involved in homeostatic control and hydro-electrolyte balance, the contribution of medullary (A1 and A2) noradrenergic neurons to the hypertonic saline infusion (HSI)-induced cardiovascular response after hypotensive hemorrhage (HH) remains to be clarified. Hence, the present study sought to determine the role of noradrenergic neurons in HSI-induced hemodynamic recovery in male Wistar rats (290–320 g) with HH. Medullary catecholaminergic neurons were lesioned by nanoinjection of antidopamine-β-hydroxylase–saporin (0.105 ng·nl−1) into A1, A2, or both (LES A1; LES A2; or LES A1+A2, respectively). Sham rats received nanoinjections of free saporin in the same regions (SHAM A1; SHAM A2; or SHAM A1+A2, respectively). After 15 days, rats were anesthetized and instrumented for cardiovascular recordings. Following 10 min of stabilization, HH was performed by withdrawing arterial blood until mean arterial pressure (MAP) reaches 60 mmHg. Subsequently, HSI was performed (NaCl 3 M; 1.8 ml·kg−1, i.v.). The HH procedure caused hypotension and bradycardia and reduced renal, aortic, and hind limb blood flows (RBF, ABF, and HBF). The HSI restored MAP, heart rate (HR), and RBF to baseline values in the SHAM, LES A1, and LES A2 groups. However, concomitant A1 and A2 lesions impaired this recovery, as demonstrated by the abolishment of MAP, RBF, and ABF responses. Although lesioning of only a group of neurons (A1 or A2) was unable to prevent HSI-induced recovery of cardiovascular parameters after hemorrhage, lesions of both A1 and A2 made this response unfeasible. These findings show that together the A1 and A2 neurons are essential to HSI-induced cardiovascular recovery in hypovolemia. By implication, simultaneous A1 and A2 dysfunctions could impair the efficacy of HSI-induced recovery during hemorrhage.
Collapse
Affiliation(s)
- Stefanne Madalena Marques
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Lara Marques Naves
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Talita de Melo E Silva
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Juliana Milan Alves
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcos Luiz Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Carlos Henrique de Castro
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | | | | | - Rodrigo Mello Gomes
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carlos Henrique Xavier
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
10
|
Tapa S, Wang L, Francis Stuart SD, Wang Z, Jiang Y, Habecker BA, Ripplinger CM. Adrenergic supersensitivity and impaired neural control of cardiac electrophysiology following regional cardiac sympathetic nerve loss. Sci Rep 2020; 10:18801. [PMID: 33139790 PMCID: PMC7608682 DOI: 10.1038/s41598-020-75903-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Myocardial infarction (MI) can result in sympathetic nerve loss in the infarct region. However, the contribution of hypo-innervation to electrophysiological remodeling, independent from MI-induced ischemia and fibrosis, has not been comprehensively investigated. We present a novel mouse model of regional cardiac sympathetic hypo-innervation utilizing a targeted-toxin (dopamine beta-hydroxylase antibody conjugated to saporin, DBH-Sap), and measure resulting electrophysiological and Ca2+ handling dynamics. Five days post-surgery, sympathetic nerve density was reduced in the anterior left ventricular epicardium of DBH-Sap hearts compared to control. In Langendorff-perfused hearts, there were no differences in mean action potential duration (APD80) between groups; however, isoproterenol (ISO) significantly shortened APD80 in DBH-Sap but not control hearts, resulting in a significant increase in APD80 dispersion in the DBH-Sap group. ISO also produced spontaneous diastolic Ca2+ elevation in DBH-Sap but not control hearts. In innervated hearts, sympathetic nerve stimulation (SNS) increased heart rate to a lesser degree in DBH-Sap hearts compared to control. Additionally, SNS produced APD80 prolongation in the apex of control but not DBH-Sap hearts. These results suggest that hypo-innervated hearts have regional super-sensitivity to circulating adrenergic stimulation (ISO), while having blunted responses to SNS, providing important insight into the mechanisms of arrhythmogenesis following sympathetic nerve loss.
Collapse
Affiliation(s)
- Srinivas Tapa
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Lianguo Wang
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Samantha D Francis Stuart
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Zhen Wang
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Yanyan Jiang
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Irvine KA, Sahbaie P, Ferguson AR, Clark JD. Loss of diffuse noxious inhibitory control after traumatic brain injury in rats: A chronic issue. Exp Neurol 2020; 333:113428. [PMID: 32745472 PMCID: PMC11793995 DOI: 10.1016/j.expneurol.2020.113428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Chronic pain is one of the most challenging and debilitating symptoms to manage after traumatic brain injury (TBI), yet the underlying mechanisms remain elusive. The disruption of normal endogenous pain control mechanisms has been linked to several forms of chronic pain and may play a role in pain after TBI. We hypothesized therefore that dysfunctional descending noradrenergic and serotonergic pain control circuits may contribute to the loss of diffuse noxious inhibitory control (DNIC), a critical endogenous pain control mechanism, weeks to months after TBI. For these studies, the rat lateral fluid percussion model of mild TBI was used along with a DNIC paradigm involving a capsaicin-conditioning stimulus. We observed sustained failure of the DNIC response up to 180-days post injury. We confirmed, that descending α2 adrenoceptor-mediated noradrenergic signaling was critical for endogenous pain inhibition in uninjured rats. However, augmenting descending noradrenergic signaling using reboxetine, a selective noradrenaline reuptake inhibitor, failed to restore DNIC after TBI. Furthermore, blocking serotonin-mediated descending signaling using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine was also unsuccessful at restoring endogenous pain modulation after TBI. Unexpectedly, increasing descending serotonergic signaling using the selective serotonin reuptake inhibitor escitalopram and the serotonin-norepinephrine reuptake inhibitor duloxetine restored the DNIC response in TBI rats at both 49- and 180- days post injury. Consistent with these observations, spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine eliminated the effects of escitalopram. Intact α2 adrenoceptor signaling, however, was not required for the serotonin-mediated restoration of DNIC after TBI. These results suggest that TBI causes maladaptation of descending nociceptive signaling mechanisms and changes in the function of both adrenergic and serotonergic circuits. Such changes could predispose those with TBI to chronic pain.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA.
| | - Peyman Sahbaie
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA
| | - Adam R Ferguson
- University of California San Francisco, Brain and Spinal Injury Center, Department Neurosurgery, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA
| |
Collapse
|
12
|
Weselek G, Keiner S, Fauser M, Wagenführ L, Müller J, Kaltschmidt B, Brandt MD, Gerlach M, Redecker C, Hermann A, Storch A. Norepinephrine is a negative regulator of the adult periventricular neural stem cell niche. Stem Cells 2020; 38:1188-1201. [PMID: 32473039 DOI: 10.1002/stem.3232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
The limited proliferative capacity of neuroprogenitor cells (NPCs) within the periventricular germinal niches (PGNs) located caudal of the subventricular zone (SVZ) of the lateral ventricles together with their high proliferation capacity after isolation strongly implicates cell-extrinsic humoral factors restricting NPC proliferation in the hypothalamic and midbrain PGNs. We comparatively examined the effects of norepinephrine (NE) as an endogenous candidate regulator of PGN neurogenesis in the SVZ as well as the periventricular hypothalamus and the periaqueductal midbrain. Histological and neurochemical analyses revealed that the pattern of NE innervation of the adult PGNs is inversely associated with their in vivo NPC proliferation capacity with low NE levels coupled to high NPC proliferation in the SVZ but high NE levels coupled to low NPC proliferation in hypothalamic and midbrain PGNs. Intraventricular infusion of NE decreased NPC proliferation and neurogenesis in the SVZ-olfactory bulb system, while pharmacological NE inhibition increased NPC proliferation and early neurogenesis events in the caudal PGNs. Neurotoxic ablation of NE neurons using the Dsp4-fluoxetine protocol confirmed its inhibitory effects on NPC proliferation. Contrarily, NE depletion largely impairs NPC proliferation within the hippocampus in the same animals. Our data indicate that norepinephrine has opposite effects on the two fundamental neurogenic niches of the adult brain with norepinephrine being a negative regulator of adult periventricular neurogenesis. This knowledge might ultimately lead to new therapeutic approaches to influence neurogenesis in hypothalamus-related metabolic diseases or to stimulate endogenous regenerative potential in neurodegenerative processes such as Parkinson's disease.
Collapse
Affiliation(s)
- Grit Weselek
- Department of Neurology, University of Rostock, Rostock, Germany.,Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Germany
| | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, Rostock, Germany.,Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Lisa Wagenführ
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Julia Müller
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology and Molecular Neurobiology, University of Bielefeld, Germany
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Manfred Gerlach
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Redecker
- Hans Berger Department of Neurology, Jena University Hospital, Germany.,Department of Neurology, Klinikum Lippe, Lemgo, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Germany.,Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University of Rostock, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany.,Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Germany
| |
Collapse
|
13
|
Ritter S, Li AJ, Wang Q. Hindbrain glucoregulatory mechanisms: Critical role of catecholamine neurons in the ventrolateral medulla. Physiol Behav 2019; 208:112568. [PMID: 31173784 PMCID: PMC7015674 DOI: 10.1016/j.physbeh.2019.112568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022]
Abstract
Glucose is the required metabolic substrate for the brain. Yet the brain stores very little glucose. Therefore, the brain continuously monitors glucose availability to detect hypoglycemia and to mobilize system-wide responses to protect and restore euglycemia. Catecholamine (CA) neurons in the hindbrain are critical elements of the brain's glucoregulatory mechanisms. They project widely throughout the brain and spinal cord, innervating sites controlling behavioral, endocrine and visceral responses. Hence, CA neurons are capable of triggering a rapid, coordinated and multifaceted response to glucose challenge. This article reviews experimental data that has begun to elucidate the importance of CA neurons for glucoregulation, the functions of specific CA subpopulations in the ventrolateral medulla, and the extended circuitry through which they engage other levels of the nervous system to accomplish their essential glucoregulatory task. Hopefully, this review also suggests the vast amount of work yet to be done in this area and the justification for engaging in that effort.
Collapse
Affiliation(s)
- Sue Ritter
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America.
| | - Ai-Jun Li
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America
| | - Qing Wang
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America
| |
Collapse
|
14
|
Murtazina AR, Nikishina YO, Dil'mukhametova LK, Sapronova AY, Ugrumov MV. The Role of the Brain in the Regulation of Peripheral Noradrenaline-producing Organs in Rats During Morphogenesis. DOKL BIOCHEM BIOPHYS 2019; 486:243-246. [PMID: 31367831 DOI: 10.1134/s1607672919030207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 11/23/2022]
Abstract
This work represents one part of our research project, in which we attempted to prove that a humoral regulation between noradrenaline-producing organs exist in the perinatal period. In this study, we used a rat model that allowed blocking the synthesis of noradrenalin in the brain and evaluated gene expression and protein levels of noradrenaline key synthesis enzymes such as tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) in peripheral noradrenaline-producing organs. As a result, we showed an increased gene expression of TH and DBH in adrenal glands. These data indicate that, if neonatal rat brain lacks the ability to produce noradrenaline, then the synthesis of noradrenaline in adrenal glands increased as a compensatory process, so that the concentration levels in blood are maintained at normal levels. This indicates that there is a humoral regulation between brain and adrenal glands, which is not fully understood yet.
Collapse
Affiliation(s)
- A R Murtazina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, 119334, Moscow, Russia
| | - Yu O Nikishina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, 119334, Moscow, Russia.
| | - L K Dil'mukhametova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, 119334, Moscow, Russia
| | - A Ya Sapronova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, 119334, Moscow, Russia
| | - M V Ugrumov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, 119334, Moscow, Russia
| |
Collapse
|
15
|
Devoto P, Flore G, Saba P, Scheggi S, Mulas G, Gambarana C, Spiga S, Gessa GL. Noradrenergic terminals are the primary source of α 2-adrenoceptor mediated dopamine release in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:97-103. [PMID: 30472147 DOI: 10.1016/j.pnpbp.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022]
Abstract
In various psychiatric disorders, deficits in dopaminergic activity in the prefrontal cortex (PFC) are implicated. Treatments involving selective augmentation of dopaminergic activity in the PFC primarily depend on the inhibition of α2-adrenoreceptors singly or in combination with the inhibition of the norepinephrine transporter (NET). We aimed to clarify the relative contribution of dopamine (DA) release from noradrenergic and dopaminergic terminals to DA output induced by blockade of α2-adrenoreceptors and NET. To this end, we assessed whether central noradrenergic denervation modified catecholamine output in the medial PFC (mPFC) of rats elicited by atipamezole (an α2-adrenoreceptor antagonist), nisoxetine (an NET inhibitor), or their combination. Intraventricular administration of anti-dopamine-beta-hydroxylase-saporin (aDBH) caused a loss of DBH-positive fibers in the mPFC and almost total depletion of tissue and extracellular NE level; however, it did not reduce tissue DA level but increased extracellular DA level by 70% in the mPFC. Because noradrenergic denervation should have caused a loss of NET and reduced NE level at α2-adrenoceptors, the actual effect of an aDBH-induced lesion on DA output elicited by blockade of α2-adrenoceptors and NET was evaluated by comparing denervated and control rats following blockade of α2-adrenoceptors and NET with atipamezole and nisoxetine, respectively. In the control rats, extracellular NE and DA levels increased by approximately 150% each with 3 mg/kg atipamezole; 450% and 230%, respectively, with 3 mg/kg nisoxetine; and 2100% and 600%, respectively, with combined atipamezole and nisoxetine. In the denervated rats, consistent with the loss of NET, nisoxetine failed to modify extracellular DA level, whereas atipamezole, despite the lack of NE-induced stimulation of α2-adrenoceptors, increased extracellular DA level by approximately 30%. Overall, these results suggest that atipamezole-induced DA release mainly originated from noradrenergic terminals, possibly through the inhibition of α2-autoreceptors. Furthermore, while systemic and local administration of the α2-adrenoceptor agonist clonidine into the mPFC of the controls rats reduced extracellular NE level by 80% and 60%, respectively, and extracellular DA level by 50% and 60%, respectively, it failed to reduce DA output in the denervated rats, consistent with the loss of α2-autoreceptors. To eliminate the possibility that denervation reduced DA release potential via the effects at dopaminergic terminals in the mPFC, the effect of systemic administration of the D2-DA antagonist raclopride (0.5 mg/kg IP) on DA output was analyzed. In the control rats, raclopride was found to be ineffective when administered alone, but it increased extracellular DA level by 380% following NET inhibition with nisoxetine. In the denervated rats, as expected due to the loss of NET, raclopride-alone or with nisoxetine-increased DA release to approximately the same level as that observed in the control rats after NET inhibition. Overall, these results suggest that noradrenergic terminals in the mPFC are the primary source of DA released by blockade of α2-adrenoreceptors and NET and that α2-autoreceptors, and not α2-heteroreceptors, mediate DA output induced by α2-adrenoceptor blockade.
Collapse
Affiliation(s)
- Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience, INN, Section of Cagliari, Italy.
| | - Giovanna Flore
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giovanna Mulas
- Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Saturnino Spiga
- Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy; National Research Council, CNR, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
16
|
Kelly SC, McKay EC, Beck JS, Collier TJ, Dorrance AM, Counts SE. Locus Coeruleus Degeneration Induces Forebrain Vascular Pathology in a Transgenic Rat Model of Alzheimer's Disease. J Alzheimers Dis 2019; 70:371-388. [PMID: 31177220 PMCID: PMC6929678 DOI: 10.3233/jad-190090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noradrenergic locus coeruleus (LC) neuron loss is a significant feature of mild cognitive impairment and Alzheimer's disease (AD). The LC is the primary source of norepinephrine in the forebrain, where it modulates attention and memory in vulnerable cognitive regions such as prefrontal cortex (PFC) and hippocampus. Furthermore, LC-mediated norepinephrine signaling is thought to play a role in blood-brain barrier (BBB) maintenance and neurovascular coupling, suggesting that LC degeneration may impact the high comorbidity of cerebrovascular disease and AD. However, the extent to which LC projection system degeneration influences vascular pathology is not fully understood. To address this question in vivo, we stereotactically lesioned LC projection neurons innervating the PFC of six-month-old Tg344-19 AD rats using the noradrenergic immunotoxin, dopamine-β-hydroxylase IgG-saporin (DBH-sap), or an untargeted control IgG-saporin (IgG-sap). DBH-sap-lesioned animals performed significantly worse than IgG-sap animals on the Barnes maze task in measures of both spatial and working memory. DBH-sap-lesioned rats also displayed increased amyloid and inflammation pathology compared to IgG-sap controls. However, we also discovered prominent parenchymal albumin extravasation with DBH-sap lesions indicative of BBB breakdown. Moreover, microvessel wall-to-lumen ratios were increased in the PFC of DBH-sap compared to IgG-sap rats, suggesting that LC deafferentation results in vascular remodeling. Finally, we noted an early emergence of amyloid angiopathy in the DBH-sap-lesioned Tg344-19 AD rats. Taken together, these data indicate that LC projection system degeneration is a nexus lesion that compromises both vascular and neuronal function in cognitive brain areas during the prodromal stages of AD.
Collapse
Affiliation(s)
- Sarah C. Kelly
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Erin C. McKay
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - John S. Beck
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J. Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Anne M. Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Scott E. Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI, USA
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Verkhratsky A, Parpura V, Rodriguez-Arellano JJ, Zorec R. Astroglia in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:273-324. [PMID: 31583592 DOI: 10.1007/978-981-13-9913-8_11] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is the most common cause of dementia. Cellular changes in the brains of the patients suffering from Alzheimer's disease occur well in advance of the clinical symptoms. At the cellular level, the most dramatic is a demise of neurones. As astroglial cells carry out homeostatic functions of the brain, it is certain that these cells are at least in part a cause of Alzheimer's disease. Historically, Alois Alzheimer himself has recognised this at the dawn of the disease description. However, the role of astroglia in this disease has been understudied. In this chapter, we summarise the various aspects of glial contribution to this disease and outline the potential of using these cells in prevention (exercise and environmental enrichment) and intervention of this devastating disease.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.,University of Rijeka, Rijeka, Croatia
| | - Jose Julio Rodriguez-Arellano
- BioCruces Health Research Institute, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Department of Neuroscience, The University of the Basque Country UPV/EHU, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
18
|
Leanza G, Gulino R, Zorec R. Noradrenergic Hypothesis Linking Neurodegeneration-Based Cognitive Decline and Astroglia. Front Mol Neurosci 2018; 11:254. [PMID: 30100866 PMCID: PMC6072880 DOI: 10.3389/fnmol.2018.00254] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
In the past, manipulation of the cholinergic system was seen as the most likely therapeutic for neurodegeneration-based cognitive decline in Alzheimer's disease (AD) (Whitehouse et al., 1982). However, targeting the noradrenergic system also seems a promising strategy, since more recent studies revealed that in post-mortem tissue from patients with AD and other neurodegenerative disorders there is a robust correlation between cognitive decline and loss of neurons from the Locus coeruleus (LC), a system with diffuse noradrenaline (NA) innervation in the central nervous system (CNS). Therefore, the hypothesis has been considered that increasing NA signaling in the CNS will prevent, or at least halt the progression of neurodegeneration and cognitive decline. A hallmark of the age- and neurodegeneration-related cognitive decline is reduced neurogenesis. We here discuss noradrenergic dysfunction in AD-related cognitive decline in humans and its potential involvement in AD pathology and disease progression. We also focus on animal models to allow the validation of the noradrenergic hypothesis of AD, including those based upon the immunotoxin-mediated ablation of LC based on saporin, a protein synthesis interfering agent, which offers selective and graded demise of LC neurons, Finally, we address how astrocytes, an abundant and functionally heterogeneous cell type of neuroglia maintaining homeostasis, may participate in the regulation of neurogenesis, a new strategy for preventing LC neuron loss.
Collapse
Affiliation(s)
- Giampiero Leanza
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
19
|
Li AJ, Wang Q, Ritter S. Activation of catecholamine neurons in the ventral medulla reduces CCK-induced hypophagia and c-Fos activation in dorsal medullary catecholamine neurons. Am J Physiol Regul Integr Comp Physiol 2018; 315:R442-R452. [PMID: 29874094 DOI: 10.1152/ajpregu.00107.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Catecholamine (CA) neurons within the A1 and C1 cell groups in the ventrolateral medulla (VLM) potently increase food intake when activated by glucose deficit. In contrast, CA neurons in the A2 cell group of the dorsomedial medulla are required for reduction of food intake by cholecystokinin (CCK), a peptide that promotes satiation. Thus dorsal and ventral medullary CA neurons are activated by divergent metabolic conditions and mediate opposing behavioral responses. Acute glucose deficit is a life-threatening condition, and increased feeding is a key response that facilitates survival of this emergency. Thus, during glucose deficit, responses to satiation signals, like CCK, must be suppressed to ensure glucorestoration. Here we test the hypothesis that activation of VLM CA neurons inhibits dorsomedial CA neurons that participate in satiation. We found that glucose deficit produced by the antiglycolytic glucose analog, 2-deoxy-d-glucose, attenuated reduction of food intake by CCK. Moreover, glucose deficit increased c-Fos expression by A1 and C1 neurons while reducing CCK-induced c-Fos expression in A2 neurons. We also selectively activated A1/C1 neurons in TH-Cre+ transgenic rats in which A1/C1 neurons were transfected with a Cre-dependent designer receptor exclusively activated by a designer drug (DREADD). Selective activation of A1/C1 neurons using the DREADD agonist, clozapine- N-oxide, attenuated reduction of food intake by CCK and prevented CCK-induced c-Fos expression in A2 CA neurons, even under normoglycemic conditions. Results support the hypothesis that activation of ventral CA neurons attenuates satiety by inhibiting dorsal medullary A2 CA neurons. This mechanism may ensure that satiation does not terminate feeding before restoration of normoglycemia.
Collapse
Affiliation(s)
- Ai-Jun Li
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Qing Wang
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Sue Ritter
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
20
|
Gálosi R, Petykó Z, Kállai V, Tóth A, Ollmann T, Péczely L, Kovács A, Berta B, Lénárd L. Destruction of noradrenergic terminals increases dopamine concentration and reduces dopamine metabolism in the medial prefrontal cortex. Behav Brain Res 2018; 344:57-64. [PMID: 29454007 DOI: 10.1016/j.bbr.2018.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023]
Abstract
Effects of destroyed noradrenergic (NE) innervation in the medial prefrontal cortex (mPFC) were examined on dopamine (DA) content and metabolism. Six-hydroxy-DOPA (6-OHDOPA) or 6-hydroxy-dopamine (6-OHDA) in combination with a potent DA reuptake inhibitor GBR 12935 or 6-OHDA were injected bilaterally into the mPFC in separate groups of animals. In addition, GBR 12935 or vehicle was injected into the mPFC in two other groups of animals as control experiments. NE and DA concentrations from postmortem tissue of the mPFC were measured using HPLC with electrochemical detection. In addition, extracellular NE, DA and DOPAC levels were determined using in vivo microdialysis after the 6-OHDA lesion in combination with GBR 12935 pretreatment in the mPFC. Using reverse microdialysis of alpha-2-adrenoreceptor antagonist yohimbine, we tested the remaining activity of NE innervation and the extracellular concentration of DA and DOPAC. NE and DA concentrations from postmortem tissue of the mPFC showed that 6-OHDOPA lesion reduced NE concentration to 76%, which was a non-significant alteration, however it enhanced significantly DA concentration to 186% compared to vehicle. After 6-OHDA lesion with GBR 12935 pretreatment, concentration of NE significantly decreased to 51% and DA level increased to 180%. 6-OHDA lesion without GBR 12635 pretreatment decreased NE concentration to 23% and DA concentration to 67%. In the microdialysis experiment, after 6-OHDA lesion with GBR 12935 pretreatment, extracellular NE levels were not detectable, whereas extracellular DA levels were increased and DOPAC levels were decreased compared to controls. Reverse microdialysis of yohimbine demonstrated that the residual NE innervation was able to increase NE level and DA levels, but DOPAC concentration remained low after lesion of the NE terminals. These findings suggest that the damage of NE innervation in the mPFC may alter extracellular DA level due to a reduced DA clearance.
Collapse
Affiliation(s)
- Rita Gálosi
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary.
| | - Zoltán Petykó
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary; Molecular Neuroendocrinology Research Group, University of Pécs, Szentágothai Research Center, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Attila Tóth
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary; Molecular Neuroendocrinology Research Group, University of Pécs, Szentágothai Research Center, Pécs, Hungary
| |
Collapse
|
21
|
Patrone LGA, Biancardi V, Marques DA, Bícego KC, Gargaglioni LH. Brainstem catecholaminergic neurones and breathing control during postnatal development in male and female rats. J Physiol 2018; 596:3299-3325. [PMID: 29479699 DOI: 10.1113/jp275731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/21/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS The brainstem catecholaminergic (CA) modulation on ventilation changes with development. We determined the role of the brainstem CA system in ventilatory control under normocapnic and hypercapnic conditions during different phases of development [postnatal day (P)7-8, P14-15 and P20-21] in male and female Wistar rats. Brainstem CA neurones produce a tonic inhibitory drive that affects breathing frequency in P7-8 rats and provide an inhibitory drive during hypercapnic conditions in both males and females at P7-8 and P14-15. In pre-pubertal rats, brainstem CA neurones become excitatory for the CO2 ventilatory response in males but remain inhibitory in females. Diseases such as sudden infant death syndrome, congenital central hypoventilation syndrome and Rett syndrome have been associated with abnormalities in the functioning of CA neurones; therefore, the results of the present study contribute to a better understanding of this system. ABSTRACT The respiratory network undergoes significant development during the postnatal phase, including the maturation of the catecholaminergic (CA) system. However, postnatal development of this network and its effect on the control of pulmonary ventilation ( V̇E ) is not fully understood. We investigated the involvement of brainstem CA neurones in respiratory control during postnatal development [postnatal day (P)7-8, P14-15 and P20-21], in male and female rats, through chemical injury with conjugated saporin anti-dopamine β-hydroxylase (DβH-SAP). Thus, DβH-SAP (420 ng μL-1 ), saporin (SAP) or phosphate buffered solution (PBS) was injected into the fourth ventricle of neonatal Wistar rats of both sexes. V̇E and oxygen consumption were recorded 1 week after the injections in unanaesthetized neonatal and juvenile rats during room air and hypercapnia. The resting ventilation was higher in both male and female P7-8 lesioned rats by 33%, with a decrease in respiratory variability being observed in males. The hypercapnic ventilatory response (HCVR) was altered in male and female lesioned rats at all postnatal ages. At P7-8, the HCVR for males and females was increased by 37% and 30%, respectively. For both sexes at P14-15 rats, the increase in V̇E during hypercapnia was 37% higher for lesioned rats. A sex-specific difference in HCRV was observed at P20-21, with lesioned males showing a 33% decrease, and lesioned females showing an increase of 33%. We conclude that brainstem CA neurones exert a tonic inhibitory effect on V̇E in the early postnatal days of the life of a rat, increase variability in P7-8 males and modulate HCRV during the postnatal phase.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Vivian Biancardi
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV at Jaboticabal, SP, Brazil
| |
Collapse
|
22
|
Striatal norepinephrine efflux in l-DOPA-induced dyskinesia. Neurochem Int 2018; 114:85-98. [DOI: 10.1016/j.neuint.2018.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 11/23/2022]
|
23
|
Li AJ, Wang Q, Ritter S. Selective Pharmacogenetic Activation of Catecholamine Subgroups in the Ventrolateral Medulla Elicits Key Glucoregulatory Responses. Endocrinology 2018; 159:341-355. [PMID: 29077837 PMCID: PMC5761588 DOI: 10.1210/en.2017-00630] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022]
Abstract
Catecholamine (CA) neurons in the ventrolateral medulla (VLM) contribute importantly to glucoregulation during glucose deficit. However, it is not known which CA neurons elicit different glucoregulatory responses or whether selective activation of CA neurons is sufficient to elicit these responses. Therefore, to selectively activate CA subpopulations, we injected male or female Th-Cre+ transgenic rats with the Cre-dependent DREADD construct, AAV2-DIO-hSyn-hM3D(Gq)-mCherry, at one of four rostrocaudal levels of the VLM: rostral C1 (C1r), middle C1 (C1m), the area of A1 and C1 overlap (A1/C1), and A1. Transfection was highly selective for CA neurons at each site. Systemic injection of the Designer Receptor Exclusively Activated by Designer Drugs (DREADD) receptor agonist, clozapine-N-oxide (CNO), stimulated feeding in rats transfected at C1r, C1m, or A1/C1 but not A1. CNO increased corticosterone secretion in rats transfected at C1m or A1/C1 but not A1. In contrast, CNO did not increase blood glucose or induce c-Fos expression in the spinal cord or adrenal medulla after transfection of any single VLM site but required dual transfection of both C1m and C1r, possibly indicating that CA neurons mediating blood glucose responses are more sparsely distributed in C1r and C1m than those mediating feeding and corticosterone secretion. These results show that selective activation of C1 CA neurons is sufficient to increase feeding, blood glucose levels, and corticosterone secretion and suggest that each of these responses is mediated by CA neurons concentrated at different levels of the C1 cell group.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| | - Qing Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| | - Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| |
Collapse
|
24
|
Bondarenko NS, Dilmukhametova LK, Kurina AY, Murtazina AR, Sapronova AY, Sysoeva AP, Ugrumov MV. Plasticity of central and peripheral sources of noradrenaline in rats during ontogenesis. BIOCHEMISTRY (MOSCOW) 2017; 82:373-379. [DOI: 10.1134/s0006297917030166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Benn A, Robinson ESJ. Differential roles for cortical versus sub-cortical noradrenaline and modulation of impulsivity in the rat. Psychopharmacology (Berl) 2017; 234:255-266. [PMID: 27744551 PMCID: PMC5203835 DOI: 10.1007/s00213-016-4458-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE Atomoxetine is a noradrenaline re-uptake inhibitor licensed for the treatment of adult and childhood attention deficit hyperactivity disorder. Although atomoxetine has established efficacy, the mechanisms which mediate its effects are not well understood. OBJECTIVES In this study, we investigated the role of cortical versus sub-cortical noradrenaline by using focal dopamine beta hydroxylase-saporin-induced lesions, to the prefrontal cortex (n = 16) or nucleus accumbens shell (n = 18). METHODS Healthy animals were tested by using the forced-choice serial reaction time task to assess the impact of the lesion on baseline performance and the response to atomoxetine and the psychostimulant amphetamine. RESULTS We observed attenuation in the efficacy of atomoxetine in animals with lesions to the nucleus accumbens shell, but not the prefrontal cortex. Amphetamine-induced increases in premature responses were potentiated in animals with lesions to the prefrontal cortex, but not the nucleus accumbens shell. CONCLUSIONS These data suggest that noradrenaline in the nucleus accumbens shell plays an important role in the effects of atomoxetine. Under these conditions, prefrontal cortex noradrenaline did not appear to contribute to atomoxetine's effects suggesting a lack of cortical-mediated "top-down" modulation. Noradrenaline in the prefrontal cortex appears to contribute to the modulation of impulsive responding in amphetamine-treated animals, with a loss of noradrenaline associated with potentiation of its effects. These data demonstrate a potential dissociation between cortical and sub-cortical noradrenergic mechanisms and impulse control in terms of the actions of atomoxetine and amphetamine.
Collapse
Affiliation(s)
- Abigail Benn
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
26
|
Taylor BK, Westlund KN. The noradrenergic locus coeruleus as a chronic pain generator. J Neurosci Res 2016; 95:1336-1346. [PMID: 27685982 DOI: 10.1002/jnr.23956] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
Central noradrenergic centers such as the locus coeruleus (LC) are traditionally viewed as pain inhibitory; however, complex interactions among brainstem pathways and their receptors modulate both inhibition and facilitation of pain. In addition to the well-described role of descending pontospinal pathways that inhibit spinal nociceptive transmission, an emerging body of research now indicates that noradrenergic neurons in the LC and their terminals in the dorsal reticular nucleus (DRt), medial prefrontal cortex (mPFC), spinal dorsal horn, and spinal trigeminal nucleus caudalis participate in the development and maintenance of allodynia and hyperalgesia after nerve injury. With time after injury, we argue that the balance of LC function shifts from pain inhibition to pain facilitation. Thus, the pain-inhibitory actions of antidepressant drugs achieved with elevated noradrenaline concentrations in the dorsal horn may be countered or even superseded by simultaneous activation of supraspinal facilitating systems dependent on α1 -adrenoreceptors in the DRt and mPFC as well as α2 -adrenoreceptors in the LC. Indeed, these opposing actions may account in part for the limited treatment efficacy of tricyclic antidepressants and noradrenaline reuptake inhibitors such as duloxetine for the treatment of chronic pain. We propose that the traditional view of the LC as a pain-inhibitory structure be modified to account for its capacity as a pain facilitator. Future studies are needed to determine the neurobiology of ascending and descending pathways and the pharmacology of receptors underlying LC-mediated pain inhibition and facilitation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Karin N Westlund
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| |
Collapse
|
27
|
Nikishina YO, Murtazina AR, Sapronova AY, Melnikova VI, Bondarenko NS, Ugryumov MV. Reciprocal humoral regulation of endocrine noradrenaline sources in perinatal development of rats. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416050076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Coradazzi M, Gulino R, Fieramosca F, Falzacappa LV, Riggi M, Leanza G. Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis. Neurobiol Aging 2016; 48:93-102. [PMID: 27644078 DOI: 10.1016/j.neurobiolaging.2016.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/05/2016] [Accepted: 08/13/2016] [Indexed: 12/25/2022]
Abstract
Noradrenergic neurons in the locus coeruleus play a role in learning and memory, and their loss is an early event in Alzheimer's disease pathogenesis. Moreover, noradrenaline may sustain hippocampal neurogenesis; however, whether are these events related is still unknown. Four to five weeks following the selective immunotoxic ablation of locus coeruleus neurons, young adult rats underwent reference and working memory tests, followed by postmortem quantitative morphological analyses to assess the extent of the lesion, as well as the effects on proliferation and/or survival of neural progenitors in the hippocampus. When tested in the Water Maze task, lesioned animals exhibited no reference memory deficit, whereas working memory abilities were seen significantly impaired, as compared with intact or sham-lesioned controls. Stereological analyses confirmed a dramatic noradrenergic neuron loss associated to reduced proliferation, but not survival or differentiation, of 5-bromo-2'deoxyuridine-positive progenitors in the dentate gyrus. Thus, ascending noradrenergic afferents may be involved in more complex aspects of cognitive performance (i.e., working memory) possibly via newly generated progenitors in the hippocampus.
Collapse
Affiliation(s)
- Marino Coradazzi
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Francesco Fieramosca
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Lucia Verga Falzacappa
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Margherita Riggi
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Leanza
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
29
|
Kaushal R, Taylor BK, Jamal AB, Zhang L, Ma F, Donahue R, Westlund KN. GABA-A receptor activity in the noradrenergic locus coeruleus drives trigeminal neuropathic pain in the rat; contribution of NAα1 receptors in the medial prefrontal cortex. Neuroscience 2016; 334:148-159. [PMID: 27520081 DOI: 10.1016/j.neuroscience.2016.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/20/2016] [Accepted: 08/03/2016] [Indexed: 12/24/2022]
Abstract
Trigeminal neuropathic pain is described as constant excruciating facial pain. The study goal was to investigate the role of nucleus locus coeruleus (LC) in a model of chronic orofacial neuropathic pain (CCI-ION). The study examines LC's relationship to both the medullary dorsal horn receiving trigeminal nerve sensory innervation and the medial prefrontal cortex (mPFC). LC is a major source of CNS noradrenaline (NA) and a primary nucleus involved in pain modulation. Although descending inhibition of acute pain by LC is well established, contribution of the LC to facilitation of chronic neuropathic pain is also reported. In the present study, a rat orofacial pain model of trigeminal neuropathy was induced by chronic constrictive injury of the infraorbital nerve (CCI-ION). Orofacial neuropathic pain was indicated by development of whisker pad mechanical hypersensitivity. Hypersensitivity was alleviated by selective elimination of NA neurons, including LC (A6 cell group), with the neurotoxin anti-dopamine-β-hydroxylase saporin (anti-DβH-saporin) microinjected either intracerebroventricularly (i.c.v.) or into trigeminal spinal nucleus caudalis (spVc). The GABAA receptor antagonist, bicuculline, administered directly into LC (week 8) inhibited hypersensitivity. This indicates a valence shift in which increased GABAA signaling ongoing in LC after trigeminal nerve injury paradoxically produces excitatory facilitation of the chronic pain state. Microinjection of NAα1 receptor antagonist, benoxathian, into mPFC attenuated whisker pad hypersensitivity, while NAα2 receptor antagonist, idazoxan, was ineffective. Thus, GABAA-mediated activation of NA neurons during CCI-ION can facilitate hypersensitivity through NAα1 receptors in the mPFC. These data indicate LC is a chronic pain generator.
Collapse
Affiliation(s)
- R Kaushal
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - B K Taylor
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - A B Jamal
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - R Donahue
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
30
|
Mohammed M, Kulasekara K, Ootsuka Y, Blessing WW. Locus coeruleus noradrenergic innervation of the amygdala facilitates alerting-induced constriction of the rat tail artery. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1109-19. [PMID: 27101292 DOI: 10.1152/ajpregu.00058.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/11/2016] [Indexed: 02/08/2023]
Abstract
The amygdala, innervated by the noradrenergic locus coeruleus, processes salient environmental events. α2-adrenoceptor-stimulating drugs (clonidine-like agents) suppress the behavioral and physiological components of the response to salient events. Activation of sympathetic outflow to the cutaneous vascular bed is part of the physiological response to salience-mediated activation of the amygdala. We have determined whether acute systemic and intra-amygdala administration of clonidine, and chronic immunotoxin-mediated destruction of the noradrenergic innervation of the amygdala, impairs salience-related vasoconstrictor episodes in the tail artery of conscious freely moving Sprague-Dawley rats. After acute intraperitoneal injection of clonidine (10, 50, and 100 μg/kg), there was a dose-related decrease in the reduction in tail blood flow elicited by alerting stimuli, an effect prevented by prior administration of the α2-adrenergic blocking drug idazoxan (1 mg/kg ip or 75 nmol bilateral intra-amygdala). A dose-related decrease in alerting-induced tail artery vasoconstriction was also observed after bilateral intra-amygdala injection of clonidine (5, 10, and 20 nmol in 200 nl), an effect substantially prevented by prior bilateral intra-amygdala injection of idazoxan. Intra-amygdala injection of idazoxan by itself did not alter tail artery vasoconstriction elicited by alerting stimuli. Intra-amygdala injection of saporin coupled to antibodies to dopamine-β-hydroxylase (immunotoxin) destroyed the noradrenergic innervation of the amygdala and the parent noradrenergic neurons in the locus coeruleus. The reduction in tail blood flow elicited by standardized alerting stimuli was substantially reduced in immunotoxin-treated rats. Thus, inhibiting the release of noradrenaline within the amygdala reduces activation of the sympathetic outflow to the vascular beds elicited by salient events.
Collapse
Affiliation(s)
- Mazher Mohammed
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| | - Keerthi Kulasekara
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| | - Youichirou Ootsuka
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| | - William W Blessing
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep. eNeuro 2016; 3:eN-NWR-0018-16. [PMID: 27022631 PMCID: PMC4801942 DOI: 10.1523/eneuro.0018-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/13/2023] Open
Abstract
Hypocretin 1 and 2 (Hcrts; also known as orexin A and B), excitatory neuropeptides synthesized in cells located in the tuberal hypothalamus, play a central role in the control of arousal. Hcrt inputs to the locus coeruleus norepinephrine (LC NE) system and the posterior hypothalamic histaminergic tuberomammillary nuclei (TMN HA) are important efferent pathways for Hcrt-induced wakefulness. The LC expresses Hcrt receptor 1 (HcrtR1), whereas HcrtR2 is found in the TMN. Although the dual Hcrt/orexin receptor antagonist almorexant (ALM) decreases wakefulness and increases NREM and REM sleep time, the neural circuitry that mediates these effects is currently unknown. To test the hypothesis that ALM induces sleep by selectively disfacilitating subcortical wake-promoting populations, we ablated LC NE neurons (LCx) or TMN HA neurons (TMNx) in rats using cell-type-specific saporin conjugates and evaluated sleep/wake following treatment with ALM and the GABAA receptor modulator zolpidem (ZOL). Both LCx and TMNx attenuated the promotion of REM sleep by ALM without affecting ALM-mediated increases in NREM sleep. Thus, eliminating either HcrtR1 signaling in the LC or HcrtR2 signaling in the TMN yields similar effects on ALM-induced REM sleep without affecting NREM sleep time. In contrast, neither lesion altered ZOL efficacy on any measure of sleep–wake regulation. These results contrast with those of a previous study in which ablation of basal forebrain cholinergic neurons attenuated ALM-induced increases in NREM sleep time without affecting REM sleep, indicating that Hcrt neurotransmission influences distinct aspects of NREM and REM sleep at different locations in the sleep–wake regulatory network.
Collapse
|
32
|
Devoto P, Flore G, Saba P, Frau R, Gessa GL. Selective inhibition of dopamine-beta-hydroxylase enhances dopamine release from noradrenergic terminals in the medial prefrontal cortex. Brain Behav 2015; 5:e00393. [PMID: 26516613 PMCID: PMC4614051 DOI: 10.1002/brb3.393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/08/2015] [Accepted: 08/16/2015] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Disulfiram has been claimed to be useful in cocaine addiction therapy, its efficacy being attributed to dopamine-beta-hydroxylase (DBH) inhibition. Our previous results indicate that disulfiram and the selective DBH inhibitor nepicastat increase extracellular dopamine (DA) in the rat medial prefrontal cortex (mPFC), and markedly potentiated cocaine-induced increase. Concomitantly, in rats with cocaine self-administration history, cocaine-seeking behavior induced by drug priming was prevented, probably through overstimulation of D1 receptors due to the DA increase. The present research was aimed at studying the neurochemical mechanisms originating the enhanced DA release. METHODS Noradrenergic system ablation was attained by intracerebroventricular (i.c.v.) administration of the neurotoxin anti-DBH-saporin (aDBH-sap). DA, noradrenaline (NA), and DOPAC were assessed by HPLC after ex vivo tissue extraction or in vivo microdialysis. Control and denervated rats were subjected to microdialysis in the mPFC and caudate nucleus to evaluate the effect of nepicastat-cocaine combination on extracellular DA levels and their regulation by α2-adrenoceptors. RESULTS Fifteen days after neurotoxin or its vehicle administration, tissue and extracellular NA were reduced to less than 2% the control value, while extracellular DA was increased by approximately 100%. In control rats, nepicastat given alone and in combination with cocaine increased extracellular DA by about 250% and 1100%, respectively. In denervated rats, nepicastat slightly affected extracellular DA, while in combination with cocaine increased extracellular DA by 250%. No differences were found in the caudate nucleus. Clonidine almost totally reversed the extracellular DA elevation produced by nepicastat-cocaine combination, while it was ineffective in denervated rats. CONCLUSIONS This research shows that the increase of extracellular DA produced by nepicastat alone or in combination with cocaine was prevented by noradrenergic denervation. The results indicate that nepicastat enhances DA release from noradrenergic terminals supposedly by removing NA from α2-autoreceptors. In addition to the inhibition of DA uptake, the latter mechanism may explain the synergistic effect of cocaine on nepicastat-induced DA release.
Collapse
Affiliation(s)
- Paola Devoto
- Department of Biomedical Sciences Section of Neuroscience and Clinical Pharmacology University of Cagliari Cagliari Italy ; "Guy Everett Laboratory" University of Cagliari Cagliari Italy ; Center of Excellence "Neurobiology of Addiction" University of Cagliari Cagliari Italy
| | - Giovanna Flore
- Department of Medical Sciences University of Cagliari Cagliari Italy
| | - Pierluigi Saba
- Department of Biomedical Sciences Section of Neuroscience and Clinical Pharmacology University of Cagliari Cagliari Italy
| | - Roberto Frau
- Department of Biomedical Sciences Section of Neuroscience and Clinical Pharmacology University of Cagliari Cagliari Italy ; "Guy Everett Laboratory" University of Cagliari Cagliari Italy
| | - Gian L Gessa
- Department of Biomedical Sciences Section of Neuroscience and Clinical Pharmacology University of Cagliari Cagliari Italy ; "Guy Everett Laboratory" University of Cagliari Cagliari Italy ; National Research Council CNR, Institute of Neuroscience Cagliari Italy
| |
Collapse
|
33
|
Akkouh O, Ng TB, Cheung RCF, Wong JH, Pan W, Ng CCW, Sha O, Shaw PC, Chan WY. Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research. Appl Microbiol Biotechnol 2015; 99:9847-63. [PMID: 26394859 DOI: 10.1007/s00253-015-6941-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes which depurinate ribosomal RNA (rRNA), thus impeding the process of translation resulting in inhibition of protein synthesis. They are produced by various organisms including plants, fungi and bacteria. RIPs from plants are linked to plant defense due to their antiviral, antifungal, antibacterial, and insecticidal activities in which they can be applied in agriculture to combat microbial pathogens and pests. Their anticancer, antiviral, embryotoxic, and abortifacient properties may find medicinal applications. Besides, conjugation of RIPs with antibodies or other carriers to form immunotoxins has been found useful to research in neuroscience and anticancer therapy.
Collapse
Affiliation(s)
- Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Faculty of Technology, University of Applied Sciences Leiden, Zernikdreef 11, 2333 CK, Leiden, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Ou Sha
- School of Medicine, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China.
| | - Pang Chui Shaw
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
34
|
Individual differences in acute pain-induced endogenous analgesia predict time to resolution of postoperative pain in the rat. Anesthesiology 2015; 122:895-907. [PMID: 25581910 DOI: 10.1097/aln.0000000000000593] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic postsurgical pain, a significant public health problem, occurs in 10 to 50% of patients undergoing major surgery. Acute pain induces endogenous analgesia termed conditioned pain modulation (CPM), and the strength of CPM preoperatively predicts the likelihood of chronic postsurgical pain. The relation between CPM and recovery from surgery has not been examined in preclinical models. METHODS CPM was assessed in individual rats and correlated with each animal's time course of recovery of hypersensitivity after partial spinal nerve ligation. The role of descending noradrenergic pathways in the spinal cord to mechanisms of CPM and recovery was tested using idazoxan to block noradrenergic receptors or antidopamine β-hydroxylase-conjugated saporin to ablate these pathways. Behavioral hypersensitivity, static weight bearing, and spinal glial activation were measured after partial spinal nerve ligation. RESULTS The strength of CPM varied over two-fold between individuals and was directly correlated with the slope of recovery from hypersensitivity after surgery (P < 0.0001; r = 0.660). CPM induced the release of norepinephrine in the spinal cord and was partially blocked by intrathecal idazoxan or dopamine β-hydroxylase-saporin. Dopamine β-hydroxylase-saporin also slowed recovery and enhanced spinal glial activation after partial spinal nerve ligation surgery. Ongoing activation of these pathways was critical to sustained recovery because intrathecal dopamine β-hydroxylase-saporin given 7 weeks after recovery reinstituted hypersensitivity, while having no effect in animals without previous surgery. CONCLUSION Collectively, these studies provide a clear back-translation from clinical observations of CPM and chronic postsurgical pain and suggest that the ability to engage ongoing descending endogenous noradrenergic signaling may be critical in determining time course of recovery from hypersensitivity after surgery.
Collapse
|
35
|
Li AJ, Wang Q, Davis H, Wang R, Ritter S. Orexin-A enhances feeding in male rats by activating hindbrain catecholamine neurons. Am J Physiol Regul Integr Comp Physiol 2015; 309:R358-67. [PMID: 26062632 DOI: 10.1152/ajpregu.00065.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/05/2015] [Indexed: 11/22/2022]
Abstract
Both lateral hypothalamic orexinergic neurons and hindbrain catecholaminergic neurons contribute to control of feeding behavior. Orexin fibers and terminals are present in close proximity to hindbrain catecholaminergic neurons, and fourth ventricular (4V) orexin injections that increase food intake also increase c-Fos expression in hindbrain catecholamine neurons, suggesting that orexin neurons may stimulate feeding by activating catecholamine neurons. Here we examine that hypothesis in more detail. We found that 4V injection of orexin-A (0.5 nmol/rat) produced widespread activation of c-Fos in hindbrain catecholamine cell groups. In the A1 and C1 cell groups in the ventrolateral medulla, where most c-Fos-positive neurons were also dopamine β hydroxylase (DBH) positive, direct injections of a lower dose (67 pmol/200 nl) of orexin-A also increased food intake in intact rats. Then, with the use of the retrogradely transported immunotoxin, anti-DBH conjugated to saporin (DSAP), which targets and destroys DBH-expressing catecholamine neurons, we examined the hypothesis that catecholamine neurons are required for orexin-induced feeding. Rats given paraventricular hypothalamic injections of DSAP, or unconjugated saporin (SAP) as control, were implanted with 4V or lateral ventricular (LV) cannulas and tested for feeding in response to ventricular injection of orexin-A (0.5 nmol/rat). Both LV and 4V orexin-A stimulated feeding in SAP controls, but DSAP abolished these responses. These results reveal for the first time that catecholamine neurons are required for feeding induced by injection of orexin-A into either LV or 4V.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Qing Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Hana Davis
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Rong Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
36
|
Shin E, Rogers JT, Devoto P, Björklund A, Carta M. Noradrenaline neuron degeneration contributes to motor impairments and development of L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Exp Neurol 2014; 257:25-38. [DOI: 10.1016/j.expneurol.2014.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
|
37
|
Ostock CY, Lindenbach D, Goldenberg AA, Kampton E, Bishop C. Effects of noradrenergic denervation by anti-DBH-saporin on behavioral responsivity to L-DOPA in the hemi-parkinsonian rat. Behav Brain Res 2014; 270:75-85. [PMID: 24837745 DOI: 10.1016/j.bbr.2014.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 11/19/2022]
Abstract
Dopamine (DA) replacement with l-DOPA remains the most effective pharmacotherapy for motor symptoms of Parkinson's disease (PD) including tremor, postural instability, akinesia, and bradykinesia. Prolonged L-DOPA use frequently leads to deleterious side effects including involuntary choreic and dystonic movements known as L-DOPA induced dyskinesias (LID). DA loss in PD is frequently accompanied by concomitant noradrenergic (NE) denervation of the locus coeruleus (LC); however, the effects of NE loss on L-DOPA efficacy and LID remain controversial and are often overlooked in traditional animal models of PD. The current investigation examined the role of NE loss in L-DOPA therapy by employing the NE specific neurotoxin anti-DA-beta hydroxylase saporin (αDBH) in a rat model of PD. Rats received unilateral 6-hydroxydopamine lesions of the medial forebrain bundle to deplete nigral DA and intraventricular injection of vehicle (DA lesioned rats) or αDBH (DANE lesioned rats) to destroy NE neurons bilaterally. Results indicated that αDBH infusion drastically reduced NE neuron markers within the LC compared to rats that received vehicle treatment. Behaviorally, this loss did not alter the development or expression of L-DOPA- or DA agonist-induced dyskinesia. However, rats with additional NE lesions were less responsive to L-DOPA's pro-motor effects. Indeed, DANE lesioned animals rotated less and showed less attenuation of parkinsonian stepping deficits following high doses of L-DOPA than DA lesioned animals. These findings suggest that severe NE loss may reduce L-DOPA treatment efficacy and demonstrate that degradation of the NE system is an important consideration when evaluating L-DOPA effects in later stage PD.
Collapse
Affiliation(s)
- Corinne Y Ostock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA.
| | - David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA.
| | - Adam A Goldenberg
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA.
| | - Elias Kampton
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA.
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
38
|
Flak JN, Myers B, Solomon MB, McKlveen JM, Krause EG, Herman JP. Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress. Eur J Neurosci 2014; 39:1903-11. [PMID: 24766138 DOI: 10.1111/ejn.12587] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
Chronic variable stress (CVS) exposure modifies the paraventricular nucleus of the hypothalamus (PVN) in a manner consistent with enhanced central drive of the hypothalamo-pituitary-adrenocortical (HPA) axis. As previous reports suggest that post-stress enhancement of norepinephrine (NE) action contributes to chronic stress regulation at the level of the PVN, we hypothesised that PVN-projecting NE neurons were necessary for the stress facilitatory effects of CVS. Following intra-PVN injection of saporin toxin conjugated to a dopamine beta-hydroxylase (DBH) antibody (DSAP), in rats PVN DBH immunoreactivity was almost completely eliminated, but immunoreactive afferents to other key regions involved in stress integration were spared (e.g. DBH fiber densities were unaffected in the central nucleus of the amygdala). Reductions in DBH-positive fiber density were associated with reduced numbers of DBH-immunoreactive neurons in the nucleus of the solitary tract and locus coeruleus. Following 2 weeks of CVS, DSAP injection did not alter stress-induced adrenal hypertrophy or attenuation of body weight gain, indicating that PVN-projecting NE [and epinephrine (E)] neurons are not essential for these physiological effects of chronic stress. In response to acute restraint stress, PVN-targeted DSAP injection attenuated peak adrenocorticotrophic hormone (ACTH) and corticosterone in controls, but only attenuated peak ACTH in CVS animals, suggesting that enhanced adrenal sensitivity compensated for reduced excitatory drive of the PVN. Our data suggest that PVN-projecting NE/E neurons contribute to the generation of acute stress responses, and are required for HPA axis drive (ACTH release) during chronic stress. However, loss of NE/E drive at the PVN appears to be buffered by compensation at the level of the adrenal.
Collapse
Affiliation(s)
- Jonathan N Flak
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Psychiatry North, Building E, 2nd Floor, 2170 East Galbraith Road, Cincinnati, OH, 45237-0506, USA; Neuroscience Program, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
39
|
Freiria-Oliveira AH, Blanch GT, De Paula PM, Menani JV, Colombari DSA. Lesion of the commissural nucleus of the solitary tract/A2 noradrenergic neurons facilitates the activation of angiotensinergic mechanisms in response to hemorrhage. Neuroscience 2013; 254:196-204. [PMID: 24060823 DOI: 10.1016/j.neuroscience.2013.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/20/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022]
Abstract
In the present study, we investigated the effects of lesions of A2 neurons of the commissural nucleus of the solitary tract (cNTS) alone or combined with the blockade of angiotensinergic mechanisms on the recovery of arterial pressure (AP) to hemorrhage in conscious rats. Male Holtzman rats (280-320g) received an injection of anti-dopamine-beta-hydroxylase-saporin (12.6ng/60nl; cNTS/A2-lesion, n=28) or immunoglobulin G (IgG)-saporin (12.6ng/60nl, sham, n=24) into the cNTS and 15-21days later had a stainless steel cannula implanted in the lateral ventricle. After 6days, rats were submitted to hemorrhage (four blood withdrawals, 2ml/300g of body weight every 10min). Both cNTS/A2-lesioned and sham rats had similar hypotension to hemorrhage (-62±7 and -73±7mmHg, respectively), however cNTS/A2-lesioned rats rapidly recovered from hypotension (-5±3mmHg at 30min), whereas sham rats did not completely recover until the end of the recording (-20±3mmHg at 60min). Losartan (angiotensin type 1 receptor antagonist) injected intracerebroventricularly (100μg/1μl) or intravenously (i.v.) (10mg/kg of body weight) impaired the recovery of AP in cNTS/A2-lesioned rats (-24±6 and -35±7mmHg at 30min, respectively). In sham rats, only i.v. losartan affected the recovery of AP (-39±6mmHg at 60min). The results suggest that lesion of the A2 neurons in the cNTS facilitates the activation of the angiotensinergic pressor mechanisms in response to hemorrhage.
Collapse
Affiliation(s)
- A H Freiria-Oliveira
- Department of Pathology and Physiology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
40
|
Bitzenhofer SH, Hanganu-Opatz IL. Oscillatory coupling within neonatal prefrontal-hippocampal networks is independent of selective removal of GABAergic neurons in the hippocampus. Neuropharmacology 2013; 77:57-67. [PMID: 24056266 DOI: 10.1016/j.neuropharm.2013.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/13/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022]
Abstract
GABAergic neurons have been proposed to control oscillatory entrainment and cognitive processing in prefrontal-hippocampal networks. Co-activation of these networks emerges already during neonatal development, with hippocampal theta bursts driving prefrontal oscillations via axonal projections. The cellular substrate of neonatal prefrontal-hippocampal communication and in particular, the role of GABAergic neurons, is still unknown. Here, we used saporin-conjugated anti-vesicular GABA transporter antibodies to cause selective immunotoxic lesion of GABAergic neurons in the CA1 area of the hippocampus during the first postnatal week. Without affecting the somatic development of rat pups, the lesion impaired the generation of hippocampal sharp waves, but not of theta bursts during neonatal development. Moreover, the oscillatory entrainment and firing of neonatal prefrontal cortex as well as the early prefrontal-hippocampal synchrony were largely independent of GABAergic neurotransmission in the hippocampus. Thus, hippocampal interneurons are critical elements for the ontogeny of hippocampal sharp waves, but seem to not control the directed oscillatory coupling between the neonatal prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Sebastian H Bitzenhofer
- Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
41
|
da Silva EF, Freiria-Oliveira AH, Custódio CHX, Ghedini PC, Bataus LAM, Colombari E, de Castro CH, Colugnati DB, Rosa DA, Cravo SLD, Pedrino GR. A1 noradrenergic neurons lesions reduce natriuresis and hypertensive responses to hypernatremia in rats. PLoS One 2013; 8:e73187. [PMID: 24039883 PMCID: PMC3769347 DOI: 10.1371/journal.pone.0073187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group) contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS) infusion in non-anesthetized rats. Male Wistar rats (280-340 g) received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL(-1)) or free saporin (sham, 0.021 ng.nL(-1)) into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2) and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg(-1), b.wt., for longer than 1 min). In the sham-group (n = 8), HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline). Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11)were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group), and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg). Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05). In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid.
Collapse
Affiliation(s)
- Elaine Fernanda da Silva
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | | | | | - Paulo César Ghedini
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Luiz Artur Mendes Bataus
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Carlos Henrique de Castro
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Diego Basile Colugnati
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Daniel Alves Rosa
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
| | - Sergio L. D. Cravo
- Department of Physiology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás,Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
42
|
Zheng H, Rinaman L. Yohimbine anxiogenesis in the elevated plus maze requires hindbrain noradrenergic neurons that target the anterior ventrolateral bed nucleus of the stria terminalis. Eur J Neurosci 2013; 37:1340-9. [PMID: 23368289 DOI: 10.1111/ejn.12123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/14/2012] [Accepted: 12/10/2012] [Indexed: 11/27/2022]
Abstract
The α2 adrenergic receptor antagonist yohimbine (YO) increases transmitter release from noradrenergic (NA) terminals in cortical and subcortical brain regions, including the bed nucleus of the stria terminalis (BST). YO activates the hypothalamic-pituitary-adrenal (HPA) stress axis and is potently anxiogenic in rats and humans. We previously reported that hindbrain NA neurons within the caudal nucleus of the solitary tract (NST-A2/C2) and ventrolateral medulla (VLM-A1/C1) that innervate the anterior ventrolateral (vl)BST contribute to the ability of YO to activate the HPA stress axis in rats. To determine whether the same NA pathway also contributes to YO-induced anxiogenesis in the elevated plus maze (EPMZ), a selective saporin ribotoxin conjugate (dopamine beta hydroxylase conjugated to saporin toxin, DSAP) was microinjected bilaterally into the anterior vlBST to destroy its NA inputs. Sham-lesioned controls were microinjected with vehicle. Two experiments were conducted to determine DSAP lesion effects on EPMZ behavior. DSAP lesions did not alter maze behavior in rats after intraperitoneal saline, and did not alter the significant effect of prior maze experience to reduce exploratory and open arm maze activities. However, in maze-naïve rats, DSAP lesions abolished YO anxiogenesis in the EPMZ. Post-mortem immunocytochemical analyses confirmed that DSAP consistently ablated caudal NST-A2/C2 and VLM-A1/C1 neurons that innervate the anterior vlBST. DSAP lesions did not destroy non-NA inputs to the anterior vlBST, and produced inconsistent cell loss within the pontine locus coeruleus (A6 cell group) that was unrelated to YO anxiogenesis. Thus, the ability of YO to increase anxiety-like behavior in the EPMZ depends on hindbrain NA neurons that target the anterior vlBST.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
43
|
Routh VH, Donovan CM, Ritter S. 2. Hypoglycemia Detection. TRANSLATIONAL ENDOCRINOLOGY & METABOLISM 2012; 3:47-87. [PMID: 24910721 PMCID: PMC4045627 DOI: 10.1210/team.9781936704200.ch2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Daubert DL, McCowan M, Erdos B, Scheuer DA. Nucleus of the solitary tract catecholaminergic neurons modulate the cardiovascular response to psychological stress in rats. J Physiol 2012; 590:4881-95. [PMID: 22753543 DOI: 10.1113/jphysiol.2012.232314] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Catecholaminergic neurons within the central nervous system are an integral part of stress-related neurocircuitry, and the nucleus of the solitary tract (NTS) plays a critical role in cardiovascular regulation. We tested the hypothesis that NTS catecholaminergic neurons attenuate psychological stress-induced increases in blood pressure and promote neuroendocrine activation in response to psychological stress.Anti-dopamine-β-hydroxylase antibody conjugated to the neurotoxin saporin (DSAP) or saline vehicle was microinjected into the NTS to lesion catecholaminergic neurons in male Sprague-Dawley rats, and 17 days later the rats were subjected to 60 min of restraint stress for five consecutive days. DSAP treatment significantly enhanced the integrated increase in mean arterial pressure during restraint on the first (800 ± 128 and 1115 ± 116 mmHg (min) for saline- and DSAP-treated rats) and fifth days (655 ± 116 and 1035 ± 113 mmHg (min) for saline- and DSAP-treated rats; P<0.01 for overall effect of DSAP treatment) of restraint. In contrast, after 60 min of restraint plasma corticosterone concentration was significantly lower in DSAP-treated compared with saline-treated rats (25.9 ± 7 compared with 46.8 ± 7 μg dl(-1) for DSAP- and saline-treated rats; P <0.05). DSAP treatment also significantly reduced baseline plasma adrenaline concentration (403 ± 69 compared with 73 ± 29 pg ml(-1) for saline- and DSAP-treated rats), but did not alter the magnitude of the adrenaline response to restraint. The data suggest that NTS catecholaminergic neurons normally inhibit the arterial pressure response, but help maintain the corticosterone response to restraint stress.
Collapse
Affiliation(s)
- Daisy L Daubert
- Ferris State University, Department of Biological Sciences, Big Rapids, MI 49307, USA
| | | | | | | |
Collapse
|
45
|
Antonucci F, Alpár A, Kacza J, Caleo M, Verderio C, Giani A, Martens H, Chaudhry FA, Allegra M, Grosche J, Michalski D, Erck C, Hoffmann A, Harkany T, Matteoli M, Härtig W. Cracking down on inhibition: selective removal of GABAergic interneurons from hippocampal networks. J Neurosci 2012; 32:1989-2001. [PMID: 22323713 PMCID: PMC3742881 DOI: 10.1523/jneurosci.2720-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 12/07/2011] [Accepted: 12/14/2011] [Indexed: 12/12/2022] Open
Abstract
Inhibitory (GABAergic) interneurons entrain assemblies of excitatory principal neurons to orchestrate information processing in the hippocampus. Disrupting the dynamic recruitment as well as the temporally precise activity of interneurons in hippocampal circuitries can manifest in epileptiform seizures, and impact specific behavioral traits. Despite the importance of GABAergic interneurons during information encoding in the brain, experimental tools to selectively manipulate GABAergic neurotransmission are limited. Here, we report the selective elimination of GABAergic interneurons by a ribosome inactivation approach through delivery of saporin-conjugated anti-vesicular GABA transporter antibodies (SAVAs) in vitro as well as in the mouse and rat hippocampus in vivo. We demonstrate the selective loss of GABAergic--but not glutamatergic--synapses, reduced GABA release, and a shift in excitation/inhibition balance in mixed cultures of hippocampal neurons exposed to SAVAs. We also show the focal and indiscriminate loss of calbindin(+), calretinin(+), parvalbumin/system A transporter 1(+), somatostatin(+), vesicular glutamate transporter 3 (VGLUT3)/cholecystokinin/CB(1) cannabinoid receptor(+) and neuropeptide Y(+) local-circuit interneurons upon SAVA microlesions to the CA1 subfield of the rodent hippocampus, with interneuron debris phagocytosed by infiltrating microglia. SAVA microlesions did not affect VGLUT1(+) excitatory afferents. Yet SAVA-induced rearrangement of the hippocampal circuitry triggered network hyperexcitability associated with the progressive loss of CA1 pyramidal cells and the dispersion of dentate granule cells. Overall, our data identify SAVAs as an effective tool to eliminate GABAergic neurons from neuronal circuits underpinning high-order behaviors and cognition, and whose manipulation can recapitulate pathogenic cascades of epilepsy and other neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Flavia Antonucci
- Department of Medical Pharmacology, CNR Institute of Neuroscience, Università di Milano and
- Fondazione Filarete, I-20129 Milan, Italy
| | - Alán Alpár
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Johannes Kacza
- Institute of Veterinary Anatomy, University of Leipzig, D-04103 Leipzig, Germany
| | - Matteo Caleo
- CNR Institute of Neuroscience, I-51600 Pisa, Italy
| | - Claudia Verderio
- Department of Medical Pharmacology, CNR Institute of Neuroscience, Università di Milano and
| | - Alice Giani
- Department of Medical Pharmacology, CNR Institute of Neuroscience, Università di Milano and
| | | | - Farrukh A. Chaudhry
- The Biotechnology Centre of Oslo & Centre for Molecular Biology and Neuroscience, University of Oslo, N-0317 Oslo, Norway
| | | | - Jens Grosche
- Paul Flechsig Institute for Brain Research, University of Leipzig, D-04109 Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, D-04103 Leipzig, Germany
| | | | - Anke Hoffmann
- Institute of Veterinary Anatomy, University of Leipzig, D-04103 Leipzig, Germany
| | - Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
- European Neuroscience Institute, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom, and
| | - Michela Matteoli
- Department of Medical Pharmacology, CNR Institute of Neuroscience, Università di Milano and
- Instituto Clinico Humanitas, IRCCS, Rozzano, I-20089 Milan, Italy
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, D-04109 Leipzig, Germany
| |
Collapse
|
46
|
Ritter S, Li AJ, Wang Q, Dinh TT. Minireview: The value of looking backward: the essential role of the hindbrain in counterregulatory responses to glucose deficit. Endocrinology 2011; 152:4019-32. [PMID: 21878511 PMCID: PMC3444967 DOI: 10.1210/en.2010-1458] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review focuses on evidence indicating a key role for the hindbrain in mobilizing behavioral, autonomic and endocrine counterregulatory responses to acute and profound glucose deficit, and identifies hindbrain norepinephrine (NE) and epinephrine (E) neurons as essential mediators of some of these responses. It has become clear that hindbrain NE/E neurons are functionally diverse. However, considerable progress has been made in identifying the particular NE/E neurons important for particular glucoregulatory responses. Although it is not yet known whether NE/E neurons are directly activated by glucose deficit, compelling evidence indicates that if they are not, the primary glucoreceptor cells must be located in the immediate vicinity these neurons. Hindbrain studies identifying cellular markers associated with glucose-sensing functions in other brain regions are discussed, as are studies examining the relationship of these markers to counterregulatory responses of NE/E neurons. Further investigations to identify glucose-sensing cells (neurons, ependymocytes, or glia) controlling counterregulatory responses are crucial, as are studies to determine the specific functions of glucose-sensing cells throughout the brain. Likewise, examination of the roles (if any) of hindbrain counterregulatory systems in managing glucose homeostasis under basal, nonglucoprivic conditions will also be important for a full understanding of energy homeostasis. Nevertheless, the accumulated evidence demonstrates that hindbrain glucose sensors and NE/E neurons are essential players in triggering counterregulatory responses to emergencies of glucose deficit.
Collapse
Affiliation(s)
- Sue Ritter
- Department of Veterinary and Comparative Anatomy, Pharmacology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-6520, USA.
| | | | | | | |
Collapse
|
47
|
Lin Y, Sarfraz Y, Jensen A, Dunn AJ, Stone EA. Participation of brainstem monoaminergic nuclei in behavioral depression. Pharmacol Biochem Behav 2011; 100:330-9. [PMID: 21893082 DOI: 10.1016/j.pbb.2011.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 01/15/2023]
Abstract
Several lines of research have now suggested the controversial hypothesis that the central noradrenergic system acts to exacerbate depression as opposed to having an antidepressant function. If correct, lesions of this system should increase resistance to depression, which has been partially but weakly supported by previous studies. The present study reexamined this question using two more recent methods to lesion noradrenergic neurons in mice: intraventricular (ivt) administration of either the noradrenergic neurotoxin, DSP4, or of a dopamine-β-hydroxylase-saporin immunotoxin (DBH-SAP ITX) prepared for mice. Both agents given 2 weeks prior were found to significantly increase resistance to depressive behavior in several tests including acute and repeated forced swims, tail suspension and endotoxin-induced anhedonia. Both agents also increased locomotor activity in the open field. Cell counts of brainstem monoaminergic neurons, however, showed that both methods produced only partial lesions of the locus coeruleus and also affected the dorsal raphe or ventral tegmental area. Both the cell damage and the antidepressant and hyperactive effects of ivt DSP4 were prevented by a prior i.p. injection of the NE uptake blocker, reboxetine. The results are seen to be consistent with recent pharmacological experiments showing that noradrenergic and serotonergic systems function to inhibit active behavior. Comparison with previous studies utilizing more complete and selective LC lesions suggest that mouse strain, lesion size or involvement of multiple neuronal systems are critical variables in the behavioral and affective effects of monoaminergic lesions and that antidepressant effects and hyperactivity may be more likely to occur if lesions are partial and/or involve multiple monoaminergic systems.
Collapse
Affiliation(s)
- Yan Lin
- Department of Psychiatry, New York University Langone School of Medicine, 550 First Ave, New York, NY 10016, United States
| | | | | | | | | |
Collapse
|
48
|
Allen CD, Lee S, Koob GF, Rivier C. Immediate and prolonged effects of alcohol exposure on the activity of the hypothalamic-pituitary-adrenal axis in adult and adolescent rats. Brain Behav Immun 2011; 25 Suppl 1:S50-60. [PMID: 21300146 PMCID: PMC3098294 DOI: 10.1016/j.bbi.2011.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 11/15/2022] Open
Abstract
Alcohol stimulates the hypothalamic-pituitary-adrenal (HPA) axis. Part of this influence is likely exerted directly at the level of the corticotropin-releasing factor (CRF) gene, but intermediates may also play a role. Here we review the effect of alcohol on this axis, provide new data on the effects of binge drinking during adolescence, and argue for a role of catecholaminergic circuits. Indeed, acute injection of this drug activates brain stem adrenergic and noradrenergic circuits, and their lesion, or blockade of α1 adrenergic receptors significantly blunts alcohol-induced ACTH release. As alcohol can influence the HPA axis even once discontinued, and alcohol consumption in young people is associated with increased adult drug abuse (a phenomenon possibly mediated by the HPA axis), we determined whether alcohol consumption during adolescence modified this axis. The number of CRF-immunoreactive (ir) cells/section was significantly decreased in the central nucleus of the amygdala of adolescent self-administering binge-drinking animals, compared to controls. When another group of adolescent binge-drinking rats was administered alcohol in adulthood, the number of colocalized c-fos-ir and PNMT-ir cells/brain stem section in the C3 area was significantly decreased, compared to controls. As the HPA axis response to alcohol is blunted in adult rats exposed to alcohol vapors during adolescence, a phenomenon which was not observed in our model of self-administration, it is possible that the blood alcohol levels achieved in various models play a role in the long-term consequences of exposure to alcohol early in life. Collectively, these results suggest an important role of brain catecholamines in modulating the short- and long-term consequences of alcohol administration.
Collapse
Affiliation(s)
- Camryn D Allen
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
49
|
Lee S, Craddock Z, Rivier C. Brain stem catecholamines circuitry: activation by alcohol and role in the hypothalamic-pituitary-adrenal response to this drug. J Neuroendocrinol 2011; 23:531-41. [PMID: 21447066 PMCID: PMC3176674 DOI: 10.1111/j.1365-2826.2011.02131.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although the stimulatory effect of alcohol on the rat hypothalamic-pituitary-adrenal (HPA) axis is well known, the mechanisms underlying this influence remain poorly understood. In the present study, we tested the hypothesis that brain catecholamines play an important role in this response. As expected, the acute intragastric administration of alcohol to adult male rats elevated plasma adrenocorticotrophic hormone (ACTH) levels and activated hypothalamic corticotrophin-releasing factor neurones. Novel findings pertain to the effect of alcohol on, and the role played by, brain adrenergic circuits. We first observed that alcohol up-regulated c-fos signals in the locus coeruleus, the main noradrenergic brain cell group; and that it activated (nor)adrenergic medullary cells (A1-A2/C1-C3). Evidence for the role played by these catecholaminergic circuits then came from the observation that blockade of α(1) -, but not β-, adrenergic receptors interfered with alcohol-induced ACTH secretion; and that depletion of catecholaminergic input to the paraventricular nucleus (PVN) by the toxin 6-hydroxydopamine significantly decreased the ACTH response to alcohol. Finally, destruction of the A1-A2/C1-C3 region with the immunotoxin anti-dopamine-B-hydroxylase-saporin interfered with the catecholaminergic input to the PVN. Collectively, our work extends our knowledge of the ability of this drug to up-regulate catecholamine circuitry in the rat brain. It also shows that medullary catecholamine innervation of the hypothalamus plays an important role in modulating the stimulatory effect of alcohol on the HPA axis, an effect exerted through activation of α(1) -adrenergic receptors.
Collapse
Affiliation(s)
- S Lee
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
50
|
Gompf HS, Mathai C, Fuller PM, Wood DA, Pedersen NP, Saper CB, Lu J. Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci 2010; 30:14543-51. [PMID: 20980612 PMCID: PMC2989851 DOI: 10.1523/jneurosci.3037-10.2010] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/03/2010] [Accepted: 09/10/2010] [Indexed: 11/21/2022] Open
Abstract
Locus ceruleus (LC) neuronal activity is correlated with the waking state, yet LC lesions produce only minor alterations in daily wakefulness. Here, we report that sustained elevations in neurobehavioral and EEG arousal in response to exposure to an environment with novel stimuli, including social interaction, are prevented by selective chemical lesions of the LC in rats. Similar results are seen when the anterior cingulate cortex (ACC), which receives especially dense LC innervation, is selectively denervated of LC input or is ablated by the cell-specific neurotoxin ibotenic acid. Anterograde tracing combined with tyrosine hydroxylase immunohistochemistry demonstrates ACC terminals in apposition with the distal dendrites of LC neurons. Our data implicate the ACC as both a source of input to the LC as well as one of its targets and suggests that the two structures engage in a dialog that may provide a critical neurobiological substrate for sustained attention.
Collapse
Affiliation(s)
- Heinrich S Gompf
- Department of Neurology, Program in Neuroscience and Division of Sleep Medicine Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|