1
|
Sapio MR, Iadarola MJ, Loydpierson AJ, Kim JJ, Thierry-Mieg D, Thierry-Mieg J, Maric D, Mannes AJ. Dynorphin and Enkephalin Opioid Peptides and Transcripts in Spinal Cord and Dorsal Root Ganglion During Peripheral Inflammatory Hyperalgesia and Allodynia. THE JOURNAL OF PAIN 2020; 21:988-1004. [PMID: 31931229 DOI: 10.1016/j.jpain.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 10/30/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Understanding molecular alterations associated with peripheral inflammation is a critical factor in selectively controlling acute and persistent pain. The present report employs in situ hybridization of the 2 opioid precursor mRNAs coupled with quantitative measurements of 2 peptides derived from the prodynorphin and proenkephalin precursor proteins: dynorphin A 1-8 and [Met5]-enkephalin-Arg6-Gly7-Leu8. In dorsal spinal cord ipsilateral to the inflammation, dynorphin A 1-8 was elevated after inflammation, and persisted as long as the inflammation was sustained. Qualitative identification by high performance liquid chromatography and gel permeation chromatography revealed the major immunoreactive species in control and inflamed extracts to be dynorphin A 1-8. In situ hybridization in spinal cord after administration of the inflammatory agent, carrageenan, showed increased expression of prodynorphin (Pdyn) mRNA somatotopically in medial superficial dorsal horn neurons. The fold increase in preproenkephalin mRNA (Penk) was comparatively lower, although the basal expression is substantially higher than Pdyn. While Pdyn is not expressed in the dorsal root ganglion (DRG) in basal conditions, it can be induced by nerve injury, but not by inflammation alone. A bioinformatic meta-analysis of multiple nerve injury datasets confirmed Pdyn upregulation in DRG across different nerve injury models. These data support the idea that activation of endogenous opioids, notably dynorphin, is a dynamic indicator of persistent pain states in spinal cord and of nerve injury in DRG. PERSPECTIVE: This is a systematic, quantitative assessment of dynorphin and enkephalin peptides and mRNA in dorsal spinal cord and DRG neurons in response to peripheral inflammation and axotomy. These studies form the foundational framework for understanding how endogenous spinal opioid peptides are involved in nociceptive circuit modulation.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland
| | - Michael J Iadarola
- Department of Perioperative Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland.
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland
| | - Jenny J Kim
- Department of Perioperative Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Andrew J Mannes
- Department of Perioperative Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland
| |
Collapse
|
2
|
Podvin S, Yaksh T, Hook V. The Emerging Role of Spinal Dynorphin in Chronic Pain: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol 2016; 56:511-33. [PMID: 26738478 DOI: 10.1146/annurev-pharmtox-010715-103042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notable findings point to the significance of the dynorphin peptide neurotransmitter in chronic pain. Spinal dynorphin neuropeptide levels are elevated during development of chronic pain and sustained during persistent chronic pain. Importantly, knockout of the dynorphin gene prevents development of chronic pain in mice, but acute nociception is unaffected. Intrathecal (IT) administration of opioid and nonopioid dynorphin peptides initiates allodynia through a nonopioid receptor mechanism; furthermore, antidynorphin antibodies administered by the IT route attenuate chronic pain. Thus, this review presents the compelling evidence in the field that supports the role of dynorphin in facilitating the development of a persistent pain state. These observations illustrate the importance of elucidating the control mechanisms responsible for the upregulation of spinal dynorphin in chronic pain. Also, spinal dynorphin regulation of downstream signaling molecules may be implicated in hyperpathic states. Therapeutic strategies to block the upregulation of spinal dynorphin may provide a nonaddictive approach to improve the devastating condition of chronic pain that occurs in numerous human diseases.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093;
| | | | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; .,Department of Neurosciences, and.,Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, California 92093
| |
Collapse
|
3
|
Meng L, Xing G, Cui C, Han J. WITHDRAWN: Enkephalin- and dynorphin-release produced by electrical stimulation of different frequencies in rat brain slices. Brain Res 2014:S0006-8993(14)00071-7. [PMID: 24462938 DOI: 10.1016/j.brainres.2014.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/30/2013] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Li Meng
- Neuroscience Research Institute, School of Basic Medical Science, Peking University, 38 Xue-Yuan Road, Beijing 100191, China
| | - Guogang Xing
- Neuroscience Research Institute, School of Basic Medical Science, Peking University, 38 Xue-Yuan Road, Beijing 100191, China
| | - Cailian Cui
- Neuroscience Research Institute, School of Basic Medical Science, Peking University, 38 Xue-Yuan Road, Beijing 100191, China
| | - Jisheng Han
- Neuroscience Research Institute, School of Basic Medical Science, Peking University, 38 Xue-Yuan Road, Beijing 100191, China
| |
Collapse
|
4
|
Kumar S, Ruchi R, James SR, Chidiac EJ. Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? PAIN MEDICINE 2011; 12:808-22. [PMID: 21564510 DOI: 10.1111/j.1526-4637.2011.01120.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Chronic neuropathic pain has been an enigma to physicians and researchers for decades. A better understanding of its pathophysiology has given us more insight into its various mechanisms and possible treatment options. We now have an understanding of the role of various ionic channels, biologically active molecules involved in pain, and also the intricate pain pathways where possible interventions might lead to substantial pain relief. The recent research on laboratory animals using virus-based vectors for gene transfer at targeted sites is very promising and may lead to additional human clinical trials. However, one needs to be aware that this "novel" approach is still in its infancy and that many of its details need to be further elucidated. The purpose of this article is to thoroughly review the current available literature and analyze the deficiencies in our current knowledge. DESIGN Literature review. METHODS After an extensive online literature search, a total of 133 articles were selected to synthesize a comprehensive review about chronic neuropathic pain and gene therapy in order to understand the concepts and mechanisms. RESULTS Most of the studies have shown benefits of gene therapy in animal models, and recently, phase 1 human trials using herpes simplex virus vector have started for intractable cancer pain. CONCLUSION Although animal data have shown safety and efficacy, and initial human trials have been promising, additional studies in humans are required to more completely understand the actual benefits and risks of using gene therapy for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Anesthesiology, Wayne State University/Detroit Medical Center, Harper University Hospital, MI 48201, USA
| | | | | | | |
Collapse
|
5
|
Nociceptive behavior induced by the endogenous opioid peptides dynorphins in uninjured mice: evidence with intrathecal N-ethylmaleimide inhibiting dynorphin degradation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:191-205. [PMID: 19607971 DOI: 10.1016/s0074-7742(09)85015-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynorphins, the endogenous opioid peptides derived from prodynorphin may participate not only in the inhibition, but also in facilitation of spinal nociceptive transmission. However, the mechanism of pronociceptive dynorphin actions, and the comparative potential of prodynorphin processing products to induce these actions were not fully elucidated. In our studies, we examined pronociceptive effects of prodynorphin fragments dynorphins A and B and big dynorphin consisting of dynorphins A and B, and focused on the mechanisms underlying these effects. Our principal finding was that big dynorphin was the most potent pronociceptive dynorphin; when administered intrathecally into mice at extremely low doses (1-10fmol), big dynorphin produced nociceptive behavior through the activation of the NMDA receptor ion-channel complex by acting on the polyamine recognition site. We next examined whether the endogenous dynorphins participate in the spinal nociceptive transmission using N-ethylmaleimide (NEM) that blocks dynorphin degradation by inhibiting cysteine proteases. Similar to big dynorphin and dynorphin A, NEM produced nociceptive behavior mediated through inhibition of the degradation of endogenous dynorphins, presumably big dynorphin that in turn activates the NMDA receptor ion-channel complex by acting on the polyamine recognition site. Our findings support the notion that endogenous dynorphins are critical neurochemical mediators of spinal nociceptive transmission in uninjured animals. This chapter will review above-described phenomena and their mechanism.
Collapse
|
6
|
Kiguchi N, Maeda T, Tsuruga M, Yamamoto A, Yamamoto C, Ozaki M, Kishioka S. Involvement of spinal Met–enkephalin in nicotine-induced antinociception in mice. Brain Res 2008; 1189:70-7. [DOI: 10.1016/j.brainres.2007.10.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 10/23/2007] [Accepted: 10/27/2007] [Indexed: 10/22/2022]
|
7
|
The role of gonadal hormones on opioid receptor protein density in arthritic rats. Eur J Pharmacol 2008; 578:177-84. [DOI: 10.1016/j.ejphar.2007.08.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/17/2007] [Accepted: 08/23/2007] [Indexed: 11/23/2022]
|
8
|
Cox ML, Haller VL, Welch SP. Synergy between Δ9-tetrahydrocannabinol and morphine in the arthritic rat. Eur J Pharmacol 2007; 567:125-30. [PMID: 17498686 DOI: 10.1016/j.ejphar.2007.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/27/2007] [Accepted: 04/01/2007] [Indexed: 11/19/2022]
Abstract
We have shown in past isobolographic studies that a small amount of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) can enhance morphine antinociception in mice. However, previous studies of the Delta(9)-THC/morphine interaction were performed using normal mice or rats and evaluated acute thermal antinociception. Less is known about cannabinoid and opioid interactions involved in mechanical nociception and in chronic inflammatory pain models, such as Freund's complete adjuvant-induced arthritic model. One fixed-ratio combination was chosen for testing the interaction between Delta(9)-THC and morphine in the Freund's adjuvant-induced arthritic model. This combination represented a 1:1 ratio of the drugs and thus consisted of equieffective doses ranging from 0.1 to 5 mg/kg Delta(9)-THC and from 0.1 to 5 mg/kg morphine. The combination ED(50) value for the fixed ratios (total dose) in relation to the ED(50) value of the drugs alone was determined. The isobolographic analysis indicated a synergistic interaction between Delta(9)-THC and morphine in both the non-arthritic and the arthritic rats. Since Freund's adjuvant-induced alteration in endogenous opioid tone has been previously shown, our data indicate that such changes did not preclude the use of Delta(9)-THC and morphine in combination. As with acute preclinical pain models in which the Delta(9)-THC/morphine combination results in less tolerance development, the implication of the study for chronic pain conditions is discussed.
Collapse
Affiliation(s)
- Melinda L Cox
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-0524, United States
| | | | | |
Collapse
|
9
|
Cox ML, Haller VL, Welch SP. The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat involves the CB(2) cannabinoid receptor. Eur J Pharmacol 2007; 570:50-6. [PMID: 17588560 DOI: 10.1016/j.ejphar.2007.05.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 05/10/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Cannabinoid CB(2) receptors have been implicated in antinociception in animal models of both acute and chronic pain. We evaluated the role both cannabinoid CB(1) and CB(2) receptors in mechanonociception in non-arthritic and arthritic rats. The antinociceptive effect of Delta(9)-tetrahydrocannabinol (Delta(9)THC) was determined in rats following administration of the cannabinoid CB(1) receptor-selective antagonist, SR141716A, the cannabinoid CB(2) receptor-selective antagonist, SR144528, or vehicle. Male Sprague-Dawley rats were rendered arthritic using Freund's complete adjuvant and tested for mechanical hyperalgesia in the paw-pressure test. Arthritic rats had a baseline paw-pressure of 83 +/- 3.6 g versus a paw-pressure of 177 +/- 6.42 g in non-arthritic rats. SR144528 or SR141716A (various doses mg/kg; i.p.) or 1:1:18 (ethanol:emulphor:saline) vehicle were injected 1 h prior to Delta(9)THC (4 mg/kg; i.p) or 1:1:18 vehicle and antinociception determined 30min post Delta(9)THC. AD(50)'s for both antagonists were calculated with 95% confidence limits. In addition, midbrain and spinal cord were removed for determination of cannabinoid CB(1) and CB(2) receptor protein density in the rats. SR144528 significantly attenuated the antinociceptive effect of Delta(9)THC in the arthritic rats [AD(50) = 3.3 (2.7-4) mg/kg], but not in the non-arthritic rats at a dose of 10/mg/kg. SR141716A significantly attenuated Delta(9)THC-induced antinociception in both the non-arthritic [AD(50) = 1.4 (0.8-2) mg/kg] and arthritic rat [AD(50) = 2.6 (1.8-3.1) mg/kg]. SR141716A or SR144528 alone did not result in a hyperalgesic effect as compared to vehicle. Our results indicate that the cannabinoid CB(2) receptor plays a critical role in cannabinoid-mediated antinociception, particularly in models of chronic inflammatory pain.
Collapse
MESH Headings
- Analgesics/therapeutic use
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Camphanes/pharmacology
- Dronabinol/therapeutic use
- Male
- Mesencephalon/drug effects
- Mesencephalon/metabolism
- Pain/drug therapy
- Pain/metabolism
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Rimonabant
- Spinal Cord/drug effects
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Melinda L Cox
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0524, USA
| | | | | |
Collapse
|
10
|
Staahl C, Dimcevski G, Andersen SD, Thorsgaard N, Christrup LL, Arendt-Nielsen L, Drewes AM. Differential effect of opioids in patients with chronic pancreatitis: an experimental pain study. Scand J Gastroenterol 2007; 42:383-90. [PMID: 17354119 DOI: 10.1080/00365520601014414] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Animal experiments and clinical observations have indicated a different working profile of oxycodone compared to morphine, and it has previously been shown that oxycodone attenuates visceral pain better than morphine. The objective of this study was to test the effects of oxycodone and morphine on experimental pain in patients with pain caused by chronic pancreatitis. MATERIAL AND METHODS Ten patients took part in this blinded, cross-over study. The analgesic effects of morphine (30 mg, oral), oxycodone (15 mg, oral) and placebo were tested against multimodal (mechanical, thermal and electrical) experimental pain in the skin, muscles and oesophagus. Pain was assessed at baseline and 30, 60 and 90 min after drug administration. RESULTS In the skin and muscles, oxycodone was more effective than placebo and morphine on mechanically (skin: F=12.4, p<0.001, muscle: F=11.0, p<0.001) and thermally (skin: F=8.5, p<0.001) evoked pain. In oesophageal heat pain, the effect of morphine was equal to that of placebo, while oxycodone attenuated pain better than both morphine and placebo (F=9.5, p<0.001). Both morphine and oxycodone were more effective in attenuating mechanical pain in the oesophagus than placebo (F=8.6, p<0.001). After electrical stimulation no differences were seen between the opioids and placebo in any tissue studied. CONCLUSIONS Oxycodone was a stronger analgesic than morphine in several pain modalities in the skin, muscle and oesophagus.
Collapse
Affiliation(s)
- Camilla Staahl
- Centre for Visceral Biomechanics and Pain, Department of Gastroenterology, University Hospital Aalborg, Denmark
| | | | | | | | | | | | | |
Collapse
|
11
|
King T, Ossipov MH, Vanderah TW, Porreca F, Lai J. Is paradoxical pain induced by sustained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? Neurosignals 2006; 14:194-205. [PMID: 16215302 DOI: 10.1159/000087658] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Indexed: 12/29/2022] Open
Abstract
Opiates are the primary treatment for pain management in cancer patients reporting moderate to severe pain, and are being increasingly used for non-cancer chronic pain. However, prolonged administration of opiates is associated with significant problems including the development of antinociceptive tolerance, wherein higher doses of the drug are required over time to elicit the same amount of analgesia. High doses of opiates result in serious side effects such as constipation, nausea, vomiting, dizziness, somnolence, and impairment of mental alertness. In addition, sustained exposure to morphine has been shown to result in paradoxical pain in regions unaffected by the initial pain complaint, and which may also result in dose escalation, i.e. 'analgesic tolerance'. A concept that has been gaining considerable experimental validation is that prolonged use of opioids elicits paradoxical, abnormal pain. This enhanced pain state requires additional opioids to maintain a constant level of antinociception, and consequently may be interpreted as antinociceptive tolerance. Many substances have been shown to block or reverse antinociceptive tolerance. A non-inclusive list of examples of substances reported to block or reverse opioid antinociceptive tolerance include: substance P receptor (NK-1) antagonists, calcitonin gene-related peptide (CGRP) receptor antagonists, nitric oxide (NO) synthase inhibitors, calcium channel blockers, cyclooxygenase (COX) inhibitors, protein kinase C inhibitors, competitive and non-competitive antagonists of the NMDA (N-methyl-D-aspartate) receptor, AMPA (alpha-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid) antagonists, anti-dynorphin antiserum, and cholecystokinin (CCK) receptor antagonists. Without exception, these substances are also antagonists of pain-enhancing agents. Prolonged opiate administration indeed induces upregulation of substance P (SP) and calcitonin gene-related peptide (CGRP) within sensory fibers in vivo, and this is accompanied by an enhanced release of excitatory neurotransmitters and neuropeptides from primary afferent fibers upon stimulation. The enhanced evoked release of neuropeptides is correlated with the onset of abnormal pain states and opioid antinociceptive tolerance. Importantly, the descending pain modulatory pathway from the brainstem rostral ventromedial medulla (RVM) via the dorsolateral funiculus (DLF) is critical for maintaining the changes observed in the spinal cord, abnormal pain states and antinociceptive tolerance, because animals with lesion of the DLF did not show enhanced evoked neuropeptide release, or develop abnormal pain or antinociceptive tolerance upon sustained exposure to opiates. Microinjection of either lidocaine or a CCK antagonist into the RVM blocked both thermal and touch hypersensitivity as well as antinociceptive tolerance. Thus, prolonged opioid exposure enhances a descending pain facilitatory pathway from the RVM that is mediated at least in part by CCK activity and is essential for the maintenance of antinociceptive tolerance.
Collapse
Affiliation(s)
- Tamara King
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
12
|
Ossipov MH, Porreca F. Chapter 14 Descending excitatory systems. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:193-210. [PMID: 18808836 DOI: 10.1016/s0072-9752(06)80018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Westlund KN. Chapter 9 The dorsal horn and hyperalgesia. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:103-25. [PMID: 18808831 DOI: 10.1016/s0072-9752(06)80013-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Abstract
The endogenous opioid system is one of the most studied innate pain-relieving systems. This system consists of widely scattered neurons that produce three opioids: beta-endorphin, the met- and leu-enkephalins, and the dynorphins. These opioids act as neurotransmitters and neuromodulators at three major classes of receptors, termed mu, delta, and kappa, and produce analgesia. Like their endogenous counterparts, the opioid drugs, or opiates, act at these same receptors to produce both analgesia and undesirable side effects. This article examines some of the recent findings about the opioid system, including interactions with other neurotransmitters, the location and existence of receptor subtypes, and how this information drives the search for better analgesics. We also consider how an understanding of the opioid system affects clinical responses to opiate administration and what the future may hold for improved pain relief. The goal of this article is to assist clinicians to develop pharmacological interventions that better meet their patient's analgesic needs.
Collapse
Affiliation(s)
- Janean E Holden
- Department of Medical-Surgical Nursing, The University of Illinois at Chicago, Illinois 60612-7350, USA.
| | | | | |
Collapse
|
15
|
Cichewicz DL, Cox ML, Welch SP, Selley DE, Sim-Selley LJ. Mu and delta opioid-stimulated [35S]GTP gamma S binding in brain and spinal cord of polyarthritic rats. Eur J Pharmacol 2005; 504:33-8. [PMID: 15507218 DOI: 10.1016/j.ejphar.2004.09.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 09/15/2004] [Accepted: 09/21/2004] [Indexed: 11/30/2022]
Abstract
Polyarthritis induced by inoculation with complete Freund's adjuvant alters opioid peptides, but does not affect opioid receptor binding. This study was conducted to measure mu and delta opioid receptor-stimulated G-protein activity in brain and spinal cord of rats 19 days after injection of complete Freund's adjuvant or vehicle. Mu and delta opioid-stimulated [35S]GTPgammaS binding measured autoradiographically in caudate-putamen, medial thalamus and periaqueductal gray was unchanged in polyarthritic rats. Delta opioid-stimulated [35S]GTPgammaS binding was significantly decreased in the spinal cord of polyarthritic rats, whereas mu opioid-stimulated activity was unchanged. These data reveal that the functional activity of delta opioid receptors in the spinal cord is altered in polyarthritis.
Collapse
MESH Headings
- Animals
- Arthritis/metabolism
- Brain/drug effects
- Brain/metabolism
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Male
- Protein Binding/drug effects
- Protein Binding/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Sulfur Radioisotopes/metabolism
Collapse
Affiliation(s)
- Diana L Cichewicz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University MCV Campus, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
16
|
Tan-No K, Takahashi H, Nakagawasai O, Niijima F, Sato T, Satoh S, Sakurada S, Marinova Z, Yakovleva T, Bakalkin G, Terenius L, Tadano T. Pronociceptive role of dynorphins in uninjured animals: N -ethylmaleimide-induced nociceptive behavior mediated through inhibition of dynorphin degradation. Pain 2005; 113:301-309. [PMID: 15661437 DOI: 10.1016/j.pain.2004.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Revised: 10/08/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
Intrathecal (i.t.) administration into mice of N-ethylmaleimide (NEM), a cysteine protease inhibitor, produced a characteristic behavioral response, the biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank. The behavior induced by NEM was inhibited by the intraperitoneal injection of morphine. We have recently reported that dynorphin A and, more potently big dynorphin, consisting of dynorphins A and B, produce the same type of nociceptive response whereas dynorphin B does not [Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T, Sakurada C, Sakurada T, Bakalkin G, Terenius L, Kisara K. Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-d-aspartate receptor mechanism. Brain Res 2002;952:7-14]. The NEM-induced nociceptive behavior was inhibited by pretreatment with dynorphin A- or dynorphin B-antiserum and each antiserum also reduced the nociceptive effects of i.t.-injected synthetic big dynorphin. The characteristic NEM-evoked response was not observed in prodynorphin knockout mice. Naloxone, an opioid receptor antagonist, had no effects on the NEM-induced behavior. Ifenprodil, arcaine and agmatine, antagonists at the polyamine recognition site on the N-methyl-D-aspartate (NMDA) receptor ion-channel complex, and MK-801, an NMDA ion-channel blocker inhibited the NEM-induced effects. Ro25-6981, an antagonist of the NMDA receptor subtype containing NR2B subunit was not active. NEM completely inhibited degradation of dynorphin A by soluble and particulate fractions of mouse spinal cord. Collectively, the results demonstrate that endogenous prodynorphin-derived peptides are pronociceptive in uninjured animals, and required for the NEM-induced behavior. The NEM effects may be mediated through inhibition of the degradation of endogenous dynorphins, presumably big dynorphin that in turn activates the NMDA receptor ion-channel complex by acting on the polyamine recognition site.
Collapse
Affiliation(s)
- Koichi Tan-No
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan Department of Pharmacology, Nihon Pharmaceutical University, 10281 Komuro, Ina-cho, Kitaadachi-gun, Saitama 362-0806, Japan Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan Experimental Alcohol and Drug Addiction Research Section, Department of Clinical Neuroscience, Karolinska Institute, Stockholm S-171 76, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu Q, Hultenby K, Lindgren UJ. Tissue levels of leu-enkephalin in rats with adjuvant arthritis. J Neuroimmunol 2005; 158:34-9. [PMID: 15589035 DOI: 10.1016/j.jneuroim.2004.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 07/30/2004] [Accepted: 08/02/2004] [Indexed: 11/17/2022]
Abstract
To study the level of leu-enkephalin in bone and joint tissues and in the spinal cord of rats with adjuvant arthritis, arthritis was induced in Lewis rats by the injection of Mycobacterium butyricum in Freund's incomplete adjuvant (FIA). Immunoelectron microscopy (IEM) was used to monitor the cellular distribution of leu-enkephalin in control and arthritis groups, and radioimmunoassay (RIA) was used to measure the concentration in the tissues. The results of IEM showed increased levels of leu-enkephalin in the matrix of the sciatic nerve, in nerve fibres in the synovial membrane and periosteum, as well as in fibroblasts and endothelial cells of the periosteum in arthritic groups. In macrophage-like cells of the synovial membrane as well as monocyte and polymorphonuclear lineage cells in the bone marrow, the level of leu-enkephalin was decreased in the arthritic group. The results of RIA showed that the concentration of leu-enkephalin was lower in the ankle and increased in the spinal cord of arthritic animals compared with controls. In conclusion, leu-enkephalin levels were decreased in joints and in bone marrow, but increased in nerve tissues in the group with arthritis. Further studies are needed to show whether leu-enkephalin is involved in a process that serves to limit the effect of immunisation.
Collapse
Affiliation(s)
- Qinyang Wu
- Department of Orthopaedics, Karolinska University Hospital, Huddinge, Sweden.
| | | | | |
Collapse
|
18
|
Cox ML, Welch SP. The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat. Eur J Pharmacol 2004; 493:65-74. [PMID: 15189765 DOI: 10.1016/j.ejphar.2004.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 03/24/2004] [Accepted: 04/09/2004] [Indexed: 11/25/2022]
Abstract
Our study addressed the hypothesis that spinal release of endogenous opioids underlies Delta9-tetrahydrocannabinol (Delta9-THC)-induced antinociception in Freund's adjuvant-induced arthritic and nonarthritic rats. The paw-pressure test was used to assess the antinociceptive effects of Delta9-THC versus those of morphine, and opioid and cannabinoid receptor-selective antagonists were used to characterize the involved receptors. Cerebrospinal fluid was collected after Delta9-THC injection (i.p.) for the measurement of endogenous opioid peptides. Our results indicate that morphine or Delta9-THC is equally potent and efficacious in both nonarthritic and arthritic rats. Delta9-THC-induced antinociception is attenuated by the kappa opioid receptor antagonist, nor-binaltorphimine, in arthritic rats only. Delta9-THC induces increased immunoreactive dynorphin A (idyn A) levels in nonarthritic rats while decreasing idyn A in arthritic rats. We hypothesize that the elevated idyn A level in arthritic rats contributes to hyperalgesia by interaction with N-methyl-D-aspartate receptors, and that Delta9-THC induces antinociception by decreasing idyn A release.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/physiopathology
- Arthritis, Experimental/prevention & control
- Cannabinoid Receptor Antagonists
- Dose-Response Relationship, Drug
- Dronabinol/cerebrospinal fluid
- Dronabinol/pharmacology
- Dronabinol/therapeutic use
- Dynorphins/cerebrospinal fluid
- Enkephalin, Leucine/cerebrospinal fluid
- Enkephalin, Methionine/cerebrospinal fluid
- Freund's Adjuvant/administration & dosage
- Injections, Intradermal
- Injections, Intraperitoneal
- Male
- Morphine/antagonists & inhibitors
- Morphine/pharmacology
- Mycobacterium/immunology
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists
- Pain/drug therapy
- Pain/physiopathology
- Pain Measurement/drug effects
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/therapeutic use
- Receptors, Opioid/classification
- Receptors, Opioid/therapeutic use
- Rimonabant
Collapse
Affiliation(s)
- Melinda L Cox
- Virginia Commonwealth University, Department of Pharmacology and Toxicology, Medical College of Virginia, P.O. Box 980613, MCV Station, Richmond, VA 23298-0613, USA
| | | |
Collapse
|
19
|
Koetzner L, Hua XY, Lai J, Porreca F, Yaksh T. Nonopioid actions of intrathecal dynorphin evoke spinal excitatory amino acid and prostaglandin E2 release mediated by cyclooxygenase-1 and -2. J Neurosci 2004; 24:1451-8. [PMID: 14960618 PMCID: PMC6730335 DOI: 10.1523/jneurosci.1517-03.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal dynorphin is hypothesized to contribute to the hyperalgesia that follows tissue and nerve injury or sustained morphine exposure. We considered that these dynorphin actions are mediated by a cascade involving the spinal release of excitatory amino acids and prostaglandins. Unanesthetized rats with lumbar intrathecal injection and loop dialysis probes received intrathecal NMDA, dynorphin A(1-17), or dynorphin A(2-17). These agents elicited an acute release of glutamate, aspartate, and taurine but not serine. The dynorphin peptides and NMDA also elicited a long-lasting spinal release of prostaglandin E2. Prostaglandin release evoked by dynorphin A(2-17) or NMDA was blocked by the NMDA antagonist amino-5-phosphonovalerate as well the cyclooxygenase (COX) inhibitor ibuprofen. To identify the COX isozyme contributing to this release, SC 58236, a COX-2 inhibitor, was given and found to reduce prostaglandin E2 release evoked by either agent. Unexpectedly, the COX-1 inhibitor SC 58560 also reduced dynorphin A(2-17)-induced, but not NMDA-induced, release of prostaglandin E2. These findings reveal a novel mechanism by which elevated levels of spinal dynorphin seen in pathological conditions may produce hyperalgesia through the release of excitatory amino acids and in part by the activation of a constitutive spinal COX-1 and -2 cascade.
Collapse
Affiliation(s)
- Lee Koetzner
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093-0818, USA
| | | | | | | | | |
Collapse
|
20
|
Gardell LR, Ibrahim M, Wang R, Wang Z, Ossipov MH, Malan TP, Porreca F, Lai J. Mouse strains that lack spinal dynorphin upregulation after peripheral nerve injury do not develop neuropathic pain. Neuroscience 2004; 123:43-52. [PMID: 14667440 DOI: 10.1016/j.neuroscience.2003.08.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several experimental models of peripheral neuropathy show that a significant upregulation of spinal dynorphin A and its precursor peptide, prodynorphin, is a common consequence of nerve injury. A genetically modified mouse strain lacking prodynorphin does not exhibit sustained neuropathic pain after nerve injury, supporting a pronociceptive role of elevated levels of spinal dynorphin. A null mutation of the gamma isoform of protein kinase C (PKCgamma KO [knockout]), as well as an inbred mouse strain, 129S6, also does not manifest behavioral signs of neuropathic pain following peripheral nerve injury. The objective of this study was to extend our observations to these genetic models to test the hypothesis that elevated levels of spinal dynorphin are essential for the maintenance of abnormal pain. In PKCgamma wild-type mice and the outbred mouse strain ICR, ligation of the L5 and L6 spinal nerves (SNL) elicited both tactile hypersensitivity and thermal hyperalgesia. Both strains showed a significant elevation in dynorphin in the lumbar spinal dorsal horn following SNL. Spinal administration of an anti-dynorphin A antiserum blocked the thermal and tactile hypersensitivity in both strains of mice. However, the PKCgamma KO mice and the 129S6 mice (which express PKCgamma) did not show abnormal pain after SNL; neither strain showed elevated levels of spinal dynorphin. The multiple phenotypic deficits in PKCgamma KO mice confound the interpretation of the proposed role of PKCgamma-expressing spinal neurons in neuropathic pain states. Additionally, the data show that the regulation of spinal dynorphin expression is a common critical feature of expression of neuropathic pain.
Collapse
Affiliation(s)
- L R Gardell
- Department of Pharmacology, College of Medicine, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ossipov MH, Lai J, King T, Vanderah TW, Malan TP, Hruby VJ, Porreca F. Antinociceptive and nociceptive actions of opioids. ACTA ACUST UNITED AC 2004; 61:126-48. [PMID: 15362157 DOI: 10.1002/neu.20091] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the opioids are the principal treatment options for moderate to severe pain, their use is also associated with the development of tolerance, defined as the progressive need for higher doses to achieve a constant analgesic effect. The mechanisms which underlie this phenomenon remain unclear. Recent studies revealed that cholecystokinin (CCK) is upregulated in the rostral ventromedial medulla (RVM) during persistent opioid exposure. CCK is both antiopioid and pronociceptive, and activates descending pain facilitation mechanisms from the RVM enhancing nociceptive transmission at the spinal cord and promoting hyperalgesia. The neuroplastic changes elicited by opioid exposure reflect adaptive changes to promote increased pain transmission and consequent diminished antinociception (i.e., tolerance).
Collapse
Affiliation(s)
- Michael H Ossipov
- Departments of Pharmacology, Anesthesiology and Chemistry, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Caudle RM, Mannes AJ, Benoliel R, Eliav E, Iadarola MJ. Intrathecally administered cholera toxin blocks allodynia and hyperalgesia in persistent pain models. THE JOURNAL OF PAIN 2003; 2:118-27. [PMID: 14622833 DOI: 10.1054/jpai.2000.19948] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In persistent pain, the spinal cord concentration of the opioid peptide dynorphin increases dramatically, yet the function of dynorphin remains unknown. If prodynorphin expression could be manipulated in vivo, it might be possible to determine what role dynorphin plays in persistent pain. Previous work in our laboratory showed that prodynorphin expression is regulated through the cyclic adenosine monophosphate pathway. Therefore, we attempted to enhance prodynorphin expression in the spinal cord of rats by stimulating adenylate cyclase with cholera toxin; however, contrary to our hypothesis, intrathecally administered cholera toxin did not enhance prodynorphin expression. Rather, cholera toxin suppressed the increase in prodynorphin produced by inflammation. Cholera toxin also inhibited the allodynia and hyperalgesia associated with inflammation and nerve injury. Interestingly, the antiallodynic and antihyperalgesic actions of cholera toxin were reversed with the opioid receptor antagonist, naloxone. These findings suggest that cholera toxin enhances or unmasks an endogenous opioid pathway to produce its antiallodynic and antihyperalgesic effects. Furthermore, these data indicate that the suppression of the inflammation-induced increase in spinal cord prodynorphin is caused by the opioid-mediated decrease in the nociceptive stimulus.
Collapse
Affiliation(s)
- R M Caudle
- Department of Oral Surgery, College of Dentistry, University of Florida, Gainesville, 32610, USA.
| | | | | | | | | |
Collapse
|
23
|
Ballet S, Conrath M, Fischer J, Kaneko T, Hamon M, Cesselin F. Expression and G-protein coupling of mu-opioid receptors in the spinal cord and dorsal root ganglia of polyarthritic rats. Neuropeptides 2003; 37:211-9. [PMID: 12906839 DOI: 10.1016/s0143-4179(03)00045-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although chronic inflammatory pain is known to be associated with hypersensitivity to mu opioid receptor agonists, no evidence for changes in the expression and/or characteristics of central mu opioid receptors has yet been reported in relevant models of this type of pain. In the present study, both immunohistochemical and autoradiographic approaches were used to address this question in polyarthritic rats, on the 4th week after intradermal injection of complete Freund's adjuvant, when inflammatory pain was at its maximum. Immunohistochemical labeling with specific anti-mu opioid receptor antibodies and autoradiographic labeling with [3H]DAMGO showed an upregulation of mu opioid receptors in the dorsal root ganglia but no changes in the density of these receptors in the dorsal horn at the level of L4-L6 segments in polyarthritic compared to age-paired control rats. On the other hand, autoradiographic quantification of the concentration-dependent increase in [35S]GTP-gamma-S binding by the mu-opioid receptor agonist DAMGO did not show any significant differences within the lumbar dorsal horn between polyarthritic and control rats. These data indicate that chronic inflammatory pain caused by polyarthritis was associated with an increased expression of mu-opioid receptors in dorsal root ganglion sensory neurones that did not result in an increased spinal density of these receptors, in spite of their well established axonal transport in the central portion of primary afferent fibres to the dorsal horn. In contrast, axonal transport of mu-opioid receptors in the peripheral portion of these fibres probably accounts for the increased receptor density in inflamed tissues already reported in the literature.
Collapse
Affiliation(s)
- S Ballet
- INSERM U288, NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, 91, Boulevard de l'Hôpital, 75634 Paris 13, France
| | | | | | | | | | | |
Collapse
|
24
|
Ossipov MH, Lai J, Vanderah TW, Porreca F. Induction of pain facilitation by sustained opioid exposure: relationship to opioid antinociceptive tolerance. Life Sci 2003; 73:783-800. [PMID: 12801599 DOI: 10.1016/s0024-3205(03)00410-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Opioid analgesics are frequently used for the long-term management of chronic pain states, including cancer pain. The prolonged use of opioids is associated with a requirement for increasing doses to manage pain at a consistent level, reflecting the phenomenon of analgesic tolerance. It is now becoming clearer that patients receiving long-term opioid therapy can develop unexpected abnormal pain. Such paradoxical opioid-induced pain, as well as tolerance to the antinociceptive actions of opioids, has been reliably measured in animals during the period of continuous opioid delivery. Several recent studies have demonstrated that such pain may be secondary to neuroplastic changes that result, in part, from an activation of descending pain facilitation mechanisms arising from the rostral ventromedial medulla (RVM). One mechanism which may mediate such pain facilitation is through the increased activity of CCK in the RVM. Secondary consequences from descending facilitation may be produced. For example, opioid-induced upregulation of spinal dynorphin levels seem to depend on intact descending pathways from the RVM reflecting spinal neuroplasticity secondary to changes at supraspinal levels. Increased expression of spinal dynorphin reflects a trophic action of sustained opioid exposure which promotes an increased pain state. Spinal dynorphin may promote pain, in part, by enhancing the evoked release of excitatory transmitters from primary afferents. In this regard, opioids also produce trophic actions by increasing CGRP expression in the dorsal root ganglia. Increased pain elicited by opioids is a critical factor in the behavioral manifestation of opioid tolerance as manipulations which block abnormal pain also block antinociceptive tolerance. Manipulations that have blocked enhanced pain and antinociceptive tolerance include reversible and permanent ablation of descending facilitation from the RVM. Thus, opioids elicit systems-level adaptations resulting in pain due to descending facilitation, upregulation of spinal dynorphin and enhanced release of excitatory transmitters from primary afferents. Adaptive changes produced by sustained opioid exposure including trophic effects to enhance pain transmitters suggest the need for careful evaluation of the consequences of long-term opioid administration to patients.
Collapse
Affiliation(s)
- Michael H Ossipov
- Department of Pharmacology, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|
25
|
Machelska H, Stein C. Peripheral Opioid Analgesia Neuroimmune Interactions and Therapeutic Implications. Pain 2003. [DOI: 10.1201/9780203911259.ch33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Peptidases prevent mu-opioid receptor internalization in dorsal horn neurons by endogenously released opioids. J Neurosci 2003. [PMID: 12629189 DOI: 10.1523/jneurosci.23-05-01847.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To evaluate the effect of peptidases on mu-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and alpha-neoendorphin, but not endomorphins or beta-endorphin. The omission of any one inhibitor abolished Leu-enkephalin-induced internalization, indicating that all three peptidases degraded enkephalins. Amastatin preserved dynorphin A-induced internalization, and phosphoramidon, but not captopril, increased this effect, indicating that the effect of dynorphin A was prevented by aminopeptidases and neutral endopeptidase. Veratridine (30 microm) or 50 mm KCl produced MOR-1 internalization in the presence of peptidase inhibitors, but little or no internalization in their absence. These effects were attributed to opioid release, because they were abolished by the selective MOR antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) and were Ca(2+) dependent. The effect of veratridine was protected by phosphoramidon plus amastatin or captopril, but not by amastatin plus captopril or by phosphoramidon alone, indicating that released opioids are primarily cleaved by neutral endopeptidase, with a lesser involvement of aminopeptidases and dipeptidyl carboxypeptidase. Therefore, because the potencies of endomorphin-1 and endomorphin-2 to elicit internalization were unaffected by peptidase inhibitors, the opioids released by veratridine were not endomorphins. Confocal microscopy revealed that MOR-1-expressing neurons were in close proximity to terminals containing opioids with enkephalin-like sequences. These findings indicate that peptidases prevent the activation of extrasynaptic MOR-1 in dorsal horn neurons.
Collapse
|
27
|
Sun H, Xu J, Della Penna KB, Benz RJ, Kinose F, Holder DJ, Koblan KS, Gerhold DL, Wang H. Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry. BMC Neurosci 2002; 3:11. [PMID: 12188929 PMCID: PMC126259 DOI: 10.1186/1471-2202-3-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Accepted: 08/20/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for pain transmission have been demonstrated to be localized to the dorsal horn of the spinal cord. Further understanding of the molecular interactions and signaling pathways in the dorsal horn neurons will require a better knowledge of the molecular neuroanatomy in the dorsal spinal cord. RESULTS A large scale screening was conducted for genes with enriched expression in the dorsal spinal cord using DNA microarray and quantitative real-time PCR. In addition to genes known to be specifically expressed in the dorsal spinal cord, other neuropeptides, receptors, ion channels, and signaling molecules were also found enriched in the dorsal spinal cord. In situ hybridization and immunohistochemistry revealed the cellular expression of a subset of these genes. The regulation of a subset of the genes was also studied in the spinal nerve ligation (SNL) neuropathic pain model. In general, we found that the genes that are enriched in the dorsal spinal cord were not among those found to be up-regulated in the spinal nerve ligation model of neuropathic pain. This study also provides a level of validation of the use of DNA microarrays in conjunction with our novel analysis algorithm (SAFER) for the identification of differences in gene expression. CONCLUSION This study identified molecules that are enriched in the dorsal horn of the spinal cord and provided a molecular neuroanatomy in the spinal cord, which will aid in the understanding of the molecular mechanisms important in nociception and pain.
Collapse
Affiliation(s)
- Hong Sun
- Department of Molecular Pharmacology, Merck Research Laboratories, West Point, PA19486, USA
| | - Jian Xu
- Department of Molecular Profiling, Merck Research Laboratories, West Point, PA19486, USA
| | - Kimberly B Della Penna
- Department of Molecular Pharmacology, Merck Research Laboratories, West Point, PA19486, USA
| | - Robert J Benz
- Department of Molecular Profiling, Merck Research Laboratories, West Point, PA19486, USA
| | - Fumi Kinose
- Department of Molecular Pharmacology, Merck Research Laboratories, West Point, PA19486, USA
| | - Daniel J Holder
- Department of Biometrics Research, Merck Research Laboratories, West Point, PA19486, USA
| | - Kenneth S Koblan
- Department of Molecular Pharmacology, Merck Research Laboratories, West Point, PA19486, USA
| | - David L Gerhold
- Department of Molecular Profiling, Merck Research Laboratories, West Point, PA19486, USA
| | - Hao Wang
- Department of Molecular Pharmacology, Merck Research Laboratories, West Point, PA19486, USA
| |
Collapse
|
28
|
Zhang YQ, Gao X, Ji GC, Huang YL, Wu GC, Zhao ZQ. Expression of 5-HT1A receptor mRNA in rat lumbar spinal dorsal horn neurons after peripheral inflammation. Pain 2002; 98:287-295. [PMID: 12127030 DOI: 10.1016/s0304-3959(02)00026-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study observed the expression of the 5-hydroxytryptamine (5-HT) (1A) receptor mRNA in the lumbar spinal dorsal horn neurons following carrageenan inflammation using in situ hybridization (ISH). We also studied the co-localization of 5-HT(1A) receptor mRNA and gamma-amino butyric acid (GABA) or enkephalin (ENK) immunoreactivities using a combined fluorescent ISH and immunofluorescent histochemical double-staining technique. The finding of this study demonstrated that 5-HT(1A) receptor mRNA was widely distributed in the spinal dorsal horn with the highest density in laminae III-VI. Following carrageenan-induced inflammation, the 5-HT(1A) receptor mRNA expression in all layers of ipsilateral dorsal horn was significantly enhanced, and the peak occurred after 8h. Furthermore, the number of 5-HT(1A) receptor mRNA and GABA or ENK immunoreactive double-labeled cells was also markedly increased 8h after carrageenan injection. These findings suggested that following peripheral inflammation, the synthesis of 5-HT(1A) receptor was increased in the lumbar spinal dorsal horn neurons, especially in spinal GABA and ENK neurons.
Collapse
Affiliation(s)
- Yu-Qiu Zhang
- Institute of Neurobiology, Fudan University, 220 Han Dan Road, Shanghai, 200433, People's Republic of China State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Parra MC, Nguyen TN, Hurley RW, Hammond DL. Persistent inflammatory nociception increases levels of dynorphin1-17 in the spinal cord, but not in supraspinal nuclei involved in pain modulation. THE JOURNAL OF PAIN 2002; 3:330-6. [PMID: 14622757 DOI: 10.1054/jpai.2002.125185] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is well established that nerve injury or inflammatory injury results in a time-dependent increase in the expression of dynorphin in the spinal cord. However, little is known about the effects of persistent pain on the expression of this endogenous opioid peptide by supraspinal nuclei implicated in the modulation of pain sensitivity. This study used enzyme-linked immunosorbent assay to measure the levels of dynorphin(1-17) in the spinal cord as well as in brainstem nuclei 4 hours, 4 days, or 2 weeks after intraplantar injection of saline or complete Freund's adjuvant in the left hind paw. As previously reported, complete Freund adjuvant produced a time-dependent increase in dynorphin that was confined to the ipsilateral dorsal horn. In contrast, levels of dynorphin(1-17) in the nucleus raphe magnus, nucleus reticularis gigantocellularis pars alpha, parabrachial nuclei, microcellular tegmentum, pontine periaqueductal gray, and midbrain periaqueductal gray were not affected at any time after injection of complete Freund adjuvant. These data suggest that alterations in levels of dynorphin do not mediate the up-regulation of activity in bulbospinal pain inhibitory or pain facilitatory pathways that occurs during persistent pain.
Collapse
|
30
|
Ballet S, Braz J, Mauborgne A, Bourgoin S, Zajac JM, Hamon M, Cesselin F. The neuropeptide FF analogue, 1DMe, reduces in vivo dynorphin release from the rat spinal cord. J Neurochem 2002; 81:659-62. [PMID: 12065675 DOI: 10.1046/j.1471-4159.2002.00914.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intrathecal infusion of the neuropeptide FF analogue, [D-Tyr1, (NMe)Phe3]neuropeptide FF (1DMe; 0.1 microm-0.1 mm) in anaesthetized rats produced a concentration-dependent decrease in the spinal outflow of dynorphin A (1-8)-like material, which persisted for at least 90 min after treatment with 10 microm-0.1 mm of the compound. Co-administration of d-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP; 1 microm) to block spinal micro-opioid receptors did not modify this effect, whereas naltrindole (10 microm) totally prevented it and nor-binaltorphimine (10 microm) reduced the post-effect. These data suggest that 1DMe triggers the release of endogenous opioids that stimulate mainly delta-opioid receptors, and secondarily kappa-opioid receptors, thereby exerting a negative influence on dynorphin A (1-8)-like material outflow. Because dynorphin has pronociceptive properties, such a decrease in spinal dynorphin A (1-8)-like material release might underlie the long-lasting antinociceptive effects of intrathecally administered neuropeptide FF and analogues.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Dynorphins/cerebrospinal fluid
- Dynorphins/metabolism
- Injections, Spinal
- Male
- Models, Animal
- Naltrexone/administration & dosage
- Naltrexone/analogs & derivatives
- Narcotic Antagonists/administration & dosage
- Oligopeptides/administration & dosage
- Peptide Fragments/cerebrospinal fluid
- Peptide Fragments/metabolism
- Perfusion
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, mu/antagonists & inhibitors
- Somatostatin/administration & dosage
- Somatostatin/analogs & derivatives
- Spinal Cord/drug effects
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Sébastien Ballet
- NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, INSERM U288, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J Neurosci 2001. [PMID: 11588161 DOI: 10.1523/jneurosci.21-20-07881.2001] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is characterized by erosive inflammation of the joints, new bone proliferation, and ankylosis, leading to severely reduced locomotion and intense chronic pain. In a model of this disease, adjuvant-induced polyarthritis in the rat, neurons involved in pain transmission and control undergo plastic changes, especially at the spinal level. These changes affect notably neurons that contain opioids, such as enkephalins deriving from preproenkephalin A (PA) precursor protein. Using recombinant herpes simplex virus containing rat PA cDNA, we enhanced enkephalin synthesis in sensory neurons of polyarthritic rats. This treatment markedly improved locomotion and reduced hyperalgesia. Furthermore, the progression of bone destruction slowed down, which is the most difficult target to reach in the treatment of patients suffering from arthritis. These data demonstrate the therapeutic efficacy of enkephalin overproduction in a model of systemic inflammatory and painful chronic disorder.
Collapse
|
32
|
Abstract
Gene therapy to alleviate pain could appear surprising and perhaps not appropriate when opioids and other active molecules are available. However, the possibility of introducing a therapeutic protein into some targeted structures, where it would be continuously synthesised and exert its biological effect in the near vicinity of, or inside the cells, might avoid some drawbacks of "classical" drugs. Moreover, the gene-transfer techniques might improve present therapies or lead to novel ones. The recent significant and constant advances in vector systems design suggest that these techniques will be available in the near future for safe application in humans. The first experimental protocols attempting the transfer of opioid precursors genes, leading to their overexpression at the spinal level, demonstrated the feasibility and the potential interest of these approaches. Indeed, overproduction of opioid peptides in primary sensory neurones or spinal cord induced antihyperalgesic effects in various animal models of persistent pain. However, numerous other molecules involved in pain processing or associated with chronic pain have been identified and the gene-based techniques might be particularly adapted for the evaluation of the possible therapeutic interest of these new potential targets.
Collapse
Affiliation(s)
- M Pohl
- INSERM U288, NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, C.H.U. Pitié-Salpêtrière, Faculté de Médecine Pitié-Salpêtrière, 91 Boulevard de l'Hôpital, 75634 Paris Cedex 13, France.
| | | |
Collapse
|
33
|
Ishihara S, Tsuchiya S, Horie S, Murayama T, Watanabe K. Gastric acid secretion by central injection of dynorphin A-(1-17), an endogenous ligand of kappa-opioid receptor, in urethane-anesthetized rats. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 87:14-20. [PMID: 11676193 DOI: 10.1254/jjp.87.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gastric acid secretion has been proposed to be regulated by opioid receptors in the central nervous system (CNS). Previously, we reported that central injection of synthetic agonists of kappa-opioid receptors stimulated gastric acid secretion in rats, and the secretion by the agonists was inhibited by norbinaltorphimine (an antagonist of kappa-opioid receptor). In the present study, we investigated the effect of dynorphin A-(1-17), an endogenous ligand of kappa-opioid receptor on the gastric acid secretion in the perfused stomach of urethane-anesthetized rats. Injection of dynorphin A-(1-17) (0.1-1 microg per rat) into the lateral cerebroventricle (LV) stimulated the secretion in a dose-dependent manner. The effect of dynorphin A-(1-17) was almost completely inhibited by the LV injection of norbinaltorphimine (10 microg) and in vagotomized rats. Although some studies of dynorphin A-(1-17) after central injection showed non-opioid effects such as the involvement of N-methyl-D-aspartate (NMDA) receptor, the effect of dynorphin A-(1-17) was not inhibited by a selective antagonist of the NMDA receptor ((+/-)-3-(2-carboxypiperazin-4-yl)-1-propylphosphonic acid, 10 microg). The LV injection of naloxone benzoylhydrazone (a kappa3-opioid receptor agonist, 100 microg) also stimulated the secretion in norbinaltorphimine-sensitive manner. These findings showed that both an endogenous ligand dynorphin A-(1-17) and a synthetic kappa3-opioid receptor agonist stimulated gastric acid secretion via kappa-opioid receptors in the CNS of rats in vivo.
Collapse
MESH Headings
- Anesthesia
- Anesthetics, Intravenous/administration & dosage
- Animals
- Dose-Response Relationship, Drug
- Dynorphins/pharmacology
- Gastric Acid/metabolism
- Gastric Mucosa/metabolism
- Injections, Intraventricular
- Ligands
- Male
- Rats
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/drug effects
- Stomach/drug effects
- Urethane/administration & dosage
Collapse
Affiliation(s)
- S Ishihara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | |
Collapse
|
34
|
Holden JE, Naleway E. Microinjection of carbachol in the lateral hypothalamus produces opposing actions on nociception mediated by alpha(1)- and alpha(2)-adrenoceptors. Brain Res 2001; 911:27-36. [PMID: 11489441 DOI: 10.1016/s0006-8993(01)02567-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Electrical stimulation of the lateral hypothalamus (LH) produces antinociception partially blocked by intrathecal alpha-adrenergic antagonists, but the mechanism underlying this effect is not clear. Evidence from immunological studies demonstrates that substance P-immunoreactive neurons in the LH project near the A7 catecholamine cell group, a group of noradrenergic neurons in the pons known to effect antinociception in the spinal cord dorsal horn. Such evidence suggests that LH neurons may activate A7 neurons to produce antinociception. To test this hypothesis, the cholinergic agonist carbachol was microinjected into the LH at doses of 63, 125 and 250 nmol and the resulting effects on tail-flick and nociceptive foot-withdrawal latencies were measured. All three doses significantly increased response latencies on both tests, with the 125-nmol dose providing the optimal effect. Intrathecal injection of the opioid antagonist naltrexone (97 nmol) partially reversed antinociception, but neither the alpha(2)-adrenoceptor antagonist yohimbine nor the alpha(1)-adrenoceptor antagonist WB4101 altered latencies. However, two sequential doses of yohimbine blocked LH-induced antinociception on both tests. In contrast, two sequential doses of WB4101 increased nociceptive responses on both the tail-flick and foot-withdrawal tests. These findings, and those of published reports, suggest that neurons in the LH activate spinally projecting methionine enkephalin neurons, as well as two populations of A7 noradrenergic neurons that exert a bidirectional effect on nociception. One of these populations increases nociception through the action of alpha(1)-adrenoceptors and the other inhibits nociception through the action of alpha(2)-adrenoceptors in the spinal cord dorsal horn.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Analgesia
- Animals
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Dose-Response Relationship, Drug
- Efferent Pathways/drug effects
- Efferent Pathways/metabolism
- Female
- Hypothalamic Area, Lateral/drug effects
- Hypothalamic Area, Lateral/metabolism
- Injections, Spinal
- Nociceptors/drug effects
- Nociceptors/metabolism
- Norepinephrine/metabolism
- Pain/metabolism
- Pain/physiopathology
- Pain Measurement/drug effects
- Pons/drug effects
- Pons/metabolism
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Substance P/metabolism
Collapse
Affiliation(s)
- J E Holden
- Department of Medical-Surgical Nursing, The University of Illinois at Chicago, Chicago, IL 60612-7350, USA.
| | | |
Collapse
|
35
|
Goss JR, Mata M, Goins WF, Wu HH, Glorioso JC, Fink DJ. Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Ther 2001; 8:551-6. [PMID: 11319622 DOI: 10.1038/sj.gt.3301430] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 01/09/2001] [Indexed: 11/08/2022]
Abstract
Endogenous opiate peptides acting pre- and post-synaptically in the dorsal horn of spinal cord inhibit transmission of nociceptive stimuli. We transfected neurons of the dorsal root ganglion in vivo by footpad inoculation with 30 microl (3 x 10(7) p.f.u.) of a replication-incompetent (ICP4-deleted) herpes simplex virus (HSV) vector with a cassette containing a portion of the human proenkephalin gene coding for 5 met- and 1 leu-enkephalin molecules under the control of the human cytomegalovirus immediate-early promoter (HCMV IEp) inserted in the HSV thymidine kinase (tk) locus. Vector-directed expression of enkephalin produced a significant antinociceptive effect measured by the formalin footpad test, that was most prominent in the delayed ("tonic") phase 20-70 min after the administration of formalin. The magnitude of the antinociceptive effect diminished over 4 weeks after transduction, but reinoculation of the vector reestablished the analgesic effect, without evidence for the development of tolerance. The antinociceptive effect was blocked completely by intrathecal naltrexone. These results suggest that gene therapy with an enkephalin-producing herpes-based vector may prove useful in the treatment of pain.
Collapse
Affiliation(s)
- J R Goss
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
36
|
Postsynaptic signaling via the [mu]-opioid receptor: responses of dorsal horn neurons to exogenous opioids and noxious stimulation. J Neurosci 2001. [PMID: 11102461 DOI: 10.1523/jneurosci.20-23-08578.2000] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although both pre- and postsynaptic mechanisms have been implicated in the analgesia produced by mu-opioids at the spinal cord, it is not known under what conditions these different controls come into play. Because the mu-opioid receptor (MOR) can be visualized in individual lamina II excitatory interneurons and internalizes into endosomes on ligand binding, we tested whether MOR internalization could be monitored and used to measure postsynaptic MOR signaling. To test whether endogenous opioids modulate these lamina II interneurons during noxious stimulation, we next assessed the magnitude of postsynaptic MOR internalization under a variety of nociceptive conditions. As observed in other systems, we show that MOR internalization in dorsal horn interneurons is demonstrated readily in response to opioid ligands. The MOR internalization is dose-dependent, with a similar dose-response to that observed for opioid-induced increases in potassium conductance. We demonstrate that MOR internalization in lamina II neurons correlates precisely with the extent of analgesia produced by intrathecal DAMGO. These results suggest that MOR internalization provides a good marker of MOR signaling in the spinal cord and that postsynaptic MORs on lamina II interneurons likely participate in the analgesia that is produced by exogenous opioids. We found, however, that noxious stimuli, under normal or inflammatory conditions, did not induce MOR internalization. Thus, endogenous enkephalins and endomorphins, thought to be released during noxious peripheral stimuli, do not modulate nociceptive messages via postsynaptic MORs on lamina II interneurons. We suggest that any endogenous opioids that are released by noxious stimuli target presynaptic MORs or delta-opioid receptors.
Collapse
|
37
|
George A, Marziniak M, Schäfers M, Toyka KV, Sommer C. Thalidomide treatment in chronic constrictive neuropathy decreases endoneurial tumor necrosis factor-alpha, increases interleukin-10 and has long-term effects on spinal cord dorsal horn met-enkephalin. Pain 2000; 88:267-275. [PMID: 11068114 DOI: 10.1016/s0304-3959(00)00333-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thalidomide reduces thermal hyperalgesia and mechanical allodynia in chronic constrictive sciatic nerve injury (CCI). Since thalidomide mainly inhibits tumor necrosis factor alpha (TNF-alpha) synthesis with less well defined effects on other cytokines, we investigated the effect of the drug on the expression of the proinflammatory cytokines TNF-alpha, interleukin-1beta (IL-1beta) and interleukin 6 (IL-6), and of the anti-inflammatory cytokine interleukin-10 (IL-10) in the lesioned rat sciatic nerve. The increase of endoneurial TNF-alpha during the first week after CCI was reduced after thalidomide treatment, as shown with immunohistochemistry and enzyme-linked-immunosorbent assay. In contrast, endoneurial IL-1beta-immunoreactivity (IR) and IL-6-IR were not altered by thalidomide treatment, nor was macrophage influx. Recruitment of epineurial IL-10 immunoreactive macrophages as well as the recovery of injury-induced depletion of endoneurial IL-10-IR was enhanced by thalidomide treatment. To control for central plasticity as another factor for the effects of thalidomide, the spinal cord was analyzed for changes in neurotransmitters. The decrease in CGRP-IR and SP-IR in the dorsal horn of operated animals was not influenced by treatment. In contrast, the increase in met-enkephalin observed in the dorsal horn of operated animals was further enhanced in the thalidomide-treated animals. The study elucidates some of the complex alterations in CCI and its modulation by thalidomide, and provides further evidence for a possible therapeutic benefit of cytokine-modulating substances in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Annette George
- Neurologische Klinik der Universität Würzburg, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Ballet S, Mauborgne A, Hamon M, Cesselin F, Collin E. Altered opioid-mediated control of the spinal release of dynorphin and met-enkephalin in polyarthritic rats. Synapse 2000; 37:262-72. [PMID: 10891863 DOI: 10.1002/1098-2396(20000915)37:4<262::aid-syn3>3.0.co;2-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous studies showed that spinal opioidergic neurotransmission is markedly altered in the polyarthritic rat, a model of chronic inflammatory pain. Present investigations aimed at assessing possible changes in opioid-mediated control of the spinal outflow of met-enkephalin (ME) and dynorphin (DYN) in these animals. Intrathecal (i.t.) perfusion under halothane anesthesia showed that polyarthritis was associated with both a 40% decrease in the spinal outflow of ME-like material (MELM) and a 90% increase in that of DYNLM. Local treatment with the mu-opioid agonist DAGO (10 microM i.t.) inhibited equally (-30%) the MELM outflow in polyarthritic and control rats, whereas the delta agonist DTLET (10 microM i.t.) also reduced the peptide outflow in controls (-27%) but enhanced it in polyarthritic animals (+56%). On the other hand, both DAGO (10 microM i.t.) and DTLET (10 microM i.t.) decreased (-40 and -49%) DYNLM outflow in polyarthritic rats, but were inactive in controls. Finally, neither MELM outflow nor that of DYNLM were affected by the kappa-agonist U50488H (10 microM i.t.) in both groups of rats. In all cases, the changes due to active agonists could be prevented by specific antagonists which were inactive on their own except the kappa antagonist nor-binaltorphimine (10 microM i.t.) that decreased (-38%) DYNLM outflow in polyarthritic rats. These data indicate that functional changes in spinal opioid receptors may promote enkephalinergic neurotransmission and reduce dynorphinergic neurotransmission in polyarthritic rats, thereby contributing to the analgesic efficacy of opioids in inflammatory pain.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Anesthesia
- Animals
- Arthritis/drug therapy
- Arthritis/metabolism
- Dynorphins/analysis
- Dynorphins/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, Methionine/analysis
- Enkephalin, Methionine/metabolism
- Iodine Radioisotopes
- Ligands
- Male
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligopeptides/pharmacology
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Spinal Cord/drug effects
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- S Ballet
- NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, INSERM U288, Faculté de Médecine Pitié-Salpêtrière, Paris, France.
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Robert M Caudle
- Department of Oral Surgery, Division of Neuroscience, University of Florida College of Dentistry, P.O. Box 100416, Gainesville, FL 32610, USA Department of Anesthesia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
40
|
Calzà L, Pozza M, Arletti R, Manzini E, Hökfelt T. Long-lasting regulation of galanin, opioid, and other peptides in dorsal root ganglia and spinal cord during experimental polyarthritis. Exp Neurol 2000; 164:333-43. [PMID: 10915572 DOI: 10.1006/exnr.2000.7442] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms involved in transition from acute to chronic pain are still not well understood and our means to therapeutically influence this transition are limited. Moreover, very little is known about long-lasting consequences of prolonged exposure to painful stimuli with regard to phenotypic changes and pain experience. In this study we have analyzed long term behavioral and neurochemical effects of intradermal tail injection of heat-killed mycobacterium butyricum suspended in complete Freund's adjuvant. Calcitonin gene-related peptide (CGRP) and galanin mRNA levels were investigated in dorsal root ganglia of polyarthritic rats during the acute (21-) and the remission stage (79 days postinjection), and opioid peptide mRNAs and receptors were studied in the spinal cord. Most of the increases in peptide mRNA levels observed during the acute stage of arthritis were still present in the remission stages. Thus, CGRP and galanin mRNAs in DRGs, and opioid peptide mRNAs and opioid receptors in the spinal cord were still strongly up-regulated, when animals do not exhibit spontaneous pain behavior and inflammation. Hot-plate test in the presence of naloxone, performed in the remission stage, indicated that opiates participate in pain threshold regulation after prolonged painful condition. Finally, X-ray examination revealed a complete destruction of joint structure, thus suggesting a parallel lesion of peripheral nerve endings. These results suggest that in the remission stage of chronic joint inflammation several types of mechanisms are activated aiming at counteracting both inflammatory and neuropathic pain. Thus, opioid systems in the dorsal horn as well as galanin in DRG neurons are upregulated, both alternating pain.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Autoradiography
- Calcitonin Gene-Related Peptide/genetics
- Calcitonin Gene-Related Peptide/metabolism
- Freund's Adjuvant
- Galanin/genetics
- Galanin/metabolism
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- In Situ Hybridization
- Ligands
- Male
- Mycobacterium/immunology
- Naloxone/pharmacology
- Opioid Peptides/metabolism
- Pain Measurement/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/metabolism
- Specific Pathogen-Free Organisms
- Spinal Cord/cytology
- Spinal Cord/metabolism
- Tail/pathology
Collapse
Affiliation(s)
- L Calzà
- Department of Veterinary Morphophysiology and Animal Production, University of Bologna, Italy.
| | | | | | | | | |
Collapse
|
41
|
Hauser KF, Foldes JK, Turbek CS. Dynorphin A (1-13) neurotoxicity in vitro: opioid and non-opioid mechanisms in mouse spinal cord neurons. Exp Neurol 1999; 160:361-75. [PMID: 10619553 PMCID: PMC4868554 DOI: 10.1006/exnr.1999.7235] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dynorphin A is an endogenous opioid peptide that preferentially activates kappa-opioid receptors and is antinociceptive at physiological concentrations. Levels of dynorphin A and a major metabolite, dynorphin A (1-13), increase significantly following spinal cord trauma and reportedly contribute to neurodegeneration associated with secondary injury. Interestingly, both kappa-opioid and N-methyl-D-aspartate (NMDA) receptor antagonists can modulate dynorphin toxicity, suggesting that dynorphin is acting (directly or indirectly) through kappa-opioid and/or NMDA receptor types. Despite these findings, few studies have systematically explored dynorphin toxicity at the cellular level in defined populations of neurons coexpressing kappa-opioid and NMDA receptors. To address this question, we isolated populations of neurons enriched in both kappa-opioid and NMDA receptors from embryonic mouse spinal cord and examined the effects of dynorphin A (1-13) on intracellular calcium concentration ([Ca2+]i) and neuronal survival in vitro. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. At micromolar concentrations, dynorphin A (1-13) elevated [Ca2+]i and caused a significant loss of neurons. The excitotoxic effects were prevented by MK-801 (Dizocilpine) (10 microM), 2-amino-5-phosphopentanoic acid (100 microM), or 7-chlorokynurenic acid (100 microM)--suggesting that dynorphin A (1-13) was acting (directly or indirectly) through NMDA receptors. In contrast, cotreatment with (-)-naloxone (3 microM), or the more selective kappa-opioid receptor antagonist nor-binaltorphimine (3 microM), exacerbated dynorphin A (1-13)-induced neuronal loss; however, cell losses were not enhanced by the inactive stereoisomer (+)-naloxone (3 microM). Neuronal losses were not seen with exposure to the opioid antagonists alone (10 microM). Thus, opioid receptor blockade significantly increased toxicity, but only in the presence of excitotoxic levels of dynorphin. This provided indirect evidence that dynorphin also stimulates kappa-opioid receptors and suggests that kappa receptor activation may be moderately neuroprotective in the presence of an excitotoxic insult. Our findings suggest that dynorphin A (1-13) can have paradoxical effects on neuronal viability through both opioid and non-opioid (glutamatergic) receptor-mediated actions. Therefore, dynorphin A potentially modulates secondary neurodegeneration in the spinal cord through complex interactions involving multiple receptors and signaling pathways.
Collapse
Affiliation(s)
- Kurt F. Hauser
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
- Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| | - Jane K. Foldes
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| | - Carol S. Turbek
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| |
Collapse
|
42
|
Ballet S, Mauborgne A, Gouardères C, Bourgoin AS, Zajac JM, Hamon M, Cesselin F. The neuropeptide FF analogue, 1DME, enhances in vivo met-enkephalin release from the rat spinal cord. Neuropharmacology 1999; 38:1317-24. [PMID: 10471085 DOI: 10.1016/s0028-3908(99)00035-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Behavioural studies have suggested that endogenous opioids mediate the antinociceptive action of neuropeptide FF (FLFQPQRF-NH2) at the spinal level in the rat. This hypothesis was directly assessed by investigating the effects of a NPFF analogue, 1DMe ([D-Tyr1,(NMe)Phe3]NPFF), on the spinal outflow of met-enkephalin-like material (MELM) in halothane-anaesthetised rats. Intrathecal infusion (0.1 ml/min) of 1DMe (0.1 microM-0.1 mM, for 45 min) produced a concentration-dependent increase in spinal MELM outflow which persisted for at least 90 min at the highest concentration tested. Intrathecal coadministration of the micro-opioid receptor antagonist CTOP (1 microM) did not significantly affect the spinal MELM overflow due to 0.1 mM 1DMe. In contrast, both naltrindole and nor-binaltorphimine, at concentrations (10 microM) that allow the selective blockade of alpha- and kappa-opioid receptors, respectively, significantly reduced the stimulatory effect of 1DMe on spinal MELM outflow. These data provide the first direct demonstration that met-enkephalin (among other opioid peptides) can mediate the antinociceptive action of NPFF at the spinal level in rats. In addition, they suggest that reciprocal excitatory interactions between opioids and opioid-modulatory factors (such as NPFF) participate in the physiological control of nociception.
Collapse
Affiliation(s)
- S Ballet
- NeuroPsychoPharmacologie Moléculaire Cellulaire et Fonctionnelle, INSERM U288, Faculté de Médecine Pitté-Salpêtrière, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Li JL, Li YQ, Kaneko T, Mizuno N. Preprodynorphin-like immunoreactivity in medullary dorsal horn neurons projecting to the thalamic regions in the rat. Neurosci Lett 1999; 264:13-6. [PMID: 10320002 DOI: 10.1016/s0304-3940(99)00132-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Preprodynorphin (PPD)-like immunoreactive (-LI) neuronal cell bodies in the trigeminal sensory nuclear complex of the rat were found in laminae I and II of the medullary dorsal horn (MDH; caudal spinal trigeminal nucleus) and the paratrigeminal nucleus. A PPD immunofluorescence histochemistry combined with a fluorescence retrograde tract-tracing method revealed that some of the PPD-LI neurons in the MDH and paratrigeminal nucleus projected to the thalamic regions. Nociceptive nature of the PPD-LI MDH neurons projecting to the thalamic regions was also demonstrated by a triple labeling method, using the technique of the noxious stimulus-evoked expression of the immediate-early gene, c-fos. In the rats which were subcutaneously injected with formalin into the upper and lower lips, c-fos protein (Fos) was found in PPD-LI neurons which were labeled with a retrograde tracer injected into the thalamic regions.
Collapse
Affiliation(s)
- J L Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Ballet S, Mauborgne A, Benoliel JJ, Bourgoin S, Hamon M, Cesselin F, Collin E. Polyarthritis-associated changes in the opioid control of spinal CGRP release in the rat. Brain Res 1998; 796:198-208. [PMID: 9689470 DOI: 10.1016/s0006-8993(98)00350-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a model of chronic inflammatory pain, Freund's adjuvant-induced polyarthritis has been shown to be associated with marked alterations in the activity of opioid- and calcitonin gene-related peptide (CGRP)-containing neurons in the dorsal horn of the spinal cord in rats. Possible changes in the interactions between these two peptidergic systems in chronic inflammatory pain were investigated by comparing the effects of various opioid receptor ligands on the spinal outflow of CGRP-like material (CGRPLM) in polyarthritic and age-paired control rats. Intrathecal perfusion of an artificial cerebrospinal fluid in halothane-anaesthetized animals allowed the collection of CGRPLM released from the spinal cord and the application of opioid receptor ligands. The blockade of kappa-opioid receptors similarly increased CGRPLM release in both groups of rats as expected of a kappa-mediated tonic inhibitory control of CGRP-containing fibres in control, as well as in polyarthritic rats. In contrast, the higher increase in CGRPLM outflow due to the preferential blockade of mu opioid receptors by naloxone in polyarthritic rats as compared to non-suffering animals supports the idea of a reinforced mu opioid receptor-mediated tonic inhibitory control of CGRP-containing fibres in rats suffering from chronic pain. Even more strikingly, the differences observed in the effects of delta-opioid receptor ligands on CGRPLM outflow suggest that delta receptors are functionally shifted from a participation in a phasic excitatory control in non-suffering rats to a tonic inhibitory control in polyarthritic rats. These data indicate that agonists acting at the three types of opioid receptors all exert a tonic inhibitory influence on CGRP-containing nociceptive primary afferent fibres within the spinal cord of polyarthritic rats. Such a convergence probably explains why morphine and other opioids are especially potent to reduce pain in subjects suffering from chronic inflammatory diseases.
Collapse
Affiliation(s)
- S Ballet
- INSERM U288, Neuropsychopharmacologie Moléculaire, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|