1
|
Rodríguez MD, Morris JA, Bardsley OJ, Matthews HR, Huang CLH. Nernst-Planck-Gaussian finite element modelling of Ca 2+ electrodiffusion in amphibian striated muscle transverse tubule-sarcoplasmic reticular triadic junctional domains. Front Physiol 2024; 15:1468333. [PMID: 39703671 PMCID: PMC11655509 DOI: 10.3389/fphys.2024.1468333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/22/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Intracellular Ca2+ signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca2+ electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca2+] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions. Materials and methods Finite element computational analysis characterised the formation and steady state and kinetic properties of the Ca2+ microdomains using established empirical physiological and anatomical values. It progressively incorporated Fick diffusion and Nernst-Planck electrodiffusion gradients, K+, Cl-, and Donnan protein, and calmodulin (CaM)-mediated Ca2+ buffering. It solved for temporal-spatial patterns of free and buffered Ca2+, Gaussian charge differences, and membrane potential changes, following Ca2+ release into the T-SR junction. Results Computational runs using established low and high Ca2+ diffusibility (D Ca2+) limits both showed that voltages arising from intracytosolic total [Ca2+] gradients and the counterions little affected microdomain formation, although elevated D Ca2+ reduced attained [Ca2+] and facilitated its kinetics. Contrastingly, adopting known cytosolic CaM concentrations and CaM-Ca2+ affinities markedly increased steady-state free ([Ca2+]free) and total ([Ca2+]), albeit slowing microdomain formation, all to extents reduced by high D Ca2+. However, both low and high D Ca2+ yielded predictions of similar, physiologically effective, [Ca2+-CaM]. This Ca2+ trapping by the relatively immobile CaM particularly increased [Ca2+] at the junction centre. [Ca2+]free, [Ca2+-CaM], [Ca2+], and microdomain kinetics all depended on both CaM-Ca2+ affinity and D Ca2+. These changes accompanied only small Gaussian (∼6 mV) and surface charge (∼1 mV) effects on tubular transmembrane potential at either D Ca2+. Conclusion These physical predictions of T-SR Ca2+ microdomain formation and properties are compatible with the microdomain roles in Ca2+ and Ca2+-CaM-mediated signalling but limited the effects on tubular transmembrane potentials. CaM emerges as a potential major regulator of both the kinetics and the extent of microdomain formation. These possible cellular Ca2+ signalling roles are discussed in relation to possible feedback modulation processes sensitive to the μM domain but not nM bulk cytosolic, [Ca2+]free, and [Ca2+-CaM], including ryanodine receptor-mediated SR Ca2+ release; Na+, K+, and Cl- channel-mediated membrane excitation and stabilisation; and Na+/Ca2+ exchange transport.
Collapse
Affiliation(s)
- Marco D. Rodríguez
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Joshua A. Morris
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Oliver J. Bardsley
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hugh R. Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Bardsley OJ, Matthews HR, Huang CLH. Finite element analysis predicts Ca 2+ microdomains within tubular-sarcoplasmic reticular junctions of amphibian skeletal muscle. Sci Rep 2021; 11:14376. [PMID: 34257321 PMCID: PMC8277803 DOI: 10.1038/s41598-021-93083-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
A finite element analysis modelled diffusional generation of steady-state Ca2+ microdomains within skeletal muscle transverse (T)-tubular-sarcoplasmic reticular (SR) junctions, sites of ryanodine receptor (RyR)-mediated SR Ca2+ release. It used established quantifications of sarcomere and T-SR anatomy (radial diameter [Formula: see text]; axial distance [Formula: see text]). Its boundary SR Ca2+ influx densities,[Formula: see text], reflected step impositions of influxes, [Formula: see text] deduced from previously measured Ca2+ signals following muscle fibre depolarization. Predicted steady-state T-SR junctional edge [Ca2+], [Ca2+]edge, matched reported corresponding experimental cytosolic [Ca2+] elevations given diffusional boundary efflux [Formula: see text] established cytosolic Ca2+ diffusion coefficients [Formula: see text] and exit length [Formula: see text]. Dependences of predicted [Ca2+]edge upon [Formula: see text] then matched those of experimental [Ca2+] upon Ca2+ release through their entire test voltage range. The resulting model consistently predicted elevated steady-state T-SR junctional ~ µM-[Ca2+] elevations radially declining from maxima at the T-SR junction centre along the entire axial T-SR distance. These [Ca2+] heterogeneities persisted through 104- and fivefold, variations in D and w around, and fivefold reductions in d below, control values, and through reported resting muscle cytosolic [Ca2+] values, whilst preserving the flux conservation ([Formula: see text] condition, [Formula: see text]. Skeletal muscle thus potentially forms physiologically significant ~ µM-[Ca2+] T-SR microdomains that could regulate cytosolic and membrane signalling molecules including calmodulin and RyR, These findings directly fulfil recent experimental predictions invoking such Ca2+ microdomains in observed regulatory effects upon Na+ channel function, in a mechanism potentially occurring in similar restricted intracellular spaces in other cell types.
Collapse
Affiliation(s)
- Oliver J. Bardsley
- grid.5335.00000000121885934Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG UK
| | - Hugh R. Matthews
- grid.5335.00000000121885934Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG UK
| | - Christopher L.-H. Huang
- grid.5335.00000000121885934Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG UK ,grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| |
Collapse
|
3
|
Baker KD, Edwards TM, Rickard NS. The role of intracellular calcium stores in synaptic plasticity and memory consolidation. Neurosci Biobehav Rev 2013; 37:1211-39. [PMID: 23639769 DOI: 10.1016/j.neubiorev.2013.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 12/20/2022]
Abstract
Memory processing requires tightly controlled signalling cascades, many of which are dependent upon intracellular calcium (Ca(2+)). Despite this, most work investigating calcium signalling in memory formation has focused on plasma membrane channels and extracellular sources of Ca(2+). The intracellular Ca(2+) release channels, ryanodine receptors (RyRs) and inositol (1,4,5)-trisphosphate receptors (IP3Rs) have a significant capacity to regulate intracellular Ca(2+) signalling. Evidence at both cellular and behavioural levels implicates both RyRs and IP3Rs in synaptic plasticity and memory formation. Pharmacobehavioural experiments using young chicks trained on a single-trial discrimination avoidance task have been particularly useful by demonstrating that RyRs and IP3Rs have distinct roles in memory formation. RyR-dependent Ca(2+) release appears to aid the consolidation of labile memory into a persistent long-term memory trace. In contrast, IP3Rs are required during long-term memory. This review discusses various functions for RyRs and IP3Rs in memory processing, including neuro- and glio-transmitter release, dendritic spine remodelling, facilitating vasodilation, and the regulation of gene transcription and dendritic excitability. Altered Ca(2+) release from intracellular stores also has significant implications for neurodegenerative conditions.
Collapse
Affiliation(s)
- Kathryn D Baker
- School of Psychology and Psychiatry, Monash University, Clayton 3800, Victoria, Australia.
| | | | | |
Collapse
|
4
|
Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol Neurobiol 2008; 38:153-66. [PMID: 18759010 DOI: 10.1007/s12035-008-8039-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 08/14/2008] [Indexed: 12/28/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and the BK channel are enriched at the presynaptic nerve terminal, where CaMKII associates with synaptic vesicles whereas the BK channel colocalizes with voltage-sensitive Ca(2+) channels in the plasma membrane. Mounting evidence suggests that these two proteins play important roles in controlling neurotransmitter release. Presynaptic BK channels primarily serve as a negative regulator of neurotransmitter release. In contrast, presynaptic CaMKII either enhances or inhibits neurotransmitter release and synaptic plasticity depending on experimental or physiological conditions and properties of specific synapses. The different functions of presynaptic CaMKII appear to be mediated by distinct downstream proteins, including the BK channel.
Collapse
|
5
|
Crepel F, Daniel H. Developmental changes in agonist-induced retrograde signaling at parallel fiber-Purkinje cell synapses: role of calcium-induced calcium release. J Neurophysiol 2007; 98:2550-65. [PMID: 17855589 DOI: 10.1152/jn.00376.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In cerebellar Purkinje cells (PCs), activation of postsynaptic mGluR1 receptors inhibits parallel fiber (PF) to PC synaptic transmission by retrograde signaling. However, results were conflicting with respect to whether endocannabinoids or glutamate (Glu) is the retrograde messenger involved. Experiments in cerebellar slices from 10- to 12-day-old rats and mice confirmed that suppression of PF-excitatory postsynaptic currents (EPSCs) by mGluR1 agonists was entirely blocked by cannabinoid receptor antagonists at this early developmental stage. In contrast, suppression of PF-EPSCs by mGluR1 agonists was only partly blocked by cannabinoid receptor antagonists in 18- to 22-day-old rats, and the remaining suppression was accompanied by an increase in paired-pulse facilitation. This endocannnabinoidindependent suppression of PF-EPSCs was potentiated by the Glu uptake inhibitor D-threo-beta-benzyloxyaspartate (D-TBOA) and blocked by the desensitizing kainate (KA) receptors agonist SYM 2081, by nonsaturating concentrations of 6-cyano-7-nitroquinoxaline-2-3-dione (CNQX) [but not by GYKI 52466 hydrochloride (GYKI)] and by dialyzing PCs with guanosine 5'-[beta-thio]diphosphate (GDP-betaS). An endocannnabinoid-independent suppression of PF-EPSCs was also present in nearly mature wild-type mice but was absent in GluR6(-/-) mice. The endocannnabinoid-independent suppression of PF-EPSCs induced by mGluR1 agonists and the KA-dependent component of depolarization-induced suppression of excitation (DSE) were blocked by ryanodine acting at a presynaptic level. We conclude that retrograde release of Glu by PCs participates in mGluR1 agonist-induced suppression of PF-EPSCs at nearly mature PF-PC synapses and that Glu operates through activation of presynaptic KA receptors located on PFs and prolonged release of calcium from presynaptic internal calcium stores.
Collapse
Affiliation(s)
- Francis Crepel
- Pharmacologie de la Synapse, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay Cedex, France.
| | | |
Collapse
|
6
|
Suzuki D, Hori T, Saitoh N, Takahashi T. 4-Chloro-m-cresol, an activator of ryanodine receptors, inhibits voltage-gated K(+) channels at the rat calyx of Held. Eur J Neurosci 2007; 26:1530-6. [PMID: 17714495 DOI: 10.1111/j.1460-9568.2007.05762.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4-Chloro-m-cresol (4-CmC) is thought to be a specific activator of ryanodine receptors (RyRs). Using this compound, we examined whether the RyR-mediated Ca(2+) release is involved in transmitter release at the rat calyx of Held synapse in brainstem slices. Bath application of 4-CmC caused a dramatic increase in the amplitude of excitatory postsynaptic currents (TIFCs) with the half-maximal effective concentration of 0.12 mm. By making direct patch-clamp whole-cell recordings from presynaptic terminals, we investigated the mechanism by which 4-CmC facilitates transmitter release. 4-CmC markedly prolonged the duration of action potentials, with little effect on their rise time kinetics. In voltage-clamp recordings, 4-CmC inhibited voltage-gated presynaptic K(+) currents (I(pK)) by 53% (at +20 mV) but had no effect on voltage-gated presynaptic Ca(2+) currents (I(pCa)). In simultaneous pre- and postsynaptic recordings, 4-CmC had no effect on the TIFC evoked by I(pCa). Although immunocytochemical study of the calyceal terminals showed immunoreactivity to type 3 RyRs, ryanodine (0.02 mm) had no effect on the 4-CmC-induced TIFC potentiation. We conclude that the facilitatory effect of 4-CmC on nerve-evoked transmitter release is mediated by its inhibitory effect on I(pK).
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
Zissimopoulos S, West DJ, Williams AJ, Lai FA. Ryanodine receptor interaction with the SNARE-associated protein snapin. J Cell Sci 2007; 119:2386-97. [PMID: 16723744 DOI: 10.1242/jcs.02936] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ryanodine receptor (RyR) is a widely expressed intracellular calcium (Ca(2+))-release channel regulating processes such as muscle contraction and neurotransmission. Snapin, a ubiquitously expressed SNARE-associated protein, has been implicated in neurotransmission. Here, we report the identification of snapin as a novel RyR2-interacting protein. Snapin binds to a 170-residue predicted ryanodine receptor cytosolic loop (RyR2 residues 4596-4765), containing a hydrophobic segment required for snapin interaction. Ryanodine receptor binding of snapin is not isoform specific and is conserved in homologous RyR1 and RyR3 fragments. Consistent with peptide fragment studies, snapin interacts with the native ryanodine receptor from skeletal muscle, heart and brain. The snapin-RyR1 association appears to sensitise the channel to Ca(2+) activation in [(3)H]ryanodine-binding studies. Deletion analysis indicates that the ryanodine receptor interacts with the snapin C-terminus, the same region as the SNAP25-binding site. Competition experiments with native ryanodine receptor and SNAP25 suggest that these two proteins share an overlapping binding site on snapin. Thus, regulation of the association between ryanodine receptor and snapin might constitute part of the elusive molecular mechanism by which ryanodine-sensitive Ca(2+) stores modulate neurosecretion.
Collapse
Affiliation(s)
- Spyros Zissimopoulos
- Wales Heart Research Institute, Department of Cardiology, Cardiff University School of Medicine, Heath Park, UK.
| | | | | | | |
Collapse
|
8
|
Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiol Rev 2005; 85:201-79. [PMID: 15618481 DOI: 10.1152/physrev.00004.2004] [Citation(s) in RCA: 567] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest single intracellular organelle, which is present in all types of nerve cells. The ER is an interconnected, internally continuous system of tubules and cisterns, which extends from the nuclear envelope to axons and presynaptic terminals, as well as to dendrites and dendritic spines. Ca2+release channels and Ca2+pumps residing in the ER membrane provide for its excitability. Regulated ER Ca2+release controls many neuronal functions, from plasmalemmal excitability to synaptic plasticity. Enzymatic cascades dependent on the Ca2+concentration in the ER lumen integrate rapid Ca2+signaling with long-lasting adaptive responses through modifications in protein synthesis and processing. Disruptions of ER Ca2+homeostasis are critically involved in various forms of neuropathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester, Faculty of Biological Sciences, United Kingdom.
| |
Collapse
|
9
|
Beck A, Nieden RZ, Schneider HP, Deitmer JW. Calcium release from intracellular stores in rodent astrocytes and neurons in situ. Cell Calcium 2004; 35:47-58. [PMID: 14670371 DOI: 10.1016/s0143-4160(03)00171-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endoplasmic reticular Ca(2+) stores, instrumental for intra- and intercellular calcium signalling, can be depleted by different receptor agonists. In the present study, the functional status of ER Ca(2+) stores was probed by cyclopiazonic acid (CPA, 10-30 microM, inhibitor of SERCA-dependent ER Ca(2+) uptake) and/or caffeine (20 mM, ryanodine receptor activator) in astrocytes and neurons of rat and mouse acute hippocampal brain slices (Stratum radiatum, Stratum moleculare), and in cultured astrocytes, using confocal microscopy and conventional Ca(2+) imaging. Astrocytes and neurons in situ, identified by their Ca(2+) response in K(+)-free saline (Dallwig and Deitmer [J. Neurosci. Methods 116 (2002) 77]), had a resting cytosolic Ca(2+) level of 105 and 157 nM, respectively (P<0.05). CPA evoked a Ca(2+) transient, which was faster and larger in neurons than in astrocytes, indicating larger Ca(2+) leak of neuronal Ca(2+) stores. Caffeine evoked a Ca(2+) rise in most neurons (>80%), but only in less than 40% of astrocytes. The glial Ca(2+) transients in the presence of caffeine had a large and variable delay (>50 s), as compared to those in neurons (< or =10 s), and appeared to be spontaneous and/or secondary to the neuronal Ca(2+) response, leading to release of neuronal transmitters. Astrocytes in culture responded to CPA, but never to caffeine with a Ca(2+) rise. Our results indicate that astrocytes, in contrast to neurons, lack caffeine-sensitive Ca(2+) stores, and have a relatively smaller leak from CPA-sensitive Ca(2+) stores than neurons.
Collapse
Affiliation(s)
- Andreas Beck
- Abteilung für Allgemeine Zoologie, FB Biologie, Universität Kaiserslautern, Postfach 3049, D-67553 Kaiserslautern, Germany
| | | | | | | |
Collapse
|
10
|
Bouchard R, Pattarini R, Geiger JD. Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol 2003; 69:391-418. [PMID: 12880633 DOI: 10.1016/s0301-0082(03)00053-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ca(2+)-induced Ca(2+) release (CICR) mediated by sarcoplasmic reticulum resident ryanodine receptors (RyRs) has been well described in cardiac, skeletal and smooth muscle. In brain, RyRs are localised primarily to endoplasmic reticulum (ER) and have been demonstrated in postsynaptic entities, astrocytes and oligodendrocytes where they regulate intracellular Ca(2+) concentration ([Ca(2+)](i)), membrane potential and the activity of a variety of second messenger systems. Recently, the contribution of presynaptic RyRs and CICR to functions of central and peripheral presynaptic terminals, including neurotransmitter release, has received increased attention. However, there is no general agreement that RyRs are localised to presynaptic terminals, nor is it clear that RyRs regulate a large enough pool of intracellular Ca(2+) to be physiologically significant. Here, we review direct and indirect evidence that on balance favours the notion that ER and RyRs are found in presynaptic terminals and are physiologically significant. In so doing, it became obvious that some of the controversy originates from issues related to (i) the ability to demonstrate conclusively the physical presence of ER and RyRs, (ii) whether the biophysical properties of RyRs are such that they can contribute physiologically to regulation of presynaptic [Ca(2+)](i), (iii) how ER Ca(2+) load and feedback gain of CICR contributes to the ability to detect functionally relevant RyRs, (iv) the distance that Ca(2+) diffuses from plasma membranes to RyRs to trigger CICR and from RyRs to the Active Zone to enhance vesicle release, and (v) the experimental conditions used. The recognition that ER Ca(2+) stores are able to modulate local Ca(2+) levels and neurotransmitter release in presynaptic terminals will aid in the understanding of the cellular mechanisms controlling neuronal function.
Collapse
Affiliation(s)
- Ron Bouchard
- Division of Neuroscience Research, St. Boniface Research Centre, Winnipeg, Canada R2H 2A6
| | | | | |
Collapse
|
11
|
Sukhareva M, Smith SV, Maric D, Barker JL. Functional properties of ryanodine receptors in hippocampal neurons change during early differentiation in culture. J Neurophysiol 2002; 88:1077-87. [PMID: 12205130 DOI: 10.1152/jn.2002.88.3.1077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
6-((4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)amino)hexanoic acid ryanodine (BODIPY-ryanodine) binding and Ca(2+) imaging were used to study the properties of ryanodine receptors (RyRs) and cytoplasmic Ca(2+) (Ca) changes in neurons cultured from the embryonic rat hippocampus during the earliest stages of differentiation. Baseline Ca levels declined from 164 +/- 5 (SD) nM at early stages to 70 +/- 4 nM in differentiated neurons. Fluorescent BODIPY-ryanodine binding signals identified activated RyRs in somata, which were eliminated by removal of external Ca(2+) or by blockage of Ca(2+) entry through L-type but not N-type Ca(2+) channels. The GABA synthesis inhibitor 3-mercaptopropionic acid completely abolished ryanodine binding. Caffeine or K(+)-depolarization inhibited the activity of RyRs at very early stages of differentiation but had stimulatory effects at later stages after a network of processes had formed. BayK-8644 stimulated RyRs throughout all regions of all differentiating cells. The results suggest that in differentiating embryonic hippocampal neurons the activity of RyRs is maintained via Ca(2+) entering through L-type Ca(2+) channels. The mode of activation of L-type voltage-gated Ca(2+) channels with either membrane depolarization or specific pharmacological agents affects the coupled activity of RyRs differently as neurons differentiate processes and networks.
Collapse
Affiliation(s)
- Manana Sukhareva
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
12
|
Assessing the role of calcium-induced calcium release in short-term presynaptic plasticity at excitatory central synapses. J Neurosci 2002. [PMID: 11756484 DOI: 10.1523/jneurosci.22-01-00021.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent evidence suggests that internal calcium stores and calcium-induced calcium release (CICR) provide an important source of calcium that drives short-term presynaptic plasticity at central synapses. Here we tested for the involvement of CICR in short-term presynaptic plasticity at six excitatory synapses in acute rat hippocampal and cerebellar brain slices. Depletion of internal calcium stores with thapsigargin and prevention of CICR with ryanodine have no effect on paired-pulse facilitation, delayed release of neurotransmitter, or calcium-dependent recovery from depression. Fluorometric calcium measurements also show that these drugs have no effect on the residual calcium signal that underlies these forms of short-term presynaptic plasticity. Finally, although caffeine causes CICR in Purkinje cell bodies and dendrites, it does not elicit CICR in parallel fiber inputs to these cells. Taken together, these results indicate that for the excitatory synapses studied here, internal calcium stores and CICR do not contribute to short-term presynaptic plasticity on the milliseconds-to-seconds time scale. Instead, this plasticity is driven by the residual calcium signal arising from calcium entry through voltage-gated calcium channels.
Collapse
|
13
|
Matyash M, Matyash V, Nolte C, Sorrentino V, Kettenmann H. Requirement of functional ryanodine receptor type 3 for astrocyte migration. FASEB J 2002; 16:84-6. [PMID: 11709492 DOI: 10.1096/fj.01-0380fje] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Astrocyte motility plays an important role in the response of the brain to injury and during regeneration. We used two in vitro assays, a wound-healing model and a chemotaxis assay, to study mechanisms that control astrocyte motility. Ryanodine receptors (RyR), intracellular calcium-release channels, modulate intracellular Ca2+ levels, and also motility: 1) blocking RyR with antagonizing concentration of ryanodine (200 microM) strongly attenuated motility and 2) motility of astrocytes cultured from homozygous RyR type 3 knockout mice was impaired strongly compared with wild-type. In contrast, MIP-1a-induced chemotaxis was neither impaired in the presence of ryanodine nor in the cells from the knockout animals. Reverse transcription-polymerase chain reaction (RT-PCR) analysis combined with Western blotting and immunocytochemistry confirmed the expression of RyR type 3, but not type 1 or 2 in cultured and acutely isolated astrocytes. RyR in astrocytes are linked to Ca2+ signaling because the RyR agonist 4-chloro-m-cresol induced a release of Ca2+ from intracellular stores. These results indicate that astrocytes express only RyR type 3 and that this receptor is important for controlling astrocyte motility.
Collapse
Affiliation(s)
- Marina Matyash
- Max-Delbrück-Center for Molecular Medicine, Cellular Neuroscience, D-13092 Berlin, Germany
| | | | | | | | | |
Collapse
|
14
|
Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81:1143-95. [PMID: 11427694 DOI: 10.1152/physrev.2001.81.3.1143] [Citation(s) in RCA: 597] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebellar Purkinje cells exhibit a unique type of synaptic plasticity, namely, long-term depression (LTD). When two inputs to a Purkinje cell, one from a climbing fiber and the other from a set of granule cell axons, are repeatedly associated, the input efficacy of the granule cell axons in exciting the Purkinje cell is persistently depressed. Section I of this review briefly describes the history of research around LTD, and section II specifies physiological characteristics of LTD. Sections III and IV then review the massive data accumulated during the past two decades, which have revealed complex networks of signal transduction underlying LTD. Section III deals with a variety of first messengers, receptors, ion channels, transporters, G proteins, and phospholipases. Section IV covers second messengers, protein kinases, phosphatases and other elements, eventually leading to inactivation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-selective glutamate receptors that mediate granule cell-to-Purkinje cell transmission. Section V defines roles of LTD in the light of the microcomplex concept of the cerebellum as functionally eliminating those synaptic connections associated with errors during repeated exercises, while preserving other connections leading to the successful execution of movements. Section VI examines the validity of this microcomplex concept based on the data collected from recent numerous studies of various forms of motor learning in ocular reflexes, eye-blink conditioning, posture, locomotion, and hand/arm movements. Section VII emphasizes the importance of integrating studies on LTD and learning and raises future possibilities of extending cerebellar research to reveal memory mechanisms of implicit learning in general.
Collapse
Affiliation(s)
- M Ito
- Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
15
|
Salinska EJ, Bourne RC, Rose SP. Long-term memory formation in the chick requires mobilization of ryanodine-sensitive intracellular calcium stores. Neurobiol Learn Mem 2001; 75:293-302. [PMID: 11300735 DOI: 10.1006/nlme.2000.3977] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Training chicks (Gallus domesticus) on a one-trial passive avoidance task results in transient and time-dependent enhanced increases in N-methyl-d-aspartate- or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-stimulated intracellular calcium concentration in synaptoneurosomes isolated from a specific forebrain region, the intermediate medial hyperstriatum ventrale. This increase could result from either calcium entry from the extracellular medium or from mobilization of intracellular calcium stores. We have therefore examined the effects of dantrolene, an inhibitor of calcium release from the intracellular ryanodine-sensitive store, on these processes. Dantrolene, 50 nmol per hemisphere injected intracerebrally 30 min pre- or 30 min posttraining, blocked longer term memory for the passive avoidance task, whereas memory for the task was unaffected when dantrolene was injected at earlier or later times. Preincubation of synaptoneurosomes, isolated from the intermediate hyperstriatum ventrale 10 min after training, with 100 nM dantrolene abolished the enhanced training-induced increase in intracellular calcium concentration elicited by 0.5 mM N-methyl-d-aspartate. By contrast, the training-induced enhancement of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-stimulated increase in intracellular calcium concentration in synaptoneurosomes prepared 6 h posttraining was unaffected by preincubation with dantrolene, which was not amnestic at this time. Calcium release from ryanodine-sensitive intracellular stores may thus be a necessary stage in the early phase of the molecular cascade leading to the synaptic modulation required for long-term memory storage.
Collapse
Affiliation(s)
- E J Salinska
- Department of Neurochemistry, Medical Research Centre, Pawinskiego 5, Warsaw, 02-106, Poland
| | | | | |
Collapse
|
16
|
Mori F, Fukaya M, Abe H, Wakabayashi K, Watanabe M. Developmental changes in expression of the three ryanodine receptor mRNAs in the mouse brain. Neurosci Lett 2000; 285:57-60. [PMID: 10788707 DOI: 10.1016/s0304-3940(00)01046-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ryanodine receptors (RyR) are Ca(2+)-induced Ca(2+) release channels located on the endoplasmic reticulum, and consist of three isoforms, termed RyR1-3. We examined their expression in developing mouse brains by in situ hybridization. During the embryonic stage, RyR1 mRNA levels were highest in the rostral cortical plate, whereas RyR3 mRNA was most prominent in the caudal cortical plate and hippocampus. Initially, low levels of RyR2 mRNA were distributed in the diencephalon and brainstem. However, from postnatal day 7 onward, RyR2 mRNA became the major isoform in many brain regions, while RyR1 mRNA became prominent in the dentate gyrus and Purkinje cell layer. Postnatal down-regulation in the caudal cerebral cortex restricted RyR3 mRNA expression to the hippocampus, particularly the CA1 region. Therefore, RyR expression undergoes dynamic changes during the early postnatal period, when neurons are undergoing structural and functional differentiation.
Collapse
Affiliation(s)
- F Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | |
Collapse
|
17
|
Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000; 23:222-9. [PMID: 10782128 DOI: 10.1016/s0166-2236(00)01548-4] [Citation(s) in RCA: 370] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoplasmic reticulum (ER) is a multifaceted organelle that regulates protein synthesis and trafficking, cellular responses to stress, and intracellular Ca2+ levels. In neurons, it is distributed between the cellular compartments that regulate plasticity and survival, which include axons, dendrites, growth cones and synaptic terminals. Intriguing communication networks between ER, mitochondria and plasma membrane are being revealed that provide mechanisms for the precise regulation of temporal and spatial aspects of Ca2+ signaling. Alterations in Ca2+ homeostasis in ER contribute to neuronal apoptosis and excitotoxicity, and are being linked to the pathogenesis of several different neurodegenerative disorders, including Alzheimer's disease and stroke.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
18
|
Mhyre TR, Maine DN, Holliday J. Calcium-induced calcium release from intracellular stores is developmentally regulated in primary cultures of cerebellar granule neurons. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1097-4695(200001)42:1<134::aid-neu12>3.0.co;2-g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Abstract
Activation of muscle contraction is a rapid event that is initiated by electrical activity in the surface membrane and transverse (T) tubules. This is followed by release of calcium from the inner membrane system, the sarcoplasmic reticulum (SR). Using electron microscopy (EM), K. R. Porter and his laboratory defined the SR, the unique junctions between SR and T tubules, and the continuity between T tubules and surface membrane. Current research in this area centers on the interaction between T tubules and SR. This is mediated by 2 well-identified calcium channels: the dihydropyridine receptors (DHPRs) that act as voltage sensors in the T tubules, and the ryanodine receptors (RyRs) or calcium release channels of the SR. The relative positions of these 2 molecules differ significantly in skeletal and cardiac muscle, and this correlates well with known functional differences in the control of contraction. Molecular biology experiments combined with EM indicate that DHPRs are linked to RyRs in skeletal but probably not in cardiac muscle.
Collapse
Affiliation(s)
- C Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia 19104-6058, USA.
| |
Collapse
|
20
|
Abstract
Changes in the intracellular calcium concentration ([Ca2+]i) convey signals that are essential to the life and death of neurons. Ca(2+)-induced Ca(2+)-release (CICR), a process in which a modest elevation in [Ca2+]i is amplified by a secondary release of Ca2+ from stores within the cell, plays a prominent role in shaping neuronal [Ca2+]i signals. When CICR becomes regenerative, an explosive increase in [Ca2+]i generates a Ca2+ wave that spreads throughout the cell. A discrete threshold controls activation of this all-or-none behavior and cellular context adjusts the threshold. Thus, the store acts as a switch that determines whether a given pattern of electrical activity will produce a local or global Ca2+ signal. This gatekeeper function seems to control some forms of Ca(2+)-triggered plasticity in neurons.
Collapse
Affiliation(s)
- Y M Usachev
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
21
|
Rahamimoff R, Butkevich A, Duridanova D, Ahdut R, Harari E, Kachalsky SG. Multitude of ion channels in the regulation of transmitter release. Philos Trans R Soc Lond B Biol Sci 1999; 354:281-8. [PMID: 10212476 PMCID: PMC1692499 DOI: 10.1098/rstb.1999.0379] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The presynaptic nerve terminal is of key importance in communication in the nervous system. Its primary role is to release transmitter quanta on the arrival of an appropriate stimulus. The structural basis of these transmitter quanta are the synaptic vesicles that fuse with the surface membrane of the nerve terminal, to release their content of neurotransmitter molecules and other vesicular components. We subdivide the control of quantal release into two major classes: the processes that take place before the fusion of the synaptic vesicle with the surface membrane (the pre-fusion control) and the processes that occur after the fusion of the vesicle (the post-fusion control). The pre-fusion control is the main determinant of transmitter release. It is achieved by a wide variety of cellular components, among them the ion channels. There are reports of several hundred different ion channel molecules at the surface membrane of the nerve terminal, that for convenience can be grouped into eight major categories. They are the voltage-dependent calcium channels, the potassium channels, the calcium-gated potassium channels, the sodium channels, the chloride channels, the non-selective channels, the ligand gated channels and the stretch-activated channels. There are several categories of intracellular channels in the mitochondria, endoplasmic reticulum and the synaptic vesicles. We speculate that the vesicle channels may be of an importance in the post-fusion control of transmitter release.
Collapse
Affiliation(s)
- R Rahamimoff
- Department of Physiology, Hebrew University Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|