1
|
Li BX, Dong GH, Li HL, Zhang JS, Bing YH, Chu CP, Cui SB, Qiu DL. Chronic Ethanol Exposure Enhances Facial Stimulation-Evoked Mossy Fiber-Granule Cell Synaptic Transmission via GluN2A Receptors in the Mouse Cerebellar Cortex. Front Syst Neurosci 2021; 15:657884. [PMID: 34408633 PMCID: PMC8365521 DOI: 10.3389/fnsys.2021.657884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory information is transferred to the cerebellar cortex via the mossy fiber–granule cell (MF–GC) pathway, which participates in motor coordination and motor learning. We previously reported that chronic ethanol exposure from adolescence facilitated the sensory-evoked molecular layer interneuron–Purkinje cell synaptic transmission in adult mice in vivo. Herein, we investigated the effect of chronic ethanol exposure from adolescence on facial stimulation-evoked MF–GC synaptic transmission in the adult mouse cerebellar cortex using electrophysiological recording techniques and pharmacological methods. Chronic ethanol exposure from adolescence induced an enhancement of facial stimulation-evoked MF–GC synaptic transmission in the cerebellar cortex of adult mice. The application of an N-methyl-D-aspartate receptor (NMDAR) antagonist, D-APV (250 μM), induced stronger depression of facial stimulation-evoked MF–GC synaptic transmission in chronic ethanol-exposed mice compared with that in control mice. Chronic ethanol exposure-induced facilitation of facial stimulation evoked by MF–GC synaptic transmission was abolished by a selective GluN2A antagonist, PEAQX (10 μM), but was unaffected by the application of a selective GluN2B antagonist, TCN-237 (10 μM), or a type 1 metabotropic glutamate receptor blocker, JNJ16259685 (10 μM). These results indicate that chronic ethanol exposure from adolescence enhances facial stimulation-evoked MF–GC synaptic transmission via GluN2A, which suggests that chronic ethanol exposure from adolescence impairs the high-fidelity transmission capability of sensory information in the cerebellar cortex by enhancing the NMDAR-mediated components of MF–GC synaptic transmission in adult mice in vivo.
Collapse
Affiliation(s)
- Bing-Xue Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Guang-Hui Dong
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Hao-Long Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Jia-Song Zhang
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Yan-Hua Bing
- Brain Science Research Center, Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
2
|
Chronic alcohol disrupts hypothalamic responses to stress by modifying CRF and NMDA receptor function. Neuropharmacology 2020; 167:107991. [PMID: 32059962 DOI: 10.1016/j.neuropharm.2020.107991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 01/23/2023]
Abstract
The chronic inability of alcoholics to effectively cope with relapse-inducing stressors has been linked to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and corticotropin-releasing factor (CRF) signaling. However, the cellular mechanisms responsible for this dysregulation are yet to be identified. After exposure of male Sprague Dawley rats to chronic intermittent ethanol (CIE; 5-6 g/kg orally for 35 doses over 50 days) or water, followed by 40-60 days of protracted withdrawal, we investigated CIE effects on glutamatergic synaptic transmission, stress-induced plasticity, CRF- and ethanol-induced NMDAR inhibition using electrophysiological recordings in parvocellular neurosecretory cells (PNCs) of the paraventricular nucleus. We also assessed CIE effects on hypothalamic mRNA expression of CRF-related genes using real-time polymerase chain reaction, and on HPA axis function by measuring stress-induced increases in plasma adrenocorticotropic hormone, corticosterone, and self-grooming. In control rats, ethanol-mediated inhibition of NMDARs was prevented by CRF1 receptor (CRFR1) blockade with antalarmin, while CRF/CRFR1-mediated NMDAR blockade was prevented by intracellularly-applied inhibitor of phosphatases PP1/PP2A, okadaic acid, but not the selective striatal-enriched tyrosine protein phosphatase inhibitor, TC-2153. CIE exposure increased GluN2B subunit-dependent NMDAR function of PNCs. This was associated with the loss of both ethanol- and CRF-mediated NMDAR inhibition, and loss of stress-induced short-term potentiation of glutamatergic synaptic inputs, which could be reversed by intracellular blockade of NMDARs with MK801. CIE exposure also blunted the hormonal and self-grooming behavioral responses to repeated restraint stress. These findings suggest a cellular mechanism whereby chronic alcohol dysregulates the hormonal and behavioral responses to repetitive stressors by increasing NMDAR function and decreasing CRFR1 function.
Collapse
|
3
|
Roberto M, Varodayan FP. Synaptic targets: Chronic alcohol actions. Neuropharmacology 2017; 122:85-99. [PMID: 28108359 DOI: 10.1016/j.neuropharm.2017.01.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/23/2016] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Abstract
Alcohol acts on numerous cellular and molecular targets to regulate neuronal communication within the brain. Chronic alcohol exposure and acute withdrawal generate prominent neuroadaptations at synapses, including compensatory effects on the expression, localization and function of synaptic proteins, channels and receptors. The present article reviews the literature describing the synaptic effects of chronic alcohol exposure and their relevance for synaptic transmission in the central nervous system. This review is not meant to be comprehensive, but rather to highlight the effects that have been observed most consistently and that are thought to contribute to the development of alcohol dependence and the negative aspects of withdrawal. Specifically, we will focus on the major excitatory and inhibitory neurotransmitters in the brain, glutamate and GABA, respectively, and how their neuroadaptations after chronic alcohol exposure contributes to alcohol reinforcement, dependence and withdrawal. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
4
|
Morisot N, Ron D. Alcohol-dependent molecular adaptations of the NMDA receptor system. GENES, BRAIN, AND BEHAVIOR 2017; 16:139-148. [PMID: 27906494 PMCID: PMC5444330 DOI: 10.1111/gbb.12363] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
Abstract
Phenotypes such as motivation to consume alcohol, goal-directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N-methyl-d-aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin-dependent protein kinase II (CamKII), the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above-mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol-dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.
Collapse
Affiliation(s)
- N. Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D. Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
6
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. This chapter reviews the literature describing these acute and chronic synaptic effects of EtOH and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, NIAAA, 5625 Fishers Lane, Room TS-13A, Rockville, MD 20852, USA.
| | | |
Collapse
|
7
|
Gilpin NW, Roberto M. Neuropeptide modulation of central amygdala neuroplasticity is a key mediator of alcohol dependence. Neurosci Biobehav Rev 2012; 36:873-88. [PMID: 22101113 PMCID: PMC3325612 DOI: 10.1016/j.neubiorev.2011.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/01/2011] [Accepted: 11/05/2011] [Indexed: 01/08/2023]
Abstract
Alcohol use disorders are characterized by compulsive drug-seeking and drug-taking, loss of control in limiting intake, and withdrawal syndrome in the absence of drug. The central amygdala (CeA) and neighboring regions (extended amygdala) mediate alcohol-related behaviors and chronic alcohol-induced plasticity. Acute alcohol suppresses excitatory (glutamatergic) transmission whereas chronic alcohol enhances glutamatergic transmission in CeA. Acute alcohol facilitates inhibitory (GABAergic) transmission in CeA, and chronic alcohol increases GABAergic transmission. Electrophysiology techniques are used to explore the effects of neuropeptides/neuromodulators (CRF, NPY, nociceptin, dynorphin, endocannabinoids, galanin) on inhibitory transmission in CeA. In general, pro-anxiety peptides increase, and anti-anxiety peptides decrease CeA GABAergic transmission. These neuropeptides facilitate or block the action of acute alcohol in CeA, and chronic alcohol produces plasticity in neuropeptide systems, possibly reflecting recruitment of negative reinforcement mechanisms during the transition to alcohol dependence. A disinhibition model of CeA output is discussed in the context of alcohol dependence- and anxiety-related behaviors.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|
8
|
Ehlers CL, Criado JR. Adolescent ethanol exposure: does it produce long-lasting electrophysiological effects? Alcohol 2010; 44:27-37. [PMID: 20113872 DOI: 10.1016/j.alcohol.2009.09.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 09/03/2009] [Accepted: 09/11/2009] [Indexed: 01/17/2023]
Abstract
This review discusses evidence for long-lasting neurophysiological changes that may occur following exposure to ethanol during adolescent development in animal models. Adolescence is the time that most individuals first experience ethanol exposure, and binge drinking is not uncommon during adolescence. If alcohol exposure is neurotoxic to the developing brain during adolescence, not unlike it is during fetal development, then understanding how ethanol affects the developing adolescent brain becomes a major public health issue. Adolescence is a critical time period when cognitive, emotional, and social maturation occurs and it is likely that ethanol exposure may affect these complex processes. To study the effects of ethanol on adolescent brain, animal models where the dose and time of exposure can be carefully controlled that closely mimic the human condition are needed. The studies reviewed provide evidence that demonstrates that relatively brief exposure to high levels of ethanol, via ethanol vapors, during a period corresponding to parts of adolescence in the rat is sufficient to cause long-lasting changes in functional brain activity. Disturbances in waking electroencephalogram and a reduction in the P3 component of the event-related potential (ERP) have been demonstrated in adult rats that were exposed to ethanol vapor during adolescence. Adolescent ethanol exposure was also found to produce long-lasting reductions in the mean duration of slow-wave sleep (SWS) episodes and the total amount of time spent in SWS, a finding consistent with a premature aging of sleep. Further studies are necessary to confirm these findings, in a range of strains, and to link those findings to the neuroanatomical and neurochemical mechanisms potentially underlying the lasting effects of adolescent ethanol exposure.
Collapse
|
9
|
McCool BA, Christian DT, Diaz MR, Läck AK. Glutamate plasticity in the drunken amygdala: the making of an anxious synapse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:205-33. [PMID: 20813244 PMCID: PMC3032604 DOI: 10.1016/s0074-7742(10)91007-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Plasticity at glutamatergic synapses is believed to be the cellular correlate of learning and memory. Classic fear conditioning, for example, is dependent upon NMDA-type glutamate receptor activation in the lateral/basolateral amygdala followed by increased synaptic expression of AMPA-type glutamate receptors. This review provides an extensive comparison between the initiation and expression of glutamatergic plasticity during learning/memory and glutamatergic alterations associated with chronic ethanol exposure and withdrawal. The parallels between these neuro-adaptive processes suggest that long-term ethanol exposure might "chemically condition" amygdala-dependent fear/anxiety via the increased function of pre- and post-synaptic glutamate signaling.
Collapse
Affiliation(s)
- Brian A. McCool
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem NC 27157
- Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest University School of Medicine, Winston-Salem NC 27157
- Neuroscience Training Program, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Daniel T. Christian
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Marvin R. Diaz
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem NC 27157
- Neuroscience Training Program, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Anna K. Läck
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem NC 27157
| |
Collapse
|
10
|
Criado JR, Wills DN, Walker BM, Ehlers CL. Electrophysiological effects of dizocilpine (MK-801) in adult rats exposed to ethanol during adolescence. Alcohol Clin Exp Res 2008; 32:1752-62. [PMID: 18652596 DOI: 10.1111/j.1530-0277.2008.00760.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Despite evidence showing persistent changes in N-methyl-D-aspartate (NMDA)-receptor function following ethanol (EtOH) exposure, the contribution of NMDA systems to the long-term neurophysiological consequences of adolescent EtOH exposure is unclear. The aims of this study were the following: (1) to determine whether adolescent EtOH exposure produces neurophysiological changes after a prolonged withdrawal period in adult rats and (2) to assess protracted alterations in neurophysiological responses to the NMDA antagonist MK-801 in adult rats exposed to EtOH during adolescence. METHODS Adolescent male Wistar rats were exposed to EtOH vapor for 12 h/d for 5 weeks. The effects of MK-801 (0.0 to 0.1 mg/kg, intraperitoneally) on the electroencephalogram (EEG) and auditory event-related potentials (ERPs) were assessed after 8 weeks of abstinence from EtOH. RESULTS Experiments in aim 1 revealed that adolescent EtOH exposure reduced EEG variability in the frontal cortex in the 4 to 6 Hz band but had no effect on cortical and hippocampal EEG power and ERPs. Experiments in aim 2 showed that MK-801 significantly reduced EEG power in the parietal cortex (4 to 6 Hz, 6 to 8 Hz, 8 to 16 Hz, 16 to 32 Hz) and hippocampus (16 to 32 Hz) and EEG variability in the parietal cortex (6 to 8 Hz, 16 to 32 Hz) following adolescent EtOH exposure. MK-801 produced a significant decrease in hippocampal EEG variability (4 to 6 Hz, 8 to 16 Hz, 16 to 32 Hz) in control, but not in EtOH-exposed rats. MK-801 reduced frontal P1 ERP amplitude and latency in response to the rare tone in EtOH-exposed rats compared to controls. In contrast, MK-801 significantly reduced P3 ERP amplitude and latency in control, but not in EtOH-exposed rats. CONCLUSIONS The effects of MK-801 on hippocampal EEG variability and P3 ERP amplitude and latency are significantly attenuated after a prolonged withdrawal period following adolescent EtOH exposure. However, the inhibitory effects of MK-801 on cortical and hippocampal EEG power were enhanced in rats exposed to EtOH during adolescence. Taken together, these data suggest protracted changes in NMDA systems following adolescent EtOH exposure.
Collapse
Affiliation(s)
- José R Criado
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
11
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
12
|
Qiang M, Ticku MK. Role of AP-1 in ethanol-induced N-methyl-d-aspartate receptor 2B subunit gene up-regulation in mouse cortical neurons. J Neurochem 2005; 95:1332-41. [PMID: 16313514 DOI: 10.1111/j.1471-4159.2005.03464.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activator protein 1 (AP-1) has been reported to regulate the gene expression in a wide variety of cellular processes in response to stimuli. In this study, we investigated the DNA-protein binding activities and promoter activity in the N-methyl-D-aspartate R2B (NR2B) gene AP-1 site in normal and ethanol-treated cultured neurons. The identity of the AP-1 site as the functional binding factor is suggested by the specific binding of nuclear extract derived from cultured cortical neurons to the labeled probes and the specific antibody-induced supershift. Mutations in the core sequence resulted in a significantly reduced promoter activity and the ability to compete for the binding. Moreover, treatment of the cultured neuron with 75 mm ethanol for 5 days caused a significant increase in the AP-1 binding activity and promoter activity. The AP-1 DNA-binding complex in control and ethanol-treated nuclear extract was composed of c-Fos, FosB, c-Jun, JunD, and phosphorylated CREB (p-CREB). Western blot analysis showed that p-CREB and FosB significantly increased, whereas c-Jun decreased. The DNA affinity precipitation assay indicated that FosB, p-CREB, and c-Jun increased in the AP-1 complex following ethanol treatment. These results suggest that AP-1 is an active regulator of the NR2B transcription and ethanol-induced changes may result at multiple levels in the regulation including AP-1 proteins expression, CREB phosphorylation and perhaps reorganization of dimmers.
Collapse
Affiliation(s)
- Mei Qiang
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | |
Collapse
|
13
|
Slawecki CJ, Roth J. Comparison of the Onset of Hypoactivity and Anxiety-Like Behavior During Alcohol Withdrawal in Adolescent and Adult Rats. Alcohol Clin Exp Res 2004; 28:598-607. [PMID: 15100611 DOI: 10.1097/01.alc.0000122767.69206.1b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Early life alcohol use is associated with increased alcoholism risk. It has been suggested that alterations in the sensitivity of adolescents to the acute effects of ethanol may contribute to this risk by promoting excessive intake. However, an enhanced propensity for developing ethanol dependence or withdrawal-related behavior could also contribute to increased risk. The objective of these studies was to compare the appearance of ethanol withdrawal-related behaviors in adolescent and adult rats. METHODS Male Sprague-Dawley rats were exposed to ethanol vapor (12 hr/day) for 12 or 14 days during adolescence or adulthood. In the first study, locomotor activity was assessed after 2, 4, 7, 10, and 14 days of ethanol exposure. In the second study, open field behavior was assessed after 5 or 12 days of ethanol exposure. In follow-up studies, changes in sucrose preference during ethanol withdrawal and motor activity during food restriction were assessed in adolescent rats. Withdrawal assessments were made 7 to 9 hr after daily exposure ended. RESULTS Hypoactivity emerged rapidly in adolescent rats during ethanol withdrawal in activity tests, but comparable reductions were not found in adult rats. However, hypoactivity developed in both adolescents and adults in the novel open field. Enhanced anxiety-like behavior in the open field was not observed in either age group during withdrawal. Finally, sucrose preference was unchanged during ethanol withdrawal, and food restriction increased motor activity in adolescent rats. CONCLUSIONS These data confirm that symptoms of withdrawal may be differentially expressed in adolescent and adult rats. However, discrepancies in hypoactivity between studies suggest that assessment in a novel versus familiar environment may influence the expression of withdrawal-related behaviors.
Collapse
Affiliation(s)
- Craig J Slawecki
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
14
|
Floyd DW, Jung KY, McCool BA. Chronic ethanol ingestion facilitates N-methyl-D-aspartate receptor function and expression in rat lateral/basolateral amygdala neurons. J Pharmacol Exp Ther 2003; 307:1020-9. [PMID: 14534353 DOI: 10.1124/jpet.103.057505] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Withdrawal anxiety after chronic alcohol is likely to contribute to drug seeking and relapse in alcoholics. The brain regions regulating fear/anxiety behaviors, especially neurotransmitter systems with acute ethanol sensitivity, are potential targets for chronic ethanol-induced adaptations. We have therefore examined N-methyl-d-aspartate (NMDA) receptors after chronic ethanol ingestion in rat lateral/basolateral amygdala. Whole cell patch-clamp measurements indicate that chronic ethanol ingestion significantly increased NMDA receptor current density. This enhanced NMDA receptor function was also associated with an increase in ifenprodil inhibition and a decrease in apparent calcium-dependent current inactivation. These findings suggest that NR2B-containing receptors may be specifically enhanced and suggest that processes dependent upon calcium influx through amygdala NMDA receptors may potentially be enhanced by chronic ethanol ingestion. We measured subunit mRNA expression to investigate possible molecular mechanisms that control functional receptor adaptations to chronic ethanol. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that NR1 subunit mRNA expression, but not NR2 or NR3 expression, was enhanced in samples from chronic ethanol-exposed animals. Single-cell RT-PCR was then used to confirm that NR2 mRNA expression was unaltered by chronic ethanol. Most GAD-, presumed projection neurons expressed both NR2A and NR2B mRNAs, and this profile did not change during chronic ethanol exposure. Our results suggest that both transcriptional and nontranscriptional adaptations to chronic ethanol ultimately contribute to alterations in NMDA receptor function. Because amygdala NMDA receptors play a significant role in many learned fear behaviors, chronic ethanol-induced adaptations in these receptors may influence the expression of withdrawal anxiety.
Collapse
Affiliation(s)
- Donald W Floyd
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, 115 S. Chestnut, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
15
|
Hsiao SH, Frye GD. AMPA receptors on developing medial septum/diagonal band neurons are sensitive to early postnatal binge-like ethanol exposure. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:89-99. [PMID: 12694947 DOI: 10.1016/s0165-3806(03)00034-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The impact of binge-like, early postnatal ethanol treatment on AMPA or kainate whole cell currents was examined in acutely isolated medial septum/diagonal band (MS/DB) neurons. AMPA (10 or 100 microM) current was inhibited by GYKI 52466, a selective AMPA receptor (AMPAR) antagonist, in all neurons isolated on postnatal day (PD) 5-8, PD 12-15 or PD 32-35. Cyclothiazide, a selective inhibitor of AMPAR desensitization, also effectively potentiated AMPA currents. This suggests that non-NMDA, ionotropic glutamate receptors on immature MS/DB neuron are predominantly AMPARs. Concentration-dependent kainate (10-1000 microM) application evoked nondesensitizing currents that exhibited an increase in the maximum response by the end of first postnatal month, consistent with developmental regulation of AMPAR function. Acute 3 s ethanol application (100 mM) consistently blunted AMPA- and kainate currents approximately 20-30% across age groups. Inhibition was sustained during continuous ethanol superfusion lasting 10-12 min without evidence of acute tolerance. Repeated oral intubation of rat pups with ethanol (5.25 g/kg/day on PD 4-9), which models third trimester human binge drinking, resulted in peak blood ethanol levels of approximately 350 mg/dl (measured 90 min after PD 6 dosing). AMPA or kainate currents were upregulated in neurons isolated on PD 32-35 by earlier ethanol intubation suggesting that binge-like intoxication augments developing AMPAR function. Despite this augmentation of AMPAR function, no significant changes were found in the sensitivity of AMPA currents to GYKI 52466, cyclothiazide or acute ethanol (100 mM) sensitivity or in the levels of GluR1/GluR2 subunit proteins from MS/DB tissue. These results indicate that non-NMDA ionotrophic glutamate receptors on immature MS/DB neurons, which are largely of the AMPAR subtype, are moderately sensitive to immediate inhibition by ethanol. Repeating this inhibition during early postnatal binge-like intoxication can augment normal development of AMPAR function.
Collapse
Affiliation(s)
- Shu-Huei Hsiao
- Department of Medical Pharmacology and Toxicology, Texas A&M University System Health Science Center, College of Medicine MS 1114, College Station, TX 77843-1114, USA
| | | |
Collapse
|
16
|
Criswell HE, Ming Z, Griffith BL, Breese GR. Comparison of effect of ethanol on N-methyl-D-aspartate- and GABA-gated currents from acutely dissociated neurons: absence of regional differences in sensitivity to ethanol. J Pharmacol Exp Ther 2003; 304:192-9. [PMID: 12490591 DOI: 10.1124/jpet.102.041590] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vivo, ethanol alters the effect of N-methyl-D-aspartate (NMDA) and GABA in some brain regions but is without effect in others. To determine whether these regional differences were due to differences in the effect of ethanol on postsynaptic NMDA or GABAA receptors, we examined the effect of ethanol on NMDA- and GABA-gated currents from neurons acutely dissociated from the lateral septal nucleus, substantia nigra, thalamus, hippocampus, and cerebellum. Ethanol decreased the effect of NMDA similarly in all brain areas tested and had similar effects on Chinese hamster ovary cells expressing NR2A or NR2B subunits with an NR1-1a subunit. However, ifenprodil reduced the inhibition by ethanol of NMDA-gated currents from neurons isolated from the lateral septum without affecting neurons from the substantia nigra. In contrast to the robust effect of ethanol on NMDA-gated currents, ethanol (25-300 mM) was without effect on GABA-gated currents at all brain sites tested or on Ltk- cells stably expressing the alpha1, beta2, and gamma2L or gamma2S subunits. The neuroactive steroid alphaxalone profoundly enhanced GABA-gated currents in all brain areas and cell types tested, indicating a similar sensitivity to allosteric modulation; however, there was no interaction of alphaxalone with ethanol at any site tested. These data suggest that the regional differences in the effect of ethanol observed in vivo are not due to a differential action of ethanol at the postsynaptic NMDA or GABAA receptor subtypes.
Collapse
Affiliation(s)
- Hugh E Criswell
- Bowles Center for Alcohol Studies, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | | | |
Collapse
|
17
|
Ming Z, Knapp DJ, Mueller RA, Breese GR, Criswell HE. Differential modulation of GABA- and NMDA-gated currents by ethanol and isoflurane in cultured rat cerebral cortical neurons. Brain Res 2001; 920:117-24. [PMID: 11716817 DOI: 10.1016/s0006-8993(01)03044-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ethanol and the volatile anesthetics share many features including effects on both GABA and NMDA receptors. To determine the degree of similarity between these compounds, we examined the concentration-response curves for ethanol and isoflurane on currents gated by GABA or NMDA. The effects of isoflurane and ethanol on the righting reflex of rats were also observed. The concentration of ethanol causing loss of the righting reflex of rats was 82.3+/-2.9 mM, whereas median concentration of isoflurane exerting that effect was 0.125 mM. Both isoflurane and ethanol inhibited NMDA-gated currents in cultured cerebral cortical neurons at concentrations well below those associated with loss of the righting reflex or anesthesia. However, the effect of isoflurane was greater than that of ethanol and the slope of the concentration-response curve for isoflurane less steep than that for ethanol. Isoflurane enhanced GABA-gated currents at anesthetic concentrations but there was a sharp concentration-response curve with only minimal effects of isoflurane on GABA-gated currents at concentrations associated with loss of the righting reflex. In contrast, ethanol had no effect on GABA-gated currents even at lethal concentrations, i.e. 300 mM or 1.2%. Comparison of the concentration-response curves for the effects of isoflurane on NMDA- and GABA-gated currents has revealed both EC50 and Hill slope for the potentiation of GABA-gated currents were significantly greater than those for inhibition of NMDA-gated currents. These results support the hypothesis that isoflurane has actions on both the GABA and NMDA systems that are not shared by ethanol.
Collapse
Affiliation(s)
- Z Ming
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599-7178, USA
| | | | | | | | | |
Collapse
|
18
|
Faingold C, Li Y, Evans MS. Decreased GABA and increased glutamate receptor-mediated activity on inferior colliculus neurons in vitro are associated with susceptibility to ethanol withdrawal seizures. Brain Res 2000; 868:287-95. [PMID: 10854581 DOI: 10.1016/s0006-8993(00)02342-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cessation of ethanol administration in ethanol-dependent rats results in an ethanol withdrawal (ETX) syndrome, including audiogenic seizures (AGS). The inferior colliculus (IC) is the initiation site for AGS, and membrane properties of IC neurons exhibit hyperexcitability during ETX. Previous studies observed that ETX alters GABA and glutamate neurotransmission in certain brain sites. The present study evaluated synaptic properties and actions of GABA or glutamate antagonists during ETX in IC dorsal cortex (ICd) neurons in brain slices from rats treated with ethanol intragastrically 3 times daily for 4 days. A significant increase of spontaneous action potentials (APs) was observed during ETX. The width, area and rise time of excitatory postsynaptic potentials (EPSPs) evoked by stimulation in the commissure of IC were significantly elevated during ETX. A fast EPSP was sensitive to block by the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and a slow EPSP was sensitive to the NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP5). However, during ETX the concentration of CNQX or AP5 needed to block these EPSPs was elevated significantly. Inhibitory postsynaptic potentials (IPSPs) in ICd neurons evoked in both normal and ETX rats were blocked by the GABA(A) antagonist, bicuculline. However, IPSPs during ETX displayed a significantly greater sensitivity to bicuculline. These data indicate that decreased GABA(A)-mediated inhibition and increased glutamate-mediated excitability in IC may both be critical mechanisms of AGS initiation during ETX, which is similar to observations in a genetic form of AGS. The common changes in IC neurotransmission in these AGS forms may be general mechanisms subserving AGS and other forms of auditory system pathophysiology in which the IC is implicated.
Collapse
Affiliation(s)
- C Faingold
- Departments of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| | | | | |
Collapse
|
19
|
Frye GD, Fincher A. Sustained ethanol inhibition of native AMPA receptors on medial septum/diagonal band (MS/DB) neurons. Br J Pharmacol 2000; 129:87-94. [PMID: 10694206 PMCID: PMC1621129 DOI: 10.1038/sj.bjp.0703039] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The direct impact of ethanol on native, non-NMDA glutamate receptors was examined in acutely isolated MS/DB neurons from rat. The impact of ethanol functional tolerance and physical dependence on non-NMDA receptor function was also determined. Non-NMDA receptors were defined pharmacologically as predominantly the AMPA subtype, because both AMPA- or kainate-activated currents were blocked by GYKI 52466, a selective AMPA receptor antagonist. The relative magnitude of potentiation of AMPA-activated currents by 10 or 100 microM cyclothiazide was consistent with recombinant AMPA flop-subtype receptors. Finally, the selective kainate receptor agonist, SYM 8021, induced little current in MS/DB neurons. AMPA receptor currents when activated by kainate were sensitive to ethanol, showing inhibition of approximately 5 - 50% when 10 - 300 mM ethanol and kainate were briefly co-applied (3 s). Ethanol (100 mM) also inhibited both the initial transient peak and sustained currents activated by AMPA. Inhibition was sustained during continuous ethanol superfusions of 5 min, suggesting a lack of acute tolerance to ethanol-induced AMPA receptor blockade. Rapid application of 3 - 3000 microM kainate activated concentration-dependent currents in MS/DB neurons from Control and Ethanol Dependent animals that were not significantly different. Also, direct ethanol inhibition (300 mM) of kainate-activated currents was not reduced by ethanol dependence, suggesting a lack of functional tolerance. These results suggest that native AMPA receptors on MS/DB neurons are inhibited by pharmacologically-relevant concentrations of ethanol. However, these receptors, unlike NMDA receptors, do not undergo adaptation with sustained ethanol exposure sufficient to induce physical dependence. British Journal of Pharmacology (2000) 129, 87 - 94
Collapse
Affiliation(s)
- G D Frye
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M Health Science Center, College Station, Texas, TX 77843-1114, USA.
| | | |
Collapse
|
20
|
Wirkner K, Poelchen W, Köles L, Mühlberg K, Scheibler P, Allgaier C, Illes P. Ethanol-induced inhibition of NMDA receptor channels. Neurochem Int 1999; 35:153-62. [PMID: 10405999 DOI: 10.1016/s0197-0186(99)00057-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ethanol is a potent inhibitor of the N-methyl-D-aspartate (NMDA)-receptor subtype of glutamate receptor in a number of brain areas. The mechanism of ethanol action has been investigated by means of patch-clamp recording of ionic currents and fura-2 measurement of intracellular Ca2+ concentration in cell culture systems; the subunit composition of NMDA receptors and their influence on the effect of ethanol was determined by molecular biology methods. Ethanol does not appear to interact with NMDA either at the glutamate recognition site of the receptor, or at any of the hitherto known multiple modulatory sites, such as the glycine or polyamine site. Moreover, ethanol does not cause an open channel block by itself and fails to interact with Mg2+ at the site where it causes open channel block. The ability of ethanol to inhibit responses to NMDA is dependent on the subunit combination of NMDA receptors. The NR1/NR2A and NR1/NR2B combinations are preferentially sensitive to ethanol inhibition. Chronic treatment with ethanol leads to an increase of the NMDA receptor number at the transcriptional and posttranscriptional level; the receptor function is also facilitated. This causes withdrawal-type seizures after termination of chronic treatment with ethanol. The inhibition of NMDA receptors by ethanol leads to the depression of excitatory synaptic potentials mediated by this type of excitatory amino acid receptor. Ethanol-induced disturbances in certain regions of the brain, i.e. hippocampus, nucleus accumbens or locus coeruleus may lead to cognitive disorders or drug dependence. Brain slices containing the locus coeruleus may be used as an in vitro test system to investigate the addictive properties of ethanol.
Collapse
Affiliation(s)
- K Wirkner
- Department of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Netzeband JG, Trotter C, Caguioa JN, Gruol DL. Chronic ethanol exposure enhances AMPA-elicited Ca2+ signals in the somatic and dendritic regions of cerebellar Purkinje neurons. Neurochem Int 1999; 35:163-74. [PMID: 10406000 DOI: 10.1016/s0197-0186(99)00058-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intracellular Ca2+ signals produced by the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA; 5 microM) were measured in the somatic and dendritic regions of cerebellar Purkinje neurons in mature cerebellar control cultures (> or = 20 days in vitro) and cultures chronically treated with 32 mM ethanol (146 mg%; 8-11 days). Recordings were made in physiological saline without ethanol. The mean peak amplitude of the Ca2+ signal elicited by AMPA (applied by brief 1-s microperfusion) in the somatic region was enhanced 38% in chronic ethanol-treated Purkinje neurons compared with control neurons. In contrast, Ca2+ signals evoked by AMPA in the dendritic region were similar in magnitude between control and chronic ethanol-treated Purkinje neurons. When tetrodotoxin (TTX; 500 nM) was included in the bath saline to block spike activity and synaptically-generated events, the mean peak amplitude of the Ca2+ signal elicited by AMPA was enhanced 60% in both the somatic and dendritic regions of chronic ethanol-treated Purkinje neurons compared with control neurons. Thus, TTX-sensitive mechanisms (i.e., spike or synaptic activity) appear to play a role in normalizing neuronal functions involved in Ca2+ signaling in the chronic ethanol-treated neurons. In parallel current clamp experiments, the resting membrane potential of chronic ethanol-treated neurons was slightly depolarized compared with control neurons. However, no differences were found between control and chronic ethanol-treated Purkinje neurons in input resistance or the peak amplitude or duration of the depolarizations or hyperpolarizations elicited by AMPA. AMPA receptors mediate fast excitatory neurotransmission in the majority of neurons in the central nervous system (CNS) and Ca2+ signals in response to AMPA receptor activation contribute to synaptic function. Thus, our results suggest that modulation of Ca2+ signals to AMPA receptor activation (or other cellular inputs) may provide an important mechanism contributing to the actions of prolonged ethanol exposure in the CNS.
Collapse
Affiliation(s)
- J G Netzeband
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
22
|
Anders DL, Blevins T, Sutton G, Swope S, Chandler LJ, Woodward JJ. Fyn tyrosine kinase reduces the ethanol inhibition of recombinant NR1/NR2A but not NR1/NR2B NMDA receptors expressed in HEK 293 cells. J Neurochem 1999; 72:1389-93. [PMID: 10098840 DOI: 10.1046/j.1471-4159.1999.721389.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NMDA receptors are potentiated by phosphorylation in a subunit- and kinase-specific manner. Both native and recombinant NMDA receptors are inhibited by behaviorally relevant concentrations of ethanol. Whether the phosphorylation state of individual subunits modulates the ethanol sensitivity of these receptors is not known. In this study, the effects of Fyn tyrosine kinase on the ethanol sensitivity of specific recombinant NMDA receptors expressed in HEK 293 cells were investigated. Whole-cell mode patch clamp and ratiometric calcium imaging demonstrated that the degree of ethanol inhibition of NR1/NR2B receptors was unaffected by Fyn tyrosine kinase. In contrast, the inhibition of NR1/NR2A receptors by ethanol (100 mM) was significantly reduced under conditions of enhanced Fyn-mediated tyrosine phosphorylation of the NR2A subunit. This effect was not observed at lower concentrations of ethanol (< or = 50 mM). These results suggest that tyrosine phosphorylation of specific NMDA receptors by Fyn tyrosine kinase may regulate the sensitivity of these receptors to the sedative/hypnotic concentrations of ethanol.
Collapse
Affiliation(s)
- D L Anders
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | | | | | |
Collapse
|
23
|
Anders DL, Blevins T, Sutton G, Chandler LJ, Woodward JJ. Effects of c-Src Tyrosine Kinase on Ethanol Sensitivity of Recombinant NMDA Receptors Expressed in HEK 293 Cells. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04122.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|