1
|
de Assis GG, de Sousa MBC, Murawska-Ciałowicz E. Sex Steroids and Brain-Derived Neurotrophic Factor Interactions in the Nervous System: A Comprehensive Review of Scientific Data. Int J Mol Sci 2025; 26:2532. [PMID: 40141172 PMCID: PMC11942429 DOI: 10.3390/ijms26062532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Sex steroids and the neurotrophin brain-derived neurotrophic factor (BDNF) participate in neural tissue formation, phenotypic differentiation, and neuroplasticity. These processes are essential for the health and maintenance of the central nervous system. AIM The aim of our review is to elucidate the interaction mechanisms between BDNF and sex steroids in neuronal function. METHOD A series of searches were performed using Mesh terms for androgen/receptors, estrogen/receptors, and BDNF/receptors, and a collection of the scientific data available on PubMed up to February 2025 about mechanical interactions between BDNF and sex steroids was included in this literature review. DISCUSSION This review discussed the influence of sex steroids on the formation and/or maintenance of neural circuits via different mechanisms, including the regulation of BDNF expression and signaling. Estrogens exert a time- and region-specific effect on BDNF synthesis. The nuclear estrogen receptor can directly regulate BDNF expression, independently of the presence of estrogen, in neuronal cells, whereas progesterone and testosterone upregulate BDNF expression via their specific nuclear receptors. In addition, testosterone has a positive effect on BDNF release by glial cells, which lack androgen receptors.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347 Viana do Castelo, Portugal
| | | | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biomechanics, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
2
|
Islas-Preciado D, Estrada-Camarena E, Galea LAM. Menstrually-related mood disorders and postpartum depression: Convergent aspects in aetiology. Front Neuroendocrinol 2025; 76:101171. [PMID: 39638001 DOI: 10.1016/j.yfrne.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Females diagnosed with Menstrually-related mood disorders (MRMDs) have more risk to develop postpartum depression (PPD). There are overlapping symptoms between MRMDs and PPD such as anxiety, depressed mood, irritability, that can contribute to a lower quality of life. MRMDs and PPD share components in their etiology such as dramatic hormonal oscillations, and alterations in Hypothalamus-Pituitary-Adrenal (HPA) axis activity that may impair GABAergic neurotransmission. As well, stressful events that impact HPA regulation may play an important role in the etiology of MRMDs and PPD. Here we review common hormone fluctuations across the menstrual cycle and pregnancy/postpartum to identify shared pathways that could contribute to greater sensitivity in people with MRMDs and PPD. This review summarizes hormone sensitivity, HPA axis activity and neurosteroids effects on GABAergic transmission and the potential role of chronic stress in developing MRMDs and PPD. In addition, other potential etiopathological factors, such as serotonin and the immune system, are discussed. Investigating the etiopathology of MRMDs and PDD will help to better understand the complexity of factors involved in these disorders that affect females across the reproductive years.
Collapse
Affiliation(s)
- D Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México; Centre for Brain Health, University of British Columbia, Vancouver, Canada; Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México.
| | - E Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México
| | - L A M Galea
- Centre for Brain Health, University of British Columbia, Vancouver, Canada; Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, ON, Canada.
| |
Collapse
|
3
|
Le J, Xia C, Xu J, Cai J, Hu C, Bai Y, Chen H, Rong W, Jiang Y, Wu X, Li Y, Wang Q, Naman CB, Wei H, Zhang J, Liu H, Chen X, Liu F, Liang H, Cui W. 9-Methylfascaplysin Prevents Neuroinflammation and Synaptic Damage via Cell-Specific Inhibition of Kinases in APP/PS1 Transgenic Mice. CNS Neurosci Ther 2024; 30:e70100. [PMID: 39563011 PMCID: PMC11576489 DOI: 10.1111/cns.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/08/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a leading neurodegenerative disorder without effective treatments. The nonlinear dynamic nature of AD pathophysiology suggested that multiple pharmacological actions of anti-AD drugs should be elucidated. 9-Methylfascaplysin (9-MF) was previously designed and synthesized as a novel anti-AD candidate. METHODS AND RESULTS In this study, 9-MF at low concentrations significantly prevented cognitive impairments with similar efficacy as donepezil in APP/PS1 transgenic mice. In addition, 9-MF potently reduced β-amyloid (Aβ)-associated neuroinflammation and tau-associated synaptic damage in vivo. 9-MF-regulated microglia-specific differentially phosphorylated proteins (DPPs) were mainly enriched in neuroinflammation, while 9-MF-regulated neuron-specific DPPs were enriched in synaptic regulation, as revealed by a quantitative phosphoproteomic approach. A phosphoproteome-kinome algorithm further identified that rho-associated coiled-coil kinase 2 (ROCK2) and glycogen synthase kinase 3β (GSK3β) ranked high in 9-MF-downregulated kinase perturbations. 9-MF possessed high affinities for ROCK2 and GSK3β, which was confirmed by in vitro kinase activity assay. The protective effects of 9-MF were abolished by ROCK2 knockdown in Aβ-treated BV2 microglial cells, and by GSK3β knockdown in glyceraldehyde-treated SH-SY5Y neuronal cells, respectively. CONCLUSIONS All these results supported that 9-MF produced anti-AD effects via cell-specific inhibition of ROCK2 and GSK3β in microglia and neurons, respectively.
Collapse
Affiliation(s)
- Jingyang Le
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - Chenglong Xia
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical EngineeringNingbo UniversityZhejiangChina
| | - Jiayi Xu
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - Jinhan Cai
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - Chenwei Hu
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - Yu Bai
- College of Food and Pharmaceutical SciencesNingbo UniversityZhejiangChina
| | - Huiyue Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - Wenni Rong
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - Yujie Jiang
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - Xinming Wu
- College of Biotechnology, Tianjin University of Science & Technology; Key Laboratory of Industrial Fermentation Microbiology, Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyTianjinChina
| | - Yongmei Li
- School InfirmaryNingbo UniversityZhejiangChina
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - C. Benjamin Naman
- Department of Science and ConservationSan Diego Botanic GardenCaliforniaUSA
| | - Hua Wei
- Ningbo College of Health SciencesZhejiangChina
| | - Jili Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - Hao Liu
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - Xiaowei Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology; Key Laboratory of Industrial Fermentation Microbiology, Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyTianjinChina
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical EngineeringNingbo UniversityZhejiangChina
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science CenterNingbo UniversityZhejiangChina
- Ningbo Kangning HospitalNingbo UniversityZhejiangChina
- The First Affiliated Hospital of Ningbo UniversityZhejiangChina
| |
Collapse
|
4
|
Mey M, Bhatta S, Suresh S, Labrador LM, Piontkivska H, Casadesus G. Therapeutic benefits of central LH receptor agonism in the APP/PS1 AD model involve trophic and immune regulation and are reproductive status dependent. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167165. [PMID: 38653355 DOI: 10.1016/j.bbadis.2024.167165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The mechanisms that underly reproductive hormone effects on cognition, neuronal plasticity, and AD risk, particularly in relation to gonadotropin LH receptor (LHCGR) signaling, remain poorly understood. To address this gap in knowledge and clarify the impact of circulating steroid hormones on the therapeutic effects of CNS LHCGR activation, we delivered the LHCGR agonist human chorionic gonadotropin (hCG) intracerebroventricularly (ICV) and evaluated functional, structural, plasticity-related signaling cascades, Aβ pathology, and transcriptome differences in reproductively intact and ovariectomized (OVX) APP/PS1 AD female mice. Here we demonstrate that CNS hCG delivery restored function to wild-type levels only in OVX APP/PS1 mice. Spine density was increased in all hCG treated groups independently of reproductive status. Notably, increases in BDNF signaling and cognition, were selectively upregulated only in the OVX hCG-treated group. RNA sequencing analyses identified a significant increase in peripheral myeloid and pro-inflammatory genes within the hippocampi of the OVX group that were completely reversed by hCG treatment, identifying a potential mechanism underlying the selective therapeutic effect of LHCGR activation. Interestingly, in intact mice, hCG administration mimicked the effects of gonadectomy. Together, our findings indicate that CNS LHCGR agonism in the post-menopausal context is beneficial through trophic and immune mechanisms. Our findings also underscore the presence of a steroid-LHCGR mechanistic interaction that is unexplored yet potentially meaningful to fully understand "post-menopausal" brain function and CNS hormone treatment response.
Collapse
Affiliation(s)
- Megan Mey
- Kent State University, Kent, OH 44240, United States of America
| | - Sabina Bhatta
- Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Sneha Suresh
- University of Florida, Gainesville, FL 32606, United States of America
| | | | | | - Gemma Casadesus
- University of Florida, Gainesville, FL 32606, United States of America.
| |
Collapse
|
5
|
Mey M, Bhatta S, Suresh S, Montero Labrador L, Piontkivska H, Casadesus G. The LH receptor regulates hippocampal spatial memory and restores dendritic spine density in ovariectomized APP/PS1 AD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573087. [PMID: 38187770 PMCID: PMC10769359 DOI: 10.1101/2023.12.22.573087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Activation of the luteinizing hormone receptor (LHCGR) rescues spatial memory function and spine density losses associated with gonadectomy and high circulating gonadotropin levels in females. However, whether this extends to the AD brain or the mechanisms that underlie these benefits remain unknown. To address this question, we delivered the LHCGR agonist human chorionic gonadotropin (hCG) intracerebroventricularly (ICV), under reproductively intact and ovariectomized conditions to mimic the post-menopausal state in the APP/PS1mouse brain. Cognitive function was tested using the Morris water maze task, and hippocampal dendritic spine density, Aβ pathology, and signaling changes associated with these endpoints were determined to address mechanisms. Here we show that central LHCGR activation restored function in ovariectomized APP/PS1 female mice to wild-type levels without altering Aβ pathology. LHCGR activation increased hippocampal dendritic spine density regardless of reproductive status, and this was mediated by BDNF-dependent and independent signaling. We also show that ovariectomy in the APP/PS1 brain elicits an increase in peripherally derived pro-inflammatory genes which are inhibited by LHCGR activation. This may mediate reproductive status specific effects of LHCGR agonism on cognitive function and BDNF expression. Together, this work highlights the relevance of the LHCGR on cognition and its therapeutic potential in the "menopausal" AD brain.
Collapse
|
6
|
Gravelsins L, Zhao S, Einstein G. Hormonal contraception and cognition: Considering the influence of endogenous ovarian hormones and genes for clinical translation. Front Neuroendocrinol 2023; 70:101067. [PMID: 37084896 DOI: 10.1016/j.yfrne.2023.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023]
Abstract
Despite the well-known influence of ovarian hormones on the brain and widespread use of hormonal contraception (HC) since the 1960s, our knowledge of HC's cognitive effects remains limited. To date, the cognitive findings have been inconsistent. In order to establish what might make HC studies more consistent, we surveyed the literature on HCs and cognition to determine whether studies considered HC formulation, phase, pharmacokinetics, duration, and gene interactions, and assessed whether oversight of these factors might contribute to variable findings. We found that synthetic HC hormones exert dose-dependent effects, the day of oral contraceptive (Pill) ingestion is critical for understanding cognitive changes, and gene-cognition relationships differ in women taking the Pill likely due to suppressed endogenous hormones. When these factors were overlooked, results were not consistent. We close with recommendations for research more likely to yield consistent findings and be therefore, translatable.
Collapse
Affiliation(s)
- Laura Gravelsins
- University of Toronto, Address: 100 Saint George Street, Canada, Toronto, Ontario M5S 3G3.
| | - Sophia Zhao
- University of Toronto, Address: 100 Saint George Street, Canada, Toronto, Ontario M5S 3G3
| | - Gillian Einstein
- University of Toronto, Address: 100 Saint George Street, Canada, Toronto, Ontario M5S 3G3; Rotman Research Institute, Address: 3560 Bathurst St, Canada, North York, Ontario M6A 2E1; Linköping University, Address: SE-581 83 Linköping, Sweden
| |
Collapse
|
7
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
8
|
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: Implications for depression pathology. Front Mol Neurosci 2022; 15:1028223. [PMID: 36466807 PMCID: PMC9708894 DOI: 10.3389/fnmol.2022.1028223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a prevalent mental health disorder and is the number one cause of disability worldwide. Risk factors for depression include genetic predisposition and stressful life events, and depression is twice as prevalent in women compared to men. Both clinical and preclinical research have implicated a critical role for brain-derived neurotrophic factor (BDNF) signaling in depression pathology as well as therapeutics. A preponderance of this research has focused on the role of BDNF and its primary receptor tropomyosin-related kinase B (TrkB) in the cortex and hippocampus. However, much of the symptomatology for depression is consistent with disruptions in functions of the hypothalamus including changes in weight, activity levels, responses to stress, and sociability. Here, we review evidence for the role of BDNF and TrkB signaling in the regions of the hypothalamus and their role in these autonomic and behavioral functions associated with depression. In addition, we identify areas for further research. Understanding the role of BDNF signaling in the hypothalamus will lead to valuable insights for sex- and stress-dependent neurobiological underpinnings of depression pathology.
Collapse
Affiliation(s)
- Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Anita E. Autry,
| |
Collapse
|
9
|
Griksiene R, Monciunskaite R, Ruksenas O. What is there to know about the effects of progestins on the human brain and cognition? Front Neuroendocrinol 2022; 67:101032. [PMID: 36029852 DOI: 10.1016/j.yfrne.2022.101032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022]
Abstract
Progestins are an important component of hormonal contraceptives (HCs) and hormone replacement therapies (HRTs). Despite an increasing number of studies elucidating the effects of HCs and HRTs, little is known about the effects of different types of progestins included in these medications on the brain. Animal studies suggest that various progestins interact differently with sex steroid, mineralocorticoid and glucocorticoid receptors and have specific modulatory effects on neurotransmitter systems and on the expression of neuropeptides, suggesting differential impacts on cognition and behavior. This review focuses on the currently available knowledge from human behavioral and neuroimaging studies pooled with evidence from animal research regarding the effects of progestins on the brain. The reviewed information is highly relevant for improving women's mental health and making informed choices regarding specific types of contraception or treatment.
Collapse
Affiliation(s)
- Ramune Griksiene
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Rasa Monciunskaite
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Osvaldas Ruksenas
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| |
Collapse
|
10
|
Boi L, Petralla S, Monti B, Talani G, Sanna E, Pisu MG, Calderisi G, Maciocco E, Serra M, Concas A, Porcu P. Chronic treatment with hormonal contraceptives alters hippocampal BDNF and histone H3 post-translational modifications but not learning and memory in female rats. Horm Behav 2022; 144:105218. [PMID: 35785712 DOI: 10.1016/j.yhbeh.2022.105218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022]
Abstract
Hormonal contraceptives prevent ovulation with subsequent reduction in endogenous levels of estradiol, progesterone and its neuroactive metabolite allopregnanolone. These neurosteroids modulate several brain functions, including neuronal plasticity, cognition and memory. We hypothesized that hormonal contraceptives might affect synaptic plasticity, learning and memory, as a consequence of suppressed endogenous hormones levels. Female rats were orally treated with a combination of ethinyl estradiol (EE, 0.020 mg) and levonorgestrel (LNG, 0.060 mg) once daily for four weeks. Decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and altered histone H3 post-translational modifications (PTMs) were observed 14 days after discontinuation from chronic EE-LNG treatment. These effects were not accompanied by alterations in long-term plasticity at glutamatergic synapses, recognition memory in the novel object and novel place location tests, or spatial learning, memory, and behavioral flexibility in the Morris water maze test. Thus, decreased BDNF content does not affect synaptic plasticity and cognitive performance; rather it might be relevant for the occurrence of certain psychiatric symptoms, reported by some women using hormonal contraceptives. These results provide the first evidence of hippocampal epigenetic changes induced by hormonal contraceptives and complement previous studies on the neurobiological actions of hormonal contraceptives; the finding that effects of chronic EE-LNG treatment on BDNF content and histone PTMs are observed 14 days after drug discontinuation warrants further investigation to better understand the implications of such long-term consequences for women's health.
Collapse
Affiliation(s)
- Laura Boi
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giuseppe Talani
- Neuroscience Institute, CNR - National Research Council of Italy, Cagliari, Italy
| | - Enrico Sanna
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, CNR - National Research Council of Italy, Cagliari, Italy
| | | | - Giulia Calderisi
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Elisabetta Maciocco
- Neuroscience Institute, CNR - National Research Council of Italy, Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, CNR - National Research Council of Italy, Cagliari, Italy.
| |
Collapse
|
11
|
Wijesena HR, Nonneman DJ, Keel BN, Lents CA. Gene expression in the amygdala and hippocampus of cyclic and acyclic gilts. J Anim Sci 2022; 100:6497483. [PMID: 34984470 PMCID: PMC8801052 DOI: 10.1093/jas/skab372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/02/2022] [Indexed: 01/07/2023] Open
Abstract
Age at first estrus is the earliest phenotypic indicator of future reproductive success of gilts. Prebreeding anestrus is a major reason for reproductive failure leading to culling of replacement gilts. The two types of prebreeding anestrus are delay in attaining puberty (prepubertal anestrus, PPA) and silent ovulation (behavioral anestrus, BA). Neural tissues such as amygdala and hippocampus play a major role in regulating sexual behavior, social interactions, and receptivity to males. Differences in gene expression in the amygdala and hippocampus of gilts were analyzed in three comparisons: 1) PPA cases and cyclic controls at follicular phase of estrous cycle, 2) BA cases and cyclic controls at luteal phase of estrous cycle, and 3) gilts at different stages of the ovarian cycle (cyclic gilts at follicular phase and luteal phase of estrous cycle) to gain functional understanding of how these rarely studied tissues may differ between pubertal phenotypes and different stages of the estrous cycle of gilts. Differentially expressed genes (DEG) between PPA and BA cases and their respective cyclic controls were involved in neurological and behavioral disorders as well as nervous system functions that could directly or indirectly involved in development of behaviors related to estrus. The comparison between cyclic follicular and luteal phase control gilts identified the greatest number of DEG in the hippocampus and amygdala. These DEG were involved in adult neurogenesis and neural synapse (e.g., GABAergic, dopamine, cholinergic), suggesting that these tissues undergo structural changes and synaptic plasticity in gilts. This is the first report to demonstrate that the stage of estrous cycle is associated with dynamic changes in gene expression within porcine hippocampus and amygdala and indicates a role of gonadal steroids in regulating their biology.
Collapse
Affiliation(s)
- Hiruni R Wijesena
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Dan J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Brittney N Keel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA,Corresponding author:
| |
Collapse
|
12
|
Chahkandi M, Sepehri G, Komeili G, Hadad MK, Haghparast E, Chahkandi M. The different role of G-protein-coupled receptor 30 (GPR30) in the interaction effects of marijuana and estradiol on spatial learning and memory at different ages. Brain Res Bull 2021; 178:155-163. [PMID: 34800583 DOI: 10.1016/j.brainresbull.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022]
Abstract
Some studies suggest that the effect of cannabis on behavior performance depends on the presence of ovarian hormones and the age of use initiation. Estradiol is the main ovarian hormone that can interact with cannabinoids. It has been suggested that cannabinoids exert some of their effects directly through estrogen receptors (ERs). A novel G-protein-coupled receptor (GPR30) was described as mediating estrogen signaling in various cell lines. Since there are few studies on the interaction of cannabis and ovarian hormones on cognitive behaviors, so, this study evaluated the role of GPR30 in the effects of marijuana (M) and estrogen, alone and in combination, on spatial learning and memory of young (non-ovarian(OVX)) and old female rats. Young (5-7 months) and old (22-24 months) female rats received an intraperitoneal injection (i.p) of 17β-estradiol (E2), G1 (GPR30 agonist), and G15 (GPR30 antagonist) every four days, and M (every day), either alone or in combination, for 28 days. One hour after the last injection, the Morris water maze (MWM) test was conducted to evaluate of spatial learning and memory. Moreover, hippocampal BDNF level was assessed by the ELISA method. The results showed a positive effect of M on spatial learning in both young and old rats, however, E2 showed beneficial effects on the memory of young, but not old rats. Our results showed that GPR30 does not have any role in the interaction effects of M and E2 in young rats. Although both E2 and M alone showed positive effects on spatial learning and memory in old rats, however, our results showed a negative interaction between marijuana and E2 combined effects on spatial learning and memory in old female rats which is mediated by GPR30. Our results showed that the effects of GPR30 on spatial learning and memory is age dependent. Furthermore, this study showed that hippocampal BDNF does not have any role in the interaction effects of M and E2 on spatial learning and memory in young and old rats.
Collapse
Affiliation(s)
- Mohadeseh Chahkandi
- Physiology Research Center, Institute of Neuropharmacology, and Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran; Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Sepehri
- Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gholamreza Komeili
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Khaksari Hadad
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Haghparast
- Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Chahkandi
- Department of Statistics, University of Birjand, Birjand, Iran
| |
Collapse
|
13
|
Jiang H, Xiao L, Jin K, Shao B. Estrogen administration attenuates post-stroke depression by enhancing CREB/BDNF/TrkB signaling in the rat hippocampus. Exp Ther Med 2021; 21:433. [PMID: 33747172 PMCID: PMC7967838 DOI: 10.3892/etm.2021.9850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022] Open
Abstract
A previous study demonstrated that 17β-estradiol (E2), which is an antidepressant, can ameliorate post-stroke depression (PSD); however, the underlying mechanisms governing this remain largely unknown. Therefore, the present study developed a PSD model in rats, which was induced by left middle cerebral artery occlusion followed by exposure to chronic mild stress for 2 weeks. The results revealed that the activity of the cAMP response element-binding protein (CREB), a cellular transcription factor, and the associated brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) signaling were all attenuated in the hippocampus in PSD rats. The depression-like behaviors were significantly improved after treatment with E2, along with increased CREB and the BDNF/TrkB signaling activity. These results provide novel insight into the molecular basis of PSD, and suggest the potential involvement of CREB/BDNF/TrkB signaling in E2-mediated improvement of PSD in rats.
Collapse
Affiliation(s)
- Huigang Jiang
- Department of Neurology, Yiwu City Center Hospital, Wenzhou Medical University, Yiwu, Zhejiang 322000, P.R. China
| | - Li Xiao
- Department of Neurology, Shaoyang City Center Hospital, Shaoyang, Hunan 422000, P.R. China
| | - Kunlin Jin
- Department of Neurology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Bei Shao
- Department of Neurology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
14
|
Yamada K, Shiga H, Noda T, Harita M, Ishikura T, Nakamura Y, Hatta T, Sakata-Haga H, Shimada H, Miwa T. The Impact of Ovariectomy on Olfactory Neuron Regeneration in Mice. Chem Senses 2021; 45:203-209. [PMID: 32010939 DOI: 10.1093/chemse/bjaa005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estrogen has been shown to affect differentiation and proliferation as a mitogen in various neural systems. Olfactory receptor cells are unique within the nervous system, and have the ability to regenerate even after an individual has reached maturity. Olfactory receptor cells also regenerate after experimentally induced degeneration. The purpose of this study is to observe the influence of estrogen depletion induced by ovariectomy on olfactory nerve regeneration. Female mice underwent bilateral ovariectomy at 8 weeks of age and received intraperitoneal administration of methimazole 1 week later. At 2, 4, and 6 weeks after methimazole administration, the olfactory mucosa was analyzed histochemically to determine olfactory epithelium (OE) thickness, olfactory marker protein distribution, and Ki-67 immunoreactivity. Furthermore, 2 weeks after ovariectomy, trkA protein distribution in the OE and nerve growth factor (NGF) levels in the olfactory bulb were determined by immunohistochemistry and enzyme-linked immunosorbent assay, respectively. Our results showed that in ovariectomized mice OMP, Ki-67, and trkA-immunopositive cells expression decreased at 2 weeks after methimazole injection, a time point at which regeneration is underway. At this same time point, although NGF production in the olfactory bulb had increased before methimazole administration, no differences were observed between the ovx and control groups. These results suggest that estrogen depletion induces a suppressive effect on regeneration of olfactory neurons, and that estrogen may have a potential use in the treatment of sensorineural olfactory dysfunction.
Collapse
Affiliation(s)
- Kentaro Yamada
- Department of Otorhinolaryngology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa, Japan
| | - Hideaki Shiga
- Department of Otorhinolaryngology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa, Japan
| | - Takuya Noda
- Department of Otorhinolaryngology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa, Japan
| | - Masayuki Harita
- Department of Otorhinolaryngology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa, Japan
| | - Tomoko Ishikura
- Department of Otorhinolaryngology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa, Japan
| | - Yukari Nakamura
- Department of Otorhinolaryngology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa, Japan
| | - Toshihisa Hatta
- Department of Anatomy I, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy I, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa, Japan
| | - Hiroki Shimada
- Department of Anatomy I, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa, Japan
| | - Takaki Miwa
- Department of Otorhinolaryngology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa, Japan
| |
Collapse
|
15
|
Bustamante-Barrientos FA, Méndez-Ruette M, Ortloff A, Luz-Crawford P, Rivera FJ, Figueroa CD, Molina L, Bátiz LF. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front Cell Neurosci 2021; 15:636176. [PMID: 33762910 PMCID: PMC7984366 DOI: 10.3389/fncel.2021.636176] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia Luz-Crawford
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisco J Rivera
- Laboratory of Stem Cells and Neuroregeneration, Faculty of Medicine, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Carlos D Figueroa
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
16
|
Frye CA, Lembo VF, Walf AA. Progesterone's Effects on Cognitive Performance of Male Mice Are Independent of Progestin Receptors but Relate to Increases in GABA A Activity in the Hippocampus and Cortex. Front Endocrinol (Lausanne) 2021; 11:552805. [PMID: 33505354 PMCID: PMC7829189 DOI: 10.3389/fendo.2020.552805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023] Open
Abstract
Progestogens' (e.g., progesterone and its neuroactive metabolite, allopregnanolone), cognitive effects and mechanisms among males are not well-understood. We hypothesized if progestogen's effects on cognitive performance are through its metabolite allopregnanolone, and not actions via binding to traditional progestin receptors (PRs), then progesterone administration would enhance performance in tasks mediated by the hippocampus and cortex, coincident with increasing allopregnanolone concentrations, brain derived neurotrophic factor (BDNF) and/or muscimol binding of PR knock out (PRKO) and wild-type PR replete mice. Experiment 1: Progesterone (4 mg/kg, subcutaneously (SC; n = 12/grp), or oil vehicle control, was administered to gonadally-intact adult male mice PRKO mice and their wild-type counterparts and cognitive behaviors in object recognition, T-maze and water maze was examined. Progesterone, compared to vehicle, when administered post-training increased time investigating novel objects by the PRKO and wild-type mice in the object recognition task. In the T-maze task, progesterone administration to wild-type and PRKO mice had significantly greater number of spontaneous alternations compared to their vehicle-administered counterparts. In the water maze task, PRKO mice administered vehicle spent significantly fewer seconds in the quadrant associated with the escape platform on testing compared to all other groups. Experiment 2: Progesterone administered to wild-type and PRKO mice increased plasma progesterone and allopregnanolone levels (n = 5/group). PRKO mice had higher allopregnanolone levels in plasma and hippocampus, but not cortex, when administered progesterone and compared to wild-type mice. Experiment 3: Assessment of PR binding revealed progesterone administered wild-type mice had significantly greater levels of PRs in the hippocampus and cortex, compared to all other groups (n = 5/group). Wild-type mice administered progesterone, but not vehicle, had increased BDNF levels in the hippocampus, but not the cortex, compared to PRKOs. Wild-type as well as PRKO mice administered progesterone experienced significant increases in maximal GABAA agonist, muscimol, binding in hippocampus and cortex, compared to their vehicle-administered counterparts. Thus, adult male mice can be responsive to progesterone for cognitive performance, and such effects may be independent of PRs trophic actions of BDNF levels in the hippocampus and/or increases in GABAA activity in the hippocampus and cortex.
Collapse
Affiliation(s)
- Cheryl A. Frye
- Department of Psychology, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Department of Biological Sciences, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- The Center for Neuroscience Research, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- The Center for Life Sciences Research, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Institute of Arctic Biology, University of Alaska–Fairbanks, Fairbanks, AK, United States
- Department of Chemistry, University of Alaska–Fairbanks, Fairbanks, AK, United States
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska–Fairbanks, Fairbanks, AK, United States
- Comprehensive Neuropsychological Services, Albany, NY, United States
| | - Vincent F. Lembo
- Comprehensive Neuropsychological Services, Albany, NY, United States
| | - Alicia A. Walf
- Department of Psychology, The University at Albany-SUNY, Life Sciences, Albany, NY, United States
- Institute of Arctic Biology, University of Alaska–Fairbanks, Fairbanks, AK, United States
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska–Fairbanks, Fairbanks, AK, United States
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
17
|
Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry 2020; 25:2251-2274. [PMID: 31900428 DOI: 10.1038/s41380-019-0639-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is widely accepted for its involvement in resilience and antidepressant drug action, is a common genetic locus of risk for mental illnesses, and remains one of the most prominently studied molecules within psychiatry. Stress, which arguably remains the "lowest common denominator" risk factor for several mental illnesses, targets BDNF in disease-implicated brain regions and circuits. Altered stress-related responses have also been observed in animal models of BDNF deficiency in vivo, and BDNF is a common downstream intermediary for environmental factors that potentiate anxiety- and depressive-like behavior. However, BDNF's broad functionality has manifested a heterogeneous literature; likely reflecting that BDNF plays a hitherto under-recognized multifactorial role as both a regulator and target of stress hormone signaling within the brain. The role of BDNF in vulnerability to stress and stress-related disorders, such as posttraumatic stress disorder (PTSD), is a prominent example where inconsistent effects have emerged across numerous models, labs, and disciplines. In the current review we provide a contemporary update on the neurobiology of BDNF including new data from the behavioral neuroscience and neuropsychiatry literature on fear memory consolidation and extinction, stress, and PTSD. First we present an overview of recent advances in knowledge on the role of BDNF within the fear circuitry, as well as address mounting evidence whereby stress hormones interact with endogenous BDNF-TrkB signaling to alter brain homeostasis. Glucocorticoid signaling also acutely recruits BDNF to enhance the expression of fear memory. We then include observations that the functional common BDNF Val66Met polymorphism modulates stress susceptibility as well as stress-related and stress-inducible neuropsychiatric endophenotypes in both man and mouse. We conclude by proposing a BDNF stress-sensitivity hypothesis, which posits that disruption of endogenous BDNF activity by common factors (such as the BDNF Val66Met variant) potentiates sensitivity to stress and, by extension, vulnerability to stress-inducible illnesses. Thus, BDNF may induce plasticity to deleteriously promote the encoding of fear and trauma but, conversely, also enable adaptive plasticity during extinction learning to suppress PTSD-like fear responses. Ergo regulators of BDNF availability, such as the Val66Met polymorphism, may orchestrate sensitivity to stress, trauma, and risk of stress-induced disorders such as PTSD. Given an increasing interest in personalized psychiatry and clinically complex cases, this model provides a framework from which to experimentally disentangle the causal actions of BDNF in stress responses, which likely interact to potentiate, produce, and impair treatment of, stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia. .,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia. .,Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Jorgensen C, Wang Z. Hormonal Regulation of Mammalian Adult Neurogenesis: A Multifaceted Mechanism. Biomolecules 2020; 10:biom10081151. [PMID: 32781670 PMCID: PMC7465680 DOI: 10.3390/biom10081151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis—resulting in adult-generated functioning, integrated neurons—is still one of the most captivating research areas of neuroplasticity. The addition of new neurons in adulthood follows a seemingly consistent multi-step process. These neurogenic stages include proliferation, differentiation, migration, maturation/survival, and integration of new neurons into the existing neuronal network. Most studies assessing the impact of exogenous (e.g., restraint stress) or endogenous (e.g., neurotrophins) factors on adult neurogenesis have focused on proliferation, survival, and neuronal differentiation. This review will discuss the multifaceted impact of hormones on these various stages of adult neurogenesis. Specifically, we will review the evidence for hormonal facilitation (via gonadal hormones), inhibition (via glucocorticoids), and neuroprotection (via recruitment of other neurochemicals such as neurotrophin and neuromodulators) on newly adult-generated neurons in the mammalian brain.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, UT 84058, USA
- Correspondence:
| | - Zuoxin Wang
- Psychology Department and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| |
Collapse
|
19
|
Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40:283-299. [PMID: 31502112 PMCID: PMC11448899 DOI: 10.1007/s10571-019-00733-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.
Collapse
Affiliation(s)
- Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Vahid Hajali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Moradi
- Histology and Embryology Group, Basic Science Department, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, Germany.
| |
Collapse
|
20
|
Marrocco J, Einhorn NR, Petty GH, Li H, Dubey N, Hoffman J, Berman KF, Goldman D, Lee FS, Schmidt PJ, McEwen BS. Epigenetic intersection of BDNF Val66Met genotype with premenstrual dysphoric disorder transcriptome in a cross-species model of estradiol add-back. Mol Psychiatry 2020; 25:572-583. [PMID: 30356121 PMCID: PMC7042769 DOI: 10.1038/s41380-018-0274-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) affects over 5% of women, with symptoms similar to anxiety and major depression, and is associated with differential sensitivity to circulating ovarian hormones. Little is known about the genetic and epigenetic factors that increase the risk to develop PMDD. We report that 17β-estradiol (E2) affects the behavior and the epigenome in a mouse model carrying a single-nucleotide polymorphism of the brain-derived neurotrophic factor gene (BDNF Val66Met), in a way that recapitulates the hallmarks of PMDD. Ovariectomized mice heterozygous for the BDNF Met allele (Het-Met) and their matched wild-type (WT) mice were administered estradiol or vehicle in drinking water for 6 weeks. Using the open field and the splash test, we show that E2 add-back induces anxiety-like and depression-like behavior in Het-Met mice, but not in WT mice. RNA-seq of the ventral hippocampus (vHpc) highlights that E2-dependent gene expression is markedly different between WT mice and Het-Met mice. Through a comparative whole-genome RNA-seq analysis between mouse vHpc and lymphoblastoid cell line cultures from control women and women with PMDD, we discovered common epigenetic biomarkers that transcend species and cell types. Those genes include epigenetic modifiers of the ESC/E(Z) complex, an effector of response to ovarian steroids. Although the BDNF Met genotype intersects the behavioral and transcriptional traits of women with PMDD, we suggest that these similarities speak to the epigenetic factors by which ovarian steroids produce negative behavioral effects.
Collapse
Affiliation(s)
- Jordan Marrocco
- 0000 0001 2166 1519grid.134907.8Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Nathan R. Einhorn
- 0000 0001 2166 1519grid.134907.8Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Gordon H. Petty
- 0000 0001 2166 1519grid.134907.8Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Howard Li
- 0000 0004 0464 0574grid.416868.5Behavioral Endocrinology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Neelima Dubey
- grid.440681.fDr. D. Y. Patil Biotechnology & Bioinformatics Institute, Pune, India
| | - Jessica Hoffman
- 0000 0001 0421 5525grid.265436.0Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Karen F. Berman
- 0000 0004 0464 0574grid.416868.5Section on Integrative Neuroimaging, National Institute of Mental Health, Bethesda, MD USA
| | - David Goldman
- 0000 0004 0481 4802grid.420085.bLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD USA
| | - Francis S. Lee
- 000000041936877Xgrid.5386.8Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY USA
| | - Peter J. Schmidt
- 0000 0004 0464 0574grid.416868.5Behavioral Endocrinology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Bruce S. McEwen
- 0000 0001 2166 1519grid.134907.8Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| |
Collapse
|
21
|
Yousuf H, Smies CW, Hafenbreidel M, Tuscher JJ, Fortress AM, Frick KM, Mueller D. Infralimbic Estradiol Enhances Neuronal Excitability and Facilitates Extinction of Cocaine Seeking in Female Rats via a BDNF/TrkB Mechanism. Front Behav Neurosci 2019; 13:168. [PMID: 31417375 PMCID: PMC6684748 DOI: 10.3389/fnbeh.2019.00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Women are more susceptible to developing cocaine dependence than men, but paradoxically, are more responsive to treatment. The potent estrogen, 17β-estradiol (E2), mediates these effects by augmenting cocaine seeking but also promoting extinction of cocaine seeking through E2's memory-enhancing functions. Although we have previously shown that E2 facilitates extinction, the neuroanatomical locus of action and underlying mechanisms are unknown. Here we demonstrate that E2 infused directly into the infralimbic-medial prefrontal cortex (IL-mPFC), a region critical for extinction consolidation, enhances extinction of cocaine seeking in ovariectomized (OVX) female rats. Using patch-clamp electrophysiology, we show that E2 may facilitate extinction by potentiating intrinsic excitability of IL-mPFC neurons. Because the mnemonic effects of E2 are known to be regulated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), we examined whether BDNF/TrkB signaling was necessary for E2-induced enhancement of excitability and extinction. We found that E2-mediated increases in excitability of IL-mPFC neurons were abolished by Trk receptor blockade. Moreover, blockade of TrkB signaling impaired E2-facilitated extinction of cocaine seeking in OVX female rats. Thus, E2 enhances IL-mPFC neuronal excitability in a TrkB-dependent manner to support extinction of cocaine seeking. Our findings suggest that pharmacological enhancement of E2 or BDNF/TrkB signaling during extinction-based therapies would improve therapeutic outcome in cocaine-addicted women.
Collapse
Affiliation(s)
- Hanna Yousuf
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Chad W Smies
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Madalyn Hafenbreidel
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Devin Mueller
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
22
|
Abstract
There are 3 common physiological estrogens, of which estradiol (E2) is seen to decline rapidly over the menopausal transition. This decline in E2 has been associated with a number of changes in the brain, including cognitive changes, effects on sleep, and effects on mood. These effects have been demonstrated in both rodent and non-human preclinical models. Furthermore, E2 interactions have been indicated in a number of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. In normal brain aging, there are a number of systems that undergo changes and a number of these show interactions with E2, particularly the cholinergic system, the dopaminergic system, and mitochondrial function. E2 treatment has been shown to ameliorate some of the behavioral and morphological changes seen in preclinical models of menopause; however, in clinical populations, the effects of E2 treatment on cognitive changes after menopause are mixed. The future use of sex hormone treatment will likely focus on personalized or precision medicine for the prevention or treatment of cognitive disturbances during aging, with a better understanding of who may benefit from such treatment.
Collapse
Affiliation(s)
- Jason K Russell
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Geriatric Research, Education, and Clinical Center (GRECC), Tennessee VA Health Systems, Nashville, TN, 37212, USA.
| |
Collapse
|
23
|
Notaras M, van den Buuse M. Brain-Derived Neurotrophic Factor (BDNF): Novel Insights into Regulation and Genetic Variation. Neuroscientist 2018; 25:434-454. [DOI: 10.1177/1073858418810142] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since its discovery, brain-derived neurotrophic factor (BDNF) has spawned a literature that now spans 35 years of research. While all neurotrophins share considerable overlap in sequence homology and their processing, BDNF has become the most widely studied neurotrophin because of its broad roles in brain homeostasis, health, and disease. Although research on BDNF has produced thousands of articles, there remain numerous long-standing questions on aspects of BDNF molecular biology and signaling. Here we provide a comprehensive review, including both a historical narrative and a forward-looking perspective on advances in the actions of BDNF within the brain. We specifically review BDNF’s gene structure, peptide composition (including domains, posttranslational modifications and putative motif sites), mechanisms of transport, signaling pathway recruitment, and other recent developments including the functional effects of genetic variation and the discovery of a new BDNF prodomain ligand. This body of knowledge illustrates a highly conserved and complex role for BDNF within the brain, that promotes the idea that the neurotrophin biology of BDNF is diverse and that any disease involvement is likely to be equally multifarious.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Rebolledo-Solleiro D, Fernández-Guasti A. Influence of sex and estrous cycle on blood glucose levels, body weight gain, and depressive-like behavior in streptozotocin-induced diabetic rats. Physiol Behav 2018; 194:560-567. [DOI: 10.1016/j.physbeh.2018.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/10/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
|
25
|
Tsai SJ. Critical Issues in BDNF Val66Met Genetic Studies of Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:156. [PMID: 29867348 PMCID: PMC5962780 DOI: 10.3389/fnmol.2018.00156] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neurotrophins have been implicated in the pathophysiology of many neuropsychiatric diseases. Brain-derived neurotrophic factor (BDNF) is the most abundant and widely distributed neurotrophin in the brain. Its Val66Met polymorphism (refSNP Cluster Report: rs6265) is a common and functional single-nucleotide polymorphism (SNP) affecting the activity-dependent release of BDNF. BDNF Val66Met transgenic mice have been generated, which may provide further insight into the functional impact of this polymorphism in the brain. Considering the important role of BDNF in brain function, more than 1,100 genetic studies have investigated this polymorphism in the past 15 years. Although these studies have reported some encouraging positive findings initially, most of the findings cannot be replicated in following studies. These inconsistencies in BDNF Val66Met genetic studies may be attributed to many factors such as age, sex, environmental factors, ethnicity, genetic model used for analysis, and gene–gene interaction, which are discussed in this review. We also discuss the results of recent studies that have reported the novel functions of this polymorphism. Because many BDNF polymorphisms and non-genetic factors have been implicated in the complex traits of neuropsychiatric diseases, the conventional genetic association-based method is limited to address these complex interactions. Future studies should apply data mining and machine learning techniques to determine the genetic role of BDNF in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
26
|
Schelke MW, Attia P, Palenchar DJ, Kaplan B, Mureb M, Ganzer CA, Scheyer O, Rahman A, Kachko R, Krikorian R, Mosconi L, Isaacson RS. Mechanisms of Risk Reduction in the Clinical Practice of Alzheimer's Disease Prevention. Front Aging Neurosci 2018; 10:96. [PMID: 29706884 PMCID: PMC5907312 DOI: 10.3389/fnagi.2018.00096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative dementia that affects nearly 50 million people worldwide and is a major source of morbidity, mortality, and healthcare expenditure. While there have been many attempts to develop disease-modifying therapies for late-onset AD, none have so far shown efficacy in humans. However, the long latency between the initial neuronal changes and onset of symptoms, the ability to identify patients at risk based on family history and genetic markers, and the emergence of AD biomarkers for preclinical disease suggests that early risk-reducing interventions may be able to decrease the incidence of, delay or prevent AD. In this review, we discuss six mechanisms—dysregulation of glucose metabolism, inflammation, oxidative stress, trophic factor release, amyloid burden, and calcium toxicity—involved in AD pathogenesis that offer promising targets for risk-reducing interventions. In addition, we offer a blueprint for a multi-modality AD risk reduction program that can be clinically implemented with the current state of knowledge. Focused risk reduction aimed at particular pathological factors may transform AD to a preventable disorder in select cases.
Collapse
Affiliation(s)
- Matthew W Schelke
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Peter Attia
- Attia Medical, PC, San Diego, CA, United States
| | | | - Bob Kaplan
- Attia Medical, PC, San Diego, CA, United States
| | - Monica Mureb
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Christine A Ganzer
- Hunter College, City University of New York, New York, NY, United States
| | - Olivia Scheyer
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Aneela Rahman
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | | | - Robert Krikorian
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa Mosconi
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | | |
Collapse
|
27
|
Ravenelle R, Berman AK, La J, Mason B, Asumadu E, Yelleswarapu C, Donaldson ST. Sex matters: females in proestrus show greater diazepam anxiolysis and brain-derived neurotrophin factor- and parvalbumin-positive neurons than males. Eur J Neurosci 2018; 47:994-1002. [PMID: 29461650 PMCID: PMC5902654 DOI: 10.1111/ejn.13870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 01/22/2023]
Abstract
In humans and animal models, sex differences are reported for anxiety-like behavior and response to anxiogenic stimuli. In the current work, we studied anxiety-like behavior and response to the prototypical anti-anxiety drug, diazepam. We used 6th generation outbred lines of adult Long Evans rats with high and low anxiety-like behavior phenotypes to investigate the impact of proestrus on the baseline and diazepam-induced behavior. At three doses of diazepam (0, 0.1, and 1.0 mg/kg, i.p.), we measured anxiogenic responses on the elevated plus maze of adult male and female rats. We assessed parvalbumin and brain-derived neurotrophin protein levels in forebrain and limbic structures implicated in anxiety/stress using immunohistochemistry. At baseline, we saw significant differences between anxiety lines, with high anxiety lines displaying less time on the open arms of the elevated plus maze, and less open arm entries, regardless of sex. During proestrus, high anxiety females showed less anxiety-like behavior at 0.1 mg/kg, while low anxiety females displayed less anxiety-like behavior at 0.1 and 1.0 doses, relative to males. Brain-derived neurotrophin protein was elevated in females in the medial prefrontal cortex and central amygdala, while parvalbumin-immunoreactive cells were greater in males in the medial prefrontal cortex. Parvalbumin-positive cells in high anxiety females were higher in CA2 and dentate gyrus relative to males from the same line. In sum, when tested in proestrus, females showed greater anxiolytic effects of diazepam relative to males, and this correlated with increases in neurotrophin and parvalbumin neuron density in corticolimbic structures.
Collapse
Affiliation(s)
- Rebecca Ravenelle
- City University of New York, CUNY Neuroscience Collaborative, The Graduate Center, 365 Fifth Ave., New York, NY 10016 USA
| | - Ariel K. Berman
- Department of Psychology, Western Michigan University, 1526 Wood Hall, Kalamazoo, MI 49008 USA
| | - Jeffrey La
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125 USA
| | - Briana Mason
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125 USA
| | - Evans Asumadu
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125 USA
| | - Chandra Yelleswarapu
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125 USA
| | - S. Tiffany Donaldson
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125 USA
| |
Collapse
|
28
|
Frick KM, Tuscher JJ, Koss WA, Kim J, Taxier LR. Estrogenic regulation of memory consolidation: A look beyond the hippocampus, ovaries, and females. Physiol Behav 2018; 187:57-66. [PMID: 28755863 PMCID: PMC5787049 DOI: 10.1016/j.physbeh.2017.07.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022]
Abstract
The potent estrogen 17β-estradiol (E2) has long been known to regulate the hippocampus and hippocampal-dependent memories in females, and research from the past decade has begun to shed light on the molecular mechanisms through which E2 mediates memory formation in females. Although E2 can also regulate hippocampal function in males, relatively little is known about how E2 influences memory formation in males, or whether sex differences in underlying mechanisms exist. This review, based on a talk given in April 2017 at the American University symposium entitled, "Sex Differences: From Neuroscience to the Clinic and Beyond", first provides an overview of the molecular mechanisms in the dorsal hippocampus through which E2 enhances memory consolidation in ovariectomized female mice. Next, newer research is described demonstrating key roles for the prefrontal cortex and de novo hippocampal E2 synthesis to the memory-enhancing effects of E2 in females. The review then discusses the effects of de novo and exogenous E2 on hippocampal memory consolidation in both sexes, and putative sex differences in the underlying molecular mechanisms through which E2 enhances memory formation. The review concludes by discussing the importance and implications of sex differences in the molecular mechanisms underlying E2-induced memory consolidation for human health.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Wendy A Koss
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
29
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
30
|
McCarthny CR, Du X, Wu YC, Hill RA. Investigating the Interactive Effects of Sex Steroid Hormones and Brain-Derived Neurotrophic Factor during Adolescence on Hippocampal NMDA Receptor Expression. Int J Endocrinol 2018; 2018:7231915. [PMID: 29666640 PMCID: PMC5831834 DOI: 10.1155/2018/7231915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/05/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Sex steroid hormones have neuroprotective properties which may be mediated by brain-derived neurotrophic factor (BDNF). This study sought to determine the interactive effects of preadolescent hormone manipulation and BDNF heterozygosity (+/-) on hippocampal NMDA-R expression. Wild-type and BDNF+/- mice were gonadectomised, and females received either 17β-estradiol or progesterone treatment, while males received either testosterone or dihydrotestosterone (DHT) treatment. Dorsal (DHP) and ventral hippocampus (VHP) were dissected, and protein expression of GluN1, GluN2A, GluN2B, and PSD-95 was assessed by Western blot analysis. Significant genotype × OVX interactions were found for GluN1 and GluN2 expression within the DHP of female mice, suggesting modulation of select NMDA-R levels by female sex hormones is mediated by BDNF. Furthermore, within the DHP BDNF+/- mice show a hypersensitive response to hormone treatment on GluN2 expression which may result from upstream alterations in TrkB phosphorylation. In contrast to the DHP, the VHP showed no effects of hormone manipulation but significant effects of genotype on NMDA-R expression. Castration had no effect on NMDA-R expression; however, androgen treatment had selective effects on GluN2B. These data show case distinct, interactive roles for sex steroid hormones and BDNF in the regulation of NMDA-R expression that are dependent on dorsal versus ventral hippocampal region.
Collapse
Affiliation(s)
- Cushla R. McCarthny
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Xin Du
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - YeeWen Candace Wu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel A. Hill
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
31
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
32
|
Wei YC, Wang SR, Xu XH. Sex differences in brain-derived neurotrophic factor signaling: Functions and implications. J Neurosci Res 2017; 95:336-344. [PMID: 27870405 DOI: 10.1002/jnr.23897] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates diverse processes such as neuronal survival, differentiation, and plasticity. Accumulating evidence suggests that molecular events that direct sexual differentiation of the brain interact with BDNF signaling pathways. This Mini-Review first examines potential hormonal and epigenetic mechanisms through which sex influences BDNF signaling. We then examine how sex-specific regulation of BDNF signaling supports the development and function of sexually dimorphic neural circuits that underlie male-specific genital reflexes in rats and song production in birds. Finally, we discuss the implications of sex differences in BDNF signaling for gender-biased presentation of neurological and psychiatric diseases such as Alzheimer's disease. Although this Mini-Review focuses on BDNF, we try to convey the general message that sex influences brain functions in complex ways and underscore the requirement for and challenge of expanding research on sex differences in neuroscience. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Chao Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shao-Ran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
A sexually dimorphic pre-stressed translational signature in CA3 pyramidal neurons of BDNF Val66Met mice. Nat Commun 2017; 8:808. [PMID: 28993643 PMCID: PMC5634406 DOI: 10.1038/s41467-017-01014-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Males and females use distinct brain circuits to cope with similar challenges. Using RNA sequencing of ribosome-bound mRNA from hippocampal CA3 neurons, we found remarkable sex differences and discovered that female mice displayed greater gene expression activation after acute stress than males. Stress-sensitive BDNF Val66Met mice of both sexes show a pre-stressed translational phenotype in which the same genes that are activated without applied stress are also induced in wild-type mice by an acute stressor. Behaviourally, only heterozygous BDNF Val66Met females exhibit spatial memory impairment, regardless of acute stress. Interestingly, this effect is not observed in ovariectomized heterozygous BDNF Val66Met females, suggesting that circulating ovarian hormones induce cognitive impairment in Met carriers. Cognitive deficits are not observed in males of either genotype. Thus, in a brain region not normally associated with sex differences, this work sheds light on ways that genes, environment and sex interact to affect the transcriptome’s response to a stressor. Animals’ response to acute stress is known to be influenced by sex and genetics. Here the authors performed RNA-seq on actively translated mRNAs in hippocampal CA3 neurons in mice, and document the effects of sex and genotype (i.e., BDNF Val66Met) on acute stress-induced gene expression.
Collapse
|
34
|
Sexual dimorphic expression of TrkB, TrkB-T1, and BDNF in the medial preoptic area of the Syrian hamster. Brain Res 2017; 1669:122-125. [PMID: 28606780 DOI: 10.1016/j.brainres.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/16/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Neurotrophins regulate many aspects of neuronal function and activity. Specifically, the binding of Brain-derived neurotrophic factor (BDNF) to Tyrosine receptor kinase-B (TrkB) or its truncated version, TrkB-T1, can cause growth and differentiation or dominant inhibition of receptor signaling, respectively. There is evidence that these neurotropic effects on nervous tissue, in both the central and peripheral nervous system, behave differently between the sexes. This study used western blots to examine the expression of these neurotrophins in the medial preoptic area (MPOA), a sexually dimorphic region of the hamster brain that controls male sex behavior. We report that TrkB-FL and BDNF show greater expression in male MPOA tissue, when compared to female. On the contrary, TrkB-T1 is expressed in greater abundance in the female MPOA. Our results indicate a clear sexual dimorphism of neurotrophins in the MPOA of the Syrian hamster. Furthermore, the greater expression of TrkB-FL and BDNF in the male MPOA suggests that these neurotrophins could be promoting synaptic growth to facilitate male-typical copulation. In contrast, the greater TrkB-T1 expression in the female MPOA suggests a possible inhibition of synaptic growth, and may contribute to the lack of male-typical copulation. Altogether, our data suggests that neurotrophins may play a larger role sexual differentiation than previously thought.
Collapse
|
35
|
Russell AL, Grimes JM, Larco DO, Cruthirds DF, Westerfield J, Wooten L, Keil M, Weiser MJ, Landauer MR, Handa RJ, Wu TJ. The interaction of dietary isoflavones and estradiol replacement on behavior and brain-derived neurotrophic factor in the ovariectomized rat. Neurosci Lett 2017; 640:53-59. [PMID: 28077306 DOI: 10.1016/j.neulet.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
Abstract
Phytoestrogens are plant derived, non-steroidal compounds naturally found in rodent chows that potentially have endocrine-disrupting effects. Isoflavones, the most common phytoestrogens, have a similar structure and molecular weight to 17β-estradiol (E2) and have the ability to bind and activate both isoforms of the estrogen receptor (ER). Most isoflavones have a higher affinity for ERβ, which is involved in sexually dimorphic behavioral regulation. The goal of this study was to examine the interaction of isoflavones and E2 presence in the OVX rat on anxiety- and depressive- like behavior and the related BDNF pathophysiology. E2 administration resulted in anxiogenic behaviors when isoflavones were present in the diet (p<0.05), but anxiolytic behaviors when isoflavones were not present (p<0.05). E2 resulted in antidepressive-like behaviors in animals fed an isoflavone-rich diet (p<0.05), with no effect when isoflavones were removed. Increased hippocampal BDNF expression was observed in animals fed an isoflavone-rich diet after E2 administration (p<0.05). BDNF expression in the amygdala and hypothalamus was increased after E2 treatment in animals fed an isoflavone-rich diet. Overall, these results demonstrate that the presence of dietary isoflavones can differentially regulate the effect of E2 replacement on behavior and BDNF expression.
Collapse
Affiliation(s)
- Ashley L Russell
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Jamie Moran Grimes
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Darwin O Larco
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Danette F Cruthirds
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joanna Westerfield
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Lawren Wooten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Margaret Keil
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Michael J Weiser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Michael R Landauer
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States; Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
36
|
Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV. Transl Psychiatry 2016; 6:e896. [PMID: 27648918 PMCID: PMC5048201 DOI: 10.1038/tp.2016.160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/08/2016] [Accepted: 06/19/2016] [Indexed: 02/08/2023] Open
Abstract
Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0-2 months), young adult (2-4 months), and old adult (12-14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults.
Collapse
|
37
|
Mitrović N, Guševac I, Drakulić D, Stanojlović M, Zlatković J, Sévigny J, Horvat A, Nedeljković N, Grković I. Regional and sex-related differences in modulating effects of female sex steroids on ecto-5'-nucleotidase expression in the rat cerebral cortex and hippocampus. Gen Comp Endocrinol 2016; 235:100-107. [PMID: 27296672 DOI: 10.1016/j.ygcen.2016.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/03/2015] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
Ecto-5'-nucleotidase (eN), a membrane rate-limiting enzyme of the purine catabolic pathway, catalyzes the conversion of AMP to adenosine involved in the regulation of many brain physiological and pathological processes. Since gender fundamentally determines hormonal milieu in the body and brain, it is reasonable to assume that sex differences in the activity of various signaling systems, including adenosine, may be generated by gonadal steroids. Thus, we examined expression of eN as a component of adenosine signaling system in the basal state in cerebral cortex and hippocampus of male and female rats at gene, protein and functional level, as well as in the state of gonadal hormone deprivation, induced by ovariectomy (OVX), whereas impact of steroid hormones was explored after repeated administration of 17α-estradiol, 17β-estradiol and progesterone for seven consecutive days. Results showed regional and sex-related differences in basal eN activity level, with the highest AMP hydrolysis observed in the hippocampus of male rats. Furthermore, ovarian steroids do not contribute to basal gene eN expression or the activity in cortical and hippocampal region of female rats. However, protein eN expression was increased in OVX rats in both investigated region. Investigated exogenous steroids had no influence on eN expression in male brain, while in OVX females alterations in eN activity were induced. The observed effects in female rats were different between examined regions e.g. in cortex, applied treatments predominantly decreased whereas in hippocampus increased eN activity. Based on the presented results, eN exerts regional and sex-related response in basal state as well as after treatment with female gonadal hormones, however the exact mechanisms of sex steroids actions on eN remain unclear and should be fully explored.
Collapse
Affiliation(s)
- Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Ivana Guševac
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jelena Zlatković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, QC, Canada; Centre de recherche du CHU de Québec, G1V 4G2 QC, Canada
| | - Anica Horvat
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nadežda Nedeljković
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
| |
Collapse
|
38
|
Sárvári M, Kalló I, Hrabovszky E, Solymosi N, Rodolosse A, Liposits Z. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats. Front Cell Neurosci 2016; 10:149. [PMID: 27375434 PMCID: PMC4901073 DOI: 10.3389/fncel.2016.00149] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/27/2016] [Indexed: 11/13/2022] Open
Abstract
Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ, and G protein-coupled ER). Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for DPN-altered functional patterns. These findings support the notion that selective activation of ERβ may be a viable approach for treating the neural symptoms of E2 deficiency in menopause.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Norbert Solymosi
- Faculty of Veterinary Science, Szent István University Budapest, Hungary
| | - Annie Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine Barcelona, Spain
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
39
|
Simone J, Bogue EA, Bhatti DL, Day LE, Farr NA, Grossman AM, Holmes PV. Ethinyl estradiol and levonorgestrel alter cognition and anxiety in rats concurrent with a decrease in tyrosine hydroxylase expression in the locus coeruleus and brain-derived neurotrophic factor expression in the hippocampus. Psychoneuroendocrinology 2015; 62:265-78. [PMID: 26352480 DOI: 10.1016/j.psyneuen.2015.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022]
Abstract
In the United States, more than ten million women use contraceptive hormones. Ethinyl estradiol and levonorgestrel have been mainstay contraceptive hormones for the last four decades. Surprisingly, there is scant information regarding their action on the central nervous system and behavior. Intact female rats received three weeks of subcutaneous ethinyl estradiol (10 or 30μg/rat/day), levonorgestrel (20 or 60μg/rat/day), a combination of both (10/20μg/rat/day and 30/60μg/rat/day), or vehicle. Subsequently, the rats were tested in three versions of the novel object recognition test to assess learning and memory, and a battery of tests for anxiety-like behavior. Serum estradiol and ovarian weights were measured. All treatment groups exhibited low endogenous 17β-estradiol levels at the time of testing. Dose-dependent effects of drug treatment manifested in both cognitive and anxiety tests. All low dose drugs decreased anxiety-like behavior and impaired performance on novel object recognition. In contrast, the high dose ethinyl estradiol increased anxiety-like behavior and improved performance in cognitive testing. In the cell molecular analyses, low doses of all drugs induced a decrease in tyrosine hydroxylase mRNA and protein in the locus coeruleus. At the same time, low doses of ethinyl estradiol and ethinyl estradiol/levonorgestrel increased galanin protein in this structure. Consistent with the findings above, the low dose treatments of ethinyl estradiol and combination ethinyl estradiol/levonorgestrel reduced brain-derived neurotrophic factor mRNA in the hippocampus. These effects of ethinyl estradiol 10μg alone and in combination with levonorgestrel 20μg suggest a diminution of norepinephrine input into the hippocampus resulting in a decline in learning and memory.
Collapse
Affiliation(s)
- Jean Simone
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Elizabeth A Bogue
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Dionnet L Bhatti
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Laura E Day
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Nathan A Farr
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Anna M Grossman
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Philip V Holmes
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA; Psychology, University of Georgia, 125 Baldwin Street, Athens, GA 30602, USA.
| |
Collapse
|
40
|
Pooley AE, Luong M, Hussain A, Nathan BP. Neurite outgrowth promoting effect of 17-β estradiol is mediated through estrogen receptor alpha in an olfactory epithelium culture. Brain Res 2015. [PMID: 26206299 DOI: 10.1016/j.brainres.2015.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Olfactory deficits are observed early in the course of chronic neurological disorders including Alzheimer's disease (AD). Estrogen treatment in post-menopausal women reduced the incidence of olfactory dysfunction, raising the possibility that estrogen treatment can cure olfactory deficits in preclinical stages of AD. In this study, we examined the estradiol׳s effects on neurite outgrowth in explant cultures of mouse olfactory epithelium (OE). We found that neurons in OE cultures treated with 100 pM 17-β estradiol (estradiol) had significantly longer neurite outgrowth than cultures treated with ethanol alone (vehicle). The OE neurons expressed estrogen receptors alpha (ERα) and ER beta (ERβ). Estrogen treatment upregulated both ERα and ERβ expression in OE culture. Treatment of OE cultures with propyl pyrazole triol (PPT), a selective agonist for ERα increased neurite outgrowth to comparable extent as estradiol treatment. In contrast, 2,3-bis-4-hydroxyphenyl (DPN), a specific agonist for ERβ, had no effect on neurite outgrowth. Furthermore, estradiol treatment increased neurite outgrowth in OE cultures derived from ERβ-deficient/knockout mice and wild-type littermates, but not in ERα-deficient/knockout mice. These data suggest that ERα mediates the neurite outgrowth promoting effects of estradiol in OE cultures. We propose that olfactory dysfunction in chronic neurological disorders, where estrogen deficiency is a risk factor, is an indicator of compromised axonal regeneration of olfactory sensory neurons.
Collapse
Affiliation(s)
- Apryl E Pooley
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston IL 61920, United States
| | - Minh Luong
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston IL 61920, United States
| | - Aseem Hussain
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston IL 61920, United States
| | - Britto P Nathan
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston IL 61920, United States.
| |
Collapse
|
41
|
Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sutoh C, Shimizu E. Sex differences in fear extinction and involvements of extracellular signal-regulated kinase (ERK). Neurobiol Learn Mem 2015; 123:117-24. [PMID: 26079214 DOI: 10.1016/j.nlm.2015.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/02/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
Stress-related disorders, such as post-traumatic stress disorder (PTSD) and panic disorders, are disproportionately prevalent in females. However, the biological mechanism underlying these sex differences in the prevalence rate remains unclear. In the present study, we examined sex differences in fear memory, fear extinction, and spontaneous recovery of fear. We investigated the presence of sex differences in recent and remote fear memory in mice using contextual fear conditioning, as well as sex differences in spontaneous recovery of fear memory using a consecutive fear extinction paradigm. We examined the number of fear extinction days required to prevent spontaneous recovery of fear in either sex. We investigated whether ovariectomy affected fear extinction and spontaneous recovery. We also measured the activation of extracellular signal-regulated kinase (ERK) 1 and 2 in the dorsal hippocampus and the medial prefrontal cortex following fear extinction sessions. In our results, we found no sex difference in recent or remote fear memory. However, females required more fear extinction sessions compared to males to prevent spontaneous recovery. Within-extinction freezing also differed between males and females. Moreover, females required more extinction sessions than males to increase ERK2 phosphorylation in the dorsal hippocampus. Our data suggest that contextual fear extinction was unstable in females compared to males and that such sex differences may be related to the ERK2 phosphorylation in the hippocampus.
Collapse
Affiliation(s)
- Shingo Matsuda
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | - Daisuke Matsuzawa
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan; Research Center for Child Mental Development, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Daisuke Ishii
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Haruna Tomizawa
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Chihiro Sutoh
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan; Research Center for Child Mental Development, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan
| |
Collapse
|
42
|
Brenowitz EA. Transsynaptic trophic effects of steroid hormones in an avian model of adult brain plasticity. Front Neuroendocrinol 2015; 37:119-28. [PMID: 25285401 PMCID: PMC4385747 DOI: 10.1016/j.yfrne.2014.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 12/23/2022]
Abstract
The avian song control system provides an excellent model for studying transsynaptic trophic effects of steroid sex hormones. Seasonal changes in systemic testosterone (T) and its metabolites regulate plasticity of this system. Steroids interact with the neurotrophin brain-derived neurotrophic factor (BDNF) to influence cellular processes of plasticity in nucleus HVC of adult birds, including the addition of newborn neurons. This interaction may also occur transsynpatically; T increases the synthesis of BDNF in HVC, and BDNF protein is then released by HVC neurons on to postsynaptic cells in nucleus RA where it has trophic effects on activity and morphology. Androgen action on RA neurons increases their activity and this has a retrograde trophic effect on the addition of new neurons to HVC. The functional linkage of sex steroids to BDNF may be of adaptive value in regulating the trophic effects of the neurotrophin and coordinating circuit function in reproductively relevant contexts.
Collapse
Affiliation(s)
- Eliot A Brenowitz
- Departments of Psychology and Biology, and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, United States.
| |
Collapse
|
43
|
Milne MR, Haug CA, Ábrahám IM, Kwakowsky A. Estradiol modulation of neurotrophin receptor expression in female mouse basal forebrain cholinergic neurons in vivo. Endocrinology 2015; 156:613-26. [PMID: 25415243 DOI: 10.1210/en.2014-1669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuroprotective effect of estradiol (E2) on basal forebrain cholinergic neurons (BFCNs) has been suggested to occur as a result of E2 modulation of the neurotrophin system on these neurons. The present study provides a comprehensive examination of the relationship between E2 and neurotrophin signaling on BFCNs by investigating the effect of E2 deficiency on the expression levels of neurotrophin receptors (NRs), TrkA, TrkB, and p75 on BFCNs. The number of TrkA receptor-expressing choline acetyltransferase-positive neurons was significantly reduced in the medial septum (MS) in the absence of E2. A significant reduction in TrkB-expressing choline acetyltransferase-positive cells was also observed in ovariectomized mice in the MS and nucleus basalis magnocellularis (NBM). p75 receptor expression was reduced in the NBM and striatum but not in the MS. We also showed that estrogen receptor (ER)-α was expressed by a small percentage of TrkA- and TrkB-positive neurons in the MS (12%) and NBM (19%) and by a high percentage of TrkB-positive neurons in the striatum (69%). Similarly, ERα was expressed at low levels by p75 neurons in the MS (6%) and NBM (9%) but was not expressed on striatal neurons. Finally, ERα knockout using neuron-specific estrogen receptor-α knockout transgenic mice abolished all E2-mediated changes in the NR expression on BFCNs. These results indicate that E2 differentially regulates NR expression on BFCNs, with effects depending on the NR type and neuroanatomical location, and also provide some evidence that alterations in the NR expression are, at least in part, mediated via ERα.
Collapse
Affiliation(s)
- Michael R Milne
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
44
|
Involvement of pregnane xenobiotic receptor in mating-induced allopregnanolone formation in the midbrain and hippocampus and brain-derived neurotrophic factor in the hippocampus among female rats. Psychopharmacology (Berl) 2014; 231:3375-90. [PMID: 24781516 PMCID: PMC4135012 DOI: 10.1007/s00213-014-3569-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/31/2014] [Indexed: 12/30/2022]
Abstract
RATIONALE Given that the pregnane neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP), is increased following behavioral challenges (e.g., mating), and that there is behavioral-induced biosynthesis of 3α,5α-THP in midbrain and mesocorticolimbic structures, 3α,5α-THP likely has a role in homeostasis and motivated reproduction and reproduction-related behaviors (e.g., affect, affiliation). The role of pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism, for these effects is of continued interest. OBJECTIVES We hypothesized that there would be differences in brain levels of 3α,5α-THP following varied behavioral experiences, an effect abrogated by knockdown of PXR in the midbrain. METHODS Proestrous rats were infused with PXR antisense oligonucleotides (AS-ODNs) or vehicle to the ventral tegmental area before different behavioral manipulations and assessments. Endpoints were expression levels of PXR in the midbrain, 3α,5α-THP, and ovarian steroids (estradiol, progesterone, dihydroprogesterone) in the midbrain, striatum, hippocampus, hypothalamus, prefrontal cortex, and plasma. RESULTS Across experiments, knocking down PXR reduced PXR expression and 3α,5α-THP levels in the midbrain and hippocampus. There were differences in terms of the behavioral manipulations, such that paced mating had the most robust effects to increase 3α,5α-THP levels and reduce open field exploration and social interaction. An additional question that was addressed is whether brain-derived neurotrophic factor (BDNF) is a downstream factor for regulating effects of behavioral-induced 3α,5α-THP biosynthesis. Rats infused with PXR AS-ODNs had lower levels of BDNF in the hippocampus. CONCLUSION Thus, PXR may be a regulator of mating-induced 3α,5α-THP formation and behavioral changes and neural plasticity, such as BDNF.
Collapse
|
45
|
Fortress AM, Kim J, Poole RL, Gould TJ, Frick KM. 17β-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice. ACTA ACUST UNITED AC 2014; 21:457-67. [PMID: 25128537 PMCID: PMC4138358 DOI: 10.1101/lm.034033.113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17β-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone acetylation is regulated by E2 in middle-aged females is unknown. The mnemonic benefits of E2 in aging females appear to be greatest in middle age, and so pinpointing the molecular mechanisms through which E2 enhances memory at this age could lead to the development of safer and more effective treatments for maintaining memory function without the side effects of current therapies. Here, we show that dorsal hippocampal infusion of E2 rapidly enhanced object recognition and spatial memory, and increased histone H3 acetylation in the dorsal hippocampus, while also significantly reducing levels of histone deacetylase (HDAC2 and HDAC3) proteins. E2 specifically increased histone H3 acetylation at Bdnf promoters pII and pIV in the dorsal hippocampus of both young and middle-aged mice, despite age-related decreases in pI and pIV acetylation. Furthermore, levels of mature BDNF and pro-BDNF proteins in the dorsal hippocampus were increased by E2 in middle-aged females. Together, these data suggest that the middle-aged female dorsal hippocampus remains epigenetically responsive to E2, and that E2 may enhance memory in middle-aged females via epigenetic regulation of Bdnf.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Rachel L Poole
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
46
|
Dos Santos Pereira RT, Porto CS, Abdalla FMF. Ovariectomy and 17β-estradiol replacement play a role on the expression of Endonuclease-G and phosphorylated cyclic AMP response element-binding (CREB) protein in hippocampus. Mol Cell Endocrinol 2014; 382:227-233. [PMID: 24121025 DOI: 10.1016/j.mce.2013.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate the effects of different periods of ovariectomy and 17β-estradiol (E2) replacement on the expression of Cytochrome C, apoptosis inducing factor (AIF) and Endonuclease-G (Endo-G) in mitochondrial and cytosolic fractions obtained from hippocampus of the adult female rats. In addition, the expression of phosphorylated CREB (phospho-CREB) was also analyzed in hippocampus. Ovariectomy or E2 treatment did not change the expression of Cytochrome C and AIF. Ovariectomy (15, 21 and 36 days) decreased the expression of Endo-G in the mitochondrial fractions and increased it in the cytosolic fractions obtained from hippocampus. The treatment with E2 after 15 days of ovariectomy for 7 days or 21 days, and throughout the post-ovariectomy period prevented the effects of ovariectomy on Endo-G expression. Our results suggest that ovariectomy-induced apoptotic cell death in hippocampal tissue could be mediated by Endo-G, but not by AIF, via a caspase-independent apoptotic pathway. Furthermore, ovariectomy decreased the expression of phospho-CREB and the treatment with E2 prevented these effects. In conclusion, E2 may help maintain long-term neuronal viability by regulating the expression of members of the Bcl-2 family. Regulation of Endo-G released from mitochondria, but not of Cytochrome C and AIF, is also involved in the neuroprotective actions of E2. Furthermore, CREB may be involved in the expression of Bcl-2. These data provide new understanding into the mechanisms involved in the neuroprotective role of estrogen.
Collapse
Affiliation(s)
| | - Catarina Segreti Porto
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
47
|
Boersma GJ, Lee RS, Cordner ZA, Ewald ER, Purcell RH, Moghadam AA, Tamashiro KL. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 2013; 9:437-47. [PMID: 24365909 DOI: 10.4161/epi.27558] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is ample evidence that exposure to stress during gestation increases the risk of the offspring to develop mood disorders. Brain-derived neurotrophic factor (Bdnf) plays a critical role during neuronal development and is therefore a prime candidate to modulate neuronal signaling in adult offspring of rat dams that were stressed during gestation. In the current study, we tested the hypothesis that alterations in Bdnf expression in prenatally stressed (PNS) offspring are mediated by changes in DNA methylation in exons IV and VI of the Bdnf gene. We observed decreased Bdnf expression in the amygdala and hippocampus of prenatally stressed rats both at weaning and in adulthood. This decrease in Bdnf expression was accompanied by increased DNA methylation in Bdnf exon IV in the amygdala and hippocampus, suggesting that PNS-induced reduction in Bdnf expression may, at least in part, be mediated by increased DNA methylation of Bdnf exon IV. Expression of DNA methyltransferases (Dnmt) 1 and 3a was increased in PNS rats in the amygdala and hippocampus. Our data suggest that PNS induces decreases in Bdnf expression that may at least in part be mediated by increased DNA methylation of Bdnf exon IV.
Collapse
Affiliation(s)
- Gretha J Boersma
- Mood Disorders Center; Department of Psychiatry and Behavioral Sciences; Johns Hopkins University; School of Medicine; Baltimore, MD USA
| | - Richard S Lee
- Mood Disorders Center; Department of Psychiatry and Behavioral Sciences; Johns Hopkins University; School of Medicine; Baltimore, MD USA
| | - Zachary A Cordner
- Mood Disorders Center; Department of Psychiatry and Behavioral Sciences; Johns Hopkins University; School of Medicine; Baltimore, MD USA
| | - Erin R Ewald
- Mood Disorders Center; Department of Psychiatry and Behavioral Sciences; Johns Hopkins University; School of Medicine; Baltimore, MD USA
| | - Ryan H Purcell
- Mood Disorders Center; Department of Psychiatry and Behavioral Sciences; Johns Hopkins University; School of Medicine; Baltimore, MD USA
| | - Alexander A Moghadam
- Mood Disorders Center; Department of Psychiatry and Behavioral Sciences; Johns Hopkins University; School of Medicine; Baltimore, MD USA
| | - Kellie L Tamashiro
- Mood Disorders Center; Department of Psychiatry and Behavioral Sciences; Johns Hopkins University; School of Medicine; Baltimore, MD USA
| |
Collapse
|
48
|
Baudry M, Bi X, Aguirre C. Progesterone-estrogen interactions in synaptic plasticity and neuroprotection. Neuroscience 2013; 239:280-94. [PMID: 23142339 PMCID: PMC3628409 DOI: 10.1016/j.neuroscience.2012.10.051] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 01/01/2023]
Abstract
17ß-Estradiol and progesterone exert a number of physiological effects throughout the brain due to interactions with several types of receptors belonging to the traditional family of intracellular hormonal receptors as well as to membrane-bound receptors. In particular, both hormones elicit rapid modifications of neuronal excitability that have been postulated to underlie their effects on synaptic plasticity and learning and memory. Likewise, both hormones have been shown to be neuroprotective under certain conditions, possibly due to the activation of pro-survival pathways and the inhibition of pro-apoptotic cascades. Because of the similarities in their cellular effects, there have been a number of questions raised by numerous observations that progesterone inhibits the effects of estrogen. In this manuscript, we first review the interactions between 17ß-estradiol (E2) and progesterone (P4) in synaptic plasticity, and conclude that, while E2 exerts a clear and important role in long-term potentiation of synaptic transmission in hippocampal neurons, the role of P4 is much less clear, and could be accounted by the direct or indirect regulation of GABAA receptors. We then discuss the neuroprotective roles of both hormones, in particular against excitotoxicity. In this case, the neuroprotective effects of these hormones are very similar to those of the neurotrophic factor BDNF. Interestingly, P4 antagonizes the effects of E2, possibly through the regulation of estrogen receptors or of proteins associated with the receptors or interactions with signaling pathways activated by E2. Overall, this review emphasizes the existence of common molecules and pathways that participate in the regulation of both synaptic plasticity and neurodegeneration.
Collapse
Affiliation(s)
- M Baudry
- GCBS and COMP, Western University of Health Sciences, Pomona, CA, USA.
| | | | | |
Collapse
|
49
|
Scharfman HE, MacLusky NJ. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats. Neuropharmacology 2013; 76 Pt C:696-708. [PMID: 23660230 DOI: 10.1016/j.neuropharm.2013.04.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult female rat, while testosterone exerts a tonic suppression of mossy fiber BDNF levels in the adult male rat. The consequences are interesting to consider: in females, increased excitability associated with high levels of BDNF in mossy fibers could improve normal functions of area CA3, such as the ability to perform pattern completion. However, memory retrieval may lead to anxiety if stressful events are recalled. Therefore, the actions of 17β-estradiol on the mossy fiber pathway in females may provide a potential explanation for the greater incidence of anxiety-related disorders and post-traumatic stress syndrome (PTSD) in women relative to men. In males, suppression of BDNF-dependent plasticity in the mossy fibers may be protective, but at the 'price' of reduced synaptic plasticity in CA3. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| | | |
Collapse
|
50
|
di Michele F, Luchetti S, Bernardi G, Romeo E, Longone P. Neurosteroid and neurotransmitter alterations in Parkinson's disease. Front Neuroendocrinol 2013; 34:132-42. [PMID: 23563222 DOI: 10.1016/j.yfrne.2013.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/17/2013] [Accepted: 03/25/2013] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is associated with a massive loss of dopaminergic cells in the substantia nigra leading to dopamine hypofunction and alteration of the basal ganglia circuitry. These neurons, are under the control, among others, of the excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) systems. An imbalance between these systems may contribute to excitotoxicity and dopaminergic cell death. Neurosteroids, a group of steroid hormones synthesized in the brain, modulate the function of several neurotransmitter systems. The substantia nigra of the human brain expresses high concentrations of allopregnanolone (3α, 5αtetrahydroprogesterone), a neurosteroid that positively modulates the action of GABA at GABAA receptors and of 5α-dihydroprogesterone, a neurosteroid acting at the genomic level. This article reviews the roles of NS acting as neuroprotectants and as GABAA receptor agonists in the physiology and pathophysiology of the basal ganglia, their impact on dopaminergic cell activity and survival, and potential therapeutic application in PD.
Collapse
|